NCV8165ML330TCG [ONSEMI]

LDO Regulator for RF and Analog Circuits - Ultra-Low Noise and High PSRR 500 mA;
NCV8165ML330TCG
型号: NCV8165ML330TCG
厂家: ONSEMI    ONSEMI
描述:

LDO Regulator for RF and Analog Circuits - Ultra-Low Noise and High PSRR 500 mA

PC 光电二极管 输出元件 调节器
文件: 总10页 (文件大小:328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV8165  
LDO Regulator for RF and  
Analog Circuits - Ultra-Low  
Noise and High PSRR  
500 mA  
www.onsemi.com  
The NCV8165 is a linear regulator capable of supplying 500 mA  
output current. Designed to meet the requirements of RF and analog  
circuits, the NCV8165 device provides low noise, high PSRR, low  
quiescent current, and very good load/line transients. The device is  
designed to work with a 1 mF input and a 1 mF output ceramic capacitor.  
It is available in DFNW8 3 mm x 3 mm package with wettable flanks.  
MARKING  
DIAGRAM  
1
8165L  
330  
DFNW8, 3x3  
CASE 507AD  
Features  
ALYWG  
1
G
Operating Input Voltage Range: 1.9 V to 5.5 V  
Available in Fixed Voltage Option: 1.8 V to 5.2 V  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
2% Accuracy Over Load/Temperature  
= Year  
Ultra Low Quiescent Current Typ. 12 mA  
Standby Current: Typ. 0.1 mA  
= Work Week  
= PbFree Package  
(Note: Microdot may be in either location)  
Very Low Dropout: 190 mV at 500 mA  
Ultra High PSRR: Typ. 85 dB at 20 mA, f = 1 kHz  
Ultra Low Noise: 8.5 mV  
RMS  
PIN CONNECTIONS  
Stable with a 1 mF Small Case Size Ceramic Capacitors  
Available in DFNW8 0.65P, 3 mm x 3 mm x 0.9 mm Package  
OUT  
N/C  
1
2
3
4
8
7
6
5
IN  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
These Devices are PbFree, Halogen Free/BFR Free and are RoHS  
Compliant  
N/C  
N/C  
EN  
EXP  
N/C  
GND  
DFNW8 3x3 mm  
(Top View)  
Typical Applications  
Batterypowered Equipment  
Wireless LAN Devices  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 9 of  
this data sheet.  
Smartphones, Tablets  
Cameras, DVRs, STB and Camcorders  
V
V
OUT  
IN  
IN  
OUT  
NCV8165  
C
1 mF  
Ceramic  
EN  
IN  
C
OUT  
1 mF  
Ceramic  
ON  
GND  
OFF  
Figure 1. Typical Application Schematics  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
September, 2019 Rev. 1  
NCV8165/D  
NCV8165  
IN  
ENABLE  
LOGIC  
THERMAL  
EN  
SHUTDOWN  
BANDGAP  
MOSFET  
REFERENCE  
INTEGRATED  
DRIVER WITH  
CURRENT LIMIT  
SOFTSTART  
OUT  
* ACTIVE DISCHARGE  
Version A only  
EN  
GND  
Figure 2. Simplified Schematic Block Diagram  
Description  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
IN  
8
Input voltage supply pin  
Regulated output voltage. The output should be bypassed with small 1 mF ceramic capacitor.  
1
5
OUT  
EN  
Chip enable: Applying V < 0.4 V disables the regulator, Pulling V > 1.2 V enables the LDO.  
EN  
EN  
4
GND  
EPAD  
Common ground connection  
EPAD  
Expose pad should be tied to ground plane for better power dissipation  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage (Note 1)  
V
IN  
0.3 V to 6  
Output Voltage  
V
OUT  
0.3 to V + 0.3, max. 6 V  
V
IN  
Chip Enable Input  
V
CE  
0.3 to V + 0.3, max. 6 V  
V
IN  
Output Short Circuit Duration  
Maximum Junction Temperature  
Storage Temperature  
t
unlimited  
150  
s
SC  
T
°C  
°C  
V
J
T
STG  
55 to 150  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESD  
HBM  
ESD  
200  
V
MM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
ESD Machine Model tested per AECQ100003 (EIA/JESD22A115)  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
RECOMMENDED OPERATING CONDITIONS  
Parameter  
Symbol  
Min  
1.9  
Max  
5.5  
Unit  
V
Input Voltage  
V
IN  
Junction Temperature  
T
J
40  
125  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
2
 
NCV8165  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, DFNW8 (Note 3)  
R
100  
°C/W  
q
JA  
Thermal Resistance, JunctiontoAir  
3. Measured according to JEDEC board specification. Detailed description of the board can be found in JESD517.  
ELECTRICAL CHARACTERISTICS 40°C T 125°C; V = V  
+ 1 V; I  
= 1 mA, C = C  
= 1 mF, unless otherwise  
J
IN  
OUT(NOM)  
OUT  
IN  
OUT  
noted. V = 1.2 V. Typical values are at T = +25°C (Note 4).  
EN  
J
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Input Voltage  
V
IN  
1.9  
5.5  
V
Output Voltage Accuracy (Note 5)  
V
IN  
= V  
+ 1 V to 5.5 V  
500 mA  
OUT(NOM)  
V
OUT  
2  
+2  
%
0 mA I  
OUT  
Line Regulation  
V
+ 1 V V 5.5 V  
Line  
Reg  
0.09  
0.01  
315  
mV/V  
OUT(NOM)  
IN  
Load Regulation  
I
= 1 mA to 500 mA  
Load  
mV/mA  
OUT  
Reg  
Dropout Voltage (Note 6)  
I
= 500 mA  
V
V
= 1.8 V  
= 3.3 V  
450  
290  
OUT  
OUT(NOM)  
OUT(NOM)  
V
DO  
mV  
mA  
190  
Output Current Limit  
Short Circuit Current  
Quiescent Current  
V
OUT  
= 90% V  
I
CL  
800  
1.2  
1000  
1050  
9.7  
OUT(NOM)  
V
= 0 V  
I
OUT  
SC  
I
= 0 mA  
I
Q
18  
1
mA  
mA  
OUT  
Shutdown Current  
V
EN  
0.4 V, V = 4.8 V  
I
0.01  
IN  
DIS  
EN Pin Threshold Voltage  
EN Input Voltage “H”  
EN Input Voltage “L”  
V
ENH  
V
V
ENL  
0.4  
0.5  
EN Pull Down Current  
V
= 4.8 V  
I
0.2  
mA  
ms  
EN  
EN  
TurnOn Time  
C
= 1 mF, From assertion of V to  
OUT EN  
120  
V
OUT  
= 95% V  
OUT(NOM)  
Power Supply Rejection Ratio  
V
= 3.3 V,  
f = 100 Hz  
83  
85  
80  
63  
OUT(NOM)  
OUT  
I
= 20 mA  
f = 1 kHz  
f = 10 kHz  
f = 100 kHz  
PSRR  
dB  
Output Voltage Noise  
f = 10 Hz to 100 kHz  
I
= 20 mA  
V
8.5  
160  
140  
280  
mV  
RMS  
OUT  
N
Thermal Shutdown Threshold  
Temperature rising  
Temperature falling  
T
SDH  
°C  
°C  
W
T
SDL  
Active output discharge resistance  
V
EN  
< 0.4 V, Version A only  
R
DIS  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T = 25°C.  
A
Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible.  
5. Respect SOA.  
6. Dropout voltage is characterized when V  
falls 100 mV below V  
.
OUT  
OUT(NOM)  
www.onsemi.com  
3
 
NCV8165  
TYPICAL CHARACTERISTICS  
2.90  
2.89  
16  
14  
12  
10  
8
2.88  
2.87  
2.86  
T = 25°C  
J
T = 125°C  
J
T = 40°C  
J
I
= 10 mA  
OUT  
2.85  
2.84  
2.83  
6
V
= 3.85 V  
= 2.85 V  
= 1 mF  
IN  
V
C
C
= 2.85 V  
= 1 mF  
= 1 mF  
4
OUT  
V
OUT  
2.82  
2.81  
2.80  
IN  
OUT  
C
C
IN  
2
0
= 1 mF  
OUT  
40 20  
0
20  
40  
60  
80  
100 120  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
, INPUT VOLTAGE (V)  
T , JUNCTION TEMPERATURE (°C)  
J
V
IN  
Figure 3. Output Voltage vs. Temperature  
OUT = 2.85 V  
Figure 4. Quiescent Current vs. Input Voltage  
V
1800  
1600  
1400  
1200  
1000  
800  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
V
C
C
= 1.8 V  
= 1 mF  
= 1 mF  
OUT  
T = 125°C  
J
V
V
C
C
= 3.85 V  
IN  
IN  
= 2.85 V  
OUT  
OUT  
= 1 mF  
T = 25°C  
J
IN  
= 1 mF  
OUT  
T = 125°C  
J
T = 40°C  
J
T = 25°C  
J
600  
400  
T = 40°C  
200  
0
J
0.05  
0
0.001 0.01  
0.1  
1
10  
100  
1000  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7 0.8  
I , OUTPUT CURRENT (mA)  
OUT  
I , OUTPUT CURRENT (A)  
OUT  
Figure 5. Ground Current vs. Output Current  
Figure 6. Dropout Voltage vs. Output Current −  
OUT = 1.8 V  
V
0.30  
0.27  
0.24  
0.21  
0.18  
0.15  
0.12  
0.09  
0.06  
0.30  
0.27  
0.24  
0.21  
0.18  
0.15  
0.12  
0.09  
0.06  
T = 125°C  
T = 125°C  
J
J
V
C
C
= 3.3 V  
= 1 mF  
= 1 mF  
V
C
C
= 2.85 V  
= 1 mF  
= 1 mF  
OUT  
OUT  
IN  
IN  
OUT  
OUT  
T = 25°C  
J
T = 25°C  
J
T = 40°C  
J
T = 40°C  
J
0.03  
0
0.03  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7 0.8  
I , OUTPUT CURRENT (A)  
OUT  
I , OUTPUT CURRENT (A)  
OUT  
Figure 7. Dropout Voltage vs. Output Current −  
OUT = 2.85 V  
Figure 8. Dropout Voltage vs. Output Current −  
V
VOUT = 3.3 V  
www.onsemi.com  
4
NCV8165  
TYPICAL CHARACTERISTICS  
1050  
1000  
950  
900  
850  
800  
750  
700  
1050  
1000  
950  
900  
850  
800  
750  
V
V
C
C
= 3.85 V  
V
V
C
C
= 3.85 V  
700  
650  
IN  
IN  
= 2.85 V  
= 2.85 V  
OUT  
OUT  
650  
= 1 mF  
= 1 mF  
IN  
IN  
= 1 mF  
600  
550  
= 1 mF  
600  
550  
OUT  
OUT  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Current Limit vs. Temperature  
Figure 10. Short Circuit Current vs.  
Temperature  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
T = 125°C  
J
C
C
= 1 mF  
T = 40°C  
IN  
J
= 1 mF  
OUT  
T = 25°C  
J
V
IN  
= 5.5 V  
V
IN  
= 3.85 V  
C
C
= 1 mF  
= 1 mF  
IN  
OUT  
100  
0
0.05  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
, INPUT VOLTAGE (V)  
40 20  
0
20  
40  
60  
80  
100 120  
V
IN  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. Short Circuit Current vs. Input  
Voltage  
Figure 12. Disable Current vs. Temperature  
400  
360  
320  
280  
240  
200  
160  
120  
80  
800  
750  
700  
650  
600  
550  
500  
450  
400  
V
V
I
C
C
= 5.5 V  
IN  
= 2.85 V  
OUT  
= 10 mA  
OUT  
OFF > ON  
ON > OFF  
= 1 mF  
IN  
= 1 mF  
OUT  
V
= 5.5 V  
EN  
V
V
I
C
C
= 5.5 V  
IN  
= 2.85 V  
OUT  
= 1 mA  
OUT  
= 1 mF  
IN  
350  
300  
40  
0
40 20  
= 1 mF  
OUT  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 13. Current to Enable Pin vs.  
Temperature  
Figure 14. Enable Voltage Threshold vs.  
Temperature  
www.onsemi.com  
5
NCV8165  
TYPICAL CHARACTERISTICS  
100  
90  
100  
90  
1 mA  
1 mA  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
20 mA  
20 mA  
40  
30  
20  
V
V
C
C
= 3.6 V  
V
V
C
C
= 3.8 V  
IN  
IN  
= 3.3 V  
= 1 mF  
= 3.3 V  
= 1 mF  
OUT  
OUT  
IN  
IN  
100 mA  
100 mA  
1M  
= 1 mF  
= 1 mF  
OUT  
OUT  
MLCC, X7R, 0805  
MLCC, X7R, 0805  
10  
0
10  
0
100 1K  
10K  
100K  
1M  
10M  
100 1K  
10K  
100K  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 15. Power Supply Rejection Ratio vs.  
Figure 16. Power Supply Rejection Ratio vs.  
Current, VDROP = 0.5 V, COUT = 1 mF  
Current, VDROP = 0.3 V, COUT = 1 mF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
4.3 V  
4.3 V  
80  
70  
60  
50  
40  
30  
20  
3.6 V  
3.6 V  
3.8 V  
3.8 V  
V
OUT  
= 3.3 V  
V
I
C
C
= 3.3 V  
= 100 mA  
OUT  
I
= 20 mA  
OUT  
OUT  
C
C
= 1 mF  
IN  
= 1 mF  
IN  
= 1 mF  
OUT  
= 1 mF  
MLCC, X7R, 0805  
OUT  
MLCC, X7R, 0805  
10  
0
10  
0
100 1K  
10K  
100K  
1M  
10M  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Power Supply Rejection Ratio vs.  
Figure 18. Power Supply Rejection Ratio vs.  
Input Voltage, IOUT = 100 mA, COUT = 1 mF  
Input Voltage, IOUT = 20 mA, COUT = 1 mF  
100K  
10K  
100K  
10K  
1K  
V
V
= 3.6 V  
IN  
V
V
= 3.8 V  
IN  
= 3.3 V  
OUT  
= 3.3 V  
OUT  
I
= 20 mA  
= 1 mF  
OUT  
I
= 250 mA  
= 1 mF  
OUT  
C
C
IN  
C
C
IN  
= 1 mF  
OUT  
= 1 mF  
OUT  
MLCC, X7R, 0805  
MLCC, X7R, 0805  
1K  
100  
10  
100  
10  
10  
100  
1K  
10K  
100K  
1M  
10  
100  
1K  
10K  
100K  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. Output Voltage Noise Spectral Density  
Figure 20. Output Voltage Noise Spectral Density  
for VOUT = 3.3 V, IOUT = 20 mA, COUT = 1 mF  
for VOUT = 3.3 V, IOUT = 250 mA, COUT = 1 mF  
www.onsemi.com  
6
NCV8165  
APPLICATIONS INFORMATION  
General  
output capacitors and lower ESR could improve the load  
The NCV8165 is an ultralow noise 500 mA low dropout  
transient response or high frequency PSRR. It is not  
recommended to use tantalum capacitors on the output due  
to their large ESR. The equivalent series resistance of  
tantalum capacitors is also strongly dependent on the  
temperature, increasing at low temperature.  
regulator designed to meet the requirements of RF  
applications and high performance analog circuits. The  
NCV8165 device provides very high PSRR and excellent  
dynamic response. In connection with low quiescent current  
this device is well suitable for battery powered application  
such as cell phones, tablets and other. The NCV8165 is fully  
protected in case of current overload, output short circuit and  
overheating.  
Enable Operation  
The NCV8165 uses the EN pin to enable/disable its device  
and to deactivate/activate the active discharge function. If  
the EN pin voltage is <0.4 V the device is guaranteed to be  
disabled. The pass transistor is turnedoff so that there is  
virtually no current flow between the IN and OUT. The  
active discharge transistor is active so that the output voltage  
Input Capacitor Selection (CIN)  
Input capacitor connected as close as possible is necessary  
for ensure device stability. The X7R or X5R capacitor  
should be used for reliable performance over temperature  
range. The value of the input capacitor should be 1 mF or  
greater to ensure the best dynamic performance. This  
capacitor will provide a low impedance path for unwanted  
AC signals or noise modulated onto constant input voltage.  
There is no requirement for the ESR of the input capacitor  
but it is recommended to use ceramic capacitors for their low  
ESR and ESL. A good input capacitor will limit the  
influence of input trace inductance and source resistance  
during sudden load current changes.  
V
OUT  
is pulled to GND through a 280 W resistor. In the  
disable state the device consumes as low as typ. 10 nA from  
the V . If the EN pin voltage >1.2 V the device is  
IN  
guaranteed to be enabled. The NCV8165 regulates the  
output voltage and the active discharge transistor is  
turnedoff. The EN pin has internal pulldown current  
source with typ. value of 200 nA which assures that the  
device is turnedoff when the EN pin is not connected. In the  
case where the EN function isn’t required the EN should be  
tied directly to IN.  
Output Decoupling (COUT  
)
Output Current Limit  
The NCV8165 requires an output capacitor connected as  
close as possible to the output pin of the regulator. The  
recommended capacitor value is 1 mF and X7R or X5R  
dielectric due to its low capacitance variations over the  
specified temperature range. The NCV8165 is designed to  
remain stable with minimum effective capacitance of 0.7 mF  
to account for changes with temperature, DC bias and  
package size. Especially for small package size capacitors  
such as 0201 the effective capacitance drops rapidly with the  
applied DC bias. Please refer Figure 21.  
Output Current is internally limited within the IC to a  
typical 1000 mA. The NCV8165 will source this amount of  
current measured with a voltage drops on the 90% of the  
nominal V  
. If the Output Voltage is directly shorted to  
= 0 V), the short circuit protection will limit  
OUT  
ground (V  
OUT  
the output current to 1050 mA (typ.). The current limit and  
short circuit protection will work properly over whole  
temperature range and also input voltage range. There is no  
limitation for the short circuit duration.  
Thermal Shutdown  
When the die temperature exceeds the Thermal Shutdown  
threshold (T = 160°C typical), Thermal Shutdown event  
SD  
is detected and the device is disabled. The IC will remain in  
this state until the die temperature decreases below the  
Thermal Shutdown Reset threshold (T  
= 140°C typical).  
SDU  
Once the IC temperature falls below the 140°C the LDO is  
enabled again. The thermal shutdown feature provides the  
protection from a catastrophic device failure due to  
accidental overheating. This protection is not intended to be  
used as a substitute for proper heat sinking.  
Reverse Current  
The PMOS pass transistor has an inherent body diode  
which will be forward biased in the case that V  
> V .  
OUT  
IN  
Figure 21. Capacity vs DC Bias Voltage  
Due to this fact in cases, where the extended reverse current  
condition can be anticipated the device may require  
additional external protection.  
There is no requirement for the minimum value of  
Equivalent Series Resistance (ESR) for the C  
but the  
OUT  
maximum value of ESR should be less than 1.7 W. Larger  
www.onsemi.com  
7
 
NCV8165  
Power Supply Rejection Ratio  
maximum power dissipation supported by the device is  
dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material, and the  
ambient temperature affect the rate of junction temperature  
rise for the part. For reliable operation junction temperature  
should be limited to +125°C. The maximum power  
The NCV8165 features very high Power Supply  
Rejection ratio. If desired the PSRR at higher frequencies in  
the range 100 kHz – 10 MHz can be tuned by the selection  
of C  
capacitor and proper PCB layout.  
OUT  
TurnOn Time  
The turnon time is defined as the time period from EN  
assertion to the point in which V  
nominal value. This time is dependent on various  
dissipation the NCV8165 can handle is given by:  
o
ƪ
ƫ
125 C * TA  
will reach 98% of its  
OUT  
PD(MAX)  
+
(eq. 1)  
qJA  
application conditions such as V  
, C  
, T .  
OUT(NOM) OUT A  
The power dissipated by the NCV8165 for given application  
conditions can be calculated from the following equations:  
Power Dissipation  
ǒV  
Ǔ
(eq. 2)  
As power dissipated in the NCV8165 increases, it might  
become necessary to provide some thermal relief. The  
P
D [ VIN @ IGND ) IOUT IN * VOUT  
300  
250  
200  
150  
100  
50  
1.8  
P
, T = 25°C, 2 oz Cu  
A
D(MAX)  
1.5  
1.2  
0.9  
0.6  
0.3  
0
P
, T = 25°C, 1 oz Cu  
D(MAX) A  
q
, 1 oz Cu  
JA  
q
, 2 oz Cu  
JA  
0
0
100  
200  
300  
400  
500  
600  
2
700  
COPPER HEAT SPREADER AREA (mm )  
Figure 22. qJA and PD(MAX) vs. Copper Area (DFNW8)  
PCB Layout Recommendations  
To obtain good transient performance and good regulation  
pins will also improve the device thermal resistance. The  
actual power dissipation can be calculated from the equation  
above (Equation 2). Expose pad can be tied to the GND pin  
for improvement power dissipation and lower device  
temperature.  
characteristics place C and C  
capacitors close to the  
IN  
OUT  
device pins and make the PCB traces wide. In order to  
minimize the solution size, use 0402 or 0201 capacitors with  
appropriate capacity. Larger copper area connected to the  
www.onsemi.com  
8
NCV8165  
ORDERING INFORMATION  
Device  
Nominal Output Voltage  
Description  
Marking  
Package  
Shipping  
8165L  
330  
NCV8165ML330TBG  
3.3 V  
3.3 V  
500 mA, Active Discharge  
DFNW8  
(PbFree)  
3000 / Tape  
& Reel  
8165L  
330  
NCV8165ML330TCG  
500 mA, Active Discharge  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
9
NCV8165  
PACKAGE DIMENSIONS  
DFNW8 3x3, 0.65P  
CASE 507AD  
ISSUE A  
NOTES:  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
L3  
L3  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND  
0.30mm FROM THE TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
5. THIS DEVICE CONTAINS WETTABLE FLANK  
DESIGN FEATURE TO AID IN FILLET FORMA-  
TION ON THE LEADS DURING MOUNTING.  
L
L
ALTERNATE  
CONSTRUCTION  
DETAIL A  
E
A
PIN ONE  
REFERENCE  
EXPOSED  
COPPER  
MILLIMETERS  
DIM MIN  
NOM  
0.90  
−−−  
MAX  
1.00  
0.05  
A4  
A1  
A
A1  
A3  
A4  
b
0.80  
−−−  
0.20 REF  
−−−  
0.30  
3.00  
2.40  
3.00  
1.65  
TOP VIEW  
0.10  
0.25  
2.90  
2.30  
2.90  
1.55  
−−−  
0.35  
3.10  
2.50  
3.10  
1.75  
PLATING  
A1  
A4  
ALTERNATE  
CONSTRUCTION  
DETAIL B  
D
D2  
E
E2  
e
K
0.05  
0.05  
C
C
DETAIL B  
A3  
C
C
C
A4  
0.65 BSC  
0.28 REF  
0.40  
L
L3  
0.30  
0.50  
SEATING  
PLANE  
NOTE 4  
SIDE VIEW  
0.05 REF  
L3  
PLATED  
SURFACES  
D2  
DETAIL A  
SECTION CC  
RECOMMENDED  
1
4
5
SOLDERING FOOTPRINT*  
2.50  
8X  
L
8X  
0.58  
2.35  
E2  
8
5
K
3.30 1.75  
8
8X b  
e/2  
e
0.10  
0.05  
C
C
A B  
PACKAGE  
OUTLINE  
NOTE 3  
1
4
BOTTOM VIEW  
8X  
0.40  
0.65  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV8165/D  

相关型号:

NCV8170

Ultra‐Low IQ 150 mA CMOS LDO Regulator
ONSEMI

NCV8170AMX120TCG

Ultra‐Low IQ 150 mA CMOS LDO Regulator
ONSEMI

NCV8170AMX150TCG

Ultra‐Low IQ 150 mA CMOS LDO Regulator
ONSEMI

NCV8170AMX180TCG

Ultra‐Low IQ 150 mA CMOS LDO Regulator
ONSEMI

NCV8170AMX250TCG

Ultra‐Low IQ 150 mA CMOS LDO Regulator
ONSEMI

NCV8170AMX280TCG

Ultra‐Low IQ 150 mA CMOS LDO Regulator
ONSEMI

NCV8170AMX300TCG

Ultra‐Low IQ 150 mA CMOS LDO Regulator
ONSEMI

NCV8170AMX330TCG

Ultra‐Low IQ 150 mA CMOS LDO Regulator
ONSEMI

NCV8170AMX360TCG

Ultra‐Low IQ 150 mA CMOS LDO Regulator
ONSEMI

NCV8170AXV120T2G

Ultra‐Low IQ 150 mA CMOS LDO Regulator
ONSEMI

NCV8170AXV150T2G

Ultra‐Low IQ 150 mA CMOS LDO Regulator
ONSEMI

NCV8170AXV180T2G

Ultra‐Low IQ 150 mA CMOS LDO Regulator
ONSEMI