NTB60N06LG [ONSEMI]

Power MOSFET 60 Amps, 60 Volts, Logic Level N−Channel TO−220 and D2PAK; 功率MOSFET 60安培, 60伏特,逻辑电平N沟道TO- 220和D2PAK
NTB60N06LG
型号: NTB60N06LG
厂家: ONSEMI    ONSEMI
描述:

Power MOSFET 60 Amps, 60 Volts, Logic Level N−Channel TO−220 and D2PAK
功率MOSFET 60安培, 60伏特,逻辑电平N沟道TO- 220和D2PAK

晶体 晶体管 功率场效应晶体管 开关 脉冲
文件: 总8页 (文件大小:89K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NTP60N06L, NTB60N06L  
Power MOSFET  
60 Amps, 60 Volts,  
Logic Level  
N−Channel TO−220 and D2PAK  
http://onsemi.com  
Designed for low voltage, high speed switching applications in  
power supplies, converters, power motor controls and bridge circuits.  
60 AMPERES, 60 VOLTS  
RDS(on) = 16 mW  
Features  
N−Channel  
Pb−Free Packages are Available  
D
Typical Applications  
Power Supplies  
Converters  
Power Motor Controls  
Bridge Circuits  
G
S
4
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
C
Rating  
Symbol  
Value  
60  
Unit  
Vdc  
Vdc  
Vdc  
4
Drain−to−Source Voltage  
V
DSS  
DGR  
Drain−to−Gate Voltage (R = 10 MW)  
V
60  
GS  
1
2
Gate−to−Source Voltage  
− Continuous  
3
2
TO−220AB  
CASE 221A  
STYLE 5  
D PAK  
CASE 418B  
STYLE 2  
V
V
"15  
"20  
GS  
GS  
− Non−Repetitive (t v10 ms)  
p
1
2
Drain Current  
3
− Continuous @ T = 25°C  
I
I
60  
42.3  
180  
Adc  
Apk  
A
D
D
− Continuous @ T 100°C  
A
MARKING DIAGRAMS  
& PIN ASSIGNMENTS  
− Single Pulse (t v10 ms)  
p
I
DM  
4
Total Power Dissipation @ T = 25°C  
P
150  
1.0  
2.4  
W
W/°C  
W
A
D
Drain  
Derate above 25°C  
4
Total Power Dissipation @ T = 25°C (Note 1)  
A
Drain  
Operating and Storage Temperature Range  
T , T  
55 to  
175  
°C  
J
stg  
NTx  
60N06LG  
AYWW  
Single Pulse Drain−to−Source Avalanche  
E
454  
mJ  
AS  
NTx60N06LG  
AYWW  
Energy − Starting T = 25°C  
J
(V = 75 Vdc, V = 5.0 Vdc,  
DD  
GS  
L = 0.3 mH, I (pk) = 55 A,V = 60 Vdc)  
L
DS  
1
Gate  
3
1
2
3
Thermal Resistance,  
°C/W  
°C  
Source  
Gate Drain Source  
− Junction−to−Case  
− Junction−to−Ambient (Note 1)  
R
R
1.0  
62.5  
q
JC  
2
q
JA  
Drain  
Maximum Lead Temperature for Soldering  
Purposes, 1/8from case for 10 seconds  
T
260  
L
NTx60N06L = Device Code  
x
A
Y
WW  
G
= B or P  
= Assembly Location  
= Year  
= Work Week  
= Pb−Free Package  
Maximum ratings are those values beyond which device damage can occur.  
Maximum ratings applied to the device are individual stress limit values (not  
normal operating conditions) and are not valid simultaneously. If these limits are  
exceeded, device functional operation is not implied, damage may occur and  
reliability may be affected.  
1. When surface mounted to an FR4 board using the minimum recommended  
2
pad size, (Cu Area 0.412 in ).  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 2 of this data sheet.  
©
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
August, 2005 − Rev. 3  
NTP60N06L/D  
 
NTP60N06L, NTB60N06L  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain−to−Source Breakdown Voltage (Note 2)  
(V = 0 Vdc, I = 250 mAdc)  
V
Vdc  
(BR)DSS  
60  
72.8  
75.2  
GS  
D
Temperature Coefficient (Positive)  
mV/°C  
mAdc  
Zero Gate Voltage Drain Current  
I
I
DSS  
(V = 60 Vdc, V = 0 Vdc)  
1.0  
10  
DS  
GS  
(V = 60 Vdc, V = 0 Vdc, T =150°C)  
DS  
GS  
J
Gate−Body Leakage Current (V  
=
15 Vdc, V = 0 Vdc)  
100  
nAdc  
Vdc  
GS  
DS  
GSS  
ON CHARACTERISTICS (Note 2)  
Gate Threshold Voltage (Note 2)  
V
GS(th)  
(V = V , I = 250 mAdc)  
Threshold Temperature Coefficient (Negative)  
1.0  
1.58  
5.4  
2.0  
DS  
GS  
D
mV/°C  
mW  
Static Drain−to−Source On−Resistance (Note 2)  
R
V
DS(on)  
(V = 5.0 Vdc, I = 30 Adc)  
12.4  
16  
GS  
D
Static Drain−to−Source On−Voltage (Note 2)  
(V = 5.0 Vdc, I = 60 Adc)  
Vdc  
DS(on)  
0.793  
0.861  
1.17  
GS  
D
(V = 5.0 Vdc, I = 30 Adc, T = 150°C)  
GS  
D
J
Forward Transconductance (Note 2) (V = 8.0 Vdc, I = 12 Adc)  
g
FS  
48  
mhos  
pF  
DS  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
iss  
2195  
675  
3075  
945  
(V = 25 Vdc, V = 0 Vdc,  
DS  
GS  
Output Capacitance  
C
oss  
f = 1.0 MHz)  
Transfer Capacitance  
C
rss  
188  
380  
SWITCHING CHARACTERISTICS (Note 3)  
Turn−On Delay Time  
t
50.4  
576  
100  
237  
43.2  
6.4  
100  
1160  
200  
480  
65  
ns  
d(on)  
(V = 48 Vdc, I = 60 Adc,  
DD  
D
Rise Time  
t
r
V
= 5.0 Vdc,  
GS  
Turn−Off Delay Time  
Fall Time  
t
d(off)  
R
G
= 9.1 W) (Note 2)  
t
f
Q
T
Q
1
Q
2
nC  
Gate Charge  
(V = 48 Vdc, I = 60 Adc,  
DS  
D
V
= 5.0 Vdc) (Note 2)  
GS  
29  
SOURCE−DRAIN DIODE CHARACTERISTICS  
Forward On−Voltage  
(I = 60 Adc, V = 0 Vdc) (Note 2)  
V
SD  
0.98  
0.86  
1.05  
Vdc  
ns  
S
GS  
(I = 60 Adc, V = 0 Vdc, T = 150°C)  
S
GS  
J
t
81.9  
42.1  
Reverse Recovery Time  
rr  
(I = 60 Adc, V = 0 Vdc,  
S
GS  
t
a
dl /dt = 100 A/ms) (Note 2)  
S
t
39.8  
b
Reverse Recovery Stored Charge  
Q
0.172  
mC  
RR  
2. Pulse Test: Pulse Width 300 ms, Duty Cycle 2%.  
3. Switching characteristics are independent of operating junction temperature.  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NTP60N06L  
TO−220AB  
50 Units / Rail  
50 Units / Rail  
NTP60N06LG  
TO−220AB  
(Pb−Free)  
2
NTB60N06L  
50 Units / Rail  
50 Units / Rail  
D PAK  
2
NTB60N06LG  
D PAK  
(Pb−Free)  
2
NTB60N06LT4  
800 Units / Tape & Reel  
800 Units / Tape & Reel  
D PAK  
2
NTB60N06LT4G  
D PAK  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
2
 
NTP60N06L, NTB60N06L  
120  
120  
100  
80  
60  
40  
20  
0
V
10 V  
DS  
4.5 V  
4 V  
8 V  
100  
80  
6 V  
5 V  
V
= 10 V  
GS  
60  
3.5 V  
3 V  
40  
T = 25°C  
J
20  
0
T = 100°C  
J
T = −55°C  
J
0
1
2
3
4
5
1
2
3
4
5
6
V
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
DS  
V
, GATE−TO−SOURCE VOLTAGE (VOLTS)  
GS  
Figure 1. On−Region Characteristics  
Figure 2. Transfer Characteristics  
0.03  
0.026  
0.022  
0.03  
0.026  
0.022  
V
= 5 V  
V
GS  
= 10V  
GS  
T = 100°C  
J
0.018  
0.018  
T = 100°C  
J
T = 25°C  
J
0.014  
0.01  
0.014  
0.01  
T = 25°C  
J
T = −55°C  
J
T = −55°C  
J
0.006  
0.006  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
I , DRAIN CURRENT (AMPS)  
D
I , DRAIN CURRENT (AMPS)  
D
Figure 3. On−Resistance versus Gate−to−Source  
Voltage  
Figure 4. On−Resistance versus Drain Current  
and Gate Voltage  
2
1.8  
1.6  
1.4  
1.2  
10,000  
1000  
V
= 0 V  
GS  
I
V
= 30 A  
= 5 V  
D
T = 150°C  
J
GS  
T = 125°C  
J
100  
10  
1
T = 100°C  
J
0.8  
0.6  
0
10  
20  
30  
40  
50  
60  
−50 −25  
0
25  
50  
75 100 125 150 175  
V
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
DS  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. On−Resistance Variation with  
Temperature  
Figure 6. Drain−to−Source Leakage Current  
versus Voltage  
http://onsemi.com  
3
NTP60N06L, NTB60N06L  
POWER MOSFET SWITCHING  
Switching behavior is most easily modeled and predicted  
by recognizing that the power MOSFET is charge  
controlled. The lengths of various switching intervals (Dt)  
are determined by how fast the FET input capacitance can  
be charged by current from the generator.  
The capacitance (C ) is read from the capacitance curve at  
iss  
a voltage corresponding to the off−state condition when  
calculating t  
and is read at a voltage corresponding to the  
d(on)  
on−state when calculating t  
.
d(off)  
At high switching speeds, parasitic circuit elements  
complicate the analysis. The inductance of the MOSFET  
source lead, inside the package and in the circuit wiring  
which is common to both the drain and gate current paths,  
produces a voltage at the source which reduces the gate drive  
current. The voltage is determined by Ldi/dt, but since di/dt  
is a function of drain current, the mathematical solution is  
complex. The MOSFET output capacitance also  
complicates the mathematics. And finally, MOSFETs have  
finite internal gate resistance which effectively adds to the  
resistance of the driving source, but the internal resistance  
is difficult to measure and, consequently, is not specified.  
The resistive switching time variation versus gate  
resistance (Figure 9) shows how typical switching  
performance is affected by the parasitic circuit elements. If  
the parasitics were not present, the slope of the curves would  
maintain a value of unity regardless of the switching speed.  
The circuit used to obtain the data is constructed to minimize  
common inductance in the drain and gate circuit loops and  
is believed readily achievable with board mounted  
components. Most power electronic loads are inductive; the  
data in the figure is taken with a resistive load, which  
approximates an optimally snubbed inductive load. Power  
MOSFETs may be safely operated into an inductive load;  
however, snubbing reduces switching losses.  
The published capacitance data is difficult to use for  
calculating rise and fall because drain−gate capacitance  
varies greatly with applied voltage. Accordingly, gate  
charge data is used. In most cases, a satisfactory estimate of  
average input current (I  
) can be made from a  
G(AV)  
rudimentary analysis of the drive circuit so that  
t = Q/I  
G(AV)  
During the rise and fall time interval when switching a  
resistive load, V remains virtually constant at a level  
GS  
known as the plateau voltage, V . Therefore, rise and fall  
SGP  
times may be approximated by the following:  
t = Q x R /(V − V )  
GSP  
r
2
G
GG  
t = Q x R /V  
f
2
G
GSP  
where  
= the gate drive voltage, which varies from zero to V  
V
GG  
GG  
R = the gate drive resistance  
G
and Q and V  
are read from the gate charge curve.  
2
GSP  
During the turn−on and turn−off delay times, gate current is  
not constant. The simplest calculation uses appropriate  
values from the capacitance curves in a standard equation for  
voltage change in an RC network. The equations are:  
t
t
= R C In [V /(V − V )]  
G iss GG GG GSP  
d(on)  
d(off)  
= R C In (V /V )  
GG GSP  
G
iss  
8000  
6000  
4000  
2000  
V
= 0 V  
V
= 0 V  
GS  
DS  
T = 25°C  
J
C
iss  
rss  
C
C
C
iss  
oss  
rss  
C
0
5
0
5
10  
15  
20  
25  
10  
V
V
GS  
DS  
GATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
Figure 7. Capacitance Variation  
http://onsemi.com  
4
NTP60N06L, NTB60N06L  
1000  
6
5
4
3
2
1
0
Q
T
t
r
Q
V
1
GS  
Q
2
t
f
100  
t
t
d(off)  
d(on)  
V
= 30 V  
= 60 A  
= 5 V  
DS  
GS  
I
= 60 A  
T = 25°C  
I
D
D
V
J
10  
0
10  
20  
30  
40  
50  
1
10  
R , GATE RESISTANCE (W)  
100  
Q , TOTAL GATE CHARGE (nC)  
G
G
Figure 8. Gate−to−Source and Drain−to−Source  
Voltage versus Total Charge  
Figure 9. Resistive Switching Time  
Variation versus Gate Resistance  
DRAIN−TO−SOURCE DIODE CHARACTERISTICS  
60  
V
= 0 V  
GS  
T = 25°C  
J
50  
40  
30  
20  
T = 150°C  
J
T = 25°C  
J
10  
0
0.3  
0.38  
0.46  
0.54  
0.62  
0.7  
0.78  
0.86  
V
, SOURCE−TO−DRAIN VOLTAGE (VOLTS)  
SD  
Figure 10. Diode Forward Voltage versus Current  
SAFE OPERATING AREA  
The Forward Biased Safe Operating Area curves define  
the maximum simultaneous drain−to−source voltage and  
drain current that a transistor can handle safely when it is  
forward biased. Curves are based upon maximum peak  
A Power MOSFET designated E−FET can be safely used  
in switching circuits with unclamped inductive loads. For  
reliable operation, the stored energy from circuit inductance  
dissipated in the transistor while in avalanche must be less  
than the rated limit and adjusted for operating conditions  
differing from those specified. Although industry practice is  
to rate in terms of energy, avalanche energy capability is not  
a constant. The energy rating decreases non−linearly with an  
increase of peak current in avalanche and peak junction  
temperature.  
junction temperature and a case temperature (T ) of 25°C.  
C
Peak repetitive pulsed power limits are determined by using  
the thermal response data in conjunction with the procedures  
discussed in AN569, “Transient Thermal Resistance −  
General Data and Its Use.”  
Switching between the off−state and the on−state may  
traverse any load line provided neither rated peak current  
Although many E−FETs can withstand the stress of  
drain−to−source avalanche at currents up to rated pulsed  
(I ) nor rated voltage (V ) is exceeded and the  
DM  
DSS  
transition time (t ,t ) do not exceed 10 ms. In addition the total  
current (I ), the energy rating is specified at rated  
r f  
DM  
power averaged over a complete switching cycle must not  
continuous current (I ), in accordance with industry custom.  
D
The energy rating must be derated for temperature as shown  
exceed (T  
− T )/(R ).  
C qJC  
J(MAX)  
http://onsemi.com  
5
NTP60N06L, NTB60N06L  
in the accompanying graph (Figure 12). Maximum energy at  
currents below rated continuous I can safely be assumed to  
D
equal the values indicated.  
SAFE OPERATING AREA  
1000  
100  
10  
500  
400  
300  
200  
V
= 20 V  
I
= 55 A  
GS  
D
10 ms  
SINGLE PULSE  
= 25°C  
T
C
100 ms  
1 ms  
10 ms  
100  
0
R
LIMIT  
DS(on)  
THERMAL LIMIT  
PACKAGE LIMIT  
dc  
1
0.1  
1
10  
100  
25  
50  
75  
100  
125  
150  
175  
V
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
DS  
T , STARTING JUNCTION TEMPERATURE (°C)  
J
Figure 11. Maximum Rated Forward Biased  
Safe Operating Area  
Figure 12. Maximum Avalanche Energy versus  
Starting Junction Temperature  
1.0  
D = 0.5  
0.2  
0.1  
P
(pk)  
0.1  
0.05  
0.02  
R
(t) = r(t) R  
q
JC  
q
JC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
t
READ TIME AT t  
1
1
0.01  
SINGLE PULSE  
t
2
T
− T = P  
R (t)  
q
JC  
J(pk)  
C
(pk)  
DUTY CYCLE, D = t /t  
1
2
0.01  
0.00001  
0.0001  
0.001  
0.01  
t, TIME (ms)  
0.1  
1.0  
10  
Figure 13. Thermal Response  
di/dt  
I
S
t
rr  
t
a
t
b
TIME  
0.25 I  
t
p
S
I
S
Figure 14. Diode Reverse Recovery Waveform  
http://onsemi.com  
6
NTP60N06L, NTB60N06L  
PACKAGE DIMENSIONS  
D2PAK  
CASE 418B−04  
ISSUE J  
NOTES:  
C
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. 418B−01 THRU 418B−03 OBSOLETE,  
NEW STANDARD 418B−04.  
E
V
W
−B−  
4
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
MAX  
A
B
C
D
E
F
G
H
J
0.340 0.380  
0.380 0.405  
0.160 0.190  
0.020 0.035  
0.045 0.055  
0.310 0.350  
0.100 BSC  
8.64  
9.65 10.29  
4.06  
0.51  
1.14  
7.87  
9.65  
A
4.83  
0.89  
1.40  
8.89  
S
1
2
3
2.54 BSC  
−T−  
SEATING  
PLANE  
K
0.080  
0.018 0.025  
0.090 0.110  
0.110  
2.03  
0.46  
2.29  
1.32  
7.11  
5.00 REF  
2.00 REF  
0.99 REF  
2.79  
0.64  
2.79  
1.83  
8.13  
W
J
G
K
L
0.052 0.072  
0.280 0.320  
0.197 REF  
0.079 REF  
0.039 REF  
H
M
N
P
R
S
V
D 3 PL  
M
M
0.13 (0.005)  
T B  
0.575 0.625 14.60 15.88  
0.045 0.055 1.14 1.40  
STYLE 2:  
PIN 1. GATE  
VARIABLE  
CONFIGURATION  
ZONE  
2. DRAIN  
3. SOURCE  
4. DRAIN  
N
P
R
U
L
L
L
M
M
M
F
F
F
VIEW W−W  
1
VIEW W−W  
2
VIEW W−W  
3
SOLDERING FOOTPRINT*  
8.38  
0.33  
1.016  
0.04  
10.66  
0.42  
5.08  
0.20  
3.05  
0.12  
17.02  
0.67  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
7
NTP60N06L, NTB60N06L  
PACKAGE DIMENSIONS  
TO−220  
CASE 221A−09  
ISSUE AA  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
SEATING  
PLANE  
−T−  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
B
F
T
S
4
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
−−−  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
−−−  
A
K
Q
Z
A
B
C
D
F
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
−−−  
1
2
3
U
H
G
H
J
K
L
L
R
N
Q
R
S
T
V
J
G
D
U
V
Z
N
−−− 0.080  
2.04  
STYLE 5:  
PIN 1. GATE  
2. DRAIN  
3. SOURCE  
4. DRAIN  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NTP60N06L/D  

相关型号:

NTB60N06LT4

Power MOSFET 60 Amps, 60 Volts, Logic Level N−Channel TO−220 and D2PAK
ONSEMI

NTB60N06LT4G

Power MOSFET 60 Amps, 60 Volts, Logic Level N−Channel TO−220 and D2PAK
ONSEMI

NTB60N06T4

60 V, 60 A, N−Channel TO−220 and D2PAK
ONSEMI

NTB60N06T4G

60 V, 60 A, N−Channel TO−220 and D2PAK
ONSEMI

NTB6410AN

N-Channel Power MOSFET 100 V, 76 A, 13 mΩ
ONSEMI

NTB6410ANG

N-Channel Power MOSFET 100 V, 76 A, 13 mΩ
ONSEMI

NTB6410ANT4G

N-Channel Power MOSFET 100 V, 76 A, 13 mΩ
ONSEMI

NTB6411AN

N-Channel Power MOSFET 100 V, 72 A, 14 mΩ
ONSEMI

NTB6411ANG

N-Channel Power MOSFET 100 V, 72 A, 14 mΩ
ONSEMI

NTB6411ANT4G

N-Channel Power MOSFET 100 V, 72 A, 14 mΩ
ONSEMI

NTB6412AN

N-Channel Power MOSFET 100 V, 58 A, 18.2 mΩ
ONSEMI

NTB6412ANG

N-Channel Power MOSFET 100 V, 58 A, 18.2 mΩ
ONSEMI