NCV78343DQ0R2G [ONSEMI]

Series String Pixel Controller for Automotive (Front) Lighting;
NCV78343DQ0R2G
型号: NCV78343DQ0R2G
厂家: ONSEMI    ONSEMI
描述:

Series String Pixel Controller for Automotive (Front) Lighting

文件: 总60页 (文件大小:685K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Series String Pixel  
Controller for Automotive  
(Front) Lighting  
MARKING  
DIAGRAM  
NV783430  
FAWLYYWWG  
NCV78343  
SSOP36 EP  
CASE 940AB  
Introduction  
The NCV78343 is a singlechip pixel controller with embedded  
switches to control individual LEDs in a series LED string, designed  
for automotive dynamic lighting applications and in particular for high  
current LEDs. In order to create a pixel lighting solution, the LEDs  
need to be powered by current sources such as NCV78763 or  
NCV78723. The NCV78343 pixel controller devices receive the pixel  
control parameters from the pixel light ECU which translates the  
required light pattern or light image into individual pixel dimming  
data.  
One pixel controller device can control upto 12 pixels of 1× or 2×  
1.4 A LEDs per pixel. The maximum LED string voltage has to be  
limited to 60 V.  
When more than 12 pixels are to be controlled, multiple pixel  
controllers can be combined in a single system.  
NV78343 = Specific Device Code  
F
A
WL  
= Fab Indicator  
= Assembly Location  
= Wafer Lot  
YYWW = Year / Work Week  
= PbFree Designator  
G
SAFETY DESIGN ASIL B  
ASIL B Product developed in compliance with  
ISO 26262 for which a complete safety package  
is available.  
ORDERING INFORMATION  
Device  
NCV78343DQ0R2G SSOP36 EP 1500 / Tape &  
(PFree) Reel  
Package  
Shipping  
The NCV78343 uses two communication interfaces for connection  
with a microcontroller. A universal asynchronous receiver transmitter  
(UART), which supports the use of CAN transceiver and multipoint  
low voltage differential signaling (MLVDS) for either local  
connection or connection with the MCU.  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Features  
Single Chip Compatible with IMS Board (Single Layer)  
12 Integrated Switches with Multiple Configuration Options  
Minimum of External Components  
Typical Applications  
Dynamic Adaptive Driving Beam Functions  
Glarefree High Beam  
Static Swiveling  
Communication Interfaces to the Pixel Light ECU via  
Integrated MLVDS  
UART over CAN Interface  
Beam Shaping  
Light Power Adjustment  
Animated Welcome Functions on Signal  
Lights  
Wiping Blinker  
Integrated Bridge between MLVDS and UART  
Supports up to 32 Devices, 1Mbaud  
No Need for Local MCU and Precise Clock  
Interface to External I2C EEPROM  
Integrated 8 bit Analog to Digital Converter  
Dimming Controller  
PWM + Phase Shift Unit per Channel  
Over Temp Protection  
Individual Open/Short/OV LED Diagnostic Feedback  
Open LED Failure Automatic Bypass  
This is a PbFree Device  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
© Semiconductor Components Industries, LLC, 2021  
1
Publication Order Number:  
June, 2023 Rev. 3  
NCV78343/D  
NCV78343  
PACKAGE AND PIN DESCRIPTION  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
C2P  
C2N  
NC  
TST1  
TST  
3
SW10  
SW11  
SW12  
SW13  
SW20  
SW21  
SW22  
SW23  
NC  
4
SW30  
SW31  
SW32  
SW33  
SW40  
SW41  
SW42  
SW43  
NC  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
ADC0/SDA  
ADC1/SCL  
ADC2/ADR  
VDD  
RX  
TX  
A
B
GND  
NC  
A
VBB  
B
Figure 1. Pin Connections – SSOP36EP (Top View)  
Table 1. PIN DESCRIPTION  
Pin No.  
SSOP36EP  
Pin Name  
Description  
Switch control capacitor connection  
Switch control capacitor connection  
Not used (to be left floating)  
I/O Type  
HV in/out  
HV in/out  
NC  
1
C2P  
2
C2N  
3, 12, 17, 26  
NC  
31, 32, 33, 34  
SW1y  
SW2y  
SW3y  
SW4y  
RX  
Power switch to short LED  
HV in/out  
HV in/out  
HV in/out  
HV in/out  
HV60 in  
27, 28, 29, 30  
Power switch to short LED  
4, 5, 6, 7  
Power switch to short LED  
8, 9, 10, 11  
Power switch to short LED  
13  
14  
Receive data input (To be tied to GND when not used)  
Transmit data output (To be tied to GND or left floating when not used)  
MLVDS IO pins (internally connected; to be shorted to B when not used)  
MLVDS IO pins (internally connected; to be shorted to A when not used)  
Battery supply  
TX  
MV out  
15, 20  
16, 19  
18  
A
MV in/out  
MV in/out  
HV60 supply  
Ground  
B
VBB  
21  
GND  
Ground  
22  
VDD  
3V analog and logic supply  
LV supply  
LV in  
23  
ADC2/ADR  
ADC1/SCL  
ADC0/SDA  
TST  
ADC input 2 / Address  
24  
ADC input 1 / I2C clock  
LV in/out  
LV in/out  
HV70 in  
25  
ADC input 0 / I2C data  
35  
Internal function. To be tied to GND or left floating  
Internal function. To be tied to GND  
To be tied to GND  
36  
TST1  
EP  
LV in/out  
Exposed Pad  
EP  
www.onsemi.com  
2
NCV78343  
Matrix Beam Submodule  
I_BUCK  
C2  
C1  
C_LED  
L
VDD  
C2N  
C2P  
VBB  
VBB  
C3  
SW43  
NCV78343  
Series string pixel  
controller  
C_SW  
SW12  
R1  
CAN PHY  
RX  
TX  
UART  
CAN_H  
CAN_L  
Integrated  
bridge in  
repeater  
slave mode  
A
B
A
B
Local MLVDS  
bus to all  
MLVDS  
R2  
nodes  
SW1  
I2C  
ADC0/SDA  
ADC1/SCL  
EEPROM  
SW10  
Resistors  
(NTC,  
binning )  
ADC3/ADR  
GND EP  
Sig GND  
PWR GND  
Figure 2. Application Diagram  
Table 2. EXTERNAL COMPONENTS  
Component  
Function  
Typ. Value  
470  
Unit  
nF  
nF  
nF  
nF  
nF  
kW  
W
C1  
C2  
Cap. for VDD regulator  
Cap. for switch control  
VBB decoupling cap.  
VLED decoupling cap.  
VLED decoupling cap.  
Tx pullup resistor  
220  
C3  
100  
C_SW  
C_LED  
R1  
22  
22  
100  
R2  
Terminating resistors (only for the first and last device)  
CAN transceiver  
100  
CAN  
MLVDS  
EEPROM  
L
NCV7344  
NBA3N206S  
CAT24C02  
MLVDS transceiver  
External EEPROM  
Ferrite bead *  
600 @ 100 MHz  
W
* It is recommended to place a ferrite bead at VBB net close to a VBB decoupling capacitor for a better electromagnetic immunity.  
NOTE: Unused switches to be shorted externally. The switches should be grounded If a full section is not used.  
www.onsemi.com  
3
NCV78343  
Section 4  
Section 3  
Section 2  
Section 1  
SW control  
ADC0 / SDA  
ADC1 / SCL  
EXT. ADDR  
VALID DET  
I2C  
EEPROM CTRL  
OPMODE  
CTRL  
SWx3  
SWx2  
EEPROM  
TIMEOUT  
TSD DET  
SW STATUS  
DET  
NM DET  
ADDR  
via ADC  
OSC DET  
ADC2 / ADR  
SW control  
SW control  
RX  
REGs  
BANK  
SW STATUS  
DET  
UART  
DIMM ERR  
DET  
TX  
PXN CORE  
SWx1  
SWx0  
OTP CRC  
CHECK  
MLVDS  
OTP  
SHADOW  
REGs  
SW STATUS  
DET  
SW MATRIX  
A
B
COMM FAIL  
DET  
ADC CTRL  
OTP CTRL  
VDD  
VBB  
CLK  
OTP MEMORY  
ARRAY  
VBB  
VDD  
VBB  
LOW  
DET  
LDR REG  
BIAS  
VLED  
VBG  
VBB  
VDD  
VBG  
ADC[7:0]  
ADC  
(8bit)  
VLED  
MUX  
TEMP  
MEAS  
VBG OK  
DET  
POR  
TEMP  
ADCx  
TST1  
TST  
C2P  
C2N  
CCH  
CAP UV  
DET  
GND  
LOSS  
DET  
CLK  
CCH  
OSC  
NCV78343  
Series string pixel controller  
Figure 3. Block Diagram  
www.onsemi.com  
4
NCV78343  
The NCV78343 supports two communication interfaces:  
MLVDS bus for local connection between submodules of  
each functional lights such as high beam, low beam, turn  
indicator, etc. The second example uses the MLVDS bus  
only.  
UART and MLVDS. It is possible to communicate over  
both interfaces, where the first example uses the UART  
interface over CAN physical layer as a master bus from the  
LED Driver Module to the first NCV78343 chip and the  
BOOST  
MCU  
BUCK  
CAN  
transceiver  
HB  
function  
UART  
over CAN  
CAN  
transceiver  
UART  
Rx/Tx  
NCV78343  
CAN  
(repeaterslave)  
A/B  
Local MLVDS bus to all  
nodes  
Address  
resistor  
divider  
I2C  
EEPROM  
To BCM  
LB  
function  
Rx/Tx  
NCV78343  
(slave)  
A/B  
Address  
resistor  
divider  
I2C  
EEPROM  
TI  
function  
Rx/Tx  
NCV78343  
(slave)  
A/B  
Address  
resistor  
divider  
I2C  
EEPROM  
Figure 4. System Architecture using CANFD and MLVDS  
BOOST  
MCU  
BUCK  
Invertor +  
MLVDS  
transceiver  
HB  
function  
Rx/Tx  
UART over  
MLVDS  
NCV78343  
(slave)  
CAN  
A/B  
Address  
I2C  
resistor  
EEPROM  
divider  
To BCM  
LB  
function  
Rx/Tx  
NCV78343  
(slave)  
A/B  
Address  
I2C  
resistor  
EEPROM  
divider  
TI  
function  
Rx/Tx  
NCV78343  
(slave)  
A/B  
Address  
I2C  
resistor  
EEPROM  
divider  
Figure 5. System Architecture using MLVDS only  
www.onsemi.com  
5
NCV78343  
The advantage of sharing common heatsink for higher  
currents can be reached by placement of the NCV78343  
together with the LEDs on same PCB (IMS type of board  
supported). This is not necessary for lower currents or  
application where the LED string is connected over two  
NCV78343 devices.  
C2P  
SUB  
C2N  
SUB  
NC  
TST1  
TST  
SW10  
12 V  
12 V  
12 V  
SUB  
SUB  
SUB  
SW30  
SW11  
SW12  
SW13  
SW20  
SW21  
SW22  
SW23  
NC  
12 V  
12 V  
12 V  
SUB  
SUB  
SUB  
SW31  
SW32  
SW33  
SW40  
SW41  
SW42  
SW43  
NC  
12 V  
12 V  
12 V  
SUB  
SUB  
SUB  
12 V  
12 V  
12 V  
SUB  
SUB  
SUB  
SDA  
SCL  
ADR  
VDD  
GND  
A
RX  
TX  
SUB  
A
B
NC  
VBB  
B
Figure 6. ESD Protection Schematic  
www.onsemi.com  
6
NCV78343  
Typical Switch Resistance  
350  
300  
250  
200  
150  
100  
50  
T = 45°C  
T = 25°C  
T = 150°C  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
Switch  
Figure 7. Typical Switch Resistance  
Typical Switch Section Resistance  
800  
700  
600  
500  
400  
300  
200  
100  
T = 45°C  
T = 25°C  
T = 150°C  
0
1
2
3
4
Switch section  
Figure 8. Typical Switch Section Resistance  
SWx(y+3)  
SW_IGND(z+3)  
SW(z+2)  
SWx(y+2)  
SW_IGND(z+2)  
SW(z+1)  
SWz  
SWx(y+1)  
SWxy  
SW_IGND(z+1)  
SW_IGNDz  
Figure 9. Pixel Switches  
www.onsemi.com  
7
NCV78343  
Table 3. ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Battery Supply voltage (Note 1)  
Symbol  
Min  
0.3  
0.3  
0.3  
0.3  
0.3  
1.8  
0.3  
0.3  
0.3  
50  
Max  
60  
Unit  
V
V
BB  
DD  
Low voltage supply (Note 2)  
V
3.6  
60  
V
High voltage control IO pins (Note 3)  
High voltage IO pins (Note 4)  
I
V
OHV60  
I
68  
V
OHV  
OMV  
Medium voltage IO pins (Note 5)  
Medium voltage IO pins: MLVDS (Note 6)  
Low voltage IO pins (Note 7)  
I
6.5  
4
V
I
V
OMV_MLVDS  
I
3.6  
3.6  
12  
V
OLV  
Low voltage supply for switch control: V2 = C2P – C2N  
Switch differential voltage (Note 8)  
Storage Temperature (Note 9)  
V
2
V
V
V
SWxx_DIFF  
T
strg  
150  
+2  
°C  
kV  
Electrostatic discharge on component level Human  
Body Model (Note 10)  
V
2  
ESD_HBM  
Electrostatic discharge on component level Charge  
Device Model (Note 10)  
V
500  
+500  
V
ESD_CDM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Absolute maximum rating for pins: VBB  
2. Absolute maximum rating for pins: VDD  
3. Absolute maximum rating for pins: RX, TST  
4. Absolute maximum rating for pins: C2P, C2N, SWxy for x={4÷1} & y={3÷0}  
5. Absolute maximum rating for pins: TX  
6. Absolute maximum rating for pins: A, B  
7. Absolute maximum rating for pins: TST1, ADC0/SDA, ADC1/SCL, ADC2/ADR  
8. Absolute maximum rating for pins: SWx_(y+1) – SWxy for x={4÷1} & y={2÷0}  
9. For limited time up to 100 hours. Otherwise the max storage temperature is 85°C.  
10.This device series incorporates ESD protection and is qualified per AECQ100:  
ESD Human Body Model Classification level H1C in according to the AECQ100002 RevE  
ESD Charge Device Model Classification C2b in according to the AECQ100011 RevD  
Latch*up Current Maximum Rating: v100 mA in according to the AECQ100004 RevD JEDECClass II  
Operating ranges define the limits for functional  
operation and parametric characteristics of the device. A  
mission profile (Note 11) is a substantial part of the  
operation conditions; hence the Customer must contact  
onsemi in order to mutually agree in writing on the allowed  
missions profile(s) in the application.  
Table 4. RECOMMENDED OPERATING RANGES  
Characteristic  
Battery supply voltage  
Symbol  
Min  
4.5  
0
Typ  
Max  
40  
Unit  
V
V
BB  
SW_DIFF  
Switch differential voltage  
LED string voltage  
V
10  
V
V
0
60  
V
STRING  
Buck switch output current  
PXN communication speed  
Ambient temperature  
I
1.4  
A
SW  
S
125  
40  
40  
1000  
125  
150  
kbit  
°C  
°C  
PXN  
T
A
Junction temperature range (Note 12)  
T
J
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
11. The circuit functionality is not guaranteed outside the Operating junction temperature range. A mission profile describes the application  
specific conditions such as, but not limited to, the cumulative operating conditions over life time, the system power dissipation, the system’s  
environmental conditions, the thermal design of the customer’s system, the modes, in which the device is operated by the customer, etc.  
12.The circuit functionality is not guaranteed outside the junction temperature range. Also please note that the device is verified on bench for  
operation up to 170 °C but the production test guarantees 150 °C only.  
Table 5. THERMAL RESISTANCE  
Characteristic  
Package  
Symbol  
Min  
Typ  
Max  
Unit  
Thermal resistance junction to exposed pad (Note 13)  
SSOP36EP  
Rthjp  
3.5  
°C/W  
13.Includes also typical solder thickness under the Exposed Pad (EP).  
www.onsemi.com  
8
 
NCV78343  
ELECTRICAL CHARACTERISTICS  
NOTE: All Min and Max parameters are guaranteed over full junction temperature (T ) range (40 °C; 150 °C), unless  
JP  
otherwise specified.  
Table 6. CURRENT CONSUMPTION  
Characteristic  
Symbol  
Conditions  
Min  
Typ  
19  
Max  
25  
Unit  
mA  
mA  
The VBB current consumption  
I_VBB  
The VBB current consumption  
UART only device  
I_VBB_MLVDS_  
MLVDS off; OTP bit MLVDS_OFF = ‘1’  
6.5  
10  
OFF  
Table 7. OSC20M: SYSTEM OSCILLATOR CLOCK  
Characteristic  
Oscillator output frequency (trimmed)  
Oscillator duty cycle  
Symbol  
OSC_CLK  
OSC_DC  
Conditions  
Min  
Typ  
20  
Max  
21.8  
70  
Unit  
MHz  
%
18.2  
30  
50  
Table 8. VDD: 3.45V LOW VOLTAGE ANALOG AND DIGITAL SUPPLY  
Characteristic  
Symbol  
VDD  
Conditions  
VBB > 4.5 V  
VBB > 4.5 V  
Min  
3.15  
40  
Typ  
Max  
3.6  
Unit  
V
VDD regulator output voltage  
VDD regulator current limitation  
OUT_OFF_REG comparator voltage  
VDD POR threshold, VDD rising  
VDD POR threshold, VDD falling  
VDD POR hysteresis  
3.45  
VDD_ILIM  
300  
3.45  
2.95  
2.75  
0.3  
mA  
V
V_OUT_OF_REG  
POR3V_H  
2.7  
2.7  
2.5  
0.1  
3.8  
3.7  
0.05  
12.5  
15  
V
POR3V_L  
V
POR3V_HYST  
POR_VBB_H  
POR_VBB_L  
POR_VBB_HST  
OTP_UV  
0.2  
0.1  
V
VBB POR threshold, VBB rising  
VBB POR threshold, VBB falling  
VBB POR hysteresis  
4.3  
V
4.2  
V
0.25  
15  
V
OTP UV comparator threshold (VBB pin)  
VBB supply during the OTP zapping  
VBB current limitation for OTP zapping  
V
VBB_ZAP  
30  
V
IBAT_ZAPP  
85  
mA  
Table 9. SWITCH CONTROL  
Characteristic  
Symbol  
CCH _UVH  
CCH_UVL  
Conditions  
Min  
2.65  
2.6  
2
Typ  
2.75  
2.72  
Max  
2.85  
2.85  
15  
Unit  
V
V(C2) under voltage threshold, V(C2) rising  
V(C2) under voltage threshold, V(C2) falling  
Current from VBB to charge C2 capacitor  
Current limitation from VDD (during startup)  
Current limitation from VDD  
V
CCH_IBB  
mA  
mA  
mA  
mV  
V
CCH_ILIM_RST  
CCH_ILIM  
6
12  
12  
20  
8
16  
Voltage drop between VDD and V(C2)  
CCH_VDROP  
CCH_V2  
120  
3.33  
270  
V(C2) voltage after recharge  
CCH_V2 = VDD – CCH_VDROP  
Switch OFF time  
SOF_TRISE  
5 mA, without decoupling  
capacitor  
1.5  
1.6  
2.5  
μs  
Switch gate voltage detection threshold  
Switch gate voltage detection threshold  
Switch gate voltage detection threshold  
Switch Short detection voltage threshold  
Switch Overvoltage detection threshold  
SOF_VTH_A  
SOF_VTH_C  
SOF_VTH_H  
SSH_VTH  
At ambient temperature  
At cold temperature  
At hot temperature  
0.4  
0.9  
0.2  
0.35  
10  
0.8  
1.3  
0.8  
1.6  
1.7  
1.2  
1
V
V
V
V
V
SOV_TH  
13.5  
www.onsemi.com  
9
NCV78343  
Table 10. PIXEL SWITCHES  
Characteristic  
Symbol  
Conditions  
At ambient  
At ambient  
Min  
Typ  
0.43  
0.2  
Max  
1.1  
0.6  
70  
Unit  
W
RON from SWx3 to SWx0 pin (3 switches)  
RON from SWxy to SWx(y1) pin (1 switch)  
Current from SWxy pin to GND (see Figure 9)  
SW_3R  
SW_1R  
W
SW_IGND  
40  
53  
μA  
Table 11. ADC FOR MEASURING VBB, VDD, VLED, TEMP, ADCX  
Characteristic  
ADC Resolution  
Symbol  
ADC_RES  
ADC_INL  
Conditions  
Min  
Typ  
Max  
Unit  
Bits  
LSB  
LSB  
%
8
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Full path gain error  
Best fitting straight line method  
Best fitting straight line method  
VBB, VDD measurements  
VBB, VDD measurements  
1.5  
2.0  
3.25  
2  
+1.5  
+2.0  
3.25  
2
ADC_DNL  
ADC_GE  
Offset at output of ADC  
Time for 1 SAR conversion  
ADC_OFFSET  
ADC_CONV  
ADC_VBB  
LSB  
μs  
6.67  
33.5  
8
10  
ADC full scale for VBB  
measurement  
35  
36.5  
V
ADC full scale for VDD  
measurement  
ADC_VDD  
ADC_VLED  
ADC_ADCx  
3.87  
63.6  
4
4.13  
68.6  
V
V
V
ADC full scale for VLED  
measurement  
66.1  
1.205  
ADC full scale for ADCx  
measurement  
1.175  
1.235  
ADCx input current  
TSD threshold level  
I_ADCx  
0.3  
1
1.7  
μA  
°C  
ADC_TSD  
ADC measurement of junction  
temperature  
163  
170  
177  
Accuracy of temperature meas at  
hot  
ADC_TEMP_ACC_HOT  
ADC_TEMP_ACC_COLD  
T = 155 °C  
7  
7
°C  
°C  
Accuracy of temperature meas at  
cold  
T = 40 °C  
15  
15  
Table 12. GND LOSS DETECTION  
Characteristic  
Symbol  
Conditions  
Min  
Typ  
120  
800  
Max  
160  
Unit  
mV  
ns  
GND loss comparator threshold; both edges  
GNDLOSS_THR  
GNDLOSS_DEL  
100  
GND loss comparator delay; both falling and  
rising edge  
1200  
Table 13. UART INTERFACE: RX, TX  
Characteristic  
Highlevel input voltage  
Lowlevel input voltage  
Input voltage hysteresis  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
RX_VIH  
RX_VIL  
2
0.8  
400  
160  
V
RX_VIhyst  
100  
40  
200  
mV  
kW  
V
Input pulldown resistance  
Highlevel output voltage  
RX_RPULL  
TX_VOH  
I
= 3mA  
2.1  
VDD or external  
LOAD  
pullup voltage  
Lowlevel output voltage  
TX pin leakage current in HiZ  
TX pin capacitance  
TX_VOL  
TX_ILEAK  
TX_C  
I
= 3mA  
0.4  
1
V
LOAD  
1  
μA  
pF  
ns  
ns  
5
Propagation delay  
TX_DL_50pF  
TX_DL_200pF  
C
up to 50 pF  
40  
LOAD  
Propagation delay  
C
up to 200 pF  
150  
LOAD  
www.onsemi.com  
10  
 
NCV78343  
Table 14. MLVDS INTERFACE: A, B  
Characteristic  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Differential output voltage magnitude  
MLVDS_TX_VAB  
Rload_AB = 49.9 W 1%  
Vtest = from 1 V to 3.4 V  
480  
650  
mV  
Change in Differential output voltage  
magnitude between logic states  
MLVDS_TX _DVAB  
Rload_AB = 49.9 W 1%  
Vtest = from 1 V to 3.4 V  
50  
50  
mV  
Steady state common mode output  
voltage  
MLVDS_TX _VOS  
MLVDS_TX _DVOS  
Rload_AB = 49.9 W 1%  
1
1.2  
1.4  
50  
V
Change in Steady state common  
mode output voltage between logic  
states  
Rload_AB = 49.9 W 1%  
50  
mV  
Peaktopeak commonmode output  
MLVDS_TX _VOSPP  
MLVDS_TX _VOC  
MLVDS_TX _IOS  
MLVDS_TX _VPH  
MLVDS_TX _VPL  
Rload_AB = 49.9 W 1%  
Rload w 1.62 kΩ  
150  
2.28  
43  
mV  
V
voltage  
Maximum steadystate opencircuit  
output voltage  
1.9  
Shortcircuit output current  
magnitude  
Vtest = from 1 V to 3.4 V  
VSS = 2·VAB  
mA  
VSS  
VSS  
Voltage overshoot, lowtohigh level  
output  
1.2  
Voltage overshoot, hightolow level  
output  
VSS = 2·VAB  
0.2  
Differential Output rise and fall times  
Transmitter Propagation delay  
MLVDS_TX _TE  
MLVDS_TX _TP  
MLVDS_RX_VITP  
5
12  
20  
ns  
ns  
5
10  
Positivegoing Differential Input  
voltage Threshold for BUS common  
mode <0; 3.8> V  
150  
mV  
Positivegoing Differential Input  
voltage Threshold for BUS common  
mode <1.4; 0> V  
MLVDS_RX_VITP_NCMM  
MLVDS_RX _VITN  
160  
mV  
mV  
mV  
Negativegoing Differential Input  
voltage Threshold for BUS common  
mode <0; 3.8> V  
50  
60  
Negativegoing Differential Input  
voltage Threshold for BUS common  
mode <1.4; 0> V  
MLVDS_RX  
_VITN_NCMM  
Receiver Propagation delay  
A or B pin capacitance  
MLVDS_RX _TP  
MLVDS_C  
20  
40  
5
60  
20  
ns  
pF  
μA  
Transceiver input current in high  
impedance state (range 1)  
MLVDS_IOZ_1  
0 V v (VA or VB) v 2.4 V,  
other output at 1.2 V,  
transmitter in HiZ  
20  
Transceiver input current in high  
impedance state (range 2)  
MLVDS_IOZ_2  
1.4 V v (VA or VB) v 0 V  
32  
32  
μA  
or  
2.4 V v (VA or VB) v 3.8 V,  
other output at 1.2V,  
transmitter in HiZ  
Table 15. I2C INTERFACE: SDA, SCL  
Characteristic  
Highlevel input voltage  
Lowlevel input voltage  
Input voltage hysteresis  
Lowlevel output voltage  
Highlevel output voltage  
SDA or SCL pin capacitance  
Symbol  
I2C_VIH  
I2C_VIL  
I2C_VIhyst  
I2C_VOL  
I2C_VOH  
I2C_C  
Conditions  
Min  
Typ  
Max  
Unit  
VDD  
VDD  
mV  
V
0.7  
0.3  
700  
0.4  
300  
5
I
= 3 mA  
VDD0.1  
V
LOAD  
I
= 3 mA  
5
pF  
LOAD  
SCL to SDA and SDA to SCL propagation  
delay, both edges  
I2C_DL  
60  
ns  
www.onsemi.com  
11  
NCV78343  
DETAILED OPERATING AND PIN DESCRIPTION  
SUPPLY CONCEPT IN GENERAL  
INTERNAL CLOCK GENERATION  
Low operating voltages become more and more required  
due to the growing use of start stop systems. In order to  
respond to this necessity, the NCV78343 is designed to  
support powerup starting from VBB = 4.5 V.  
The clocks are fully internally generated without the need  
for any trimming by the user. The accuracy is guaranteed  
under all operating conditions and independent of external  
component selection.  
OSC20M Clock  
The OSC20M clock is the system clock. All the internal  
timings as well as the internal PWM unit depend on  
OSC20M accuracy.  
VBB  
VDD  
Communication Clock  
The internal clock is also used for oversampling of UART  
incoming frame and I2C EEPROM, so there is no need for  
any external clock.  
POR  
DIMMING CONTROLLER  
Internal (builtin) dimming controller allows change of  
light intensity of individual LEDs in LED string by means  
of digital (PWM) dimming.  
VLED  
Dimming Control Parameters  
time  
The dimming for all switches is controlled from 1  
common 10bit counter. The ON and OFF events are  
programmable per channel, each with a 10 bit counter value.  
100% duty cycle is generated when ON time is set to min.  
value (0) and OFF time is set to max value (1023).  
0% duty cycle is generated when ON time is equal to OFF  
time. When more than one 0% or 100% duty cycle is  
required, the TR (transition) slots must be used.  
≥300μs  
Figure 10. Powerup Sequence  
A specific powerup and powerdown sequences are  
shown in the Figure 20 and Figure 21.  
There is no special circuit to disable switches in case of  
VBB power supply disconnection. The gate of the switch is  
discharged by SWOFF circuit in case the VBBLOW  
threshold is crossed. The gate of the switch is discharged by  
leakage currents when the supply is suddenly lost. Because  
of low leakage currents, the switch may stay enabled for a  
few seconds after power lost. Possible temperature rise  
speeds up opening the switch by higher leakage current.  
The dimming frequency is the DIMCLK frequency  
divided by 1024. The T  
is the duration of one PWM  
DIMCLK  
tick. The duration of one PWM period is T  
required time for one switch ON sequence is T  
. The  
. The  
PWM  
SW_SEQ  
ratio of T  
and T  
results in number of PWM  
SW_SEQ  
DIMCLK  
ticks required for one switch ON sequence. The number of  
slots available for each DIMCLK is 1024 divided by the  
ratio. The recommended time for TR slots and  
recommended step between each switch ON request is  
shown in Table 43. When the TR slot technique is used, the  
ON values should not be set within this period.  
VDD Supply  
The VDD supply is the low voltage digital and analog  
supply for the chip, which is powered from VBB. VDD is  
supplying the internal analog and digital circuits as well as  
external components like I2C EEPROM and resistor divider  
on ADC inputs. The PORcircuit is monitoring both the  
VBB and VDD voltages.  
Dimming Mode  
The NCV78343 incorporates two modes of operation –  
ON/OFF dimming mode and direct mode.  
VLED Supply  
ON/OFF mode – the NCV78343 controls the dimming  
duty cycle and phase shift for each switch individually.  
The time of ON event is set by means of <ONx[9:0]>  
register and the time of OFF event is set by means of  
<OFFx[9:0]> register.  
Direct mode – in addition to ON/OFF dimming mode,  
the state of the switches can be controlled directly by  
means of <SWx> register.  
If the device is running but the LED current source is  
disconnected, the LEDs can light up because of the bias  
currents flowing through pins of the switches. Up to 180 mA  
(typical) from switch current source may cause the  
bottommost LED to shine. If needed, resistors can be  
connected in parallel to the switches to avoid undesired LED  
lighting (typically 10 kW).  
www.onsemi.com  
12  
NCV78343  
Common  
Counter  
OFF(1) [10]  
ON(2) [10]  
ON(1) [10]  
OFF(2) [10]  
OUT1  
OUT2  
Figure 11. Dimming Operation (dimming ON/OFF event)  
Dimming Transition Vector Insertion  
PWM dimming clock  
Transition vectors are required in case of pattern changes  
(update of dimming settings) for avoiding multiple  
switching events at the same time and minimizing  
brightness error.  
Selection of internal dimming clock is done by means of  
<DIMFREQ[4:0]> register, which shall be used to select  
dimming frequencies in range of 125 kHz to 1 MHz (see  
Table 43. PWM Frequency Settings).  
Fully closed switch (100% duty cycle) requires ON event  
equal to 0. It can happen that such switch ON event is  
required on more switches at the same time, which is not  
allowed. Therefore a transition slot technique is used for  
consecutive activation of those switches (which need to be  
changed to 100% duty cycle). When overlapping multiple  
switch ON events are invoked despite this, the <DIMERR>  
error is raised. When overlapping switch OFF events occur,  
the <DIMWARN> status bit is set and processing of this  
pattern continues. However, multiple switch OFF events  
may cause large LED string voltage changes.  
Transition vector inserts additional transition either ON or  
OFF event at the beginning of next PWM period (in  
transition slots space). This helps to reduce brightness error  
significantly and the duty cycle is affected only in one  
period. The error is proportionate to duration of transition  
slot.  
SWITCH CONFIGURATIONS  
The 12 integrated switches are typically organized as  
12 × 1 switch of 1.4 A, but can be organized in 6 × 2 switches  
in parallel to offer 6 × 1 switch of 2.8 A. Examples of switch  
configurations are shown in Figure 12.  
Selection of the switch configuration is done by  
<CONF_SEL[2:0]> register. Detailed information about  
switch configuration is available in Table 16.  
Table 16. SWITCH CONFIGURATIONS  
Conf.  
CONF_SEL  
Code  
Name  
[2:0]  
Description  
000  
001  
010  
1, 2, 3, 4  
1+2, 3, 4  
1+2, 3+4  
12 × PWM channels  
9 × PWM channels (PWM 1=2)  
6 × PWM channels (PWM 1=2 &  
3=4)  
Pattern is updated when common PWM counter  
overflows and <MAPENA> = ‘1’ (see Table 64) is set.  
The NCV78343 contains 12 channels, so with unique  
settings of <TRx[3:0]> for each switch 12 different  
Transient Vector values are needed in the worst case (“0x0”  
to “0xB”). When <TRx[3:0]> = ‘0xC’, ‘0xD’, ‘0xE’ or  
‘0xF’, the <TRx[3:0]> is ignored and transition vectors are  
not applied. In this case the switch status from previous  
PWM period is kept unchanged until next ON or OFF event  
into opposite direction.  
011  
100  
101  
1, 2+3, 4  
1, 2, 3+4  
1+4, 2+3  
9 × PWM channels (PWM 2=3)  
9 × PWM channels (PWM 3=4)  
6 × PWM channels (PWM 1=4 &  
2=3)  
110  
111  
1+4, 2, 3  
1, 2, 3, 4.  
9 × PWM channels (PWM 1=4)  
Same as 0000, 12 × PWM  
channels  
www.onsemi.com  
13  
 
NCV78343  
In case of configurations with 2× current, PWM signals of  
sections with higher index are controlled with PWM signals  
from lower index section. For example in case of  
configuration “101”, the PWM signals of section 1 is  
controlling section 4; control signals of section 2 is  
controlling section 3.  
IDR  
SW43  
SW42  
SW41  
SW40  
IDR  
IDR  
IDR  
IDR  
IDR  
IDR  
IDR  
IDR  
IDR  
4
3
4
3
4
3
4
3
4
3
SW32  
SW31  
SW30  
2
1
2
1
2
1
2
1
2
1
SW22  
SW21  
SW20  
SW12  
SW11  
SW10  
Config 1+2, 3+4  
2x current  
2 strings of 3 Pixels  
Config 1+2,3+4  
Config 1,2,3,4  
1 string of 12 Pixels  
1 LED per Pixel  
Config 1,2,3,4  
2 strings of 6 Pixels  
Max 2 LED per Pixel  
Config 1,2,3,4  
4 strings of 3 Pixels  
Max 2 LED per Pixel  
2x current  
1 string of 6 Pixels  
Max 2 LED per Pixel  
Max 2 LED per Pixel  
Figure 12. Example of Switch Configurations  
Analog Input  
Parallel combination is used where the I  
current  
DR  
The analog input AIN is an input channel that can be used  
for different types of measurements, like e.g. LED  
temperature or battery voltage. The converted voltage is  
calculated with the following formula:  
exceeds maximum switch current 1.4 A. This is not for use  
in redundant applications.  
The following consequence must be taken into account  
when using parallel switches:  
The OTP safestate bits should be zapped to “0” to avoid  
sequentially switching ON which might cause that the  
higher current will flow through one switch.  
1.205  
VADC + ADC_RESX  
@
[V]  
x
[7:0]  
(eq. 1)  
255  
where  
ADC_RES is saved in register 0x11  
X
www.onsemi.com  
14  
NCV78343  
OPEN, SHORT and FAIL Status Detection  
OPEN det.  
OPEN det.  
NOK  
NOK  
NOK  
NOK  
SHORT det.  
SHORT det.  
det  
det  
det  
det  
.
.
.
.
Switch state  
PWM clock  
SW_OFF  
SW_ON  
SW_OFF  
Figure 13. OPEN, SHORT and FAIL Status Detection Timing  
Following the figure above, the OPEN and SHORT flags  
are detected only during the switch OFF state. The On/Off  
Failed flag detection is triggered by the transition between  
the switch ON and the switch OFF event. The SHORT and  
On/Off Failed status flags are cleared upon a successful read  
out of register 0x0F. Due to this behavior and the diagram  
above, the read status might alternate between the SHORT  
and On/Off Failed, following the duty cycle of the specific  
switch. When the buck current is disabled, the device reports  
SHORT status for all switches.  
Init  
SW_DIR:  
NORMAL DIRECT  
NO_CRC DIRECT  
Event: MAPENA PWM  
Event: MAPENA DIRECT  
SW_ON_OFF:  
NORMAL PWM  
NO_CRC PWM  
Event: FAIL_SAFE_STATE  
Event: MAPENA DIRECT  
Event: MAPENA PWM  
Event: FAIL_SAFE_STATE  
SW_FAIL_SAFE:  
Fail-safe OTP  
Fail-safe OPEN  
NOTE: MAPENA DIRECT means writing into REG 0x00. MAPENA PWM means either writing into REG 0x0D or sending CF15.  
Figure 14. Normal Mode State Machine  
www.onsemi.com  
15  
 
NCV78343  
Pixel Light Network  
The LED matrix head light system can be integrated into  
a superior system through an optional physical interface, e.g.  
differential low speed CAN. The choice of the external  
physical interface is application specific.  
The PXN is a proprietary network technology developed  
primarily for communication with and within the LED  
matrix head light system (see Figure 15).  
The LED matrix head light system may incorporate a  
various number of subsystems interconnected using PXN  
technology. The connection of such subsystem to a local  
network is realized using MLVDS physical interface and a  
twistedpair cable. Termination is required at both ends of  
the twistedpair cable. Nominally, it is 100 W across the pair.  
Transmitter on the bus sees both termination resistors in  
parallel, thus the nominal bus load is actually 50 W.  
The PXN protocol for communication over PXN is based  
on UART communication standard, i.e. one start bit, 8 data  
bits (LSB first), one stop bit, no parity bit.  
Rx pin is 5 V tolerant and has CMOS compatible threshold  
levels. External pullup resistor is required on Tx pin.  
Figure 15. PXN Topology Inside LED Matrix Head Light System  
Table 17. THE UART SIGNAL LEVELS TRANSFERRED TO MLVDS BUS  
UART RX Input Pin  
MLVDS Differential Voltage AB  
POSITIVE (AB > 150 mV)  
UART TX Output Pin  
LOW  
HIGH  
LOW  
HIGH  
NEGATIVE  
(AB < 50 mV; in MLVDS pushpull mode;  
valid for repeaterslave)  
PXN Frame  
The table above must be taken into account when using  
only MLVDS slaves cluster. The master MCU generates  
UART signal, which is connected to the MLVDS  
transceiver, where the A and B pins are connected to the A  
and B pins on the devices. Since the MLVDS signal is  
inverted to the UART signal, there must be placed an  
invertor on the Tx pin from the MCU to MLVDS  
transceiver and another invertor on the Rx pin from the  
MLVDS transceiver to the MCU.  
A message is transferred over PXN bus in a form of PXN  
frame, which is depicted in Figure 16. The PXN protocol for  
communication over PXN is based on UART  
communication standard, i.e. one start bit, 8 data bits (LSB  
first), one stop bit, no parity bit.  
The PXN frame consists of a header and a response. The  
header is always transmitted by PXN master while the  
response can either be transmitted by master, in case of write  
frames or by slave, in case of read frames. The header and  
the response are separated by inframe response space.  
The header consists of a BREAK field (logic 0 for a  
certain time), a SYNC field (0x55 byte) and two protected  
identifiers PID1 and PID2. The response consists of an  
arbitrary number of DATA bytes within a range from 1 to 12  
followed by CRC. The particular bytes are separated by  
interbyte space. Minimal delay of 1 Tbit is required before  
starting new PXN frame. The minimum length for the  
BREAK field is 13 Tbits (52 ms for the default  
PXN Switch  
The PXN switch is responsible for PXN frame routing  
within a particular PXN node connected to network.  
PXN Media Access Layer  
The MAC layer is responsible for a PXN frame  
composition on a transmitting side, the PXN frame  
decomposition on a receiving side, a transmission of  
composed PXN frames, a reception of PXN frames and PXN  
network error detection and confinement.  
www.onsemi.com  
16  
 
NCV78343  
communication speed 250 kbps). The BREAK field stop bit  
slave cluster, the DE pin on the MLVDS transceiver (e.g.  
NBA3N206S) must be set LOW within 1 Tbit after the  
Header part to allow device response.  
(BREAK field delimiter) is minimum 1 Tbit and maximum  
according to the selected watchdog time. If the device is not  
responding through the repeaterslave, the extended break  
(26 Tbits) can be required to recover communication to  
slave devices. Such case can occur when Read frame is  
addressed non assigned address. In case of only MLVDS  
The PXN protocol supports two frame types:  
configuration frame  
register bank frame  
– PXN write frame – TX by master  
– PXN read frame – TX by slave  
≥ 1  
RESPONSE  
HEADER – always transmiꢀtted by master  
Tbit  
PID1  
PID2  
DATA 1  
DATA N  
CRC  
Break Field  
Sync Field  
PID1 Byte  
PID2 Byte  
Data byte 1  
Data byte N  
CRC byte  
Figure 16. PXN Frame  
PXN Configuration Frame  
The configuration PXN frame allows activation and  
monitoring of selected configuration service.  
FT [1:0]  
2bit frame type:  
“00” – read frame  
“01” – write frame to address node only  
“10” – write frame to all nodes (broadcast)  
Table 18. PXN CONFIGURATION FRAME  
SA [4:0]  
5bit slave node address  
Contents  
Bit Bit Bit Bit Bit Bit Bit Bit  
PID2:  
7
P
P
6
1
0
5
1
0
4
3
2
1
0
Byte  
Name  
P
odd parity bit  
0
PID1  
SA[4:0]  
CSID[4:0]  
BC[1:0]  
RBA[4:0]  
DATAx[7:0]  
CRC[7:0]  
2bit byte count  
1
PID2  
5bit register bank address  
8bit data, from 1 up to 12 data bytes supported  
8bit CRC  
2..13 DATAx  
DATA[7:0] 0 ..11  
CRC[7:0]  
3
CRC  
PID1:  
P
odd parity bit  
PXN Register Bank Frame Matched by Length  
The PXN network supports devices with different logical  
organization of internal register bank. The following logical  
organizations of register bank are supported:  
SA [4:0]  
5bit slave node address  
PID2:  
P
TYPE1  
TYPE2  
TYPE3  
up to 32x24 bits  
up to 32x16 bits  
up to 32x8 bits  
odd parity bit  
CSID[4:0]  
DATAx[7:0]  
CRC[7:0]  
5bit configuration service identifier  
8bit data, from 1 up to 12 data bytes supported  
8bit CRC  
Each of types above has predefined number of data bytes  
for given PID2.BC parameter in case PID1.FT=”10”  
(broadcast frame).  
PXN Register Bank Frame  
The register bank PXN frame provides an access, both  
read or write to selected register(s) of internal register bank.  
Table 20. BROADCAST PXN FRAME DATA BYTE  
COUNT  
Data Byte Count  
Table 19. PXN REGISTER BANK FRAME  
TYPE1  
TYPE2  
TYPE3  
PID2.BC[1:0]  
Contents  
0x0  
3
6
2
4
1
5
Bit Bit Bit Bit Bit Bit Bit Bit  
0x1  
0x2  
0x3  
7
P
P
6
5
4
3
2
1
0
Byte  
Name  
9
8
7
0
PID1  
FT[1:0]  
BC[1:0]  
SA[4:0]  
RBA[4:0]  
12  
10  
11  
1
PID2  
2..13 DATAx  
DATA[7:0] 0 ..11  
CRC[7:0]  
The NCV78343 supports only the TYPE1 register bank  
organization, since each register bank consists of 3 bytes.  
This means that it is possible to read/write up to 4 registers  
in one frame, which can be for example used to write  
ON/OFF times for all 12 switches in only 3 PXN frames.  
3
CRC  
PID1:  
P
odd parity bit  
www.onsemi.com  
17  
NCV78343  
PXN Error Detection  
and MLVDS bus. It forwards frames from UART to  
The PXN network supports detection of these errors:  
frame error  
timeout error  
synchronization error  
local communication error  
global communication error  
MLVDS and back from MLVDS to UART when reading  
from a slave device.  
Addressing Options  
It is possible to set a device address in 3 different ways:  
Multilevel address pin  
Autoaddressing procedure  
OTP node address bits  
PXN Application Layer  
Addressing using OTP memory is recommended for final  
application. Some of the other device parameters are saved  
in memory as well, which speeds up device setup after each  
poweron.  
List of supported configuration services:  
Table 21. CONFIGURATION SERVICES  
Configuration  
Service  
Configuration Frame  
Multilevel Address Pin  
Name  
Code Name CSID Type Description  
The PXN node address can be determined by connecting  
ADC2/ADR input to a voltage divider. The voltage divider,  
represented by resistors R1 and R2 are supplied from  
regulated 3.3 V VDD supply. The voltage space is divided  
into 10 ranges where only 8 of them are associated with valid  
address. The corresponding thresholds are calculated as  
follows:  
Identification  
0
1
CF0  
CF1  
0x00  
0x01  
R
Slave Identification  
Write data to ext. I2C  
EEPROM  
W
Request data from ext.  
I2C EEPROM  
Ext.  
EEPROM  
CF2  
CF3  
CF4  
0x02  
0x03  
0x04  
W
R
Read Data from ext.  
I2C EEPROM  
Enable/disable auto  
addressing mode  
W
Table 23. MULTILEVEL ADDRESS PIN  
Autoaddres  
2
3
CF5  
CF6  
0x05  
0x06  
W
R
Assign address  
OP mode status  
sing  
PXN  
Resistor Divider  
R1 (kΩ) R2 (kΩ)  
91 27  
ADC2/VDD  
min. ()  
Addr  
max. ()  
0.79  
0.63  
0.49  
0.38  
0.29  
0.21  
0.15  
0.09  
Slave/repeaterslave  
PXN mode selection  
7
6
5
4
3
2
1
0
0.75  
0.59  
0.46  
0.35  
0.27  
0.20  
0.14  
0.08  
CF7  
0x07  
W
PXN mode  
68  
91  
82  
91  
51  
82  
51  
15  
15  
CF8  
CF9  
0x08  
0x09  
R
Read PXN mode status  
Write data to OTP  
W
10  
Request data from  
OTP  
CF10 0x0A  
CF11 0x0B  
CF12 0x0C  
W
R
OTP  
4
5
8.2  
3.3  
3.6  
1.3  
Read data from OTP  
Set UART  
communication speed  
UART  
W
CF13 0x0D  
CF14 0x0E  
W
W
Switch to normal mode  
Reset system  
In case of valid address the node can process both the  
addressed and the broadcast frames. In case of invalid  
address the node can process the broadcast frames only.  
System  
6
Trigger MAPENA and/  
or CNTRST  
CF15 0x0F  
W
List of supported register bank access:  
VDD  
R1  
Table 22. REGISTER BANK ACCESS  
Configuration  
Service  
Configuration Frame  
Name  
Code Name Access Type Description  
WF1  
RF1  
Read  
Write  
Write register bank  
Read register bank  
Read/Write  
0
ADC2/ ADDR  
R2  
PXN Communication Modes  
The PXN node can operate in one of the two  
communication modes:  
slave mode  
Figure 17. Voltage divided connected to  
ADC2/ADR Pin  
repeaterslave mode  
The Multilevel addressing procedure requires stable  
voltage level at ADC2/ADR pin in 200 ms after POR. If the  
application cannot ensure this time, please follow the  
Depending on the mode selected, the PXN switch is  
configured to route the PXN frames the respective way. The  
repeaterslave device works as a bridge between UART bus  
www.onsemi.com  
18  
NCV78343  
Multilevel addressing procedure with long time delay  
8
Fail safe state of LEDs in string 1  
Fail safe state of LEDs in string 2  
Fail safe state of LEDs in string 3  
Fail safe state of LEDs in string 4  
PXN lock bit  
recommendation in Application notes. If the Multilevel  
addressing is successful, a device stays in the OTP config  
mode (see Figure 23).  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
Autoaddressing Procedure  
Regardless the node address assigned after the  
measurement of ADC2/ADR multilevel input, the  
autoaddressing procedure can still be invoked using the  
autoaddress enable PXN frame. The autoaddressing is  
enabled/disabled on the PXN node upon receiving CF4 PXN  
configuration frame. The CF4 frame is accepted in the  
OTP_CONFIG mode only (see Table 53).  
The PXN node address, when autoaddressing is enabled  
is assigned upon receiving CF5 PXN configuration frame.  
The CF5 frame is accepted in AUTO_ADDR mode only  
(see Table 54).  
Mode (slave/repeaterslave)  
Communication speed bit 0  
Communication speed bit 1  
Global bit error detection disable  
MLVDS OFF  
UART OFF  
EEPROM lock bit (write protect)  
CRC bit0  
CRC bit1  
CRC bit2  
The autoaddressing procedure is described in the  
APPLICATION RELATED INFORMATION section.  
CRC bit3  
CRC bit4  
OTP Node Address  
CRC bit5  
The OTP node address can be zapped by customer at EoL  
(End of Line) after the PXN node address was determined  
either by means of multilevel address pin measurement or  
by means of autoaddressing procedure. The value of OTP  
node address and OTP bank lock bit is obtained each time  
the PXN node is powered up and the custom OTP bank is  
read out. Loading of other device settings from OTP  
memory speeds up device setup after poweron. OTP  
memory zapping is necessary to fulfil ASIL B safety  
requirements.  
CRC bit6  
<OTP_LOCK_BIT> custom OTP bank general lock bit.  
When zapped, any further zapping attempt of custom OTP  
bank is declined.  
<OTP_NODE_ADDR_LOCK_BIT> PXN node address  
lock bit. When zapped, any further zapping attempt of  
<OTP_NODE_ADDR> bits of custom OTP bank is  
declined.  
<OTP_NODE_ADDR [4:0]> 5bit PXN node address.  
This address is taken into account only when the  
<OTP_NODE_ADDR_LOCK_BIT> is zapped.  
PXN Communication Speed  
The PXN node can communicate at following speed:  
125 kb/s  
250 kb/s (default)  
500 kb/s  
1 Mb/s  
Communication speed is changed upon receiving CF12  
PXN communication frame in OTP_CONFIG,  
AUTO_ADDR and NORMAL modes only (see Table 61).  
<FAIL_SAFE_STATE_LOCK_BIT> fail safe state of  
LED string lock bit. When zapped, any further zapping  
attempt of <FAIL_SAFE_STATE_LED_STRINGx> bits of  
custom OTP bank is declined.  
<FAIL_SAFE_STATE_LED_STRINGx> state of the  
LED string x, x={1,2,3,4}, in case one of the following  
conditions is detected:  
NORMAL mode is entered or  
Timeout error occurred  
OTP Bank – Custom Data  
The custom OTP bank is typically zapped by customer at  
EOL and stored values are used for system operation  
customization.  
The bits set directly the switch state. The fail safe state is  
taken into account only when  
Table 24. OTP BANK  
<FAIL_SAFE_STATE_LOCK_BIT> is zapped.  
OTP#  
OTP Name  
0
1
2
3
4
5
6
7
OTP lock bit  
<PXN_LOCK_BIT> PXN settings lock bit. When  
zapped, any further zapping attempt of PXN settings related  
bits of custom OTP bank is declined.  
OTP node address lock bit  
OTP node address bit 0  
OTP node address bit 1  
OTP node address bit 2  
OTP node address bit 3  
OTP node address bit 4  
Fail safe state lock bit  
<PXN_MODE> PXN communication mode selection bit.  
Set ‘0’ for slave mode and ‘1’ for repeaterslave mode. The  
mode selection is taken into account only when the  
<PXN_LOCK_BIT> is set and the CRC is correct.  
www.onsemi.com  
19  
 
NCV78343  
OTP Memory Zapping  
<PXN_COMMUNICATION_SPEED [1:0]> 2bit PXN  
communication speed selection bit. The communication  
speed selection is taken into account only when the  
<PXN_LOCK_BIT> is set and the CRC is correct.  
The OTP zapping process is onetime programming  
process during which the OTP memory is written. This  
process cannot be undone. The OTP zapping is possible only  
in the OTP config mode. To ensure correct OTP zapping, the  
VBB voltage must be in range of 16 to 30 V with the current  
capability at least 85 mA during the OTP zapping process.  
The OTP memory zapping should be done at the EoL to  
fulfil the ASIL B requirements.  
External MCU can read content of OTP memory. To do  
this, device must first receive CF10 PXN configuration  
frame followed by CF11 PXN configuration frame. This  
process is similar to reading from external I2C EEPROM.  
Table 25. PXN COMMUNICATION SPEED  
COMMUNICATION_SPEED[1:0]  
OTP Setting  
PXN Communication  
Speed [kb/s]  
0x0  
0x1  
0x2  
0x3  
125  
250  
500  
1000  
The default communication speed, when the  
<PXN_LOCK_BIT> is not zapped is 250 kbps.  
Operating Modes  
The PXN node can operate in following modes:  
OTP Config mode  
<GLOBAL_BIT_ERR_DTC_DIS> global bit error  
detection disable. In case the global bit error detection is  
enabled (<GLOBAL_BIT_ERR_DTC_DIS> is not zapped)  
the data transmitted on chips TX output must be echoed  
back into chips RX input. There are two ways to generate  
the TX echo. Either it can be ensured by a CAN transceiver  
connected between a chip and an MCU on UART bus or it  
can be generated by the MCU itself. When the echo is not  
present, chip stops transmitting and will wait for new  
incoming frame. When more than one device is present on  
the UART bus, the repeaterslave will always report  
<PXN_GLOBAL_COMM_ERR> bit when reading from  
another device on the UART bus. In case the global bit error  
detection is disabled, the reading from an address not  
assigned to a physical device will block the further operation  
of the repeaterslave device. Such device must be  
unplugged from a battery voltage in order to make it  
operational again. The global bit error detection is enabled  
by default.  
The device configured to act as a PXN repeaterslave  
shall always have the global bit error detection enabled, i.e.  
<GLOBAL_BIT_ERR_DTC_DIS> shall be not zapped.  
The setting of <GLOBAL_BIT_ERR_DTC_DIS> bit does  
not affect the communication over MLVDS bus. The  
<GLOBAL_BIT_ERR_DTC_DIS> bit is taken into  
account only when the <PXN_LOCK_BIT> is set and the  
CRC is correct.  
Autoaddressing mode  
Normal Direct mode  
Normal PWM mode  
Normal Failsafe OTP mode  
Normal Failsafe OPEN mode  
NO_CRC Direct mode  
NO_CRC PWM mode  
Failsafe OTP mode  
Failsafe OPEN mode  
OTP Config mode – the chip enters this mode under the  
following circumstances: when the OTPs are not zapped and  
the voltage divider at ADR pin is in a valid range, or the  
OTPs are zapped but the OTP CRC BANK2 is wrong, or  
after successful autoaddressing process. Please see the  
following flow diagram ‘Flow chart after POR’ in the  
Application notes.  
Chip with nonzapped OTP memory starts with both UART  
and MLVDS interfaces enabled. To determine which one  
will be used, there is a 60 ms timer (typical) that starts once  
device enters OTP Config mode. After timer elapses, chip  
reads state of UART RX pin to determine if UART bus  
should remain enabled (RX pulled high) or disabled (RX  
pulled low). During this period, MLVDS devices might be  
unable to communicate if their UART RX pin is pulled low.  
Timer can be stopped before elapsing by leaving OTP  
Config mode, typically by receiving CF13.  
<UART_OFF>  
UART interface disable. The  
Autoaddressing mode – when the chip receives CF4 (see  
<UART_OFF> selection is taken into account only when the  
<PXN_LOCK_BIT> is set and the CRC is correct.  
Table 53) configuration frame.  
Normal Direct/PWM mode – this is the normal working  
mode, the chip enters this mode after the POR when the  
OTPs are zapped and the CRC is correct. Direct means that  
the switches are controlled directly by writing to the register  
0x00. The PWM means that the switches are controlled by  
the PWM by writing ON and OFF values and sending CF15  
(see Table 64).  
<MLVDS_OFF> MLVDS interface disable. The  
<MLVDS_OFF> selection is taken into account only when  
the <PXN_LOCK_BIT> is set and the CRC is correct.  
Unused MLVDS transceiver can be disabled to reduce  
current consumption by 12.5 mA (typical).  
<EEPROM_LOCK_BIT> external EEPROM lock bit.  
The EEPROM lock bit acts as an EEPROM write protection.  
When zapped, any further write attempts to external  
EEPROM is declined.  
NO_CRC Direct/PWM mode – the device enters the  
NO_CRC mode after receiving CF13 (see Table 62) in the  
OTP Config mode. The functionality of NO_CRC Direct  
www.onsemi.com  
20  
 
NCV78343  
and PWM modes is same as Normal Direct and Normal  
node reads data from EEPROM upon receiving CF2 PXN  
configuration frame (see Table 51). The EEPROM data are  
stored in the internal buffer.  
The PXN node provides the data, previously read from the  
EEPROM and stored in the internal buffer upon receiving  
CF3 configuration frame (see table 52). The EEPROM  
address is valid for “1010” + <EESA> .  
PWM modes. NO_CRC prefix means that the device  
detected invalid CRC in OTP memory bank 2 during power  
on, most likely because OTP memory is not written.  
Please note that only device with written OTP memory  
achieves ASIL B safety rating.  
Failsafe OTP mode – when this failsafe state is entered  
after watchdog timeout, OTP failsafe data are loaded and  
applied on switches. Chip also enters this mode after  
DIMERR. To leave this mode, clear TIMEOUT or  
DIMERR flags set in register 0x10.  
The write and read operations are shown in the application  
notes chapter (EEPROM write and read operations).  
Cyclic Redundancy Check  
All PXN frames are covered by an 8bit CRC, where the  
8
2
1
Failsafe OPEN mode – this is the failsafe state when the  
switches are automatically open under the following  
circumstances: TSD or CAP_UV or VBB_LOW appears.  
To leave this mode, please read out the register 0x10.  
polynomial is 0x83 (Koopman’s notation; x +x +x +1)  
with 0xFF seed. The input bytes are bit swapped and LSB  
first. The CRC is calculated over PID1, PID2 and DATAx  
bytes.  
The OTP bank 2 is covered by a 7bit CRC, where the  
EEPROM  
polynomial  
is  
0x5B  
(Koopman’s  
notation;  
The external I2C EEPROM can be connected to SDO and  
SCL pins and supplied from the VDD net.  
The PXN node writes data to EEPROM upon receiving  
CF1 PXN configuration frame (see Table 50). The PXN  
7
5
4
2
1
x +x +x +x +x +1) with 0x7F seed. The input is MSB first.  
The CRC is calculated over bits 019.  
The code examples for both CRCs are shown in the  
APPLICATION RELATED INFORMATION chapter.  
www.onsemi.com  
21  
Table 26. PXN REGISTER BANK ADDRESS MAP  
BIT  
12  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
11  
3
10  
2
9
1
8
7
6
5
4
4
3
2
1
0
BYTE2  
BYTE1  
BYTE0  
7
6
5
4
3
2
1
0
7
6
5
4
0
SW9  
7
SW8  
6
SW7  
5
SW6  
3
2
1
0
Address Access  
0x0  
R/W  
SERVICE=0x0  
SERVICE=0x1  
SERVICE=0x2  
SERVICE=0x3  
SW12 SW11 SW10  
SW5  
SW4  
SW3  
SW2  
SW1  
SW_SEL  
RESERVED_1  
RESERVED_2  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
ON1  
OFF1  
TR1  
TR2  
TR3  
TR4  
TR5  
TR6  
TR7  
TR8  
TR9  
TR10  
TR11  
TR12  
ON2  
ON3  
ON4  
ON5  
ON6  
ON7  
ON8  
ON9  
ON10  
ON11  
ON12  
OFF2  
OFF3  
OFF4  
OFF5  
OFF6  
OFF7  
OFF8  
OFF9  
OFF10  
OFF11  
OFF12  
TW_CODE[7:0]  
ADC_SEL[1:0]  
CRC_  
CLR  
MAP  
ENA  
0xE  
0xF  
R/W  
R
T1_  
CONF  
DIMFREQ[4:0]  
CONF_SEL[2:0]  
SW12.STATUS  
[1:0]  
SW11.STATUS  
[1:0]  
SW10.STATUS  
[1:0]  
SW9.STATUS  
[1:0]  
SW8.STATUS  
[1:0]  
SW7.STATUS  
[1:0]  
SW6.STATUS  
[1:0]  
SW5.STATUS  
[1:0]  
SW4.STATUS  
[1:0]  
SW3.STATUS  
[1:0]  
SW2.STATUS  
[1:0]  
SW1.STATUS  
[1:0]  
0x10  
R
PXN_CRC_ERR_CNT[3:0]  
OTP_  
CRC_ CRC_  
FAIL_ FAIL_  
BANK BANK  
OTP_  
TIME  
OUT  
PXN_  
SYNC FRAME_ LOCAL_ GLOBAL_ ENA_  
_ERR ERR COMM_ COMM_ STATUS OVF  
ERR ERR  
PXN_  
PXN_  
PXN_  
MAP  
PWM_ GND_ VBB_  
OTP_  
ZAP_  
UV  
CAP_  
UV  
HWR  
0
DIM  
ERR  
DIM  
WARN  
GSW  
ERR  
TSD  
TW  
CNT_ LOSS LOW  
0
2
0x11  
0x12  
R
R
ADCX_RES[7:0]  
TSD_CODE[7:0]  
VDD_RES[7:0]  
VLED_RES[7:0]  
TEMP_RES[7:0]  
VBB_RES[7:0]  
NOTE: Default value of all registers after POR is 0x00 if not specified explicitly.  
www.onsemi.com  
22  
REGISTER DESCRIPTION  
Table 27. REGISTER 0x00  
Register 0x00  
Address  
Bit 11  
SW12  
0
Bit 10  
SW11  
0
Bit 9  
SW10  
0
Bit 8  
SW9  
0
Bit 7  
SW8  
0
Bit 6  
SW7  
0
Bit 5  
SW6  
0
Bit 4  
SW5  
0
Bit 3  
SW4  
0
Bit 2  
SW3  
0
Bit 1  
SW2  
0
Bit 0  
SW1  
0
Name  
Reset  
0x00  
Access  
RW  
RW  
RW  
Bit 21  
RW  
Bit 20  
RW  
Bit 19  
RW  
RW  
RW  
Bit 16  
RW  
Bit 15  
RW  
Bit 14  
RW  
Bit 13  
RW  
Bit 12  
Address  
Bit 23  
Bit 22  
Bit 18 Bit 17  
Name  
Reset  
SERVICE[23:22]  
0
0
0
0
0
0
0
0
0
0
0
0
0x00  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
SERVICE[1:0] – specify the behavior of the last [21:0] bits:  
“00” – Direct control – Direct control of all switches all together  
“01” – OPEN clear request – Deactivation of selected switch in on state due to OPEN fault previously detected  
“10” – Reserved  
“11” – Reserved  
SW[11:0] Direct control of the switches ON/OFF or OPEN clear request:  
SERVICE = “00”: direct control of the switches ON/OFF; valid SW[11:0], others are “0”.  
SERVICE = “01”: OPEN clear request; Switch is chosen by valid SW_SEL[3:0] from “0001” to “1100” (Switch 1 to  
12), others are “0”.  
Table 28. REGISTER 0x01  
Register 0x01  
Bit 8 Bit 7 Bit 6  
Address  
0x01  
Bit 11  
Bit 10  
Bit 9  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
OFF1[11:4]  
0
TR1[3:0]  
0
0
0
0
0
0
0
0
0
0
0
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18 Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
ON1[23:14]  
OFF1[13:12]  
0
0
0
0
0
0
0
0
0
0
0
0
0x01  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ON1[9:0] – 10bit switch ON threshold.  
OFF1[9:0] – 10bit switch OFF threshold.  
TR1[3:0] – Transition vector duration, it is prolonging the duration of ON resp. OFF value at the end of PWM period by  
<TRx[3:0]> × Time slot between switch activations.  
Table 29. REGISTER 0x02  
Register 0x02  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
OFF2[11:4]  
0
TR2[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0x02  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18 Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
ON2[23:14]  
OFF2[13:12]  
0
0
0
0
0
0
0
0
0
0
0
0
0x02  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ON2[9:0] – 10bit switch ON threshold.  
OFF2[9:0] – 10bit switch OFF threshold.  
TR2[3:0] – Transition vector duration, it is prolonging the duration of ON resp. OFF value at the end of PWM period by  
<TRx[3:0]> × Time slot between switch activations.  
23  
 
Table 30. REGISTER 0x03  
Register 0x03  
Bit 8 Bit 7 Bit 6  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
OFF3[11:4]  
0
TR3[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0x03  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18 Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
ON3[23:14]  
OFF3[13:12]  
0
0
0
0
0
0
0
0
0
0
0
0
0x03  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ON3[9:0] – 10bit switch ON threshold.  
OFF3[9:0] – 10bit switch OFF threshold.  
TR3[3:0] – Transition vector duration, it is prolonging the duration of ON resp. OFF value at the end of PWM period by  
<TRx[3:0]> × Time slot between switch activations.  
Table 31. REGISTER 0x04  
Register 0x04  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
OFF4[11:4]  
0
TR4[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0x04  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18 Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
ON4[23:14]  
OFF4[13:12]  
0
0
0
0
0
0
0
0
0
0
0
0
0x04  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ON4[9:0] – 10bit switch ON threshold.  
OFF4[9:0] – 10bit switch OFF threshold.  
TR4[3:0] – Transition vector duration, it is prolonging the duration of ON resp. OFF value at the end of PWM period by  
<TRx[3:0]> × Time slot between switch activations.  
Table 32. REGISTER 0x05  
Register 0x05  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
OFF5[11:4]  
0
TR5[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0x05  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18 Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
ON5[23:14]  
OFF5[13:12]  
0
0
0
0
0
0
0
0
0
0
0
0
0x05  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ON5[9:0] – 10bit switch ON threshold.  
OFF5[9:0] – 10bit switch OFF threshold.  
TR5[3:0] – Transition vector duration, it is prolonging the duration of ON resp. OFF value at the end of PWM period by  
<TRx[3:0]> × Time slot between switch activations.  
www.onsemi.com  
24  
Table 33. REGISTER 0x06  
Register 0x06  
Bit 8 Bit 7 Bit 6  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
OFF6[11:4]  
0
TR6[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0x06  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18 Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
ON6[23:14]  
OFF6[13:12]  
0
0
0
0
0
0
0
0
0
0
0
0
0x06  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ON6[9:0] – 10bit switch ON threshold.  
OFF6[9:0] – 10bit switch OFF threshold.  
TR6[3:0] – Transition vector duration, it is prolonging the duration of ON resp. OFF value at the end of PWM period by  
<TRx[3:0]> × Time slot between switch activations.  
Table 34. REGISTER 0x07  
Register 0x07  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
OFF7[11:4]  
0
TR7[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0x07  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18 Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
ON7[23:14]  
OFF7[13:12]  
0
0
0
0
0
0
0
0
0
0
0
0
0x07  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ON7[9:0] – 10bit switch ON threshold.  
OFF7[9:0] – 10bit switch OFF threshold.  
TR7[3:0] – Transition vector duration, it is prolonging the duration of ON resp. OFF value at the end of PWM period by  
<TRx[3:0]> × Time slot between switch activations.  
Table 35. REGISTER 0x08  
Register 0x08  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
OFF8[11:4]  
0
TR8[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0x08  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18 Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
ON8[23:14]  
OFF8[13:12]  
0
0
0
0
0
0
0
0
0
0
0
0
0x08  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ON8[9:0] – 10bit switch ON threshold.  
OFF8[9:0] – 10bit switch OFF threshold.  
TR8[3:0] – Transition vector duration, it is prolonging the duration of ON resp. OFF value at the end of PWM period by  
<TRx[3:0]> × Time slot between switch activations.  
www.onsemi.com  
25  
Table 36. REGISTER 0x09  
Register 0x09  
Bit 8 Bit 7 Bit 6  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
OFF9[11:4]  
0
TR9[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0x09  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18 Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
ON9[23:14]  
OFF9[13:12]  
0
0
0
0
0
0
0
0
0
0
0
0
0x09  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ON9[9:0] – 10bit switch ON threshold.  
OFF9[9:0] – 10bit switch OFF threshold.  
TR9[3:0] – Transition vector duration, it is prolonging the duration of ON resp. OFF value at the end of PWM period by  
<TRx[3:0]> × Time slot between switch activations.  
Table 37. REGISTER 0x0A  
Register 0x0A  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
OFF10[11:4]  
TR10[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0x0A  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18 Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
ON10[23:14]  
OFF10[13:12]  
0
0
0
0
0
0
0
0
0
0
0
0
0x0A  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ON10[9:0] – 10bit switch ON threshold.  
OFF10[9:0] – 10bit switch OFF threshold.  
TR10[3:0] – Transition vector duration, it is prolonging the duration of ON resp. OFF value at the end of PWM period by  
<TRx[3:0]> × Time slot between switch activations.  
Table 38. REGISTER 0x0B  
Register 0x0B  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
OFF11[11:4]  
0
TR11[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0x0B  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18 Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
ON11[23:14]  
OFF11[13:12]  
0
0
0
0
0
0
0
0
0
0
0
0
0x0B  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ON11[9:0] – 10bit switch ON threshold.  
OFF11[9:0] – 10bit switch OFF threshold.  
TR11[3:0] – Transition vector duration, it is prolonging the duration of ON resp. OFF value at the end of PWM period by  
<TRx[3:0]> × Time slot between switch activations.  
www.onsemi.com  
26  
Table 39. REGISTER 0x0C  
Register 0x0C  
Bit 8 Bit 7 Bit 6  
OFF12[11:4]  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
TR12[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0x0C  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18 Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
ON12[23:14]  
OFF12[13:12]  
0
0
0
0
0
0
0
0
0
0
0
0
0x0C  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ON12[9:0] – 10bit switch ON threshold.  
OFF12[9:0] – 10bit switch OFF threshold.  
TR12[3:0] – Transition vector duration, it is prolonging the duration of ON resp. OFF value at the end of PWM period by  
<TRx[3:0]> × Time slot between switch activations.  
Table 40. REGISTER 0x0D  
Register 0x0D  
Address  
Bit 11 Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
CRC_CLR  
0
Bit 0  
MAPENA  
0
Name  
Reset  
TW_CODE[11:8]  
ADC_SEL[3:2]  
0
0
0
0
0
0
0
0
0
0
0x0D  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Address  
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16 Bit 15 Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
0
0
0
0
0
0
0
0
TW_CODE[15:12]  
0
0
0
0
0x0D  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
MAPENA – Register bank map enable request. When MAPENA request is written ‘1’ the internal mapena register bit is set.  
It remains set until PWM counter overflows. The internal mapena is cleared upon the PWM counter overflows.  
The <MAPENA> is always read as ‘0’.  
CRC_CLR – <PXN_CRC_ERR_CNT[3:0]> clear request. When <CRC_CLR> bit is set to ‘1’ the  
<PXN_CRC_ERR_CNT[3:0]> bits are cleared immediately. The <CRC_CLR> bit is always read as ‘0’.  
ADC_SEL[1:0] – 2bit ADC measurement channel selection for ADCx A/D conversion (see Table 11. ADC for measuring  
VBB, VDD, VLED, TEMP, ADCx). The measurement channel is selected according to the following table:  
Table 41. ADC MEASUREMENT CHANNEL SELECTION  
ADC_SEL[1:0]  
Measurement Channel  
0x0  
0x1  
0x2  
0x3  
ADC0  
ADC1  
ADC2  
Reserved  
NOTE: The ADCx measurement result can be obtained by reading <ADCx_RES[7:0]> status bits.  
In case the <ADC_SEL[1:0]> bits are set to “11”, the returned measured value is always “00000000”.  
TW_CODE – 8bit thermal warning threshold. The default value is calculated as follows:  
TW_CODE[7:0] = TSD_CODE[7:0] 9  
www.onsemi.com  
27  
Table 42. REGISTER 0x0E  
Register 0x0E  
Address  
0x0E  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
DIMFREQ[7:3]  
0
CONF_SEL[2:0]  
0 0  
0
0
0
0
0
0
0
0
0
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Bit 12  
T1_CONF  
0
Address  
0x0E  
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16 Bit 15 Bit 14 Bit 13  
Name  
Reset  
0
0
0
0
0
0
0
0
0
0
0
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CONF_SEL[2:0] – Selects the switch configuration. NCV78343 supports the switch configurations listed in Table 16.  
DIMFREQ[4:0] – Defines the DIMCLK frequency register, which shall be used to select dimming frequencies in range of  
125 kHz to 1 MHz.  
Table 43. PWM FREQUENCY SETTING  
f
T
T
PWM  
T
SW_SEQ  
DIMCLK  
DIMCLK  
[kHz]  
[ms]  
[ms]  
8.19  
7.68  
7.17  
6.70  
6.14  
5.63  
5.12  
4.61  
4.10  
3.84  
3.58  
3.33  
3.07  
2.82  
2.56  
2.30  
2.05  
1.79  
1.54  
1.28  
1.02  
8.19  
[ms]  
DIMFREQ [4:0]  
f
[Hz]  
TR  
24  
24  
24  
24  
24  
24  
24  
24  
48  
48  
48  
48  
48  
48  
48  
48  
96  
96  
96  
96  
192  
24  
SW SLOT  
T
/T  
PWM  
SW_SEQ DIMCLK  
0
1
125.00  
133.33  
142.86  
152.85  
166.67  
181.82  
200.00  
222.22  
250.00  
266.67  
285.71  
307.69  
333.33  
363.64  
400.00  
444.44  
500.00  
571.43  
666.67  
800.00  
1000.00  
125.00  
8.00  
7.50  
7.00  
6.50  
6.00  
5.50  
5.00  
4.50  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
8.00  
122.07  
130.21  
139.51  
149.27  
162.76  
177.56  
195.31  
217.01  
244.14  
260.42  
279.01  
300.48  
325.52  
355.12  
390.63  
434.02  
488.28  
558.04  
651.04  
781.25  
976.56  
122.07  
16  
15  
14  
13  
12  
11  
10  
9
41  
41  
41  
41  
41  
41  
41  
41  
20  
20  
20  
20  
20  
20  
20  
20  
9
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
8
8
8
8
16  
2
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21 .. 31  
16  
14  
12  
10  
16  
16  
9
9
9
4
41  
T
T
T
T
– the duration of one dimming clock tick.  
– the duration of 1024 dimming ticks.  
DIMCLK  
PWM  
– the duration of one switch ON event.  
SW_SEQ  
/T  
– the number of clocks required for one switch ON event.  
SW_SEQ DIMCLK  
TR – the number of ticks for all transient vectors. This space should be reserved for TR when this technique is used. Calculated as  
(T /T )*12.  
SW_SEQ DIMCLK  
SW SLOT – recommended distance (in ticks of dimming clock) between two switch ON events.  
T1_CONF The bit defines the switch ON time (switching slope), where the “1” means steeper slope. For better EMC results  
it is recommended to set this value to “0”.  
www.onsemi.com  
28  
 
Table 44. REGISTER 0x0F  
Register 0x0F  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SW6.STATUS  
[11:10]  
SW5.STATUS  
[9:8]  
SW4.STATUS  
[7:6]  
SW3.STATUS  
[5:4]  
SW2.STATUS  
[3:2]  
SW1.STATUS  
[1:0]  
Name  
0x0F  
Reset  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
Access  
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18  
Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
SW12.STATUS  
[23:22]  
SW11.STATUS  
[21:20]  
SW10.STATUS  
[19:18]  
SW9.STATUS  
[17:16]  
SW1.STATUS  
[1:0]  
SW7.STATUS  
[13:12]  
Name  
0x0F  
Reset  
0
0
0
0
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R
R
R
R
R
R
R
SWx.STATUS[2] Reflects status of internal SWx flags:  
“00” – On/Off OK  
“01” – On/Off Failed  
“10” – Open  
“11” – Short  
The bit is cleared upon a successful readout over PXN (clear by read bit).  
Table 45. REGISTER 0x10  
Register 0x10  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
TSD  
Bit 0  
TW  
PWM_  
CNT_  
OVF  
OTP_  
ZAP_  
UV  
GND_  
LOSS  
VBB_  
LOW  
DIMW  
ARN  
Name  
CAP_UV  
HWR  
DIMERR  
GSWERR  
0x10  
Reset  
0
R
0
R
0
R
0
R
0
R
0
R
0
0
R
0
R
0
R
0
R
0
R
Access  
R
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18  
Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
OTP_CR  
C_FAIL_  
BANK_0  
OTP_CR  
C_FAIL_  
BANK_2  
PXN_F  
RAME_  
ERR  
PXN_LOC  
AL_COM  
M_ERR  
PXN_GLO  
BAL_COM  
M_ERR  
MAPEN  
A_STAT  
US  
TIME  
OUT  
PXN_SY  
NC_ERR  
Name  
PXN_CRC_ERR_CNT[23:20]  
0x10  
Reset  
0
0
0
0
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R
R
R
R
R
R
R
TW Thermal warning flag. <TW> flag is set when Tj above Thermal Warning Threshold is detected. The bit is cleared upon  
a successful readout over PXN.  
TSD Thermal shutdown flag. <TSD> flag is set when Tj above Thermal Shutdown Threshold is detected. When the flag is  
set, the device enters FAIL status mode and the switches are switched OFF.  
The bit is cleared upon a successful readout over PXN.  
GSWERR Global switch error indicator. The bit is set high under the following conditions:  
at least one switch is shorted or  
at least one switch is open or  
ext. capacitor charging has failed  
The bit is cleared upon a successful readout over PXN.  
DIMWARN Dimming warning indicator. The bit is set high in case of an overlapping switch OFF sequences are detected.  
The bit is cleared upon a successful readout over PXN (clear by read bit).  
DIMERR - Dimming error indicator. The bit is set high in case an overlapping switch ON sequences are detected. When the  
flag is set, the device enters the FAIL status mode. The bit is cleared upon a successful readout over PXN (clear  
by read bit).  
HWR HWR flag is set after POR. The bit is cleared upon a successful readout over PXN (clear by read bit).  
CAP_UV Status bit indicating that charging process of external capacitor failed. When this bit is set, the <GSWERR> flag  
is set to ‘1’ and the device enters the FAIL status mode and the switches are switched ON. The bit is cleared upon  
a successful readout over PXN (clear by read bit).  
OTP_ZAP_UV The bit is set if the battery voltage during OTP zapping is lower than 15 V. The bit is cleared upon a successful  
readout over PXN (clear by read bit).  
www.onsemi.com  
29  
 
VBB_LOW The bit is set if the battery voltage is lower than 4.5 V. The bit is cleared upon a successful readout over PXN  
(clear by read bit).  
GND_LOSS The GND loss comparator detects Ground connection loss. The TST1 pin is used as reference ground. The TST1  
pin is connected to ground on application PCB level (see Table 12. GND Loss Detection). The bit is  
cleared upon a successful readout over PXN (clear by read bit).  
PWM_CNT_OVF When PWM counter overflows, flag is set to ‘1’. It should be used to detect that PWM control (PWM  
counter) is running/functional. The bit is cleared upon a successful readout over PXN (clear by read bit).  
MAPENA_STATUS - MAPENA request status. It corresponds to the state of internal MAPENA register bit.  
PXN_GLOBAL_COMM_ERR PXN global communication error. The flag is set in case of global communication error is  
detected and not disabled by “Global bit error detection DIS” in OTP bank (see Table 24. OTP Bank). For  
correct functionality it is mandatory to ensure an automatic echo from Tx to Rx. The PXN global  
communication error is detected under the following circumstance: REPEATERSLAVE node, where the  
TX’’ differs from RX’’. The TX’’ is monitored by PXN node in REPEATERSLAVE mode through  
TX_ECHO_UART input.  
The bit is cleared upon a successful readout over PXN (clear by read bit).  
PXN_LOCAL_COMM_ERR PXN local communication error. The flag is set in case of local communication error detected.  
The PXN local communication error is detected under the following circumstance: SLAVE node, where the  
TX’ differs from RX’. The bit is cleared upon a successful readout over PXN (clear by read bit).  
PXN_FRAME_ ERR PXN frame error. The flag is set whenever one of the following errors is detected:  
Parity error – the parity calculated over bits 0 .. 6 of either PID1 or PID2 is not matching the corresponding  
parity bit P  
CRC error – the CRC calculated over PID1, PID2 and all data bytes do not match the received CRC  
STOP BIT error – ‘0’ received at the expected stop bit position  
The bit is cleared upon a successful readout over PXN (clear by read bit).  
PXN_SYNC_ERR The PXN synchronization error is detected in case the duration of eight synchronization field Tbits, when  
counted in 20 MHz domain is outside the following limits:  
Table 46. PXN SYNCHRONIZATION ERROR LIMITS  
PXN Communication Speed [kb/s]  
Eight_Tbits_min  
Eight_Tbits_max  
125  
250  
1098  
549  
274  
140  
1484  
742  
371  
181  
500  
1000  
The bit is cleared upon a successful readout over PXN (clear by read bit).  
TIMEOUT The PXN timeout error is detected in case neither MAPENA nor MAPENA_DIR is activated within a TIMEOUT  
period. The timeout error detection starts when the NORMAL mode is entered and either MAPENA or  
MAPENA_DIR is activated for the first time. When the flag is set, the device enters the FAIL status mode and  
LED’s are switched ON/OFF following the OTP memory bits 811 in Table 24. OTP Bank. The reported  
OPMODE status is NORMAL_DIRECT mode. The bit is cleared upon a successful readout over PXN (clear by  
read bit).  
OTP_CRC_FAIL_BANK2 – CRC over mirrored OTP BANK2 bit failure. The bit is cleared upon a successful readout over  
PXN (clear by read bit).  
OTP_CRC_FAIL_BANK0 – CRC over mirrored OTP BANK0 bit failure. The device should not operate when this bit is set.  
The bit is cleared upon a successful readout over PXN (clear by read bit).  
PXN_CRC_ERR_CNT[3:0] – 4bit PXN frame CRC error counter. The counter is incremented each time a CRC error is  
detected on incoming PXN frame. Once a maximum number of errors is reached, the counter remains  
clamped at value of 15. The bit is cleared upon a successful write ‘1’ to register < CRC_CLR>.  
www.onsemi.com  
30  
Table 47. REGISTER 0x11  
Register 0x11  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
VDD_RES[11:8]  
TEMP_RES[7:0]  
0
R
0
R
0
R
0
R
0
R
0
0
0
R
0
R
0
R
0
R
0
R
0x11  
Access  
R
R
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18 Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
ADCX_RES[23:16]  
VDD_RES[15:12]  
0
0
0
0
0
0
0
0
0
0
0
0
0x11  
Access  
R
R
R
R
R
R
R
R
R
R
R
R
TEMP_RES[7:0] – the TEMP measured value (read only bits).  
VDD_RES[7:0] – the last VDD measured value (read only bits).  
ADCX_RES[7:0] – the last value measured at selected ADC measurement channel (read only bits). In case the  
<ADC_SEL[1:0]> bits are set to “11” the returned measured value is always “00000000”.  
Table 48. REGISTER 0x12  
Register 0x12  
Address  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Reset  
VLED_RES[11:8]  
VBB_RES[7:0]  
0
R
0
R
0
R
0
R
0
R
0
0
0
R
0
R
0
R
0
R
0
R
0x12  
Access  
R
R
Address  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18 Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Name  
Reset  
TSD_CODE[23:16]  
VLED_RES[15:12]  
0
0
0
0
0
0
0
0
0
0
0
0
0x12  
Access  
R
R
R
R
R
R
R
R
R
R
R
R
VBB_RES[7:0] – the last VBB measured value (read only bits).  
VLED_RES[7:0] – the last VLED measured value (read only bits). Because of the internal ESD structure, the minimum  
measured VLED voltage is VDD minus forward diode voltage Vf.  
TSD_CODE[7:0] – thermal shutdown threshold (read only bits).  
www.onsemi.com  
31  
CONFIGURATION FRAMES  
Table 49. CF0 SLAVE IDENTIFICATION  
Contents  
Bit 7  
P
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
Name  
PID1  
0
1
2
3
4
5
6
7
8
1
0
1
0
PID2  
P
CSID[4:0] = 0x00  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
CRC  
DEV_ID[7:0]  
ANA_ID[7:0]  
DIG_ID[7:0]  
0
0
0
DLT_W[4:0]  
DLT_X_AXS[7:0]  
DLT_Y_AXS[7:0]  
CRC[7:0]  
DATA1  
DEV_ID[7:0]  
device ID, L343 = 1  
analog version ID, 35  
digital version ID, 1  
DATA2  
ANA_ID[7:0]  
DATA3  
DIG_ID[7:0]  
DATA4  
DLT_W[4:0]  
DATA5  
DLT_X_AXS[7:0]  
DATA6  
DLT_Y_AXS[7:0]  
The DLT_W, DLT_X_AXS and DLT_Y_AXS parameters describe the wafer specifications.  
www.onsemi.com  
32  
Table 50. CF1 EEPROM WRITE DATA  
Contents  
Bit 7  
P
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
0
Name  
PID1  
1
0
0
1
0
0
1
PID2  
P
CSID[4:0] = 0x01  
2
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
CRC  
B
0
0
EESA[2:0]  
3
EEBA[7:0]  
4
BYTE0 @(EEBA+0)[7:0]  
BYTE1 @(EEBA+1)[7:0]  
BYTE2 @(EEBA+2)[7:0]  
BYTE3 @(EEBA+3)[7:0]  
BYTE4 @(EEBA+4)[7:0]  
BYTE5 @(EEBA+5)[7:0]  
BYTE6 @(EEBA+6)[7:0]  
BYTE7 @(EEBA+7)[7:0]  
CRC[7:0]  
5
6
7
8
9
10  
11  
12  
DATA1  
B
broadcast bit:  
1 broadcast frame  
0 – addressed frame  
EESA[2:0]  
EEPROM slave address  
EEPROM byte address  
bytes to be written  
DATA2  
EEBA[7:0]  
DATA3 – DATA10  
BYTEx[7:0]  
Table 51. CF2 EEPROM REQUEST DATA  
Contents  
Bit 7  
P
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
Name  
PID1  
0
1
2
3
4
1
0
0
1
0
0
PID2  
P
CSID[4:0] = 0x02  
DATA1  
DATA2  
CRC  
B
0
0
EESA[2:0]  
EEBA[7:0]  
CRC[7:0]  
DATA1  
B
broadcast bit:  
1 broadcast frame  
0 – addressed frame  
EESA[2:0]  
EEPROM slave address  
EEPROM byte address  
DATA2  
EEBA[7:0]  
www.onsemi.com  
33  
Table 52. CF3 EEPROM READ DATA  
Contents  
Bit 7  
P
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
0
Name  
PID1  
1
0
1
0
1
PID2  
P
CSID[4:0] = 0x03  
2
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
CRC  
WP  
EES[1:0]  
0
0
EESA[2:0]  
3
EEBA[7:0]  
4
BYTE0 @(EEBA+0)[7:0]  
BYTE1 @(EEBA+1)[7:0]  
BYTE2 @(EEBA+2)[7:0]  
BYTE3 @(EEBA+3)[7:0]  
BYTE4 @(EEBA+4)[7:0]  
BYTE5 @(EEBA+5)[7:0]  
BYTE6 @(EEBA+6)[7:0]  
BYTE7 @(EEBA+7)[7:0]  
CRC[7:0]  
5
6
7
8
9
10  
11  
12  
DATA1  
EESA[2:0]  
EEPROM slave address  
EEPROM status:  
EES[1:0]  
0x0 – EEPROM busy, access denied  
0x1 – EEPROM busy, data transfer ongoing  
0x2 – EEPROM ready, data transfer completed  
0x3 – EEPROM ready, data transfer failed  
WP  
EEPROM write protect status  
DATA2  
EEBA[7:0]  
EEPROM byte address  
read bytes  
DATA3 – DATA10  
BYTEx[7:0]  
Table 53. CF4 – ENABLE/DISABLE AUTOADDRESSING MODE  
Contents  
Bit 7  
P
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
Name  
PID1  
0
1
2
3
1
0
0
1
0
0
PID2  
P
CSID[4:0] = 0x04  
0
DATA1  
CRC  
B
0
0
0
AAC  
CRC[7:0]  
DATA1  
B
broadcast bit:  
1 broadcast frame  
0 – addressed frame  
AAC  
autoaddressing control bit: 1 enable  
0 disable  
The CF4 frame is accepted in the OTP_CONFIG mode only.  
www.onsemi.com  
34  
 
Table 54. CF5 ASSIGN ADDRESS  
Contents  
Bit 4 Bit 3  
Bit 7  
P
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
Byte  
Name  
PID1  
0
1
2
3
4
1
0
0
1
0
0
SA[4:0]  
PID2  
P
CSID[4:0] = 0x05  
AA_ADR[4:0]  
DATA1  
DATA2  
CRC  
B
AA_THR[7:0]  
CRC[7:0]  
DATA1  
B
broadcast bit:  
1 – broadcast frame  
0 – addressed frame  
AA_ADR[4:0]  
5bit address to assign  
DATA2  
AA_THR[7:0]  
8bit autoaddress threshold value  
The CF5 frame is accepted in AUTO_ADDR mode only.  
Table 55. CF6 OP MODE STATUS  
Contents  
Bit 7  
P
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
Name  
PID1  
0
1
2
3
1
0
1
0
PID2  
P
CSID[4:0] = 0x06  
DATA1  
CRC  
PXN_FRAME_CNT[3:0]  
OPMODE[3:0]  
CRC[7:0]  
DATA1  
PXN_FRAME_CNT[4:0]  
OPMODE[3:0]  
PXN frame counter – 4bit counter which is incremented each time any valid PXN frame  
is processed. The counter overflows to 0 upon the increment.  
OP mode status:  
0x0 not valid  
0x7 normal failsafe open mode  
0xC NO_CRC direct mode  
0xD NO_CRC pwm mode  
0xE fail safe OTP mode  
0x1 OTP config mode  
0x2 autoaddressing mode  
0x4 normal direct mode  
0x5 normal pwm mode  
0x6 normal failsafe otp mode  
0xF fail safe OPEN mode  
www.onsemi.com  
35  
 
Table 56. CF7 SLAVE/REPEATERSLAVE PXN MODE SELECTION  
Contents  
Bit 7  
P
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
Name  
PID1  
0
1
2
3
1
0
0
1
0
0
PID2  
P
CSID[4:0] = 0x07  
0
DATA1  
CRC  
B
0
0
0
PMC  
CRC[7:0]  
DATA1  
B
broadcast bit:  
1 – broadcast frame  
0 – addressed frame  
PMC  
PXN mode control bit:  
1 repeaterslave mode  
0 slave mode  
Overwrites device mode loaded from the OTP memory.  
Table 57. CF8 READ PXN MODE STATUS  
Contents  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
Name  
PID1  
0
1
2
3
P
P
0
1
0
0
1
0
0
PID2  
CSID[4:0] = 0x08  
0
DATA1  
CRC  
0
0
0
PMS  
CRC[7:0]  
DATA1  
PMS  
PXN mode status bit:  
1 repeaterslave mode  
0 slave mode  
www.onsemi.com  
36  
 
Table 58. CF9 WRITE DATA TO OTP  
Contents  
Bit 4  
Bit 7  
P
Bit 6  
Bit 5  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
Name  
PID1  
0
1
2
3
4
5
6
7
8
1
0
0
1
0
0
PID2  
P
CSID[4:0] = 0x09  
0
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
B
0
0
OTPBS[1:0]  
BYTE0 @(OTPBA+0)  
BYTE1 @(OTPBA+1)  
BYTE2 @(OTPBA+2)  
BYTE3 @(OTPBA+3)  
0x00  
CRC[7:0]  
DATA1  
B
broadcast bit:  
1 – broadcast frame  
0 – addressed frame  
OTPBS[1:0]  
2bit OTP bank selection  
0x2 – custom OTP bank  
0x0, 0x1, 0x3 – no bank selected  
DATA2 – DATA6  
BYTEx[7:0]  
bytes to be written  
The CF9 frame is accepted in OTP_CONFIG mode only.  
Table 59. CF10 REQUEST DATA FROM OTP  
Contents  
Bit 7  
P
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
Name  
PID1  
0
1
2
3
1
0
0
1
0
0
PID2  
P
CSID[4:0] = 0x0A  
0
DATA1  
CRC  
B
0
0
OTPBS[1:0]  
CRC[7:0]  
DATA1  
B
broadcast bit:  
1 – broadcast frame  
0 – addressed frame  
OTPBS[1:0]  
2bit OTP bank selection:  
0x2 custom OTP bank  
0x0, 0x1, 0x3 no bank selected  
www.onsemi.com  
37  
Table 60. CF11 READ DATA FROM OTP  
Contents  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
Name  
PID1  
0
1
2
3
4
5
6
7
8
P
P
1
0
1
0
PID2  
CSID[4:0] = 0x0B  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
CRC  
LOCKB  
OTPS[1:0]  
0
0
OTPBS[2:0]  
BYTE0 @(OTPBA+0)  
BYTE1 @(OTPBA+1)  
BYTE2 @(OTPBA+2)  
BYTE3 @(OTPBA+3)  
BYTE4 @(OTPBA+4)  
CRC  
DATA1  
LOCKB  
custom OTP bank general lock status bit:  
1 – locked  
0 – unlocked, further OTP programming possible  
OTPS[1:0]  
2bit OTP status:  
0x0 idle, no data transfer ongoing  
0x1 busy, data transfer ongoing  
0x2 ready, data transfer OK  
0x3 ready, data transfer failed  
OTPBS[1:0]  
2bit OTP bank selection:  
0x2 custom OTP bank  
0x0 or  
0x1 or  
0x3 no bank selected  
DATA2 – DATA6  
BYTEx[7:0]  
read bytes  
www.onsemi.com  
38  
Table 61. CF12 COMMUNICATION SPEED  
Contents  
Bit 4  
Bit 7  
P
Bit 6  
Bit 5  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
Name  
PID1  
0
1
2
3
1
0
0
1
0
0
PID2  
P
CSID[4:0] = 0x0C  
0
DATA1  
CRC  
B
0
0
CSPEED[1:0]  
CRC[7:0]  
DATA1  
B
broadcast bit:  
1 broadcast frame  
0 addressed frame  
CSPEED[1:0]  
communication speed:  
0x0 – 125 kbps  
0x1 – 250 kbps (default)  
0x2 – 500 kbps  
0x3 – 1000 kbps  
Overwrites device communication speed loaded from the OTP memory.  
Table 62. CF13 SWITCH TO NORMAL MODE  
Contents  
Bit 7  
P
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
Name  
PID1  
0
1
2
3
1
0
0
1
0
0
PID2  
P
CSID[4:0] = 0x0D  
0
DATA1  
CRC  
B
0
0
0
NMD  
CRC[7:0]  
DATA1  
B
broadcast bit:  
1 broadcast frame  
0 – addressed frame  
NMD  
request to enter NORMAL mode from OTP_CONFIG mode:  
1 – go to NO_CRC or normal mode; according to the OTP bank 2 lock bit  
0 – no effect  
The CF13 frame is accepted in OTP_CONFIG mode only.  
www.onsemi.com  
39  
 
Table 63. CF14 RESET SYSTEM  
Contents  
Bit 4  
Bit 7  
P
Bit 6  
Bit 5  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
Name  
PID1  
0
1
2
3
1
0
0
1
0
0
PID2  
P
CSID[4:0] = 0x0E  
0
DATA1  
CRC  
B
0
0
0
SWRST  
CRC  
DATA1  
B
broadcast bit:  
1 broadcast frame  
0 – addressed frame  
SWRST  
software reset bit:  
1 perform software reset  
0 – no effect  
The CF14 frame is accepted in NORMAL mode only.  
Table 64. CF15 TRIGGER MAPENA  
Contents  
Bit 7  
P
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
SA[4:0]  
Bit 1  
Bit 0  
Byte  
Name  
PID1  
0
1
2
3
1
0
0
1
0
0
PID2  
P
CSID[4:0] = 0x0F  
DATA1  
CRC  
B
0
WDT_SEL[1:0]  
0
MAPENA  
CRC[7:0]  
DATA1  
B
broadcast bit:  
1 broadcast frame  
0 – addressed frame  
MAPENA  
trigger MAPENA  
1 – perform MAPENA  
0 – no effect  
WDT_SEL[1:0]  
watchdog timeout selector; valid only with <MAPENA> = ‘1’  
0x0 – 250 ms  
0x1 – 150 ms  
0x2 – 100 ms  
0x3 – 60 ms  
www.onsemi.com  
40  
 
THERMAL WARNING, ERROR DETECTION AND DIAGNOSTICS FEEDBACK  
The NCV78343 offers a wide range of deviceintegrated  
diagnostic features. Their description follows.  
Overall status of switches errors are indicated by the  
Global Switch Error <GSWERR> status flag. Status of  
individual switches (whether a switch is ON or OFF) can be  
read in the Switch Status <SWx.STATUS> flag. The failure  
state of the individual switches (Short, Open) is indicated by  
corresponding status in <SW.STATUS[2:0]> register.  
When the device operates in the PWM mode and a short  
is present, the device reports alternating On/Off Failed and  
SHORT status according to set ON/OFF dimming duration  
(see details in Figure 13).  
Thermal Warning and Shutdown  
The junction temperature can be calculated from ADC  
code as follows:  
ADC  
TSD  
) 184  
) 184  
CODE  
CODE  
@ ǒTSD  
) 273Ǔ * 273  
TEMPERATURE  
T +  
j
(eq. 2)  
The <TSD_CODE> is trimmed in production to 170°C  
(TSD ). Typical value of <TSD_CODE> is  
TEMPERATURE  
186 and exact trimmed value can be read from Register  
0x12. The <TW> status bit is set high in case the  
measurement result is greater than or equal to  
TW_CODE[7:0] value. The <TSD> status bit is set high in  
case the measurement result is greater than or equal to  
TSD_CODE[7:0].  
The TW and TSD status bits are cleared in case the  
<TEMP_RES> register value is smaller than both  
TSD_CODE and TW_CODE values and TW and TSD  
status bits are successfully read out over PXN.  
Dedicated OPEN clear request  
When the OPEN state or overvoltage is detected, the  
switch is automatically closed and the status is shown in the  
SWx.STATUS register 0x0F. Further attempts to control this  
switch using PWM or DIRECT mode don’t have any effect.  
The switch is released upon a successful OPEN clear request  
frame.  
In direct mode, the released switch is updated upon a  
successful write to register 0x00 with service “00”. In PWM  
mode, the released switch is updated according to the  
ON/OFF values.  
Overlapping switch ON/OFF events  
Overlapping switch ON events is forbidden, the  
NCV78343 needs time slot between two switch ON events  
(see Table 43). Superior system has to ensure that  
overlapping switch ON events do not appear in patterns.  
When overlapping switch ON events are despite this  
invoked, the NCV78343 incorporates protective feature, in  
which the <DIMERR> error is raised.  
PWM_CNT_OVF  
When PWM Counter overflows, <PWM_CNT_OVF>  
flag is set to ‘1’. It is clear by read flag. It should be used to  
detect that PWM control (PWM counter) is  
running/functional.  
CAP_UV  
When overlapping switch OFF events occur, the  
<DIMWARN> status bit is set and processing of this pattern  
continues. However, it has to be taken into account, that  
overlapping switch OFF events can lead to large fluctuations  
of LED string voltage.  
The <CAP_UV> status bit indicates that charging process  
of external capacitor failed. When this bit is set, the  
<GSWERR> flag is set to ‘1’ and all switches are switched  
OFF. It is clear by read flag and the switches are set  
according to last successful write to the register 0x00.  
Pixel Switches diagnostic  
VBB_LOW  
Embedded diagnostic covers a wide range of possible  
failure situations on switches. Each switch contains two  
comparators – short comparator and over voltage  
comparator. With the help of these two comparators a  
several fail situations can be detected and distinguished on  
each switch individually.  
The <VBB_LOW> status bit indicates low battery  
voltage < 4.5 V (see Table 4). The bit is not detected when  
the battery voltage level is lower than 4.5 V during the  
startup sequence.  
Poweron Reset  
After a poweron a flag <HWR> in the register is set.  
www.onsemi.com  
41  
APPLICATION RELATED INFORMATION  
PXN CRC Code Example  
// Byte reverse  
uint8_t l343_byte_reverse(uint8_t b)  
{
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;  
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;  
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;  
return b;  
}
// Calculate the PXN CRC  
uint8_t l343_pxn_crc(uint8_t *data_bits, uint8_t length)  
{
uint8_t CRC8 = 0;  
for (uint8_t a=0; a<length; ++a)  
{
CRC8 = CRC8 ^ data_bits[a];  
for (uint8_t i=0; i<8; ++i)  
{
if (CRC8 & 0x80)  
{
CRC8 = ((0x7F & CRC8) * 2) ^ 0x07;  
}
else  
{
CRC8 = CRC8 * 2;  
}
}
}
return CRC8;  
}
Function call example:  
int main(void)  
{
// MAPENA as broadcast; SEED, PID1, PID2, DATA0; CRC = 0x28  
uint8_t data_bits[] = {0xFF, 0x61, 0x8F, 0x81};  
// Write to REG00; SEED, PID1, PID2, DATA0, DATA1, DATA2; CRC = 0x14  
// uint8_t data_bits[] = {0xFF, 0xA1, 0x80, 0x55, 0x05, 0x00};  
// Get the number of bytes  
int length = sizeof(data_bits)/sizeof(data_bits[0]);  
// Invert the input  
for (uint8_t a = 0; a<length; ++a) data_bits[a] = l343_byte_reverse(data_bits[a]);  
// Get the result  
uint8_t result = l343_pxn_crc(data_bits, length);  
}
www.onsemi.com  
42  
Parity Bit Calculation  
uint8_t l343_parity(uint8_t val)  
{
bool Par;  
Par = ((val>>0)&1) ^ ((val>>1)&1) ^ ((val>>2)&1) ^ ((val>>3)&1) ^ ((val>>4)&1) ^  
((val>>5)&1) ^ ((val>>6)&1);  
Par = (Par ^ 1) & 1;  
return (uint8_t)Par;  
}
Go to NMD Frame (CF13)  
int32_t l343_normal_mode(uint8_t addr)  
{
uint8_t p;  
uint8_t pdata[5];  
// SYNC  
pdata[0] = 0x55;  
// PID1  
uint8_t PID1 = 0;  
PID1 = 3<<5 | addr;  
p = l343_parity(PID1);  
pdata[1] = (p << 7) | PID1;  
// PID2  
uint8_t PID2 = 0;  
PID2 = 0x0D;  
p = l343_parity(PID2);  
pdata[2] = (p << 7) | PID2;  
// DATA bytes  
pdata[3] = 1;  
// NMD  
uint8_t pdata_crc[4];  
// Invert the input  
for (uint8_t a = 0; a<4; ++a) pdata_crc[a] = l343_byte_reverse(pdata[a]);  
// Calculate the CRC  
pdata_crc[0] = 0xFF;  
uint8_t crc = l343_pxn_crc(pdata_crc, 4);  
pdata[4] = crc;  
// Send data  
return serial_pxn_set_data(pdata, 5);  
}
www.onsemi.com  
43  
OTP Write Code Example  
typedef struct OTP_t  
{
unsigned lb: 1;  
// Lock bit  
unsigned na_lb: 1;  
unsigned na: 5;  
// Node Address Lock bit  
// Note Address  
unsigned fss_lb: 1;  
unsigned fss: 4;  
// Fail Safe State Lock bit  
// Fail Safe State of LEDs  
// PXN Lock bit  
unsigned pxn_lb: 1;  
unsigned mode: 1;  
unsigned cs: 2;  
// Mode  
// Communication speed  
// Global bit error detection  
// MLVDS off  
unsigned gbed: 1;  
unsigned m_lvds_off: 1;  
unsigned uart_off: 1;  
unsigned ee_lb: 1;  
unsigned crc: 7;  
// UART off  
// EEPROM lock bit  
// CRC  
} OTP_t;  
// Calculate the OTP CRC  
uint8_t l343_otp_crc(uint8_t *data_bits, char length)  
{
uint8_t CRC7 = 0;  
for (uint8_t a = 0; a<length; ++a)  
{
CRC7 = CRC7 ^ data_bits[a];  
for (uint8_t i = 0; i < 8; ++i)  
{
if (CRC7 & 0x80)  
{
CRC7 = ((0x7F & CRC7) * 2) ^ (0x37 * 2);  
}
else  
{
CRC7 = (CRC7 * 2);  
}
}
}
return (CRC7 / 2);  
}
int32_t l343_otp_zapping(OTP_t otp)  
{
uint8_t data_bits[4];  
data_bits[0] = 0x07;  
data_bits[1] = 0x0F<<4 | otp.ee_lb<<3 | otp.uart_off<<2 | otp.m_lvds_off<<1 | otp.gbed<<0;  
data_bits[2] = otp.cs<<6 | otp.mode<<5 | otp.pxn_lb<<4 | otp.fss<<0;  
data_bits[3] = otp.fss_lb<<7 | otp.na<<2 | otp.na_lb<<1 | otp.lb<<0;  
// Get the number of bytes  
int length = sizeof(data_bits)/sizeof(data_bits[0]);  
// Get the result  
otp.crc = l343_otp_crc(data_bits, length);  
// PXN OTP write frame  
www.onsemi.com  
44  
uint8_t p;  
uint8_t pdata[10];  
// SYNC  
pdata[0] = 0x55;  
// PID1  
uint8_t PID1 = 0;  
PID1 = 3<<5 | otp.na;  
p = l343_parity(PID1);  
pdata[1] = (p << 7) | PID1;  
// PID2  
uint8_t PID2 = 0;  
PID2 = 0x09;  
p = l343_parity(PID2);  
pdata[2] = (p << 7) | PID2;  
// DATA bytes  
const uint32_t data = otp.lb |  
otp.na_lb << 1 |  
otp.na << 2 |  
otp.fss_lb << 7 |  
otp.fss << 8 |  
otp.pxn_lb << 12 |  
otp.mode << 13 |  
otp.cs << 14 |  
otp.gbed << 16 |  
otp.m_lvds_off << 17 |  
otp.uart_off << 18 |  
otp.ee_lb << 19 |  
otp.crc << 20;  
pdata[3] = 0x02;  
pdata[4] = ((data >> 0 ) & 0xFF);  
pdata[5] = ((data >> 8 ) & 0xFF);  
pdata[6] = ((data >> 16) & 0xFF);  
pdata[7] = ((data >> 24) & 0xFF);  
pdata[8] = 0x00;  
uint8_t pdata_crc[9];  
// Invert the input  
for (uint8_t a = 0; a<9; ++a) pdata_crc[a] = l343_byte_reverse(pdata[a]);  
// Calculate the CRC  
pdata_crc[0] = 0xFF;  
uint8_t crc = l343_pxn_crc(pdata_crc, 9);  
pdata[9] = crc;  
// Send data  
return serial_pxn_set_data(pdata, 10);  
}
www.onsemi.com  
45  
Function call example:  
int main(void)  
{
// Zap the OTP  
//  
lb  
nalb  
na  
fss_lb fss pxn_lb mode CS  
GBED lOff uOff eeLb crc  
OTP_t otp = {0x01, 0x01, 0x01, 0x01, 0x0F, 0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x00, 0x00};  
l343_otp_zapping(otp);  
}
www.onsemi.com  
46  
Autoaddressing (AA) Process  
This example is valid for two devices, where the first one  
is in repeaterslave mode and the second one is in slave  
mode. The first device is connected to the MCU via UART  
and the second device is connected to the first device via  
MLVDS.  
4. Assign the address for the device 1 by sending  
CF5 as broadcast (B=1; ADR=1; THR=80); see  
Table 54.  
5. Disable buck output 1, so the LED string for the  
device 1 is not shining.  
The slave address (SA) for the first device will be set to ‘1’  
and the SA for the second device will be set to ‘7’.  
The AA process combines benefits of current source and  
connected LED string. The application does not need any  
additional wires. When the device is connected to the LED  
string and the current source for this LED string is enabled,  
the voltage drop across the LED string will occur. The LED  
string voltage VLED is measured by the device. Thus the  
address may be assigned to specific device.  
In general, the MCU sends a broadcast frame CF4 (see  
Table 53) to all node devices and the second broadcast frame  
CF5 (see Table 54) with the VLED threshold and new device  
address as parameters. Doing this, all devices on the node  
will be in AA mode and only the device with VLED higher  
than set threshold will assign new address.  
6. Disable the AA mode for the first device SA=1 by  
sending CF4 (B=0; AAC=0); see Table 53.  
7. Force the normal mode for the first device SA=1  
by sending CF13 (NMD=1); see Table 62.  
8. Set the first device as repeaterslave SA=1 by  
sending CF7 (PMC=1); see Table 56.  
9. Enable buck output 2, so the LED string for the  
device 2 is shining.  
10. Enable AA mode by sending CF4 as broadcast  
(B=1; AAC=1); see Table 53.  
11. Assign the address for the device 2 by sending  
CF5 as broadcast (B=1; ADR=7; THR=80); see  
Table 54.  
12. Disable buck output 2, so the LED string for the  
device 2 is not shining.  
For this example, the LED string voltage is 33 V (127  
ADC code). The autoaddressing threshold will be set to 80.  
1. Disable all buck outputs, thus the LEDs are not  
shining.  
13. Disable the AA mode for the second device SA=7  
by sending CF4 (B=0; AAC=0); see Table 53.  
14. Force the normal mode for the second device  
SA=7 by sending CF13 (NMD=1); see Table 62.  
2. Enable buck output 1, so the LED string for the  
device 1 is shining.  
3. Enable AA mode by sending CF4 as broadcast  
(B=1; AAC=1); see Table 53.  
For multiple devices connected to the first one via  
MLVDS, please repeat steps 914 with different ADR,  
THR, SA values.  
www.onsemi.com  
47  
1024*TR_SLOT  
T_SW_ON_SEQ  
12  
Dimming Control Patterns  
The simplest way to set ON, OFF and TR values is to keep  
the ON time at fixed value and calculate the OFF value  
according to the required duty. The following table (see  
Table 65) shows an example of fixed ON values. It is  
calculated for each switch 011 and for each DIMFREQ  
value 020.  
SW_SLOT +  
(eq. 4)  
(eq. 5)  
ON_VALUE + TR_SLOT ) SWITCH   SW_SLOT   
  T_SW_ON_SEQ  
where  
SWITCH goes from 0 to 11  
T_SW_ON_SEQ is number of ticks required for one  
switch ON sequence  
The values are calculated as follows:  
TR_SLOT + 12   T_SW_ON_SEQ  
(eq. 3)  
Table 65. DIMMING CONTROL PATTERN ON VALUES  
0
1
2
3
4
5
6
7
8
9
4
10  
4
11  
4
12  
4
13  
4
14  
4
15  
4
16  
8
17  
8
18  
8
19  
8
20  
16  
DIMFREQ  
T_SW_ON  
_SEQ  
2
2
2
2
2
2
2
2
4
24  
41  
24  
41  
24  
41  
24  
41  
24  
41  
24  
41  
24  
41  
24  
41  
48  
20  
48  
20  
48  
20  
48  
20  
48  
20  
48  
20  
48  
20  
48  
20  
96  
9
96  
9
96  
9
96  
9
192  
4
TR_SLOT  
SW_SLOT  
SWITCH  
ON values  
48  
24  
24  
24  
24  
24  
24  
24  
24  
48  
48  
48  
48  
48  
48  
48  
96  
96  
96  
96  
192  
256  
320  
384  
448  
512  
576  
640  
704  
768  
832  
896  
0
1
106  
188  
270  
352  
434  
516  
598  
680  
762  
844  
926  
106  
188  
270  
352  
434  
516  
598  
680  
762  
844  
926  
106  
188  
270  
352  
434  
516  
598  
680  
762  
844  
926  
106  
188  
270  
352  
434  
516  
598  
680  
762  
844  
926  
106  
188  
270  
352  
434  
516  
598  
680  
762  
844  
926  
106  
188  
270  
352  
434  
516  
598  
680  
762  
844  
926  
106  
188  
270  
352  
434  
516  
598  
680  
762  
844  
926  
106  
188  
270  
352  
434  
516  
598  
680  
762  
844  
926  
128  
208  
288  
368  
448  
528  
608  
688  
768  
848  
928  
128  
208  
288  
368  
448  
528  
608  
688  
768  
848  
928  
128  
128  
208  
288  
368  
448  
528  
608  
688  
768  
848  
928  
128  
208  
288  
368  
448  
528  
608  
688  
768  
848  
928  
128  
208  
288  
368  
448  
528  
608  
688  
768  
848  
928  
128  
208  
288  
368  
448  
528  
608  
688  
768  
848  
928  
128  
208  
288  
368  
448  
528  
608  
688  
768  
848  
928  
168  
240  
312  
384  
456  
528  
600  
672  
744  
816  
888  
168  
240  
312  
384  
456  
528  
600  
672  
744  
816  
888  
168  
240  
312  
384  
456  
528  
600  
672  
744  
816  
888  
168  
240  
312  
384  
456  
528  
600  
672  
744  
816  
888  
208  
2
288  
3
368  
4
448  
5
528  
6
608  
7
688  
8
768  
9
848  
10  
11  
928  
www.onsemi.com  
48  
 
Dimming Algorithm Code  
// Variables for dimming algorithm  
static const uint8_t TR_SLOT[]  
static const uint8_t SW_SLOT[]  
=
=
{24, 24, 24, 24, 24, 24, 24, 24, 48, 48, 48, 48, 48, 48, 48, 48, 96, 96, 96, 96, 192};  
{41, 41, 41, 41, 41, 41, 41, 41, 20, 20, 20, 20, 20, 20, 20, 20, 9, 9, 9, 9, 4};  
static const uint8_t T_SW_SEQ_RATIO[]  
= {2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 16};  
bool l343_dimming(uint8_t dimfreq, uint16_t *DCs, uint16_t *onRet, uint16_t *offRet, uint16_t *trRet)  
{
const uint8_t LEDcount  
= 12;  
for (uint8_t  
{
i
=
>
0; i<LEDcount; ++i)  
if (DCs[i]  
1023) DCs[i] = 1023;  
// Input is brightness of LEDs, but the ON/OFF values are for switches, thus inverted  
DCs[i] 1023 DCs[i];  
trRet[i] i;  
=
=
// set TR 0..11  
if (DCs[i] == 1023)  
{
// Fully ON 100% DUTY cycle, thus set dedicated values 0 and 1023  
onRet[i]  
=
0;  
= 1023;  
offRet[i]  
}
else  
{
onRet[i]  
= TR_SLOT[dimfreq] + i*SW_SLOT[dimfreq]*T_SW_SEQ_RATIO[dimfreq];  
if (DCs[i] == 0)  
{
// Fully OFF 0% DUTY cycle, where OFF is equal to ON value  
offRet[i]  
offRet[i]  
=
=
onRet[i];  
(onRet[i]  
}
else  
{
+
DCs[i]) % 1024;  
}
}
DCs[i]  
=
1023  
DCs[i];  
// Invert back to keep the values as they were  
}
return true;  
}
// Number of devices in  
#define DEVICES  
a cluster  
X
// [1; 31]  
#define REGISTERS 12  
// number of registers to be written  
www.onsemi.com  
49  
// LED brightness; the length should be DEVICES*REGISTERS; or twodimensional array might be used  
uint16_t DC[DEVICES*REGISTERS];  
// values are in a range of [0; 1023]  
// uint16_t DC[DEVICES][REGISTERS];  
// Drimfreq for each device  
uint8_t dimfreq[DEVICES]  
// Function call example:  
// Send ON, OFF, TR values to all devices  
void l343_send(uint16_t *DC)  
{
for (uint8_t dev  
{
= 0; dev<DEVICES; ++dev)  
uint16_t ON[REGISTERS];  
uint16_t OFF[REGISTERS];  
uint16_t TR[REGISTERS];  
// Calculate the dimming values  
l343_dimming(dimfreq[dev], DC+REGISTERS*dev, ON, OFF, TR);  
l343_dimming(dimfreq[dev], DC[dev], ON, OFF, TR);  
//  
// when twodimensional array is used  
// Fill the registers values  
uint32_t reg[REGISTERS];  
for (uint8_t  
{
r = 0; r<REGISTERS; ++r)  
reg[r]  
= (ON[r]<<14) | (OFF[r]<<4) | (TR[r]&0xF);  
}
// 36 bytes need to be sent in  
3 frames  
uint8_t RBA[3]  
=
{1, 5, 9};  
for (uint8_t  
{
r
=
0; r<3; ++r)  
uint8_t p;  
uint8_t pdata[16];  
// SYNC  
pdata[0]  
// PID1  
= 0x55;  
uint8_t PID1  
PID1 1<<5  
=
0;  
=
|
SA[dev];  
p
= l343_parity(PID1);  
pdata[1]  
=
p<<7  
|
1<<5 | PID1;  
// PID2  
uint8_t PID2  
PID2 3<<5  
l343_parity(PID2);  
=
0;  
=
| (RBA[r]);  
p
=
www.onsemi.com  
50  
pdata[2]  
= p<<7 | PID2;  
// DATA bytes  
pdata[3]  
pdata[4]  
pdata[5]  
=
=
=
reg[r*4+0]&0xFF;  
(reg[r*4+0]>>8)&0xFF;  
(reg[r*4+0]>>16)&0xFF;  
pdata[6]  
pdata[7]  
pdata[8]  
=
=
=
reg[r*4+1]&0xFF;  
(reg[r*4+1]>>8)&0xFF;  
(reg[r*4+1]>>16)&0xFF;  
pdata[9]  
pdata[10]  
pdata[11]  
=
reg[r*4+2]&0xFF;  
=
=
(reg[r*4+2]>>8)&0xFF;  
(reg[r*4+2]>>16)&0xFF;  
pdata[12]  
pdata[13]  
pdata[14]  
=
=
=
reg[r*4+3]&0xFF;  
(reg[r*4+3]>>8)&0xFF;  
(reg[r*4+3]>>16)&0xFF;  
uint8_t pdata_crc[16];  
// Invert the input  
for (unsigned char  
a = 0; a<15; ++a) pdata_crc[a] = l343_byte_reverse(pdata[a]);  
// Calculate the CRC  
pdata_crc[0] 0xFF;  
char crc l343_pxn_crc(pdata_crc, 15);  
=
=
pdata[15] = crc;  
// Send data  
serial_pxn_set_data(2, pdata, 16, 11);  
}
}
}
www.onsemi.com  
51  
OTP Read Data Interpretation  
The table below shows an example of OTP read data and its interpretation in the OTP table (see Table 24).  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
xC2  
x87  
x70  
x30  
x3D  
x00  
11000010  
10000111  
01110000  
00110000  
00111101  
00000000  
OTPBS[2:0]=x02  
OTPS[1:0]=x02  
LOCKB=x01  
0
lb  
1
1
6
1
5
0
4
NA [4:0]  
0
3
0
2
7
11  
0
10  
FSS [3:0]  
9
0
8
0
12  
PXN lb  
1
13  
Mode  
1
15  
1
14  
0
16  
17  
18  
19  
26  
1
25  
1
24  
0
23  
CRC[6:0]  
0
22  
1
21  
20  
1
CS [1:0]  
Addr lb  
1
FSS lb  
1
GBED DIS LVDS OFF UART OFF EEPR lb  
0
0
0
0
0
0
0
DATA2  
DATA3  
DATA4  
DATA5  
Figure 18. Read OTP Data Interpretation  
www.onsemi.com  
52  
Return to Normal Operation after FailSafe Mode  
Once a device detects one of the following status bits:  
TSD or CAP_UV or VBB_LOW or DIMERR or  
TIMEOUT, the device enters the failsafe mode (see  
Operating Modes section). To leave this mode, the superior  
system shall read out the REG 0x10 (see Table 45) and/or  
handle the error if required.  
The device enters FAILSAFE OTP mode when  
DIMERR or TIMEOUT appears. When TIMEOUT is set  
and this mode is entered, switches are set according to the  
OTP memory values. If the OTP memory is not zapped, the  
switches are switched OFF. Once the error status bit is  
cleared, the switches remain unchanged. When DIMERR is  
set and this mode is entered, switches operation is  
unaffected.  
The device enters FAILSAFE OPEN mode when TSD or  
CAP_UV or VBB_LOW appears. In this mode, the switches  
are automatically switched OFF. Once the error status bit is  
cleared, the switches are set according to the values in REG  
0x00 (see Table 27).  
The TSD/CAP_UV/VBB_LOW group of bits (hardware  
fail) have higher priority to the DIMERR/TIMEOUT group  
of bits (application fail). When these two groups appear at  
the same time, the device enters the FAILSAFE OPEN  
mode.  
NORMAL DIR/PWM  
Read out CF6  
NO_CRC or NORMAL  
NO_CRC or NORMAL  
TSD or CAP_UV or  
VBB_LOW  
FAIL-SAFE OTP  
FAIL-SAFE OPEN  
DIMERR  
TIMEOUT  
switches  
switches  
based on PWM values  
switched OFF  
Are OTPs  
zapped?  
No  
Yes  
NORMAL  
NO_CRC  
Read out REG 0x10  
Read out REG 0x10  
FAIL-SAFE OTP  
FAIL-SAFE OTP  
switches  
switches  
based on OTP values  
switched OFF  
Read out REG 0x10  
Read out REG 0x10  
NO_CRC or NORMAL  
NO_CRC or NORMAL  
PWM  
NO_CRC DIRECT  
NORMAL DIRECT  
DIRECT  
switches  
switches  
switches  
switches  
based on PWM values  
switched OFF  
based on OTP values  
based on REG 0x00  
Figure 19. FAILSAFE Modes  
www.onsemi.com  
53  
Power Up and Down Sequences  
Figure 20. Powerup Sequence with 10 nF at ADC2/ADR Pin  
Figure 21. Powerdown Sequence with 10 nF at ADC2/ADR Pin  
www.onsemi.com  
54  
Example Flow Chart Diagram for the Normal Operational Mode  
Normal Mode  
Coming from a POR  
(Optional)  
Change CONF_SEL and  
DIMFREQ if required  
Write Register 14  
Read all status  
registers  
(REG15REG18)  
No  
Check the status bits  
All correct ?  
Handle errors  
Yes  
Calculate the  
Write all devices 1.. n  
dimming pattern and  
write REG01REG12  
Written all devices 1.. n  
Send CF 15 within  
WDT timeout  
MAPENA broadcast  
command  
Figure 22. Normal Operation Mode Flow Chart Diagram  
The main loop should consist of checking all status bits  
all ON/OFF/TR values within this time and send broadcast  
MAPENA (see Table 64) frame once the values are sent into  
devices.  
and handling them if necessary. Set a refresh rate for  
common headlamp lighting functions (e.g. High beam) as  
well as fulfill watchdog timeout. The MCU should calculate  
www.onsemi.com  
55  
Flow Chart after POR  
Init  
Check OTP global  
lock bit  
No  
Yes  
Is zapped  
Check OTP node  
address lock bit  
Check OTP node  
address lock bit  
No  
No  
Yes  
Is zapped  
Yes  
Is zapped  
Check ADR pin for a  
valid range  
No  
No  
Is valid  
Yes  
Check OTP BANK2 CRC  
Send CF13  
with NMD=1  
CONFIG  
mode  
Is correct  
Yes  
NORMAL  
mode  
NO_CRC  
mode  
Figure 23. Flow Chart Diagram after POR  
The diagram above is an automatic flow after each POR.  
A device might end up in either CONFIG or NORMAL or  
NO_CRC mode according to zapped OTP bits.  
Autoaddressing process or by Multilevel addressing  
using a voltage divider or zapped in the OTP memory.  
A new device will end up in CONFIG mode, because OTP  
bits are not zapped. An address is set by either  
www.onsemi.com  
56  
Multilevel Addressing Procedure with Long Time Delay at ADC2/ADR Pin  
The following flow chart is valid for the repeaterslave  
and slaves cluster, where the repeaterslave communicates  
through CANPHY layer and slaves are connected via local  
MLVDS bus.  
Init  
Force the normal mode  
for the first device  
Send CF13 as  
broadcast  
Send CF14 as  
broadcast  
Reset the first device  
from NMD  
The device read the  
ADC value again and set  
correct address  
Set the PMC for the  
first device CF7  
Set the first device to  
repeaterslave mode  
Force the normal mode  
for other devices  
Send CF13 as  
broadcast  
Reset the other devices  
from NMD  
Send CF14 as  
broadcast  
All devices have correct address  
Figure 24. Multilevel Addressing Procedure with Long Time Delay at ADC2/ADR Pin  
www.onsemi.com  
57  
EEPROM Write and Read Operations  
Send CF1  
Send CF3  
CF3.EES == 0x2  
CF3.EEBA ==  
CF1.EEBA  
CF3.EES == 0x0  
CF3.EES == 0x1  
Check CF3 EES  
Complete  
CF3.EES == 0x3  
Handle error  
Figure 25. EEPROM Write Operation  
Send CF2  
Send CF3  
CF3.EES == 0x2  
CF3.EEBA ==  
CF1.EEBA  
CF3.EES == 0x0  
CF3.EES == 0x1  
Check CF3 EES  
Complete  
CF3.EES == 0x3  
Handle error  
Figure 26. EEPROM Read Operation  
www.onsemi.com  
58  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SSOP36 EP  
CASE 940AB  
ISSUE A  
DATE 19 JAN 2016  
SCALE 1:1  
NOTES:  
0.20 C A-B  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
4X  
DETAIL B  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 TOTAL IN  
EXCESS OF THE b DIMENSION AT MMC.  
4. DIMENSION b SHALL BE MEASURED BE-  
TWEEN 0.10 AND 0.25 FROM THE TIP.  
5. DIMENSIONS D AND E1 DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS OR GATE  
BURRS. DIMENSIONS D AND E1 SHALL BE  
DETERMINED AT DATUM H.  
A
X
36  
19  
X = A or B  
e/2  
E1  
E
DETAIL B  
6. THIS CHAMFER FEATURE IS OPTIONAL. IF  
IT IS NOT PRESENT, A PIN ONE IDENTIFIER  
MUST BE LOACATED WITHIN THE INDICAT-  
ED AREA.  
36X  
0.25 C  
PIN 1  
REFERENCE  
MILLIMETERS  
1
18  
DIM MIN  
MAX  
2.65  
0.10  
2.60  
0.30  
0.32  
e
A
A1  
A2  
b
---  
---  
36X b  
B
M
S
S
0.25  
T A  
B
2.15  
0.18  
0.23  
NOTE 6  
TOP VIEW  
c
h DETAIL A  
A
A2  
D
10.30 BSC  
H
D2  
E
5.70  
5.90  
10.30 BSC  
7.50 BSC  
3.90 4.10  
0.50 BSC  
0.25 0.75  
0.90  
c
E1  
E2  
e
h
0.10 C  
h
A1  
SEATING  
PLANE  
END VIEW  
M1  
36X  
C
SIDE VIEW  
D2  
L
0.50  
L2  
M
0.25 BSC  
0
8
_
_
_
M1  
5
15  
_
GENERIC  
MARKING DIAGRAM*  
GAUGE  
PLANE  
M
E2  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
AWLYYWWG  
L2  
SEATING  
PLANE  
C
36X  
L
DETAIL A  
SOLDERING FOOTPRINT  
BOTTOM VIEW  
36X  
1.06  
5.90  
XXXX = Specific Device Code  
A
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
WL  
YY  
WW  
G
4.10  
10.76  
*This information is generic. Please refer  
to device data sheet for actual part  
marking.  
1
36X  
0.36  
0.50  
PITCH  
DIMENSIONS: MILLIMETERS  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON46215E  
SSOP36 EXPOSED PAD  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCV78663

Power Ballast and Dual LED Driver
ONSEMI

NCV78663DQ0G

Power Ballast and Dual LED Driver
ONSEMI

NCV78663DQ0R2G

Power Ballast and Dual LED Driver
ONSEMI

NCV78702

Multiphase Booster LED Driver for Automotive Front Lighting
ONSEMI

NCV78702DE0R2G

Multiphase Booster LED Driver for Automotive Front Lighting
ONSEMI

NCV78702MW0AR2G

多相升压器 LED 驱动器,用于汽车前照明
ONSEMI

NCV78702MW0BR2G

多相升压器 LED 驱动器,用于汽车前照明
ONSEMI

NCV78702MW0R2G

Multiphase Booster LED Driver for Automotive Front Lighting
ONSEMI

NCV78702MW1AR2G

多相升压器 LED 驱动器,用于汽车前照明
ONSEMI

NCV78703

Multiphase Booster LED Driver for Automotive Front Lighting
ONSEMI

NCV78703MW0AR2G

Multiphase Booster LED Driver for Automotive Front Lighting
ONSEMI

NCV78703MW0R2G

Multiphase Booster LED Driver for Automotive Front Lighting
ONSEMI