NFMECS640A0 [ONSEMI]

ecoSpinTM BLDC motor controller +MCU, 600V;
NFMECS640A0
型号: NFMECS640A0
厂家: ONSEMI    ONSEMI
描述:

ecoSpinTM BLDC motor controller +MCU, 600V

文件: 总14页 (文件大小:2236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Sensorless BLDC ecoSpin  
Motor Controller, with Gate  
Drivers  
)
)
Arm Cortex M0+, 600 V, FAN73896  
ECS640A  
Overview  
EcoSpin Motor Controller ECS640A is a 3phase BLDC  
configurable motor control system in package that integrates an  
ultralowpower optimized Arm CortexM0+ microcontroller  
(Nebo4064), three sense amplifiers and a reference amplifier  
(NCS20034), three bootstrap diodes, and a highvoltage gatedriver  
designed for highvoltage, highspeed operation, with the ability to  
drive MOSFETs and IGBTs operating up to 600 V (FAN73896). Six  
gate driver outputs provide sink/source of 350 mA/650 mA (typ) gate  
current to external power devices. The device includes Hall Sensor  
inputs to support either sensored or sensorless operation. Three  
independent lowside source pins allow for single or multiple shunt  
measurement.  
WQFN65  
CASE 510CT  
MARKING DIAGRAM  
XXXXXXXX  
AWLYWW  
G
Protection functions include undervoltage lockout and inverter  
overcurrent trip with an automatic faultclear function. An  
opendrain fault signal is provided to indicate that a fault condition  
has occurred.  
Direct Torque & Flux Control (DTFC) firmware is available and  
allows optimal motor performance on the Arm CortexM0+ platform.  
The small footprint and integration make this device a perfect fit  
with discrete power devices to maximize scalability across platforms  
and to minimize area requirements as power levels scale.  
XXXXXXXX  
A
WL  
Y
WW  
G
= Specific Device Code  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= Logo(s)  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 12 of  
this data sheet.  
Features  
Arm CortexM0+ (Nebo4064)  
40 MHz Clock Frequency  
8 kB RAM Memory  
64 kB Flash Memory  
End Products  
HVAC  
Home Appliances: Refrigerators, Fabric  
Care, Dishwashers  
Pumps  
600 V Gate Driver (FAN73896)  
350 mA/650 mA Sourcing/Sinking Current Driving Capability  
General Purpose ThreePhase Motor  
Control  
4 Sense Amps for Current Sensing (NCS20034)  
Integrated Bootstrap Diodes  
2
Communication: I C, UART and SPI  
Safety Mechanisms Highlight  
OverCurrent Shutdown Turns Off All Six  
Channels  
Firmware Available, Sensorless Direct Torque and Flux Control  
Max Power Dissipation: 1.8 W  
Temperature Range: 40 to 105C  
These are PbFree Devices  
Typical Applications  
ThreePhase Brushless DC (BLDC) Sensorless Motor Control  
ThreePhase Brushless DC (BLDC) Sensor Based Motor Control  
Semiconductor Components Industries, LLC, 2021  
1
Publication Order Number:  
February, 2023 Rev. 0  
ECS640A/D  
ECS640A  
NC  
GPIO16  
HO2  
VS2  
GPIO8/UART1_TX  
GPIO9/UART1_RX/I2C_D  
I2C_C  
Hall Sensor In  
UART (2)  
GPIO (5)  
BOOTSTRAP DIODES  
U PHASE  
DRIVER  
V PHASE  
DRIVER  
2
PWM_IN  
I C  
VB3  
HO3  
VS3  
UART0_TX  
UART0_RX  
SWDIO  
W PHASE  
DRIVER  
SWCLK  
SWDIO  
PWM (6)  
3PHASE GATE DRIVER  
Arm CortexM0+  
SWCLK  
DEDUG EN  
RESET  
PROTECTION  
CIRCUIT  
DBG_EN  
RESETN  
-
+
DVSS  
PWM In  
ADC  
TEMP  
-
+
VLS  
-
+
AVDD  
SENSE  
AMPS  
GD_SUPPLY/VDD  
MTR  
NEUTRAL  
BACK EMF  
SENSE  
CURRENT  
SENSE  
-
+
TEMP_IN  
Mtr_Neutral  
NC  
LO1  
LO2  
LO3  
CURRENT  
SENSE OUT  
Figure 1. Block Diagram  
www.onsemi.com  
2
ECS640A  
N C  
V B 2  
NC  
GD_COM  
VSS  
GD_RC_IN  
GD_CS  
GD_FO  
SENSE_1_OUT  
SENSE_1-  
SENSE_1+  
DVSS  
V S 1  
H O 1  
V B 1  
SENSE_2+  
SENSE_2-  
SENSE_2_OUT  
SENSE_4_OUT/VREF  
SENSE_4-  
SENSE_4+  
VLS  
G D _ S U P P L Y / V D D  
G P I O 2 1  
G P I O 2 0  
D V S S  
V L S  
SENSE_3+  
SENSE_3-  
SENSE_3_OUT  
U_SENSE  
H A L L _ U  
H A L L _ V  
H A L L _ W  
V_SENSE  
W_SENSE  
NC  
N C  
Figure 2. Application Schematic  
www.onsemi.com  
3
ECS640A  
NC  
GPIO16  
1
2
3
4
5
6
7
8
9
51 HO2  
50 VS2  
GPIO8/UART1_TX  
GPIO9/UART1_RX/I2C_D  
I2C_C  
PWM_IN  
49 VB3  
48 HO3  
47 VS3  
UART0_TX  
UART0_RX  
SWDIO  
SWCLK 10  
DBG_EN 11  
RESETN 12  
DVSS 13  
VLS 14  
AVDD 15  
46 GD_SUPPLY/VDD  
45 LO1  
TEMP_IN 16  
Mtr_Neutral 17  
NC 18  
44 LO2  
43 LO3  
Figure 3. Pin Connections  
PIN FUNCTION DESCRIPTION  
Pin #  
1
Pin Name  
NC  
Description  
2
GPIO16  
General Purpose IO (Nebo4064 PC0 I/O)  
3
GPIO8 / UART1_TX  
GPIO9 / UART1_RX / I2C_D  
I2C_C  
General Purpose IO / UART Transmit (Nebo4064 PB0 I/O)  
2
4
General Purpose IO / UART Receive / I C (Nebo4064 PB1 I/O)  
5
I2C (Nebo4064 PB2 I/O)  
6
PWM_IN  
PWM Input Signal (Nebo4064 PB3 I/O)  
UART Transmit (Nebo4064 PB4 I/O)  
UART Receive (Nebo4064 PB5 I/O)  
Single Wire Interface Data (Nebo4064 PB6 I/O)  
Single Wire Interface Clock (Nebo4064 PB7 I/O)  
Debug Enable (Nebo4064 DBG_EN)  
mC Reset (Nebo4064 RESETN)  
Ground  
7
UART0_TX  
UART0_RX  
SWDIO  
8
9
10  
11  
12  
13  
14  
SWCLK  
DBG_EN  
RESETN  
DVSS  
VLS  
3.3 V Supply for MicroController  
www.onsemi.com  
4
ECS640A  
PIN FUNCTION DESCRIPTION (continued)  
Pin #  
15  
Pin Name  
AVDD  
Description  
Analog Reference Voltage Out  
16  
TEMP_IN / GP_A_1  
Mtr_Neutral / GP_A_0  
NC  
General Analog Input or Temperature Sensor Input (Nebo4064 PA0 I/O)  
17  
Motor Center Tap Input or Bus Voltage Input (Nebo4064 PA1 I/O)  
18  
19  
NC  
20  
W_SENSE  
Back EMF Sense Pin Phase W (requires reduction and filtering)  
(Nebo4064 PA2 I/O)  
21  
22  
V_SENSE  
U_SENSE  
Back EMF Sense Pin Phase V (requires reduction and filtering)  
(Nebo4064 PA3 I/O)  
Back EMF Sense Pin Phase U (requires reduction and filtering)  
(Nebo4064 PA4 I/O)  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
SENSE_3_OUT  
SENSE_3−  
SENSE_3+  
VLS  
Amplifier 3 Output (Nebo4064 PA5 I/O)  
Amplifier 3−  
Amplifier 3+  
3.3 V Supply for Amplifier  
Amplifier 4+  
SENSE_4+  
SENSE_4−  
SENSE_4_OUT / VREF  
SENSE_2_OUT  
SENSE_2−  
SENSE_2+  
DVSS  
Amplifier 4−  
Sense Amplifier can be used for voltage reference  
Amplifier 2 Output (Nebo4064 PA7 I/O)  
Amplifier 2+  
Amplifier 2−  
Amplifier V  
SS  
SENSE_1+  
SENSE_1−  
SENSE_1_OUT  
GD_FO  
Amplifier 1+  
Amplifier 1−  
Amplifier 1 Output (Nebo4064 PA6 I/O)  
Fault output (Nebo4064 PC6 I/O) (FAN73896 FO output)  
Analog input for overcurrent shutdown (FAN73896 CS input)  
External RC network input used to define the faultclear delay  
GD_CS  
GD_RC_IN  
VSS  
Gate Driver V  
SS  
GD_COM  
NC  
Gate Driver Low Side Common  
LO3  
LowSide Gate Driver 3 Output  
LowSide Gate Driver 2 Output  
LowSide Gate Driver 1 Output  
15 V supply for Gate Driver  
LO2  
LO1  
GD_Supply / VDD  
VS3  
HighSide Driver 3 Floating Supply Offset Voltage  
HighSide Driver 3 Gate Driver Output  
HighSide Supply 3 Floating Supply  
HighSide Driver 2 Floating Supply Offset Voltage  
HighSide Driver 2 Gate Driver Output  
HO3  
VB3  
VS2  
HO2  
NC  
VB2  
HighSide Driver 2 Floating Supply  
HighSide Driver 1 Floating Supply Offset Voltage  
HighSide Driver 1 Gate Driver Output  
HighSide Driver 1 Floating Supply  
15 V Supply for Gate Driver  
VS1  
HO1  
VB1  
GD_Supply / VDD  
www.onsemi.com  
5
ECS640A  
PIN FUNCTION DESCRIPTION (continued)  
Pin #  
58  
Pin Name  
GPIO21  
Description  
General Purpose IO (Nebo4064 PC5 I/O)  
General Purpose IO (Nebo4064 PC4 I/O)  
Ground  
59  
GPIO20  
60  
DVSS  
61  
VLS  
3.3 V Supply for MicroController  
Hall Sensor Input U (Nebo4064 PC3 I/O)  
Hall Sensor Input V (Nebo4064 PC2 I/O)  
Hall Sensor Input W (Nebo4064 PC1 I/O)  
62  
HALL_U  
63  
HALL_V  
64  
HALL_W  
65  
NC  
Exposed Thermal Pads  
See recommended mounting footprint.  
MAXIMUM RATINGS  
Rating  
Symbol  
Minimum  
0.3  
Maximum  
Unit  
V
Primary Supply Voltage MCU  
Ground Voltage  
V
LS  
3.6  
DV  
0.3  
V
SS  
Input Voltage Range (Note 1)  
Input Pin Current – MCU  
Power Dissipation  
V
DV 0.3  
V + 0.3  
DD  
V
IN  
SS  
I
IN  
10  
10  
mA  
W
P
1.8  
105  
150  
D
Ambient Temperature  
T
40  
55  
C  
C  
A
Storage Temperature Range  
GATE DRIVER  
T
STG  
HighSide Floating Offset Voltage  
HighSide Floating Supply Voltage  
LowSide and LogicFixed Supply Voltage  
V
V
V
V
25  
V + 0.3  
B1,2,3  
V
V
S
B1,2,3  
0.3  
0.3  
25  
625.0  
25.0  
+ 0.3  
B
V
DD  
V
HO  
V
HighSide Floating Output Voltage V  
V
V
HO1,2,3  
LO1,2,3  
S1,2,3  
S1,2,3  
LowSide Floating Output Voltage V  
Input Voltage  
V
LO  
0.3  
0.3  
0.3  
500  
V
DD  
+ 0.3  
V
V
IN  
5.5  
V
Fault Output Voltage (FO)  
HighSide Input Pulse Width  
Allowable Offset Voltage Slew Rate  
BOOTSTRAP DIODE  
V
FO  
V
DD  
+ 0.3  
V
PW  
Ns  
V/ns  
HIN  
dV /dt  
s
50  
Maximum Repetitive Reverse Voltage  
Forward Current  
V
600  
0.50  
1.50  
V
A
A
RRM  
I
F
Forward Current (Peak)  
I
FP  
CURRENT SENSOR AMPLIFIER  
Supply Voltage (V – V  
)
V (Pin33)  
DD  
0.3  
3.6  
V
DD  
SS  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Charged Device Model (Note 2)  
V
V
2000  
1000  
V
V
HBM  
CDM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
ESD Machine Model tested per AECQ100003 (EIA/JESD22A115)  
Latchup Current Maximum Rating: 150 mA per JEDEC standard: JESD78  
www.onsemi.com  
6
 
ECS640A  
THERMAL CHARACTERISTICS (Note 3)  
Rating  
Symbol  
Value  
24.6  
4.9  
Unit  
C/W  
C/W  
Thermal Resistance – Junction to Ambient (Note 4)  
Thermal Resistance – Junction to Case  
Q
JA  
Q
JC  
3. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters.  
2
2
4. Values based on copper area of 645 mm (or 1 in ) of 1 oz copper thickness and FR4 PCB substrate.  
RECOMMENDED OPERATING RANGES  
Rating  
Symbol  
Min  
3.0  
Max  
3.6  
85  
Unit  
V
Input Supply Voltage  
Ambient Temperature  
GATE DRIVER  
V
LS  
T
A
40  
C  
HighSide Floating Supply Voltage  
HighSide Floating Supply Offset Voltage  
LowSide and Logic Fixed Supply Voltage  
HighSide Output Voltage  
V
V
+ 10  
V + 20  
s1,2,3  
V
V
V
V
V
V
V
V
V
B1,2,3  
s1,2,3  
V
6 – V  
12  
600  
20  
s1,2,3  
DD  
V
DD  
HO1,2,3  
V
V
V
B1,2,3  
s1,2,3  
LowSide Output Voltage  
V
COM  
V
V
LO1,2,3  
DD  
Fault Output Voltage (FO)  
V
V
V
V
V
FO  
SS  
SS  
SS  
DD  
CurrentSense Pin Input Voltage  
Logic Input Voltage (HIN1,2,3 and LIN1,2,3)  
LowSide Driver Return  
5
CS  
V
IN  
5
5
COM  
5  
BOOTSTRAP DIODE  
Forward Voltage  
V
V
F
ReverseRecovery Time  
t
rr  
ns  
CURRENT SENSOR AMPLIFIER  
Operating Supply Voltage (V – V  
)
V
s
1.8  
3.6  
V
DD  
SS  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
Parameter  
= 3.3 V, T = 305C  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
MCUV  
DDIO  
A
Digital I/O  
Logic Input Low Threshold  
Logic Input High Threshold  
Internal Pullup Resistor  
Internal Pulldown Resistor  
Logic Output Low Level  
Logic Output High Level  
Pin Leakage  
V
0.3  
0.7  
V
IL  
DD  
V
IH  
V
DD  
R
R
V
35  
35  
kW  
kW  
V
PU  
PD  
OL  
OH  
I
I
= 4 mA at V  
= 1.8 V  
0.5  
LOAD  
DDIO  
= 4 mA at V  
= 1.8 V  
V
V
0.5  
V
LOAD  
DDIO  
DD  
I
1  
1
mA  
LEAK  
Flash Memory  
Read Access Time  
T
40  
20  
10  
ns  
ms  
ACC  
Program Time  
T
PROG  
Page/Mass Erase Time  
Data Retention  
T
ms  
ERASE  
T
10  
Years  
RET  
www.onsemi.com  
7
 
ECS640A  
ELECTRICAL CHARACTERISTICS (continued)  
Parameter Test Conditions  
Flash Memory  
Flash Endurance Erase Cycles  
Symbol  
Min  
Typ  
Max  
Unit  
at 25C  
at 85C  
100k  
10k  
Cycles  
PowerOn RESET and BROWNOUT  
Poweron Voltage Trip Point  
Rising  
V
1.540  
1.455  
1.525  
1.5  
1.635  
1.635  
1.71  
V
V
POR_R  
Falling  
Rising  
Falling  
V
POR_F  
Brownout Trip Point  
V
BO_R  
V
1.685  
BO_F  
High Speed RC Oscillator (HSOSC)  
Oscillator Frequency  
40 MHz  
F
38.80  
40.00  
3%  
2
41.20  
MHz  
HSOSC  
Temperature Drift  
Temp Co = +3% Cold and –3% Hot  
DF  
HSOSC  
HSOSC_SU  
Oscillator Startup Time  
T
ms  
Current Consumption  
I
350  
mA  
HSOSC  
Low Power RC Oscillator (LPOSC)  
Oscillator Frequency (Fast Mode)  
Trimmed  
F
F
10.24  
640  
kHz  
Hz  
LPOSC  
Oscillator Frequency (Slow Mode) Trimmed  
Temperature Drift  
LPOSC  
DF  
6%  
0.41  
LPOSC  
Oscillator Startup Time  
(Fast Mode)  
T
ms  
ms  
LPOSC_SU  
Oscillator Startup Time  
(Slow Mode)  
T
1.4  
LPOSC_SU  
Current Consumption (Fast Mode)  
I
I
420  
95  
nA  
nA  
LPOSC  
Current Consumption  
(Slow Mode)  
LPOSC  
High Speed Crystal Oscillator  
Crystal Frequency  
F
8
32  
40  
MHz  
HSXTAL  
Low Power Crystal Oscillator  
Crystal Frequency  
F
32.768  
285  
kHz  
nA  
LPXTAL  
I
LPXTAL  
Current Consumption  
Analog Comparators  
Common Mode Input Range  
V
CMIR  
0.2  
V
DDIO  
0.5  
V
Response Time  
T
COMP  
200  
ns  
Analog to Digital Converter (ADC)  
Sample Clock Frequency  
0.5dBFS Power Bandwidth  
F
0.01  
50  
2
20  
MHz  
kHz  
pF  
ADCCLK  
F
BW  
Input Capacitance  
C
IN  
(when 1:1 divider is selected  
(singleended)) (Note 5)  
Gain Error (Note 6)  
Offset Error (Note 6)  
E
0.75  
15  
%
GAIN  
E
LSB  
OFFSET  
www.onsemi.com  
8
ECS640A  
ELECTRICAL CHARACTERISTICS (continued)  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Analog to Digital Converter (ADC)  
Integral NonLinearity (Note 7)  
Differential, gain bypass,  
1 V reference  
INL  
2.5  
2.5  
LSB  
Differential, 1X gain, 1 V reference  
Differential, 10X gain, 1 V reference  
Differential, 1/4 gain, 1 V reference  
Singleended, 1X gain,  
2.5  
3.5  
2  
2  
1 V reference, 2X V Range  
ref  
(Note x6)  
Differential NonLinearity  
(Note 7)  
Differential, gain bypass,  
1 V reference  
DNL  
1.5  
LSB  
Differential, 1X gain, 1 V reference  
Differential, 10X gain, 1 V reference  
Differential, 1/4 gain, 1 V reference  
Singleended, 1X gain,  
1.5  
2.0  
1.5  
1.5  
1 V reference, 2X V Range  
ref  
(Note x6)  
GATE DRIVER  
LowSide Power Supply Section  
Quiescent V Supply Current  
V
= 0 V or 5 V, EN = 0 V  
I
QDD  
250  
550  
400  
750  
mA  
mA  
DD  
LIN1,2,3  
Operating V Supply Current  
C
Value  
= 1 Nf, f  
= 20 kHz, rms  
I
PDD  
DD  
LOAD  
LIN1,2,3  
V
Supply UnderVoltage  
V
DD  
V
DD  
V
DD  
= Sweep  
= Sweep  
= Sweep  
V
V
9.7  
9.2  
11.0  
10.5  
0.5  
12.0  
11.4  
V
V
V
DD  
DDUV+  
DDUV  
DDHYS  
PositiveGoing Threshold  
V
DD  
Supply UnderVoltage  
NegativeGoing Threshold  
V
DD  
Supply UnderVoltage  
V
Lockout Hysteresis  
Bootstrapped Power Supply Section  
V
Supply UnderVoltage  
V
V
V
= Sweep  
V
V
9.7  
9.2  
11.0  
10.5  
0.5  
12.0  
11.4  
V
V
V
BS  
BS1,2,3  
BS1,2,3  
BS1,2,3  
BSUV+  
BSUV−  
BSHYS  
PositiveGoing Threshold  
V
BS  
Supply UnderVoltage  
= Sweep  
= Sweep  
NegativeGoing Threshold  
V
BS  
Supply UnderVoltage  
V
Lockout Hysteresis  
Offset Supply Leakage Current  
V
V
= V  
= 600 V  
I
LK  
10  
80  
mA  
mA  
mA  
S1,2,3  
S1,2,3  
Quiescent V Supply Current  
= 0 V or 5 V, EN = 0 V  
I
QBS  
10  
50  
BS  
HIN1,2,3  
Operating V Supply Current  
C
= 1 nF, f  
= 20 kHz,  
I
PBS  
200  
320  
480  
BS  
LOAD  
HIN1,2,3  
rms Value  
Gate Driver Output Section  
HighLevel Output Voltage,  
IO = 0 mA (No Load)  
IO = 0 mA (No Load)  
V
100  
MV  
OH  
V
V  
BIAS  
O
Low*Level Output Voltage, V  
V
100  
mV  
mA  
O
OL  
Output HIGH ShortCircuit Pulse  
V
O
= 15 V, V = 0 V with PW 10 ms  
I
O+  
250  
350  
IN  
Current  
Output LOW ShortCircuit Pulsed  
V
O
= 0 V, V = 5 V with PW 10 ms  
I
500  
650  
mA  
V
IN  
O−  
Current  
Allowable Negative V Pin  
V
9.8  
9.0  
S
S
Voltage for HIN Signal  
Propagation to HO  
www.onsemi.com  
9
ECS640A  
ELECTRICAL CHARACTERISTICS (continued)  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Logic Input Section  
Logic “1” Input Voltage HIN1,2,3,  
LIN1,2,3  
V
2.5  
0.8  
143  
2
V
V
IH  
Logic “0” Input Voltage HIN1,2,3,  
LIN1,2,3  
V
IL  
Logic Input Bias Current  
(HO = LO = HIGH)  
V
V
= 5 V  
= 0 V  
I
I
77  
100  
mA  
mA  
kW  
IN  
IN+  
Logic Input Bias Current  
(HO = LO = LOW)  
IN  
IN−  
Logic Input PullUp Resistance  
R
35  
50  
65  
IN  
Enable Control Section (EN)  
Enable PositiveGoing Threshold  
V
V
2.5  
0.8  
50  
2
V
V
EN+  
EN−  
EN+  
Voltage  
Enable NegativeGoing  
Threshold Voltage  
Logic Enable “1” Input Bias  
Current  
V
V
= 5 V (PullDown = 150 kW)  
I
15  
33  
mA  
mA  
kW  
EN  
Logic Enable “0” Input Bias  
Current  
= 0 V  
I
EN−  
EN  
Logic Input PullDown Resistance  
OverCurrent Protection Section  
R
100  
150  
333  
EN  
OverCurrent Detect Positive  
V
V
450  
500  
440  
550  
MV  
mV  
CSTH+  
CSTH−  
CSHYS  
Threshold  
OverCurrent Detect Negative  
Threshold  
OverCurrent Detect Hysteresis  
ShortCircuit Input Current  
Soft TurnOff Sink Current  
Fault Output Section  
V
5
60  
10  
40  
mV  
mA  
V
CSIN  
= 1 V  
I
15  
55  
CSIN  
I
25  
mA  
SOFT  
RCIN PositiveGoing Threshold  
V
V
2.7  
3.3  
2.6  
3.9  
V
V
RCINTH+  
RCINTH−  
RCINHYS  
Voltage  
RCIN NegativeGoing Threshold  
Voltage  
RCIN Hysteresis Voltage  
RCIN Internal Current Source  
Fault Output Low Level Voltage  
RCIN On Resistance  
V
3
0.7  
5
V
mA  
V
C
= 2 nF  
I
7
RCIN  
RCIN  
V
CS  
= 1 V, I = 1.5 mA  
V
FOL  
0.2  
75  
0.5  
100  
170  
650  
FO  
I
I
= 1.5 mA  
R
50  
90  
350  
W
RCIN  
DSRCIN  
Fault Output On Resistance  
TurnOn Propagation Delay  
= 1.5 mA  
R
130  
500  
W
FO  
DSFO  
V
V
= V  
= 5 V,  
= 0 V,  
t
ON  
ns  
LIN1,2,3  
S1,2,3  
HIN1,2,3  
= 0 V  
TurnOff Propagation Delay  
V
V
= V  
t
350  
500  
650  
ns  
LIN1,2,3  
S1,2,3  
HIN1,2,3  
OFF  
= 0 V  
TurnOn Rise Time  
TurnOff Fall Time  
V
V
= V  
= V  
= 5 V  
= 0 V  
t
R
20  
10  
50  
30  
100  
80  
ns  
ns  
ns  
LIN1,2,3  
LIN1,2,3  
HIN1,2,3  
HIN1,2,3  
t
F
Enable LOW to Output Shutdown  
Delay  
t
400  
500  
600  
EN  
CS Pin LeadingEdge Blanking  
t
400  
650  
850  
850  
ns  
ns  
CSBLT  
Time  
Time from CS Triggering to FO  
From V  
= 1 V to FO TurnOff  
t
1300  
CSC  
CSFO  
www.onsemi.com  
10  
ECS640A  
ELECTRICAL CHARACTERISTICS (continued)  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Fault Output Section  
Time from CS Triggering to  
From V  
= 1 V to Starting Gate  
t
850  
250  
1300  
330  
ns  
ns  
CSC  
CSOFF  
LowSide Gate Outputs TurnOff  
TurnOff  
Input Filtering Time (Note 7)  
(HINx, LINx, EN)  
t
170  
FLTIN  
FaultClear Time  
t
230  
1.3  
320  
2.35  
400  
50  
ns  
ns  
ns  
FLTCLR  
Dead Time  
DT  
DeadTime Matching  
(All Six Channels) (Note 8)  
MDT  
Delay Matching (All Six Channels)  
(Note 9)  
MT  
50  
ns  
ns  
Output PulseWidth Matching  
(Note 10)  
PW > 1 ms  
PM  
50  
100  
IN  
BOOTSTRAP DIODES  
Forward Voltage  
I
I
= 0.1 A, T = 25C  
V
F
2.5  
80  
V
F
A
ReverseRecovery Time  
= 0.1 A, T = 25C  
t
rr  
ns  
F
A
CURRENT SENSOR AMPLIFIER (V = 1.8 V, T = +25C)  
S
A
Input Characteristics  
Input Offset Voltage  
Offset Voltage Drift  
Input Bias Current  
V
2.0  
1
5.0  
6.0  
mV  
mV/C  
pA  
OS  
DV /DT  
OS  
I
IB  
Input Offset Current  
Channel Separation  
Input Resistance  
I
1
pA  
OS  
XTLK  
100  
1
dB  
R
C
TW  
pF  
IN  
IN  
Input Capacitance  
1.2  
80  
Common Mode Rejection Ratio  
V
= V to V – 0.6 V  
CMRR  
70  
65  
dB  
IN  
SS  
DD  
V
IN  
= V + 0.2 V to V – 0.6 V  
SS  
DD  
Output Characteristics  
Open Loop Voltage Gain  
A
75  
70  
5
92  
92  
dB  
mA  
V
R = 10 kW  
VOL  
L
R = 2 kW  
L
Output Current Capability  
Output Voltage High  
Output Voltage Low  
Sourcing  
Sinking  
I
8
SC  
10  
1.75  
1.7  
14  
V
1.798  
1.78  
7
R = 10 kW  
L
OH  
R = 2 kW  
L
V
100  
100  
mV  
R = 10 kW  
L
OL  
R = 2 kW  
L
20  
Noise Performance  
Voltage Noise Density  
Current Noise Density  
Dynamic Performance  
Gain Bandwidth Product  
Slew Rate at Unity Gain  
f = 1 kHz  
f = 1 kHz  
e
20  
nV/  
pA/  
N
i
N
0.1  
GBWP  
SR  
5
6
MHz  
Rising Edge, R = 2 kW, A = +1  
V/ms  
L
V
Falling Edge, R = 2 kW, A = +1  
9
L
V
Phase Margin  
Gain Margin  
Settling Time  
R = 10 kW, C = 5 pF  
L
Y
53  
8
L
m
m
s
R = 10 kW, C = 5 pF  
L
A
dB  
ms  
L
V
= 1 V , Gain = 1, C = 20 pF,  
t
1.8  
O
pp  
L
Settling time to 0.1%  
www.onsemi.com  
11  
ECS640A  
ELECTRICAL CHARACTERISTICS (continued)  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Dynamic Performance  
Total Harmonics Distortion +  
Noise  
THD+N  
0.005  
0.025  
%
V
= 1 V , R = 2 kW, A = +1,  
pp L V  
O
f = 1 kHz  
V
O
= 1 V , R = 2 kW, A = +1,  
pp  
L
V
f = 10 kHz  
Power Supply  
Power Supply Rejection Ratio  
Quiescent Current  
PSRR  
80  
100  
275  
dB  
No load, per channel  
I
575  
mA  
DD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
5. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters.  
2
2
6. Values based on copper area of 645 mm (or 1 in ) of 1 oz copper thickness and FR4 PCB substrate.  
7. The minimum width of the input pulse should exceed 500 ns to ensure the filtering time of the input filter is exceeded.  
8. MDT is defined as |DT1DT2| referenced to 0.  
9. MT is defined as an absolute value of matching delay time between Highside and Lowside.  
10.PM is defined as an absolute value of matching pulsewidth between Input and Output.  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NFMECS640A0  
WQFN65 13 10, 0.5P  
(PbFree)  
3000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
Arm, Cortex, and the Arm logo are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere.  
www.onsemi.com  
12  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
GAQFN65 13x10, 0.5P  
CASE 510CT  
ISSUE C  
DATE 14 DEC 2021  
GENERIC  
MARKING DIAGRAM*  
XXXX = Specific Device Code  
= Assembly Location  
WL = Wafer Lot  
= Year  
WW = Work Week  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
XXXXXXXXX  
XXXXXXXXX  
AWLYWW  
A
Y
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON25842H  
GAQFN65 13x10, 0.5P  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NFMFC10D431K

RESISTOR, VOLTAGE DEPENDENT, 335V, 6J, THROUGH HOLE MOUNT
TAIYO YUDEN

NFMFC10D511K

RESISTOR, VOLTAGE DEPENDENT, 395V, 6J, THROUGH HOLE MOUNT
TAIYO YUDEN

NFMFC125LX103M-T

RESISTOR, VOLTAGE DEPENDENT, 32V, SURFACE MOUNT
TAIYO YUDEN

NFMJMPC156D0E3#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

NFMJMPC156R0G3#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

NFMJMPC156R0J3#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

NFMJMPC226D0E3#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

NFMJMPC226R0G3#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

NFMJMPL226D0E5#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

NFMJMPL226R0E5#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

NFMJMPL226R0G5#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

NFMW486ART

Single Color LED,
NICHIA