NCV7381CDP0R2G [ONSEMI]

FlexRay® Transceiver, Clamp 30;
NCV7381CDP0R2G
型号: NCV7381CDP0R2G
厂家: ONSEMI    ONSEMI
描述:

FlexRay® Transceiver, Clamp 30

电信 光电二极管 电信集成电路
文件: 总27页 (文件大小:338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV7381C  
FlexRay) Transceiver,  
Clamp 30  
NCV7381C is a hightemperature singlechannel FlexRay  
transceiver compliant with FlexRay Electrical Physical Layer  
Specification Rev. 3.0.1, capable of communicating at speeds of up to  
10 Mbit/s. It provides differential transmit and receive capability  
between a wired FlexRay communication medium on one side and a  
protocol controller and a host on the other side.  
www.onsemi.com  
NCV7381C mode control functionality is optimized for nodes  
permanently connected to car battery.  
It offers excellent EMC and ESD performance.  
KEY FEATURES  
General  
Compliant with FlexRay Electrical Physical Layer Specification  
Rev 3.0.1  
SSOP 16  
CASE 565AE  
FlexRay Transmitter and Receiver in Normalpower Modes for  
Communication up to 10 Mbit/s  
Support of 60 ns Bit Time  
FlexRay Lowpower Mode Receiver for Remote Wakeup Detection  
MARKING DIAGRAM  
16  
NV7381C0  
FAWLYYWW  
G
Excellent Electromagnetic Susceptibility (EMS) Level over Full  
Frequency Range. Very Low Electromagnetic Emissions (EME)  
Bus Pins Protected against >10 kV System ESD Pulses  
1
Safe Behavior under Missing Supply or No Supply Conditions  
F
A
= Fab Location  
= Assembly Location  
WL = Wafer Lot  
YYWW = Year / Work Week  
Interface Pins for a Protocol Controller and a Host  
(TxD, RxD, TxEN, RxEN, STBN, BGE, EN, ERRN)  
INH Output for Control of External Regulators  
Local Wakeup Pin WAKE  
G
= PbFree Package  
TxEN Timeout  
BGE Feedback  
PIN CONNECTIONS  
1
Supply Pins V , V , V with Independent Voltage Ramp Up:  
BAT CC  
IO  
INH  
EN  
IO  
TxD  
TxEN  
RxD  
BGE  
STBN  
V
CC  
V  
Supply Parametrical Range from 5.5 V to 50 V  
BP  
BAT  
V
BM  
V Supply Parametrical Range from 4.75 V to 5.25 V  
CC  
GND  
V Supply Parametrical Range from 2.3 V to 5.25 V  
IO  
WAKE  
V
BAT  
Compatible with 14 V and 28 V Systems  
ERRN  
RxEN  
Operating Ambient Temperature 40°C to +150°C (T  
)
AMB_Class0  
Increased Operating Junction Temperature  
Junction Temperature Monitoring with Two Levels  
SSOP16 Package  
(Top View)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 24 of this data sheet.  
This Device is PbFree, Halogen Free/BFR Free and are RoHS  
Compliant  
Quality  
AECQ100 Qualified and PPAP Capable  
FlexRay Functional Classes  
Bus Driver Voltage Regulator Control  
Bus Driver – Bus Guardian Interface  
Bus Driver Logic Level Adaptation  
Bus Driver Remote Wakeup  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
May, 2019 Rev. 0  
NCV7381C/D  
NCV7381C  
V
IO  
V
CC  
V
BAT  
Voltage  
Thermal  
Shutdown  
Monitoring  
TxD  
TxEN  
RxD  
INH  
CC  
Module  
Transmitter  
RxEN  
BGE  
BGE  
BP  
Module  
Bus Error  
Detection  
STBN  
ERRN  
EN  
CONTROL  
LOGIC  
Host  
Module  
BM  
Receiver  
V
BAT  
(Normal mode /  
Lowpower mode)  
Wakeup  
Detection  
WAKE  
NCV7381C  
GND  
Figure 1. Block Diagram  
www.onsemi.com  
2
NCV7381C  
PIN FUNCTION DESCRIPTION  
Pin  
Pin  
Number  
Name  
Pin Type  
highvoltage analog output  
digital input  
Pin Function  
1
2
3
4
5
6
7
INH  
EN  
External regulator control output  
Mode control input; internal pulldown resistor  
Supply voltage for digital pins level adaptation  
Data to be transmitted; internal pulldown resistor  
Transmitter enable input; when High transmitter disabled; internal pullup resistor  
Receive data output  
V
IO  
supply  
TxD  
TxEN  
RxD  
digital input  
digital input  
digital output  
digital input  
BGE  
Bus guardian enable input; when Low transmitter disabled; internal pulldown  
resistor  
8
STBN  
RxEN  
ERRN  
digital input  
digital output  
Mode control input; internal pulldown resistor  
Bus activity detection output; when Low bus activity detected  
Error diagnosis and status output  
9
10  
11  
12  
digital output  
V
BAT  
supply  
Battery supply voltage  
WAKE  
highvoltage analog input  
Local wakeup input; internal pullup or pulldown  
(depends on voltage at pin WAKE)  
13  
14  
15  
16  
GND  
BM  
ground  
Ground connection  
highvoltage analog input/output  
highvoltage analog input/output  
supply  
Bus line minus  
BP  
Bus line plus  
V
CC  
Bus driver core supply voltage; 5 V nominal  
APPLICATION INFORMATION  
OUT  
IN  
VBAT  
ECU  
VIO reg.  
3.3V / 5 V  
EN  
RPP  
OUT  
IN  
VCC reg.  
5 V  
CVIO CVCC  
CVBAT  
EN  
MCU  
RWAKE1  
VDD  
VIO VCC  
INH VBAT  
WAKE  
WAKE  
STBN  
EN  
ERRN  
Mode Control /  
Host Interface  
RWAKE2  
CMC  
RxEN  
BGE  
NCV7381C  
Bus Guardian  
BP  
BM  
FR  
TxD  
RBUS1  
RBUS2  
CBUS  
FlexRay CC  
VSS  
TxEN  
RxD  
GND  
GND  
Figure 2. Application Diagram  
www.onsemi.com  
3
 
NCV7381C  
RECOMMENDED EXTERNAL COMPONENTS FOR THE APPLICATION DIAGRAM  
Component  
Function  
Min  
Typ  
100  
100  
100  
33  
Max  
Unit  
nF  
nF  
nF  
kW  
kW  
W
C
Decoupling capacitor on battery line, ceramic  
VBAT  
C
Decoupling capacitor on V supply line, ceramic  
CC  
VCC  
C
Decoupling capacitor on V supply line, ceramic  
VIO  
IO  
R
WAKE1  
R
WAKE2  
Pullup resistor on WAKE pin  
Serial protection resistor on WAKE pin  
Bus termination resistor (Note 1)  
Bus termination resistor (Note 1)  
Commonmode stabilizing capacitor, ceramic (Note 2)  
Commonmode choke  
3.3  
R
47.5  
47.5  
4.7  
BUS1  
BUS2  
R
W
C
nF  
mH  
BUS  
CMC  
100  
1. Tolerance 1%, type 0805  
2. Tolerance 20%, type 0805  
www.onsemi.com  
4
 
NCV7381C  
MAXIMUM RATINGS  
Symbol  
Parameter  
Min  
0.3  
0.3  
0.3  
0.3  
0.3  
10  
50  
50  
50  
0.3  
10  
0.3  
40  
55  
Max  
50  
Units  
V
uV  
Battery voltage power supply  
5 V Supply voltage  
BATMAX  
uV  
5.5  
5.5  
5.5  
V
CCMAX  
uV  
IOMAX  
Supply voltage for V voltage level adaptation  
V
IO  
uDigIn  
DC voltage at digital inputs (BGE, EN, STBN, TxD, TxEN)  
DC voltage at digital outputs (ERRN, RxD, RxEN)  
V
MAX  
uDigOut  
V
+0.3  
IO  
V
MAX  
INMAX  
MAX  
iDigOut  
uBM  
Digital output pins input current (V = 0 V)  
+10  
mA  
V
IO  
DC voltage at pin BM  
50  
50  
50  
uBP  
uDiff  
DC voltage at pin BP  
V
MAX  
Maximum DC voltage between any two pins  
DC voltage at pin INH  
V
MAX  
uINH  
V
+0.3  
BAT  
V
MAX  
MAX  
iINH  
INH pin maximum load current  
DC voltage at WAKE pin  
mA  
V
uWAKE  
V
+0.3  
BAT  
MAX  
J_MAX  
T
Junction temperature  
175  
150  
°C  
°C  
T
STG  
Storage Temperature Range  
MSL  
Moisture Sensitivity Level  
2
T
Lead Soldering Temperature, Reflow (Note 3)  
System HBM on pins BP and BM (as per IEC 6100042; 150 pF / 330 W)  
260  
+10  
°C  
kV  
SLD  
uESD  
10  
IEC  
Component HBM on pins BP, BM, V  
and WAKE  
BAT  
uESD  
6  
4  
+6  
+4  
kV  
kV  
EXT  
(as per EIAJESD22A114B; 100 pF / 1500 W)  
Component HBM on all other pins  
(as per EIAJESD22A114B; 100 pF / 1500 W)  
uESD  
INT  
test pulses 1  
test pulses 2a  
test pulses 3a  
test pulses 3b  
100  
+75  
V
V
V
V
Voltage transients, pins BP, BM, V  
and WAKE.  
BAT  
According to ISO76372, Class C (Note 4)  
150  
uV  
TRAN  
+100  
Voltage transients, pin V  
.
test pulse 5  
Load Dump  
BAT  
50  
V
According to ISO76372  
Overvoltage, pin V , according to ISO167502  
Jump Start  
50  
V
BAT  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
3. For more information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D  
4. Test is carried out according to setup in FlexRay Physical Layer EMC Measurement Specification, Version 3.0. This specification is referring  
to ISO7637.  
RECOMMENDED OPERATING RANGES  
Symbol  
uV  
Parameter  
Battery voltage power supply (Note 5)  
Supply voltage 5 V  
Min  
5.5  
4.75  
2.3  
0
Max  
50  
Units  
V
BATOP  
uV  
CCOP  
5.25  
5.25  
V
uV  
IOOP  
Supply voltage for V voltage level adaptation  
V
IO  
uWAKE  
DC voltage at WAKE pin  
V
BAT  
V
OP  
OP  
uDigIO  
uINH  
DC voltage at digital pins (EN, TxD, TxEN, RxD, RxEN, BGE, STBN, ERRN)  
DC voltage at pin INH  
0
V
IO  
V
0
V
BAT  
V
OP  
T
Ambient temperature (Note 6)  
40  
40  
150  
155  
°C  
°C  
AMB  
T
J_OP  
Junction temperature  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
5. For T 130°C, full functionality is guaranteed from 5.1 V. For more details see uBDUVV  
parameter.  
J
BAT  
6. The specified range corresponds to T  
AMB_Class0  
www.onsemi.com  
5
 
NCV7381C  
THERMAL CHARACTERISTICS  
Symbol  
Rating  
Value  
78  
Unit  
°C/W  
°C/W  
R
R
Thermal Resistance JunctiontoAir, JEDEC 1S0P PCB  
Thermal Resistance JunctiontoAir, JEDEC 2S2P PCB  
θJA_1  
θJA_2  
69  
ELECTRICAL CHARACTERISTICS  
V
BAT  
= 5.5 V to 50 V, V = 4.75 V to 5.25 V, V = 2.3 V to 5.25 V, C  
= 100 nF, C  
= 100 nF, C = 100 nF, for typical values T  
VIO A  
CC  
IO  
VBAT  
VCC  
= 25°C, for min/max values T = 40°C to 155°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents  
J
flow into the respective pin.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CURRENT CONSUMPTION  
iV  
iV  
Current consumption from V  
Normalpower modes  
Lowpower modes  
0.65  
1.25  
75  
mA  
mA  
mA  
mA  
BATNORM  
BATLP  
BAT  
Sleep mode, V = V = 0 V  
80  
IO  
CC  
Lowpower modes, V = V  
55  
IO  
CC  
= 0 V,  
V
= 12 V, T < 85°C  
J
BAT  
(Note 7)  
iV  
iV  
Current consumption from V  
Normal mode – bus signals Idle  
Normal mode – bus signals  
5.0  
10  
15  
37  
mA  
mA  
CCNORMIDLE  
CC  
CCNORMACTIVE  
Data_0/1; R  
= No Load  
BUS  
Normal mode bus signals  
Data_0/1; R = 40 to 55 W  
25  
72  
mA  
BUS  
iV  
iV  
Receiveonly mode  
2.0  
10  
mA  
CCREC  
Lowpower modes, T < 85°C  
(Note 7)  
8.0  
mA  
CCLP  
J
iV  
iV  
Current consumption from V  
Normalpower modes  
1.0  
6.0  
mA  
IONORM  
IO  
Lowpower modes, T < 85°C  
mA  
IOLP  
J
(Note 7)  
iTot  
Total current consumption  
– Sum from all supply pins  
Lowpower modes  
100  
65  
mA  
mA  
LP  
Sleep mode, V = V = 5.0 V,  
IO  
CC  
V
= 12 V, T < 85°C  
J
BAT  
(Note 7)  
Sleep mode, V = V = 5.0 V,  
55  
mA  
IO  
CC  
V
= 12 V, T < 25°C  
J
BAT  
(Note 7)  
TRANSMITTER CHARACTERISTICS  
uBDTx  
Differential voltage |uBP uBM|  
when sending symbol “Data_0” or  
“Data_1”  
R
C
= 40 to 55 W;  
600  
0
2000  
30  
mV  
mV  
active  
BUS  
BUS  
= 100 pF  
Parameters defined in Figure 3  
uBDTx  
Differential voltage |uBP uBM|  
when driving signal “Idle”  
Idle  
www.onsemi.com  
6
NCV7381C  
ELECTRICAL CHARACTERISTICS  
V
BAT  
= 5.5 V to 50 V, V = 4.75 V to 5.25 V, V = 2.3 V to 5.25 V, C  
= 100 nF, C  
= 100 nF, C = 100 nF, for typical values T  
VIO A  
CC  
IO  
VBAT  
VCC  
= 25°C, for min/max values T = 40°C to 155°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents  
J
flow into the respective pin.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TRANSMITTER CHARACTERISTICS  
dBDTx10  
Transmitter delay, negative edge  
Test setup as per Figure 17  
with  
75  
75  
ns  
ns  
ns  
dBDTx01  
Transmitter delay, positive edge  
R
= 40 W; C  
= 100 pF  
BUS  
BUS  
dBDTxAsym  
Transmitter delay mismatch,  
|dBDTx10 dBDTx01| (Note 8)  
4.0  
Sum of TxD signal rise and fall  
time (20% to 80% V  
)
IO  
of up to 9 ns  
Parameters defined in Figure 3  
dBusTx10  
dBusTx01  
dBusTxDif  
Fall time of the differential bus  
voltage from 80% to 20%  
6.0  
6.0  
18.75  
18.75  
3.0  
ns  
ns  
ns  
Rise time of the differential bus  
voltage from 20% to 80%  
Differential bus voltage fall and rise  
time mismatch  
|dBusTx10 dBusTx01|  
dBDTxia  
dBDTxai  
dBDTxDM  
Transmitter delay idle > active  
Transmitter delay active > idle  
Test setup as per Figure 17  
with  
75  
75  
50  
ns  
ns  
ns  
R
= 40 W; C  
= 100 pF  
BUS  
BUS  
Idleactive transmitter delay  
mismatch  
|dBDTxia dBDTxai|  
Parameters defined in  
Figure 4  
dBusTxia  
dBusTxai  
Transition time idle >active  
Transition time active > idle  
Time span of bus activity  
30  
30  
ns  
ns  
ns  
ms  
dTxEN  
550  
650  
650  
2600  
LOW  
dBDTxActiveMax  
Maximum length of transmitter  
activation  
iBP  
iBM  
Absolute maximum output current  
when BP shorted to BM – no time  
limit  
R
1 W  
60  
mA  
BMShortMax  
ShortCircuit  
BPShortMax  
iBP  
iBM  
Absolute maximum output current  
when shorted to GND – no time limit  
R
R
1 W  
1 W  
60  
60  
mA  
mA  
GNDShortMax  
ShortCircuit  
ShortCircuit  
GNDShortMax  
iBP  
Absolute maximum output current  
5VShortMax  
when shorted to V  
time limit  
= 5 V – no  
BAT  
iBM  
5VShortMax  
iBP  
iBM  
Absolute maximum output current  
R
R
1 W  
1 W  
60  
72  
mA  
mA  
W
BAT27ShortMax  
ShortCircuit  
ShortCircuit  
when shorted to V  
– no time limit  
= 27 V  
BAT  
BAT27ShortMax  
iBP  
iBM  
Absolute maximum output current  
BAT48ShortMax  
when shorted to V  
– no time limit  
= 48 V  
BAT  
BAT48ShortMax  
R
Bus interface equivalent output  
impedance (Bus driver simulation  
model parameter)  
31  
105  
500  
BDTransmitter  
www.onsemi.com  
7
NCV7381C  
ELECTRICAL CHARACTERISTICS  
V
BAT  
= 5.5 V to 50 V, V = 4.75 V to 5.25 V, V = 2.3 V to 5.25 V, C  
= 100 nF, C  
= 100 nF, C = 100 nF, for typical values T  
VIO A  
CC  
IO  
VBAT  
VCC  
= 25°C, for min/max values T = 40°C to 155°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents  
J
flow into the respective pin.  
uTxD  
100...4400 ns  
100% V  
50% V  
0% V  
IO  
IO  
IO  
dBDTx01  
dBDTx10  
uBus  
uBDTx  
100%  
80%  
Active  
300 mV  
300 mV  
20%  
0%  
uBDTx  
Active  
dBusTx01  
dBusTx10  
NOTE: TxD signal is constant for 100..4400 ns before the first edge.  
All parameters values are valid even if the test is performed with opposite polarity.  
Figure 3. Transmitter Characteristics (TxEN is Low and BGE is High)  
uTxEN  
dTxEN  
LOW  
100% V  
50% V  
0% V  
IO  
IO  
IO  
dBDTxia  
dBDTxai  
uBus  
30 mV  
300 mV  
uBDTx  
dBusTxai  
dBusTxia  
Figure 4. Transmitter Characteristics for Transitions between Idle and Active (TxD is Low)  
www.onsemi.com  
8
NCV7381C  
ELECTRICAL CHARACTERISTICS  
V
BAT  
= 5.5 V to 50 V, V = 4.75 V to 5.25 V, V = 2.3 V to 5.25 V, C  
= 100 nF, C  
= 100 nF, C = 100 nF, for typical values T  
VIO A  
CC  
IO  
VBAT  
VCC  
= 25°C, for min/max values T = 40°C to 155°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents  
J
flow into the respective pin.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RECEIVER CHARACTERISTICS  
Activity detected previously  
|uBP uBM| 3.0 V  
uData0  
Receiver threshold for detecting  
Data_0  
300  
150  
mV  
uData1  
Receiver threshold for detecting  
Data_1  
150  
30  
300  
30  
mV  
mV  
mV  
|uData1| |uData0|  
Mismatch of receiver thresholds  
(uBP + uBM) / 2 = 2.5 V  
uData0_LP  
Lowpower receiver threshold for  
detecting Data_0  
uV  
BAT  
7.0 V  
400  
100  
uCM  
Common mode voltage range  
(with respect to GND) that does  
not disturb the receiver function  
and reception level parameters  
uCM = (uBP + uBM) / 2  
(Note 9)  
10  
15  
V
uBias  
Bus bias voltage during bus state  
1800  
200  
10  
2500  
3200  
200  
40  
mV  
mV  
kW  
pF  
R
C
= 40 to 55 W;  
Idle in normalpower modes  
BUS  
BUS  
= 100 pF  
Bus bias voltage during bus state  
Idle in lowpower modes  
(Note 10)  
0
R
, R  
Receiver common mode  
resistance  
CM1  
CM2  
(Note 10)  
C_BP, C_BM  
Input capacitance on BP and BM  
pin (Note 7)  
f = 5.0 MHz  
f = 5.0 MHz  
20  
C_Bus  
iBP  
Bus differential input capacitance  
(Note 7)  
DIF  
5.0  
25  
pF  
uBP = uBM = 5.0 V  
All other pins = 0 V  
Absolute leakage current when  
driver is off  
LEAK  
mA  
iBM  
LEAK  
iBP  
iBM  
uBP = uBM = 0 V  
All other pins = 16 V  
Absolute leakage current, in case  
of loss of GND  
LEAKGND  
1600  
mA  
LEAKGND  
www.onsemi.com  
9
NCV7381C  
ELECTRICAL CHARACTERISTICS  
V
BAT  
= 5.5 V to 50 V, V = 4.75 V to 5.25 V, V = 2.3 V to 5.25 V, C  
= 100 nF, C  
= 100 nF, C = 100 nF, for typical values T  
VIO A  
CC  
IO  
VBAT  
VCC  
= 25°C, for min/max values T = 40°C to 155°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents  
J
flow into the respective pin.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RECEIVER CHARACTERISTICS  
uBusRx  
400  
60  
60  
3000  
4330  
4330  
22.5  
22.5  
mV  
ns  
ns  
ns  
ns  
Data  
dBusRx0  
BD  
BD  
Test signal parameters for  
reception of Data_0 and Data_1  
symbols  
dBusRx1  
dBusRx10  
dBusRx01  
dBDRx10  
Receiver delay, negative edge  
(Note 8)  
75  
75  
ns  
ns  
ns  
dBDRx01  
Receiver delay, positive edge  
(Note 8)  
dBDRxAsym  
Receiver delay mismatch  
|dBDRx10 dBDRx01| (Note 8)  
Test signal and parameters  
defined in Figure 5 and Figure 6  
5.0  
uBusRx  
400  
590  
590  
18  
3000  
610  
610  
22  
mV  
ns  
ns  
ns  
ns  
RxD pin loaded with 25 pF  
capacitor  
dBusActive  
dBusIdle  
Test signal parameters for bus  
activity detection  
dBusRxia  
dBusRxai  
18  
22  
dBDIdleDetection  
Bus driver filtertime for idle  
50  
200  
250  
ns  
ns  
detection  
dBDActivityDetection  
Bus driver filtertime for activity  
detection  
100  
dBDRxai  
dBDRxia  
dBDTxRxai  
Bus driver idle reaction time  
Bus driver activity reaction time  
IdleLoopdelay  
50  
100  
275  
325  
325  
ns  
ns  
ns  
REMOTE WAKEUP DETECTION  
dWU  
dWU  
dWU  
dWU  
Detection time for Wakeup  
Data_0 symbol  
0Detect  
IdleDetect  
Timeout  
1.0  
1.0  
48  
4.0  
4.0  
140  
1.0  
5.5  
35  
ms  
ms  
ms  
ms  
V
Detection time for Wakeup Idle/  
Data_1 symbol  
Maximum accepted Wakeup  
pattern duration  
Acceptance timeout for  
interruptions  
Interrupt  
(Note 11)  
0.13  
uV  
BATRWU  
Minimum supply voltage V  
for  
BAT  
remote wakeup events detection  
dBDWakeup  
Reaction  
Reaction time after remote  
wakeup event  
7.0  
ms  
remote  
TEMPERATURE MONITORING  
T
T
Thermal warning level  
Thermal shutdown level  
125  
160  
140  
170  
155  
190  
°C  
°C  
JW  
JSD  
www.onsemi.com  
10  
NCV7381C  
ELECTRICAL CHARACTERISTICS  
V
BAT  
= 5.5 V to 50 V, V = 4.75 V to 5.25 V, V = 2.3 V to 5.25 V, C  
= 100 nF, C  
= 100 nF, C = 100 nF, for typical values T  
VIO A  
CC  
IO  
VBAT  
VCC  
= 25°C, for min/max values T = 40°C to 155°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents  
J
flow into the respective pin.  
dBusRx10  
dBusRx01  
uBus  
uBusRx  
Data  
300 mV  
150 mV  
150 mV  
300 mV  
uBusRx  
Data  
dBusRx0  
dBusRx1  
BD  
BD  
uRxD  
dBDRx10  
dBDRx01  
100% V  
IO  
IO  
IO  
50% V  
0% V  
Figure 5. Receiver Characteristics  
dBusRxia  
dBusRxai  
uBus  
30 mV  
150 mV  
300 mV  
uBusRx  
dBusActive  
dBusIdle  
uRxD  
dBDRxia  
dBDRxai  
100% V  
50% V  
0% V  
IO  
IO  
IO  
uRxEN  
100% V  
50% V  
0% V  
IO  
IO  
IO  
Figure 6. Parameters of Bus Activity Detection  
www.onsemi.com  
11  
NCV7381C  
ELECTRICAL CHARACTERISTICS  
V
BAT  
= 5.5 V to 50 V, V = 4.75 V to 5.25 V, V = 2.3 V to 5.25 V, C  
= 100 nF, C  
= 100 nF, C = 100 nF, for typical values T  
VIO A  
CC  
IO  
VBAT  
VCC  
= 25°C, for min/max values T = 40°C to 155°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents  
J
flow into the respective pin.  
Symbol  
WAKE PIN  
uV  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Minimum supply voltage V  
local wakeup events detection  
for  
BAT  
7.0  
V
V
BATWAKE  
uWAKE  
Threshold of WAKE comparator  
0.45 x  
0.5 x  
0.55 x  
TH  
V
BAT  
V
BAT  
V
BAT  
dBDWakePulseFilter  
WAKE pulse filter time  
(spike rejection)  
1.0  
14  
500  
50  
ms  
ms  
dBDWakeup  
Reaction time after local wakeup  
event  
Reaction  
local  
iWAKE  
Internal pulldown current  
Internal pullup current  
uWAKE = 0 V for longer than  
dWakePulseFilter  
3.0  
12  
mA  
mA  
PD  
iWAKE  
uWAKE = V  
for longer than  
12  
3.0  
PU  
BAT  
dWakePulseFilter  
INH PIN  
uINH1  
Voltage on INH pin when  
signaling Not_Sleep  
iINH = 5.0 mA  
uV  
0.6  
uV  
0.27  
uV  
BAT  
0.1  
V
Not_Sleep  
BAT  
BAT  
uV  
BAT  
> 5.5 V  
iINH1  
Leakage current while signaling  
Sleep  
5.0  
0
5.0  
mA  
LEAK  
POWER SUPPLY MONITORING  
uBDUVV  
V
undervoltage detection  
T 130°C (Note 7)  
4.0  
4.0  
4.79  
4.79  
4.9  
5.1  
5.5  
5.1  
5.5  
4.5  
2.3  
7.0  
V
V
V
V
V
V
V
BAT  
BAT  
J
threshold  
40°C T 155°C  
J
uBDRV  
V
BAT  
undervoltage recovery  
T 130°C (Note 7)  
J
BAT  
threshold  
40°C T 155°C  
4.9  
J
uBDUVV  
V
V
V
undervoltage threshold  
undervoltage threshold  
4.0  
2.0  
5.0  
4.3  
CC  
CC  
uUV  
2.15  
5.6  
IO  
IO  
uBDUVV  
undervoltage threshold for  
BATWAKE  
BAT  
correct detection of the local  
wakeup  
uUV_HYST  
Hysteresis of the undervoltage  
detectors  
V
V
V
V
undervoltage detector  
20  
20  
20  
20  
110  
100  
50  
200  
200  
200  
200  
mV  
mV  
mV  
mV  
BAT  
undervoltage detector  
CC  
undervoltage detector  
IO  
undervoltage  
140  
BATWAKE  
detector  
dBDUVV  
dBDUVV  
dBDUVV  
V
V
V
V
V
V
undervoltage detection time  
undervoltage detection time  
150  
150  
350  
1.5  
350  
350  
750  
750  
750  
1500  
4.5  
ms  
ms  
ms  
CC  
CC  
IO  
IO  
undervoltage detection time  
BAT  
undervoltage recovery time  
CC  
BAT  
dBDRV  
dBDRV  
dBDRV  
ms  
ms  
ms  
CC  
undervoltage recovery time  
1.0  
IO  
IO  
undervoltage recovery time  
1.0  
BAT  
BAT  
www.onsemi.com  
12  
 
NCV7381C  
ELECTRICAL CHARACTERISTICS  
V
BAT  
= 5.5 V to 50 V, V = 4.75 V to 5.25 V, V = 2.3 V to 5.25 V, C  
= 100 nF, C  
= 100 nF, C = 100 nF, for typical values T  
VIO A  
CC  
IO  
VBAT  
VCC  
= 25°C, for min/max values T = 40°C to 155°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents  
J
flow into the respective pin.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
HOST INTERFACE  
dBDModeChange  
EN and STBN level filtering time  
for operating mode transition  
21  
65  
ms  
dGotoSleep  
GotoSleep mode timeout  
14  
33  
33  
ms  
ms  
ms  
dReactionTime  
Reaction time on ERRN pin  
Error detected  
ERRN  
Wakeup detected  
or Mode changed  
1.0  
DIGITAL INPUT SIGNALS VOLTAGE THRESHOLDS (Pins EN, STBN, BGE, TxEN)  
uV  
Low level input voltage  
uV  
DIG  
= uV  
IO  
0.3  
0.3 ×  
IO  
V
V
DIGINLOW  
V
uV  
High level input voltage  
0.7 ×  
5.5  
DIGINHIGH  
V
IO  
EN PIN  
R
_EN  
Pulldown resistance  
50  
1.0  
2.0  
110  
0
200  
1.0  
20  
kW  
mA  
ms  
PD  
iEN  
Low level input current  
uEN = 0 V  
IL  
dEN  
EN toggling period for status  
register readout  
STAT  
dEN  
dEN  
Duration of EN Low and High  
1.0  
ms  
ms  
STAT_L  
level for status register readout  
STAT_H  
dEN_ERRN  
Delay from EN falling edge to  
ERRN showing valid signal  
during status register readout  
1.0  
STBN PIN  
R
_STBN  
Pulldown resistance  
50  
110  
0
200  
1.0  
kW  
mA  
PD  
iSTBN  
Low level input current  
uSTBN = 0 V  
1.0  
IL  
BGE PIN  
R
R
_BGE  
_BGE  
Pulldown resistance  
Pulldown resistance  
Low level input current  
Low level input current  
200  
200  
320  
320  
0
450  
450  
1.0  
1.0  
kW  
kW  
mA  
mA  
PD  
PD  
iBGE  
iBGE  
uBGE = 0 V  
uBGE = 0 V  
1.0  
1.0  
IL  
IL  
0
TxD PIN  
uBDLogic_0  
Low level input voltage  
High level input voltage  
Pulldown resistance  
0.3  
0.4 ×  
IO  
V
V
V
uBDLogic_1  
0.6 ×  
5.5  
V
IO  
R
_TxD  
5.0  
11  
20  
10  
kW  
PD  
C_BDTxD  
Input capacitance on TxD pin  
(Note 7)  
f = 5.0 MHz  
uTxD = 0 V  
pF  
iTxD  
Low level input current  
1.0  
0
1.0  
mA  
LI  
TxEN PIN  
_TxEN  
R
Pullup resistance  
50  
110  
0
200  
1.0  
1.0  
kW  
mA  
mA  
PU  
iTxEN  
High level input current  
Input leakage current  
uTxEN = V  
1.0  
1.0  
IH  
IO  
iTxEN  
uTxEN = 5.25 V, V = 0 V  
0
LEAK  
IO  
www.onsemi.com  
13  
NCV7381C  
ELECTRICAL CHARACTERISTICS  
V
BAT  
= 5.5 V to 50 V, V = 4.75 V to 5.25 V, V = 2.3 V to 5.25 V, C  
= 100 nF, C  
= 100 nF, C = 100 nF, for typical values T  
VIO A  
CC  
IO  
VBAT  
VCC  
= 25°C, for min/max values T = 40°C to 155°C; unless otherwise noted. All voltages are referenced to GND (pin 13). Positive currents  
J
flow into the respective pin.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DIGITAL OUTPUT SIGNALS VOLTAGE LIMITS (Pins RxD, RxEN and ERRN)  
uV  
Low level output voltage  
iRxD = 6.0 mA  
0
0.2 ×  
IO  
V
DIGOUTLOW  
DIGOUTHIGH  
OL  
V
iRxEN = 5.0 mA  
OL  
iERRN = 0.7 mA  
OL  
(Note 12)  
uV  
High level output voltage  
iRxD = 6.0 mA  
0.8 ×  
V
IO  
V
OH  
V
IO  
iRxEN = 5.0 mA  
OH  
iERRN = 0.7 mA  
OH  
(Note 12)  
uV  
uV  
Output voltage on a digital output  
R
= 100 kΩ to GND,  
LOAD  
500  
500  
mV  
mV  
DIGOUTUV  
when V in undervoltage  
IO  
Either V or V  
supplied  
CC  
BAT  
Output voltage on a digital output  
when unsupplied  
R
= 100 kΩ to GND  
DIGOUTOFF  
LOAD  
RxD PIN  
dBDRxD  
RxD signal rise time  
RxD pin loaded with 15 pF  
capacitor (Note 7)  
6.5  
6.5  
13  
ns  
ns  
ns  
R15  
F15  
R15  
(20%80% V  
)
IO  
dBDRxD  
RxD signal fall time  
(20%80% V  
)
IO  
dBDRxD  
+ dBDRxD  
Sum of rise and fall time  
(20%80% V  
F15  
)
IO  
|dBDRxD  
Difference of rise and fall time  
5.0  
8.5  
ns  
ns  
ns  
ns  
R15  
F15  
dBDRxD  
|
dBDRxD  
dBDRxD  
dBDRxD  
RxD signal rise time  
RxD pin loaded with 25 pF  
capacitor  
R25  
(20%80% V  
)
IO  
RxD signal fall time  
(20%80% V  
8.5  
F25  
R25  
)
IO  
Sum of rise and fall time  
(20%80% V  
16.5  
+ dBDRxD  
F25  
)
IO  
|dBDRxD  
Difference of rise and fall time  
5.0  
16.5  
5.0  
ns  
ns  
ns  
R25  
F25  
dBDRxD  
|
dBDRxD  
RxD signal sum of rise and fall  
time at TP4_CC (20%80% V )  
IO  
RxD pin loaded with 25 pF  
capacitor plus 10 pF at the end  
of a 50 W, 1 ns microstripline  
(Note 13)  
R25_10  
+ dBDRxD  
F25_10  
|dBDRxD  
dBDRxD  
RxD signal difference of rise and  
fall time at TP4_CC  
R25_10  
F25_10  
|
(20%80% V  
)
IO  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
7. Values based on design and characterization, not tested in production.  
8. Guaranteed for 300 mV and 150 mV level of uBus.  
9. Tested on a receiving bus driver. Sending bus driver has a ground offset voltage in the range of [12.5 V to +12.5 V] and sends a 50/50  
pattern.  
10.Bus driver is connected to GND and uV = 5 V and uV  
7 V.  
CC  
BAT  
11. The minimum value is only guaranteed, when the phase that is interrupted was continuously present for at least 870 ns.  
12.uV  
= uV . No undervoltage on V and either V or V  
supplied.  
DIG  
IO  
IO  
CC  
BAT  
13.Simulation results. Simulation performed within T  
range, according to FlexRay Electrical Physical Layer Specification, Version 3.0.1.  
J_OP  
www.onsemi.com  
14  
 
NCV7381C  
FUNCTIONAL DESCRIPTION  
Operating Modes  
correct transition between any mode and the Sleep mode. All  
three modes – Standby, Sleep and Gotosleep – are referred  
to as lowpower modes.  
The operating mode selected is a function of the host  
signals STBN and EN, the state of the supply voltages and  
NCV7381C can switch between several operating modes  
depicted in Figure 7. In Normal and Receiveonly modes,  
the chip interconnects a FlexRay communication controller  
with the bus medium for fullspeed communication. These  
two modes are also referred to as normalpower modes.  
In Standby and Sleep modes, the communication is  
suspended and the power consumption is substantially  
reduced. A wakeup on the bus or through a locally  
monitored signal on pin WAKE can be detected and signaled  
to the host. Gotosleep mode is a temporary mode ensuring  
the wakeup detection. As long as all three supplies (V  
,
BAT  
V
CC  
, V ) remain above their respective undervoltage  
IO  
detection levels, the logical control by EN and STBN pins  
shown in Figure 7 applies. Influence of the power supplies  
and of the wakeup detection on the operating modes is  
described in subsequent paragraphs.  
Normal Mode  
Receiveonly Mode  
Transmitter: on  
Transmitter: off  
Receiver: on  
STBN=H  
EN=L  
STBN=H  
EN=H  
STBN=H  
EN=L  
STBN=H  
EN=H  
Receiver: on  
INH: High  
Power cons.: normal  
INH: High  
Power cons.: normal  
STBN=H  
STBN=H  
EN=L  
STBN=H  
EN=L  
STBN=H  
EN=H  
EN=H  
STBN=L  
EN=H  
STBN=L  
EN=L  
STBN=L  
EN=L  
STBN=L  
EN=H  
Standby Mode  
Gotosleep Mode  
STBN=L  
EN=H  
Transmitter: off  
Transmitter: off  
STBN=L  
EN=L  
Receiver: wakeupdetection  
INH: High  
Receiver: wakeupdetection  
INH: High  
Power cons.: low  
Power cons.: low  
STBN=L, EN=H  
Powerup  
for <dGotoSleep  
STBN=L, EN=H  
for >dGotoSleep  
Sleep Mode  
Transmitter: off  
Receiver: wakeupdetection  
INH: floating  
Power cons.: low  
Figure 7. Operating Modes and their Control by the STBN and EN Pins  
www.onsemi.com  
15  
 
NCV7381C  
Gotosleep  
Normal  
Mode  
ReceiveOnly  
Standby  
Mode  
Sleep  
Mode  
Normal  
Mode  
Mode  
Mode  
STBN  
EN  
ERRN  
Error Flag  
Error Flag  
Wake Flag  
Wake Flag  
Error Flag  
dGotosleep  
dBDModeChange  
dBDModeChange dBDModeChange  
dBDModeChange  
Figure 8. Timing Diagram of Operating Modes Control by the STBN and EN Pins  
Power Supplies and Power Supply Monitoring  
All three supplies are monitored by undervoltage  
detectors with individual thresholds and filtering times both  
for undervoltage detection and recovery – see Table  
Electrical Characteristics Power Supply Monitoring  
Parameters.  
NCV7381C is supplied by three pins. V  
is the main  
BAT  
supply both for NCV7381C and the full electronic module.  
will be typically connected to the automobile battery  
V
BAT  
through a reversepolarity protection. V  
is a 5 V  
CC  
lowvoltage supply primarily powering the FlexRay bus  
Logic Level Adaptation  
driver core in a normalpower mode. V supply serves to  
IO  
Level shift input V is used to apply a reference voltage  
IO  
adapt the logical levels of NCV7381C to the host and/or the  
FlexRay communication controller digital signal levels. All  
supplies should be properly decoupled by filtering  
capacitors refer to Figure 2 and Recommended External  
Components for the Application Diagram.  
uV  
= uV to all digital inputs and outputs in order to  
DIG  
IO  
adapt the logical levels of NCV7381C to the host and/or the  
FlexRay communication controller digital signal levels  
www.onsemi.com  
16  
NCV7381C  
Internal Flags  
The NCV7381C control logic uses a number of internal flags (i.e. onebit memories) reflecting important conditions or  
events. Table 1 summarizes the individual flags and the conditions that lead to a set or reset of the flags.  
Table 1. INTERNAL FLAGS  
Flag  
Set Condition  
Reset Condition  
Comment  
Local  
Wakeup  
Low level detected on WAKE pin in a  
lowpower mode  
Lowpower mode is entered  
Remote  
Wakeup  
Remote wakeup detected on the bus in a  
lowpower mode  
Lowpower mode is entered  
Normal mode is entered  
Local Wakeup flag changes to set  
or  
Remote Wakeup flag changes to set  
or  
Wakeup  
Lowpower mode is entered  
or  
Any undervoltage flag becomes set  
Internal power supply of the chip becomes  
sufficient for the operation of the control  
logic  
Poweron  
Normal mode is entered  
(Junction temperature is below Tjw in  
a normalpower mode  
Junction temperature is higher than Tjw  
(typ. 138°C) in a normalpower mode  
and  
The thermal warning  
flag has no influence  
on the bus driver  
function  
or  
Thermal  
Warning  
the status register is read in a lowpower  
mode)  
and  
BAT  
V
is not in undervoltage  
BAT  
V
is not in undervoltage  
Junction temperature is below Tjsd in  
a normalpower mode  
Junction temperature is higher than Tjsd  
(typ. 172°C) in a normalpower mode  
and  
The transmitter is  
disabled as long as  
the thermal shutdown  
flag is set  
Thermal  
Shutdown  
and  
falling edge on TxEN  
and  
V
is not in undervoltage  
BAT  
V
BAT  
is not in undervoltage  
TxEN is Low for longer than dBDTxAct-  
iveMax (typ. 1.5 ms) and bus driver is in  
Normal mode  
The transmitter is  
disabled as long as  
the timeout flag is set  
TxEN  
Timeout  
TxEN is High or Normal mode is left  
(Transmitter is enabled  
Transmitter is enabled  
The bus error flag has  
no influence on the  
bus driver function  
and  
and  
Bus Error  
Data on bus are identical to TxD signal)  
Data on bus are different from TxD signal  
(sampled after each TxD edge)  
or  
Transmitter is disabled  
V
is above the undervoltage threshold  
BAT  
V
V
is below the undervoltage threshold  
for longer than dBDRV  
or  
BAT  
BAT  
BAT  
Undervoltage  
for longer than dBDUVV  
BAT  
Wake flag becomes set  
V
CC  
is above the undervoltage threshold for  
longer than dBDRV  
or  
CC  
V
V
is below the undervoltage threshold  
CC  
CC  
Undervoltage  
for longer than dBDUVV  
CC  
Wake flag becomes set  
or V undervoltage is recovered  
BAT  
V
IO  
is above the undervoltage threshold for  
longer than dBDRV  
or  
IO  
V
V
is below the undervoltage threshold  
IO  
IO  
Undervoltage  
for longer than dUV  
IO  
Wake flag becomes set  
or V undervoltage is recovered  
BAT  
Any of the following status bits is set:  
Bus error  
All of the following status bits are reset:  
Bus error  
Thermal Warning  
Thermal Shutdown  
TxEN Timeout  
Thermal Warning  
Thermal Shutdown  
TxEN Timeout  
Error  
V  
Undervoltage  
V  
Undervoltage  
BAT  
BAT  
V Undervoltage  
V Undervoltage  
CC  
CC  
V Undervoltage  
V Undervoltage  
IO  
IO  
www.onsemi.com  
17  
 
NCV7381C  
Operating Mode Changes Caused by Internal Flags  
FlexRay Transceiver  
Changes of some internal flags described in Table 1 can  
force an operating mode transition complementing or  
overruling the operating mode control by the digital inputs  
STBN and EN which is shown in Figure 7:  
NCV7381C contains  
a
fullyfeatured FlexRay  
transceiver compliant with Electrical Physical Layer  
Specification Rev. 3.0.1. The transmitter part translates  
logical signals on digital inputs TxEN, BGE and TxD into  
appropriate bus levels on pins BP and BM. A transmission  
cannot be started with Data_1. In case the transmitter is  
enabled for longer than dBDTxActiveMax, the TxEN  
Timeout flag is set and the current transmission is disabled.  
The receiver part monitors bus pins BP and BM and signals  
the detected levels on digital outputs RxD and RxEN. The  
different bus levels are defined in Figure 9. The function of  
the transceiver and the related digital pins in different  
operating modes is detailed in Table 2 and Table 3.  
Setting the V  
and/or VIO undervoltage flag causes a  
transition to Sleep mode  
BAT  
Setting the V undervoltage flag, while the bus driver  
CC  
is not in Sleep, causes a transition to Standby mode  
In case a Wake flag is set, the NCV7381C transitions to  
Standby mode, all undervoltage flags are cleared and  
the corresponding undervoltage detection timers are  
reset. The restart of the undervoltage detection timers  
allows the external power supplies to rampup and  
stabilize properly if, for example, they were previously  
switched off during Sleep mode  
The transmitter can only be enabled if the activation of  
the transmitter is initiated in Normal mode.  
The receiver function is enabled by entering a  
normalpower mode.  
In case the V  
is recovered from undervoltage  
BAT  
condition, the operating mode control of the chip by  
digital inputs STBN and EN is reenabled, all  
undervoltage flags are cleared and the corresponding  
undervoltage detection timers are reset  
In case the V and V are both recovered from  
CC  
IO  
undervoltage while V  
is not in undervoltage  
BAT  
condition, the operating mode control by digital inputs  
STBN and EN is reenabled.  
NOTE: The operating mode control state machine is not  
reset when an undervoltage condition is  
detected. Thus if Sleep mode was requested by  
the host prior to undervoltage condition  
detection and the EN pin was set Low in Sleep  
mode, the device stays in Sleep once the  
undervoltage is recovered, although STBN and  
EN pins are both set Low, which is otherwise  
considered a Standby mode request.  
uBus  
BP  
V
CC  
/2  
BM  
Idle_LP  
Idle  
Data_0  
Data_1  
Figure 9. FlexRay Bus Signals  
www.onsemi.com  
18  
 
NCV7381C  
Table 2. TRANSMITTER FUNCTION AND TRANSMITTERRELATED PINS  
Operating Mode  
Standby, Gotosleep, Sleep  
Receiveonly  
BGE  
TxEN  
TxD  
Transmitted Bus Signal  
x
x
0
1
1
1
x
x
x
1
0
0
x
x
x
x
0
1
Idle_LP  
Idle  
Idle  
Idle  
Normal  
Data_0  
Data_1  
Table 3. RECEIVER FUNCTION AND RECEIVERRELATED PINS  
Operating Mode  
Signal on Bus  
Wake flag  
RxD  
High  
Low  
High  
Low  
High  
RxEN  
High  
Low  
x
not set  
Standby, Gotosleep, Sleep  
x
set  
x
Idle  
High  
Low  
Normal,  
Receiveonly  
Data_0  
Data_1  
x
x
Low  
www.onsemi.com  
19  
NCV7381C  
Bus Guardian Interface  
Bus Driver Remote Wakeup Detection  
The interface consists of the BGE digital input signal  
allowing a Bus Guardian unit to disable the transmitter and  
of the RxEN digital output signal used to signal whether the  
communication signal is Idle or not.  
During a lowpower mode and under the presence of  
V
voltage, a lowpower receiver constantly monitors the  
BAT  
activity on bus pins BP and BM. A valid remote wakeup is  
detected when either a wakeup pattern or a dedicated  
wakeup frame is received. A valid remote wakeup is also  
detected when wakeup pattern has been started in  
normalpower mode already.  
A wakeup pattern is composed of two Data_0 symbols  
separated by Data_1 or Idle symbols. The basic wakeup  
pattern composed of Data_0 and Idle symbols is shown in  
Figure 10; the wakeup pattern composed of Data_0 and  
Data_1 symbols – referred to as “alternative wakeup  
pattern” is depicted in Figure 11.  
Bus Driver Voltage Regulator Control  
NCV7381C provides a highvoltage output pin INH  
which can be used to control an external voltage regulator  
(see Figure 2). The pin INH is driven by a switch to V  
BAT  
supply. In Normal, Receiveonly, Standby and GotoSleep  
modes, the switch is activated thus forcing a High level on  
pin INH. In the Sleep mode, the switch is open and INH pin  
remains floating. If a regulator is directly controlled by INH,  
it is then active in all operating modes with the exception of  
the Sleep mode.  
uBus  
<dWU  
Timeout  
>dWU  
>dWU  
>dWU  
>dWU  
IdleDetect  
0Detect  
IdleDetect  
0Detect  
0
uData0_LP  
Idle(_LP)  
Data_0  
Idle(_LP)  
Data_0  
Idle(_LP)  
Figure 10. Valid Remote Wakeup Pattern  
<dWU  
Timeout  
>dWU  
>dWU  
>dWU  
>dWU  
IdleDetect  
0Detect  
IdleDetect  
0Detect  
uBus  
0
uData0_LP  
Idle(_LP)  
Data_0  
Data_1  
Data_0  
Data_1  
Figure 11. Valid Alternative Remote Wakeup Pattern  
A remote wakeup will be also detected if NCV7381C receives a full FlexRay frame at 10 Mbit/s with the following payload  
data:  
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00,  
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00,  
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00,  
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF  
The wakeup pattern, the alternative wakeup pattern and the wakeup frame lead to identical wakeup treatment and signaling.  
Local Wakeup Detection  
The highvoltage input WAKE is monitored in  
lowpower modes and under the condition of sufficient  
Internal pullup and pulldown current sources are  
connected to WAKE pin in order to minimize the risk of  
parasitic toggling. The current source polarity is  
automatically selected based on the WAKE input signal  
polarity – when the voltage on WAKE stays stable High  
(Low) for longer than dWakePulseFilter, the internal current  
source is switched to pullup (pulldown).  
V
BAT  
supply level. If a falling edge is recognized on WAKE  
pin, a local wakeup is detected. In order to avoid false  
wakeups, the Low level after the falling edge must be longer  
than dWakePulseFilter in order for the wakeup to be valid.  
The WAKE pin can be used, for example, for switch or  
contact monitoring.  
www.onsemi.com  
20  
 
NCV7381C  
ERRN Pin and Status Register  
Provided V supply is present together with either V  
state of the internal “Error” or the wakeup source (See  
Table 4).  
The polarity of the indication is reversed – ERRN pin is  
pulled Low when the “Error” flag is set. The signaling on pin  
ERRN functions in all operating modes.  
IO  
BAT  
or V , the digital output ERRN indicates the state of the  
CC  
internal “Error” flag when in Normal mode and the state of  
the internal “Wake” flag when in Standby, GotoSleep or  
Sleep. In Receiveonly mode ERRN indicates either the  
Table 4. SIGNALING ON ERRN PIN  
STBN  
EN  
Conditions  
Error flag  
Wake flag  
ERRN  
High  
Low  
not set  
x
High  
High  
set  
x
not set  
x
x
High  
Low  
EN has been set to High after previous wakeup  
set  
x
High  
Low  
Low  
x
Set local  
Set remote  
not set  
set  
High  
Low  
EN has not been set to High after previous wakeup  
x
x
High  
Low  
x
Additionally, a full set of internal bits referred to as status  
register can be read through ERRN pin with EN pin used as  
a clock signal – the status register content is described in  
Table 5 while an example of the readout waveforms is  
shown in Figure 12 and Figure 13. The individual status bits  
are channeled to ERRN pin with reversed polarity (if a status  
bit is set, ERRN is pulled Low) at the falling edge on EN pin  
(the status register starts to be shifted only at the second  
falling edge). As long as the EN pin toggling period falls in  
the readout continues. As soon as the EN level is stable for  
more than dBDModeChange, the readout is considered as  
finished and the operating mode is changed according the  
current EN value. At the same time, the status register bits  
S4 to S10 are reset provided the particular bits have been  
readout and the corresponding flags are not set any more –  
see Table 5. The status register readout always starts with  
bit S0 and the exact number of bits shifted to ERRN during  
the readout is not relevant.  
the dEN  
range, the operating mode is not changed and  
STAT  
Table 5. STATUS REGISTER  
Reset after Finished  
Bit Number  
Status Bit Content  
Note  
Readout  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
Local wakeup flag  
Remote wakeup flag  
not used; always High  
Poweron status  
reflects directly the corresponding flag  
no  
no  
Bus error status  
Thermal shutdown status  
Thermal warning status  
TxEN Timeout status  
yes, if the  
corresponding flag is  
reset and the bit was  
readout  
the status bit is set if the corresponding flag  
was set previously (the respective High level of  
the flag is latched in its status counterpart)  
V
Undervoltage status  
Undervoltage status  
Undervoltage status  
BAT  
V
CC  
V
IO  
Normal mode: BGE pin logical state (Note 14)  
Other modes: Low  
S11  
BGE Feedback  
S12S15  
S16S23  
S24S31  
not used; always Low  
no  
Version of the NCV7381C analog  
part  
fixed values identifying the production masks  
version  
no  
Version of the NCV7381C digital part  
14.The BGE pin state is latched during status register readout at rising edge of the EN pin.  
www.onsemi.com  
21  
 
NCV7381C  
ReceiveOnly  
Normal  
Mode  
Mode  
STBN  
EN  
dEN  
dEN  
STAT_H  
STAT_L  
dEN  
STAT  
dBDModeChange  
Sx  
dEN_ERRN  
S1  
ERRN  
Error Flag  
S0  
Error Flag  
Figure 12. Example of the Status Register Readout (Started with EN High)  
ReceiveOnly  
Mode  
STBN  
EN  
dEN  
dEN  
STAT_H  
STAT_L  
dEN  
STAT  
dBDModeChange  
Sx  
dEN_ERRN  
S1  
Error Flag  
ERRN  
S0  
Error Flag  
Figure 13. Example of the Status Register Readout (Started with EN Low)  
www.onsemi.com  
22  
NCV7381C  
TYPICAL CHARACTERISTICS  
700  
600  
1200  
TEMP = 25°C  
V
IO  
= 3.3 V  
TEMP = 25°C  
V
= 3.3 V  
IO  
1000  
800  
600  
400  
500  
400  
300  
200  
V
IO  
= 5 V  
V
= 5 V  
IO  
200  
0
100  
0
0
5
10  
15  
iRxD (mA)  
20  
25  
30  
0
5
10  
15  
iRxD (mA)  
20  
25  
30  
OL  
OH  
Figure 14. RxD Low Output Characteristic  
Figure 15. RxD High Output Characteristic  
300  
V
BAT  
= 14 V  
TEMP = 25°C  
250  
200  
150  
100  
V
BAT  
= 4.9 V  
50  
0
0
1
2
3
4
5
iINH (mA)  
Figure 16. INH Not_Sleep Output  
Characteristic  
www.onsemi.com  
23  
NCV7381C  
100 nF  
100 nF  
VCC  
100 nF  
14 5.0  
VDC VDC  
VIO  
TxD  
VBAT  
BP  
RBUS  
CBUS  
NCV7381C  
RxD  
BM  
25 pF  
GND  
Figure 17. Test Setup for Dynamic Characteristics  
3x 100 nF MLCC || 3x 22 mF ELCO  
ISO 76372  
pulse  
generator  
33 kW  
V
14  
5.0 3.3  
V
V
BAT  
CC  
IO  
1 nF  
V
V
V
DC DC  
DC  
WAKE  
ISO 76372  
pulse  
3.3 kW  
330 pF  
330 pF  
generator  
NCV7381C  
TxD  
RxD  
BP  
R
BUS  
56 W  
ISO 76372  
pulse  
generator  
BM  
15 pF  
GND  
Figure 18. Test Setup for Measuring the Transient Immunity  
ORDERING INFORMATION  
Part Number  
Container  
Type  
Quantity  
Description  
FlexRay Transceiver, Clamp 30, High Temperature  
Package  
NCV7381CDP0R2G  
SSOP 16 GREEN  
Tape & Reel  
2000  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
FlexRay is a registered trademark of Daimler Chrysler AG.  
www.onsemi.com  
24  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SSOP 16  
CASE 565AE01  
ISSUE O  
DATE 19 SEP 2008  
98AON34903E  
ON SEMICONDUCTOR STANDARD  
DOCUMENT NUMBER:  
STATUS:  
Electronic versions are uncontrolled except when  
accessed directly from the Document Repository. Printed  
versions are uncontrolled except when stamped  
“CONTROLLED COPY” in red.  
REFERENCE:  
DESCRIPTION: SSOP 16  
PAGE 1 OF2
DOCUMENT NUMBER:  
98AON34903E  
PAGE 2 OF 2  
ISSUE  
REVISION  
DATE  
O
RELEASED FOR PRODUCTION FROM POD #6000212 TO ON SEMICONDUCTOR.  
REQ. BY B. BERGMAN.  
19 SEP 2008  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
© Semiconductor Components Industries, LLC, 2008  
Case Outline Number:  
September, 2008 Rev. 01O  
565AE  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCV7381DP0G

FlexRay Bus Driver
ONSEMI

NCV7381DP0R2G

FlexRay Bus Driver
ONSEMI

NCV7381_16

FlexRay Bus Driver
ONSEMI

NCV7382

Enhanced LIN Transceiver
ONSEMI

NCV7382/D

Enhanced LIN Transceiver
ETC

NCV7382D

Enhanced LIN Transceiver
ONSEMI

NCV7382DG

Enhanced LIN Transceiver
ONSEMI

NCV7382DR2

Enhanced LIN Transceiver
ONSEMI

NCV7382DR2G

Enhanced LIN Transceiver
ONSEMI

NCV7382_07

Enhanced LIN Transceiver
ONSEMI

NCV7383

FlexRay Bus Driver
ONSEMI

NCV7383DB0R2G

FlexRay Bus Driver
ONSEMI