NCV57201DR2G [ONSEMI]

Half Bridge Gate Driver (Isolated High Side & Non-Isolated Low Side);
NCV57201DR2G
型号: NCV57201DR2G
厂家: ONSEMI    ONSEMI
描述:

Half Bridge Gate Driver (Isolated High Side & Non-Isolated Low Side)

文件: 总18页 (文件大小:690K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Half Bridge Gate Driver  
(Isolated High &  
Non-Isolated Low)  
NCD57201, NCV57201  
The NCx57201 is a high voltage gate driver with one nonisolated  
low side gate driver and one galvanically isolated high or low side gate  
driver. It can directly drive two IGBTs in a half bridge configuration.  
Isolated high side driver can be powered with an isolated power supply  
or with Bootstrap technique from the low side power supply.  
www.onsemi.com  
The galvanic isolation for the high side gate driver guarantees  
reliable switching in high power applications for IGBTs that operate  
up to 800 V, at high dv/dt. The optimized output stages provide a mean  
of reducing IGBT losses. Its features include two independent inputs,  
accurate asymmetric UVLOs, and short and matched propagation  
delays. The NCx57201 operates with its VDD/VBS up to 20 V.  
8
1
SOIC8 NB  
CASE 75107  
NOTE: x = D or V  
MARKING DIAGRAM  
Features  
8
High Peak Output Current (+1.9 A/2.3 A)  
Low Output Voltage Drop for Enhanced IGBT Conduction  
Floating Channel for Bootstrap Operation up to +800 V  
CMTI up to 100 kV/ms  
57201  
ALYWX  
G
1
Reliable Operation for V Negative Swing to 800 V  
S
VDD & VBS Supply Range up to 20 V  
3.3 V, 5 V, and 15 V Logic Input  
Asymmetric Under Voltage Lockout Thresholds for High Side and  
Low Side  
Matched Propagation Delay 90 ns  
Builtin 20 ns Minimum Pulse Width Filter (or Input Noise Filter)  
NonInverting Output Signal  
57201  
A
L
Y
W
G
= Specific Device Code  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
PIN CONNECTIONS  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
VDD  
HIN  
VB  
HO  
VS  
This Device is PbFree, Halogen Free/BFR Free and is RoHS  
Compliant  
LIN  
Typical Applications  
GND  
LO  
Fans, Pumps  
Home Appliances  
Consumer Electronics  
General Purpose Half Bridge Applications  
Automotive Applications  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 15 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2020  
1
Publication Order Number:  
January, 2021 Rev. 1  
NCD57201/D  
NCD57201, NCV57201  
V
B
V
DD  
V
DD  
UVLO2  
HO  
Minimum  
Pulse  
Width  
Input  
Logic  
Output  
Logic  
HIN  
V
S
V
DD  
UVLO1  
LO  
Minimum  
Pulse  
Width  
Matching  
Delay  
LIN  
GND  
Figure 1. Simplified Block Diagram  
V
DD  
V
DD  
V
B
HIN  
LIN  
HO  
V
S
GND  
LO  
Figure 2. Simplified Application Schematics  
www.onsemi.com  
2
 
NCD57201, NCV57201  
Table 1. FUNCTION DESCRIPTION  
Pin Name  
No.  
I/O  
Description  
V
DD  
1
Power  
Low side and main power supply. A good quality bypassing capacitor is required from this pin to  
GND and should be placed close to the pins for best results.  
The under voltage lockout (UVLO) circuit enables the device to operate at power on when  
a typical supply voltage higher than V  
is present. Please see Figure 5 for more  
DD  
UVLO1OUTON  
details. A filter time t  
helps to suppress noise on V pin.  
UVF1  
HIN  
LIN  
2
3
I
I
High side non-inverting gate driver input. It has an equivalent pulldown resistor of 125 kW to  
ensure that output is low in the absence of an input signal. A minimum positive or negative going  
pulse width is required at HIN before HO reacts.  
It adopts 3.3 V logic signal thresholds for input voltage up to V  
.
DD  
Low side non-inverting gate driver input. It has an equivalent pulldown resistor of 125 kW to  
ensure that output is low in the absence of an input signal. A minimum positive or negative going  
pulse width is required at LIN before LO reacts.  
It adopts 3.3 V logic signal thresholds for input voltage up to V  
.
DD  
GND  
LO  
4
5
Power  
O
Logic ground and low side driver return.  
Low side driver output that provides the appropriate drive voltage and source/sink current to the  
IGBT gate. LO is actively pulled low during startup and under UVLO1 condition.  
V
6
7
Power  
O
Bootstrap return or high side floating supply offset.  
S
HO  
Galvanically isolated high side driver output that provides the appropriate drive voltage and  
source/sink current to the IGBT gate. HO is actively pulled low during startup and under UVLOx  
condition.  
V
B
8
Power  
Bootstrap or high side floating power supply. A good quality bypassing capacitor is required from  
this pin to V and should be placed close to the pins for best results.  
S
The under voltage lockout (UVLO) circuit enables the device to operate at power on when  
a typical supply voltage higher than V  
is present. Please see Figure 5 for more  
B
UVLO2OUTON  
details. A filter time t  
helps to suppress noise on V pin.  
UVF2  
Table 2. SAFETY AND INSULATION RATINGS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Installation Classifications per DIN VDE 0110/1.89  
Table 1 Rated Mains Voltage  
< 150 V  
< 300 V  
< 450 V  
< 600 V  
RMS  
RMS  
RMS  
RMS  
< 1000 V  
RMS  
CTI  
Comparative Tracking Index (DIN IEC 112/VDE 0303 Part 1)  
Maximum Working Insulation Voltage  
External Creepage  
600  
800  
4.0  
4.0  
8.65  
150  
75  
V
IORM  
V
PK  
E
CR  
mm  
mm  
mm  
°C  
E
CL  
External Clearance  
DTI  
Insulation Thickness  
Safety Limit Values – Maximum Values in Failure; Case Temperature  
Safety Limit Values – Maximum Values in Failure; Input Power  
Safety Limit Values – Maximum Values in Failure; Output Power  
T
Case  
P
mW  
mW  
W
S,INPUT  
P
1335  
S,OUTPUT  
9
R
Insulation Resistance at TS, V = 500 V  
IO  
IO  
10  
www.onsemi.com  
3
NCD57201, NCV57201  
Table 3. ABSOLUTE MAXIMUM RATINGS (Note 1) Over operating freeair temperature range unless otherwise noted  
Parameter  
HighSide Offset Voltage (see Figure 2)  
HighSide Supply Voltage (see Figure 2)  
Symbol  
Min  
900  
900  
Max  
900  
900  
Unit  
V
V
S
B
V
V
LowSide Supply Voltage  
V
0.3  
0.3  
25  
25  
V
V
DD  
HighSide Floating Supply Voltage  
V
BS  
V
+0.3  
HighSide Output Voltage (HO) (see Figure 2)  
LowSide Output Voltage (LO)  
V
V 0.3  
BS  
DD  
DD  
V
V
HO  
S
V
0.3  
V
V
+0.3  
+0.3  
LO  
Logic Input Voltage (HIN, LIN)  
V
0.3  
V
IN  
Allowable Offset Voltage Slew Rate (see Figure 31)  
dV /dt  
100  
V/ns  
°C  
°C  
W
S
Maximum Junction Temperature  
T
40  
65  
150  
150  
0.87  
1.41  
4
J(max)  
Storage Temperature Range  
T
STG  
Power Dissipation 1 (Note 2)  
P
P
D1  
Power Dissipation 2 (Note 2)  
W
D2  
ESD Capability, Human Body Model (Note 3)  
ESD Capability, Charged Device Model (Note 3)  
Moisture Sensitivity Level  
ESD  
ESD  
kV  
kV  
HBM  
2
CDM  
MSL  
1
Lead Temperature Soldering Reflow  
(SMD Styles Only), PbFree Versions (Note 4)  
T
SLD  
260  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. The value is estimated for ambient temperature 25°C and junction temperature 150°C  
2
2
P
P
for 100 mm , 2 oz. copper, 1 surface layer.  
D1  
D2  
for 100 mm , 2 oz. copper, 2 surface layers and 2 internal power plane layers.  
Power dissipation is affected by the PCB design and ambient temperature.  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114).  
ESD Charged Device Model tested per AECQ100011 (EIA/JESD22C101).  
Latchup Current Maximum Rating: 100 mA per JEDEC standard: JESD78, 125°C.  
4. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  
Table 4. THERMAL CHARACTERISTICS  
Parameter  
Conditions  
Symbol  
Value  
Unit  
2
Thermal Resistance, JunctiontoAir  
R
°C/W  
167  
100 mm , 1 oz Copper, 1 Surface Layer  
q
JA  
2
98  
650 mm , 1 oz Copper, 2 Surface Layers  
and 2 Internal Power Plane Layers  
Table 5. RECOMMENDED OPERATING RANGES (Note 5)  
Parameter  
Symbol  
Min  
Max  
Unit  
V
HighSide Floating Supply Voltage  
HighSide Offset Voltage (see Figure 2)  
HighSide Output Voltage (HO) (see Figure 2)  
LowSide Output Voltage (LO)  
V
BS  
V +UVLO2  
V +20  
S
S
V
S
800  
800  
V
V
HO  
V
S
V
V
BS  
DD  
DD  
V
LO  
GND  
GND  
V
V
V
Logic Input Voltage (HIN, LIN)  
V
IN  
V
LowSide Supply Voltage  
V
UVLO1  
40  
20  
+125  
V
DD  
Ambient Temperature  
T
°C  
A
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
5. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
www.onsemi.com  
4
 
NCD57201, NCV57201  
Table 6. ELECTRICAL CHARACTERISTICS V = V = 15 V.  
DD  
BS  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
VOLTAGE SUPPLY  
V
Supply Under Voltage  
V
V
11  
10  
0.4  
12  
11  
11.5  
10.5  
1.0  
12  
11  
V
V
BS  
UVLO2OUT  
ON  
Output Enabled  
V
BS  
Supply Under Voltage  
UVLO2OUT  
OFF  
Output Disabled  
V
BS  
Supply Voltage Output  
V
1.2  
13  
12  
1.2  
V
UVLO2HYST  
Enabled/Disabled Hysteresis  
V
DD  
Supply Under Voltage  
V
12.5  
11.5  
1.0  
V
UVLO1OUT  
ON  
Output Enabled  
V
DD  
Supply Under Voltage  
V
V
UVLO1OUT  
OFF  
Output Disabled  
V
DD  
Supply Voltage Output  
V
0.5  
V
UVLO1HYST  
Enabled/Disabled Hysteresis  
Leakage Current Between V and  
V
=
800 V, T = 25°C  
I
I
20  
200  
600  
nA  
S
S
A
HV_LEAK1  
GND  
VS = 800 V, TA = 40°C to 125°C  
HO = Low  
HV_LEAK2  
Quiescent Current V Supply  
I
I
260  
330  
380  
440  
2.4  
325  
440  
440  
510  
3
mA  
mA  
mA  
mA  
mA  
BS  
QBS1  
QBS2  
QDD1  
QDD2  
QDD3  
(V Only)  
B
Quiescent Current V Supply  
HO = High  
BS  
(V Only)  
B
Quiescent Current V Supply  
V
LIN  
V
LIN  
V
LIN  
= Float, V  
= 3.3 V, V  
= 0 V  
= 0 V  
I
I
I
DD  
HIN  
(V Only)  
DD  
Quiescent Current V Supply  
DD  
HIN  
(V Only)  
DD  
Quiescent Current V Supply  
= 0 V, V  
= 3.3 V  
DD  
HIN  
(V Only)  
DD  
LOGIC INPUT  
Low Level Input Voltage  
High Level Input Voltage  
Logic “1” Input Bias Current  
Logic “1” Input Bias Current  
V
2.4  
0.9  
V
V
IL  
V
IH  
V
= 3.3 V, V  
= 3.3 V  
= 20 V,  
I
, I  
LIN1+ HIN1+  
25  
100  
50  
150  
mA  
mA  
LIN  
HIN  
V
LIN  
V
DD  
= 20 V, V  
I
, I  
LIN2+ HIN2+  
HIN  
= V  
= 20 V  
BS  
Logic “0” Input Bias Current  
DRIVER OUTPUT  
V
= 0 V, V  
= 0 V  
I
, I  
40  
100  
nA  
V
LIN  
HIN  
LINHIN−  
Output Low State  
I
= 200 mA, T = 25°C  
V
0.2  
0.3  
0.5  
SINK  
SINK  
A
OL1  
I
= 200 mA,  
V
OL2  
T = 40°C to 125°C  
A
Output High State  
I
= 200 mA, T = 25°C  
V
14.4  
14  
14.5  
V
A
A
SOURCE  
A
OH1  
OH2  
I
= 200 mA,  
V
SOURCE  
A
T = 40°C to 125°C  
Peak Driver Current, Sink  
(Note 6)  
V
HO  
= V = 15 V  
I
I
2.3  
2.1  
LO  
PK SNK1  
V
= V = 9 V  
HO  
LO  
PK SNK2  
(near Miller Plateau)  
Peak Driver Current, Source  
(Note 6)  
V
V
= V = 0 V  
I
1.9  
1.5  
HO  
LO  
PK SRC1  
= V = 9 V  
I
HO  
LO  
PK SRC2  
(near Miller Plateau)  
www.onsemi.com  
5
 
NCD57201, NCV57201  
Table 6. ELECTRICAL CHARACTERISTICS V = V = 15 V.  
DD  
BS  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
IGBT SHORT CIRCUIT CLAMPING  
Clamping Voltage  
I
= 100 mA, I = 100 mA  
V
0.8  
1.3  
V
HO  
LO  
CLAMPOUT  
(V – V ) / (V – V  
)
(pulse test, t  
= 10 ms)  
HO  
B
LO  
DD  
CLPmax  
DYNAMIC CHARACTERISTIC  
HO High Propagation Delay  
C
= 1 nF, V to 10% of Output  
t
PDONH  
50  
50  
25  
50  
50  
25  
25  
25  
70  
70  
0
110  
110  
25  
110  
110  
25  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LOAD  
IH  
Change for PW > 150 ns  
HO Low Propagation Delay  
C
= 1 nF, V to 90% of Output  
t
LOAD  
IL  
PDOFFH  
t
DISTORTH  
Change for PW > 150 ns  
Propagation Delay Distortion(HS)  
PW > 150 ns  
(= t  
t  
)
PDONH  
PDOFFH  
LO High Propagation Delay  
LO Low Propagation Delay  
Propagation Delay Distortion(LS)  
C
= 1 nF, V to 10% of Output  
t
PDONL  
70  
70  
0
LOAD  
IH  
Change for PW > 150 ns  
C
= 1 nF, V to 90% of Output  
t
LOAD  
IL  
PDOFFL  
DISTORTL  
Change for PW > 150 ns  
PW > 150 ns  
t
(= t  
t  
)
PDONL  
PDOFFL  
High Propagation Delay Distortion  
between High and Low Sides  
PW > 150 ns  
PW > 150 ns  
t
0
DISTORTHLH  
Low Propagation Delay Distortion  
between High and Low Sides  
t
0
DISTORTHLL  
Rise Time (HO) (see Figure 3)  
Fall Time (HO) (see Figure 3)  
Rise Time (LO) (see Figure 3)  
Fall Time (LO) (see Figure 3)  
C
= 1 nF,  
t
t
13  
8
LOAD  
RISEH  
10% to 90% of Output Change  
C
= 1 nF,  
LOAD  
FALLH  
90% to 10% of Output Change  
C
= 1 nF,  
t
13  
8
LOAD  
RISEL  
10% to 90% of Output Change  
C
= 1 nF,  
t
LOAD  
FALLL  
90% to 10% of Output Change  
Minimum Pulse Width Filtering Time  
(see Figure 3)  
T = 25°C  
A
t
, t  
10  
40  
MIN1 MIN2  
UVLO Fall Delay (HO and LO)  
UVLO Rise Delay (HO and LO)  
t
t
1300  
1100  
ns  
ns  
UVF1, UVF2  
t
t
UVR1, UVR2  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. Values based on design and/or characterization.  
www.onsemi.com  
6
NCD57201, NCV57201  
V
IH  
V
IL  
HIN/LIN  
t
t
MIN2  
t
RISEX  
FALLX  
90%  
t
PDONX  
t
MIN1  
t
PDOFFX  
HO/LO  
10%  
Figure 3. Propagation Delay, Rise and Fall Time  
V
DD  
HIN  
LIN  
Clamping  
Circuit  
Figure 4. Input Pin Structure  
HIN/LIN  
V
UVLOxOUTON  
V
UVLOxOUTOFF  
t
t
UVFX  
V /V  
DD BS  
UVFX  
V
V
UVLOxOUTON  
UVLOxOUTOFF  
HO/LO  
Figure 5. UVLO  
www.onsemi.com  
7
 
NCD57201, NCV57201  
Figure 6. Timing Diagrams  
www.onsemi.com  
8
 
NCD57201, NCV57201  
TYPICAL CHARACTERISTICS  
0.5  
0.5  
0.45  
0.45  
(2)  
0.4  
0.4  
0.35  
0.3  
(2)  
(1)  
(1)  
0.35  
0.3  
40 20  
0
20  
40  
60  
80  
100  
120 125  
40 20  
0
20  
40  
60  
80  
100 120 125  
Temperature [5C]  
BS  
Temperature [5C]  
(1) V = 20 V, V = 15 V, LIN = FLOAT, HIN = LOW  
(1) V = 15 V, V = 15 V, LIN = FLOAT, HIN = LOW  
DD  
BS  
DD  
(2) V = 20 V, V = 15 V, LIN = 3.3 V, HIN = LOW  
(2) V = 15 V, V = 15 V, LIN = 3.3 V, HIN = LOW  
DD  
BS  
DD  
BS  
Figure 7. IDD Supply Current VDD = 15 V  
Figure 8. IDD Supply Current VDD = 20 V  
0.5  
8
7
(3)  
6
5
4
3
2
1
0
0.45  
0.4  
(3)  
(2)  
(1)  
(2)  
0.35  
0.3  
(1)  
40 20  
40 20  
0
20  
40  
60  
80  
100  
120 125  
0
20  
40  
60  
80  
100  
120 125  
Temperature [5C]  
Temperature [5C]  
(1) V = 15 V, V = 15 V, LIN = FLOAT, HIN = LOW  
(1) V = 15 V, V = 15 V, LIN = HIN = 20 kHz / 50%  
DD BS  
DD  
BS  
(2) V = 20 V, V = 15 V, LIN = FLOAT, HIN = LOW  
(2) V = 20 V, V = 15 V, LIN = HIN = 20 kHz / 50%  
DD  
BS  
DD  
DD  
BS  
(3) V = 25 V, V = 15 V, LIN = HIN = 20 kHz / 50%  
(3) V = 25 V, V = 15 V, LIN = FLOAT, HIN = LOW  
BS  
DD  
BS  
Figure 9. IDD Supply Current VDD = 15–25 V, Input Float  
Figure 10. IDD Supply Current VDD = 15–25 V,  
LIN = HIN = 20 kHz / 50%  
1
2
1.8  
1.6  
1.4  
1.2  
1
0.9  
(3)  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
(3)  
0.8  
0.6  
0.4  
0.2  
0
(2)  
(1)  
(2)  
(1)  
0.1  
0
40 20  
0
20  
40  
60  
80  
100  
120 125  
40 20  
0
20  
40  
60  
80  
100  
120 125  
Temperature [5C]  
Temperature [5C]  
(1) V = 15 V, V = 15 V, LIN = LOW, HIN = LOW  
(1) V = 15 V, V = 25 V, LIN = LOW, HIN = LOW  
DD  
BS  
DD  
BS  
(2) V = 15 V, V = 15 V, LIN = LOW, HIN = 3.3V  
(2) V = 15 V, V = 25 V, LIN = LOW, HIN = 3.3 V  
DD  
DD  
BS  
DD  
DD  
BS  
(3) V = 15 V, V = 25 V, LIN = LOW, HIN = 20 kHz / 50%  
(3) V = 15 V, V = 15 V, LIN = LOW, HIN = 50%  
BS  
BS  
Figure 11. IBS Supply Current VBS = 15 V  
Figure 12. IBS Supply Current VBS = 25 V  
www.onsemi.com  
9
NCD57201, NCV57201  
TYPICAL CHARACTERISTICS (continued)  
2
2.2  
1.8  
(2)  
2
(1)  
(3)  
(2)  
(1)  
1.6  
1.4  
1.2  
1.8  
1
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
(3)  
1.2  
(4)  
1
40 20  
0
20  
40  
60  
80  
100 120 125  
40 20  
0
20  
40  
60  
80  
100 120 125  
Temperature [5C]  
Temperature [5C]  
(1) V = 15 V, V = 15 V, LIN = LOW, HIN = 50%  
(1) V , LIN = HIGH  
(2) V , HIN = HIGH  
DD  
BS  
IH  
IH  
(2) V = 15 V, V = 20 V, LIN = LOW, HIN = 50%  
DD  
BS  
(3) V , LIN = LOW  
(4) V , HIN = LOW  
IL  
IL  
(3) V = 15 V, V = 25 V, LIN = LOW, HIN = 50%  
DD  
BS  
Figure 13. IBS Supply Current VBS = 15–25 V,  
HIN = 20 kHz / 50%  
Figure 14. Input Voltage Level  
1.2  
1.1  
1
13  
(1)  
12.5  
12  
(2)  
(3)  
11.5  
11  
0.9  
0.8  
0.7  
0.6  
(2)  
(1)  
(4)  
10.5  
10  
40 20  
0
20  
40  
60  
80  
100 120 125  
40 20  
0
20  
40  
60  
80  
100 120 125  
Temperature [5C]  
Temperature [5C]  
(1) V  
(2) V  
UVLO1HYST  
(1) V  
(2) V  
(3) V  
UVLO1OUTON  
UVLO1OUTOFF  
UVLO2OUTON  
UVLO2OUTOFF  
(4) V  
UVLO2HYST  
Figure 15. UVLO Hysteresis  
Figure 16. UVLO Threshold Voltage  
28  
27  
26  
25  
24  
105  
100  
95  
(2)  
(1)  
(2)  
(1)  
90  
40 20  
0
20  
40  
60  
80  
100 120 125  
40 20  
0
20  
40  
60  
80  
100 120 125  
Temperature [5C]  
Temperature [5C]  
(1) I  
(2) I  
, LIN = 3.3 V, V = V = 15V  
(1) I  
(2) I  
, LIN = 20 V, V = V = 20 V  
LIN2+  
HIN2+  
LIN1+  
DD BS  
DD BS  
, HIN = 3.3 V, V = V = 15V  
DD BS  
, HIN = 20 V, V = V = 20 V  
HIN1+  
DD  
BS  
Figure 17. Input Current VDD = VBS = 15 V  
Figure 18. Input Current VDD = VBS = 20 V  
www.onsemi.com  
10  
NCD57201, NCV57201  
TYPICAL CHARACTERISTICS (continued)  
90  
85  
80  
75  
70  
65  
90  
(1)  
(1)  
(2)  
85  
80  
75  
70  
65  
(2)  
40 20  
0
20  
40  
60  
80  
100 120 125  
, V = 15 V  
40 20  
0
20  
40  
60  
80  
100 120 125  
, V = 15 V  
Temperature [5C]  
, V = 15 V  
Temperature [5C]  
, V = 15 V  
(1) t  
(1) t  
(2) t  
(2) t  
PDONH BS  
PDONL DD  
PDOFFH BS  
PDOFFL DD  
Figure 20. HO Propagation Delay  
Figure 21. LO Propagation Delay  
14  
12  
10  
8
1
(1)  
(2)  
(2)  
(1)  
0.9  
0.8  
0.7  
6
4
2
40 20  
0
20  
40  
60  
80  
100 120 125  
40 20  
0
20  
40  
60  
80  
100 120 125  
, V = 15 V  
Temperature [5C]  
Temperature [5C]  
, V = 15 V  
(1) t  
(2) t  
DISTORTH BS  
DISTORTL DD  
(1) V V  
(2) V V  
LO DD  
HO  
BS  
Figure 24. Propagation Delay Distortion  
Figure 19. IGBT Short Circuit CLAMP Voltage Drop  
24  
22  
20  
18  
16  
14  
12  
10  
8
18  
17  
16  
15  
14  
13  
12  
(3)  
(1)  
(1)(3)  
(2)(4)  
(4)  
(2)  
11  
10  
40 20  
0
20  
40  
60  
80  
100  
120 125  
50  
25  
0
25  
50  
75  
100  
125  
Temperature [5C]  
Temperature [5C]  
(1) t  
, V = 15 V  
(3) t  
, V = 20 V  
(3) t  
, V = 20 V  
RISEL DD  
(1) t  
(2) t  
, V = 15 V  
RISEH BS  
RISEH BS  
RISEL DD  
(4) t  
, V = 20 V  
(4) t  
, V = 20 V  
FALLL DD  
(2) t  
, V = 15 V  
, V = 15 V  
FALLL DD  
FALLH BS  
FALLH BS  
Figure 23. LO Rise – Fall Time  
Figure 22. HO Rise – Fall Time  
www.onsemi.com  
11  
NCD57201, NCV57201  
TYPICAL CHARACTERISTICS (continued)  
24  
26  
(4)  
25  
23.5 (3)  
(3)  
(4)  
23  
24  
23  
22.5  
22  
22  
(1)  
21  
(2)  
21.5  
(1)  
20  
(2)  
21  
40 20  
19  
0
20  
40  
60  
80  
100  
120 125  
40 20  
0
20  
40  
60  
80  
100  
V
120 125  
Temperature [5C]  
Temperature [5C]  
(3) t  
(4) t  
= 15 V  
(1) t  
(2) t  
V
= 15 V  
(3) t  
V
= 15 V  
(1) t V = 15 V  
MIN1H BS  
MIN2H BS  
MIN1L DD  
MIN2L DD  
(2) t  
V
= 20 V  
V
= 20 V  
MIN1H BS  
MIN2H BS  
V
= 20 V  
(4) t  
V
= 20 V  
MIN1L DD  
MIN2L DD  
Figure 25. Minimum Pulse Width Filtering  
Time (LO)  
Figure 26. Minimum Pulse Width Filtering  
Time (HO)  
1.9  
(4)  
20  
18  
16  
14  
12  
10  
8
(3)  
(2)  
(1)  
1.8  
(1)  
1.7  
(2)  
1.6  
(3)  
1.5  
6
1.4  
1.3  
1.2  
4
2
0
1
10  
100  
1000  
40 20  
0
20  
40  
60  
80  
100  
120 125  
Frequency [kHz]  
Temperature [5C]  
(1) C = 1 nF  
(3) C = 100 nF  
(2) C = 10 nF  
G
G
(1) t  
(3) t  
(2) t  
(4) t  
UVF1  
UVF2  
UVR1  
G
UVR2  
Figure 27. UVLO Delay  
Figure 28. Power Supply Current vs. Switching  
Frequency (Duty Cycle 50%)  
www.onsemi.com  
12  
NCD57201, NCV57201  
Under Voltage Lockout (UVLO)  
UVLO ensures correct switching of IGBT connected to  
the driver output.  
For reliable high output current suitable external power  
capacitors are required. Parallel combination of 100 nF +  
4.7 mF ceramic capacitors is optimal for a wide range of  
applications using IGBT. For reliable driving of IGBT  
modules (containing several parallel IGBTs) a higher  
capacitance is required (typically 100 nF + 10 mF).  
Capacitors should be as close as possible to the driver’s  
power pins.  
The IGBT is turnedoff, if the supply V drops below  
DD  
V
or V drops below V  
BS UVLO2OUTOFF  
UVLO1OUTOFF  
The driver outputs do not react to their respective input  
signal HIN or LIN until V and V rise above their  
DD  
BS  
level  
corresponding V  
UVLOXOUT_ON  
Power supply of isolated (HO) channel can be provided by  
an external DC power supply or Bootstrap circuit.  
Power Supply (VDD, VBS  
)
NCx57201 is designed to support unipolar power supply  
on both individual channels.  
V
DD  
V
B
V
DD  
V
BS  
HIN  
HO  
10 mF  
100 nF  
+
+
LIN  
V
S
100 nF 10 mF  
LO  
GND  
Figure 29. Unipolar Power Supply  
V
DD  
V
B
R
GH  
GL  
10 mF  
100 nF  
HIN  
HO  
V
DD  
+
LIN  
V
S
10 mF  
100 nF  
LO  
GND  
R
Figure 30. Bootstrap Power Supply  
Signal Inputs (HIN, LIN)  
Inputs of NCx57201 are active high. Outputs are in phase  
with inputs signals respecting internal logic (see Figure 5,  
6).  
WARNING: When the application uses an independent or  
separate power supply for the control unit on  
the input side of the driver, all inputs should  
be protected by a serial resistor (In case of  
a power failure of the driver, the driver may  
be damaged due to overloading of the input  
protection circuits).  
www.onsemi.com  
13  
NCD57201, NCV57201  
Common Mode Transient Immunity (CMTI)  
10 mF  
+
15 V  
V
DD  
V
B
+
S1  
HIN  
LIN  
HO  
HO must remain stable  
V
S
GND  
LO  
15 V  
+
10 mF  
HV PULSE  
FLOATING  
Figure 31. CMTI Test Setup  
(Test Conditions: HV PULSE = 900 V, dV/dt = 1100 V/ns, V = 15 V, V = 15 V)  
DD  
B
NOTE: Purple recommended isolation gap.  
Figure 32. Recommended Layout  
High-speed signals  
Ground plane  
10 mils  
0.25 mm  
10 mils  
0.25 mm  
Keep this space free  
40 mils  
1 mm  
40 mils  
1 mm  
from traces, pads and  
vias  
Power plane  
10 mils  
0.25 mm  
10 mils  
0.25 mm  
Low-speed signals  
157 mils  
(4 mm)  
Figure 33. Recommended Layer Stack  
www.onsemi.com  
14  
NCD57201, NCV57201  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCD57201DR2G  
2500 / Tape & Reel  
2500 / Tape & Reel  
SOIC8 (PbFree)  
NCV57201DR2G*  
SOIC8 (PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP  
Capable.  
www.onsemi.com  
15  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
8
1
DATE 16 FEB 2011  
SCALE 1:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
Y
B
0.25 (0.010)  
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
8
1
8
1
8
8
XXXXX  
ALYWX  
XXXXXX  
AYWW  
G
XXXXX  
ALYWX  
XXXXXX  
AYWW  
1.52  
0.060  
G
1
1
Discrete  
Discrete  
(PbFree)  
IC  
IC  
(PbFree)  
7.0  
0.275  
4.0  
0.155  
XXXXX = Specific Device Code  
XXXXXX = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
A
= Assembly Location  
= Year  
Y
Y
W
G
= Year  
= Work Week  
= PbFree Package  
WW  
G
= Work Week  
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 1 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SOIC8 NB  
CASE 75107  
ISSUE AK  
DATE 16 FEB 2011  
STYLE 1:  
STYLE 2:  
STYLE 3:  
STYLE 4:  
PIN 1. EMITTER  
2. COLLECTOR  
3. COLLECTOR  
4. EMITTER  
5. EMITTER  
6. BASE  
PIN 1. COLLECTOR, DIE, #1  
2. COLLECTOR, #1  
3. COLLECTOR, #2  
4. COLLECTOR, #2  
5. BASE, #2  
PIN 1. DRAIN, DIE #1  
2. DRAIN, #1  
3. DRAIN, #2  
4. DRAIN, #2  
5. GATE, #2  
PIN 1. ANODE  
2. ANODE  
3. ANODE  
4. ANODE  
5. ANODE  
6. ANODE  
7. ANODE  
6. EMITTER, #2  
7. BASE, #1  
6. SOURCE, #2  
7. GATE, #1  
7. BASE  
8. EMITTER  
8. EMITTER, #1  
8. SOURCE, #1  
8. COMMON CATHODE  
STYLE 5:  
STYLE 6:  
PIN 1. SOURCE  
2. DRAIN  
STYLE 7:  
STYLE 8:  
PIN 1. COLLECTOR, DIE #1  
2. BASE, #1  
PIN 1. DRAIN  
2. DRAIN  
3. DRAIN  
4. DRAIN  
5. GATE  
PIN 1. INPUT  
2. EXTERNAL BYPASS  
3. THIRD STAGE SOURCE  
4. GROUND  
5. DRAIN  
6. GATE 3  
7. SECOND STAGE Vd  
8. FIRST STAGE Vd  
3. DRAIN  
3. BASE, #2  
4. SOURCE  
5. SOURCE  
6. GATE  
7. GATE  
8. SOURCE  
4. COLLECTOR, #2  
5. COLLECTOR, #2  
6. EMITTER, #2  
7. EMITTER, #1  
8. COLLECTOR, #1  
6. GATE  
7. SOURCE  
8. SOURCE  
STYLE 9:  
STYLE 10:  
PIN 1. GROUND  
2. BIAS 1  
STYLE 11:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 12:  
PIN 1. EMITTER, COMMON  
2. COLLECTOR, DIE #1  
3. COLLECTOR, DIE #2  
4. EMITTER, COMMON  
5. EMITTER, COMMON  
6. BASE, DIE #2  
PIN 1. SOURCE  
2. SOURCE  
3. SOURCE  
4. GATE  
3. OUTPUT  
4. GROUND  
5. GROUND  
6. BIAS 2  
7. INPUT  
8. GROUND  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
7. BASE, DIE #1  
8. EMITTER, COMMON  
STYLE 13:  
PIN 1. N.C.  
2. SOURCE  
3. SOURCE  
4. GATE  
STYLE 14:  
PIN 1. NSOURCE  
2. NGATE  
STYLE 15:  
PIN 1. ANODE 1  
2. ANODE 1  
STYLE 16:  
PIN 1. EMITTER, DIE #1  
2. BASE, DIE #1  
3. PSOURCE  
4. PGATE  
5. PDRAIN  
6. PDRAIN  
7. NDRAIN  
8. NDRAIN  
3. ANODE 1  
4. ANODE 1  
5. CATHODE, COMMON  
6. CATHODE, COMMON  
7. CATHODE, COMMON  
8. CATHODE, COMMON  
3. EMITTER, DIE #2  
4. BASE, DIE #2  
5. COLLECTOR, DIE #2  
6. COLLECTOR, DIE #2  
7. COLLECTOR, DIE #1  
8. COLLECTOR, DIE #1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 17:  
PIN 1. VCC  
2. V2OUT  
3. V1OUT  
4. TXE  
STYLE 18:  
STYLE 19:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 20:  
PIN 1. ANODE  
2. ANODE  
3. SOURCE  
4. GATE  
PIN 1. SOURCE (N)  
2. GATE (N)  
3. SOURCE (P)  
4. GATE (P)  
5. DRAIN  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. MIRROR 2  
7. DRAIN 1  
8. MIRROR 1  
5. RXE  
6. VEE  
7. GND  
8. ACC  
5. DRAIN  
6. DRAIN  
7. CATHODE  
8. CATHODE  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 21:  
STYLE 22:  
STYLE 23:  
STYLE 24:  
PIN 1. CATHODE 1  
2. CATHODE 2  
3. CATHODE 3  
4. CATHODE 4  
5. CATHODE 5  
6. COMMON ANODE  
7. COMMON ANODE  
8. CATHODE 6  
PIN 1. I/O LINE 1  
PIN 1. LINE 1 IN  
PIN 1. BASE  
2. COMMON CATHODE/VCC  
3. COMMON CATHODE/VCC  
4. I/O LINE 3  
5. COMMON ANODE/GND  
6. I/O LINE 4  
7. I/O LINE 5  
8. COMMON ANODE/GND  
2. COMMON ANODE/GND  
3. COMMON ANODE/GND  
4. LINE 2 IN  
2. EMITTER  
3. COLLECTOR/ANODE  
4. COLLECTOR/ANODE  
5. CATHODE  
6. CATHODE  
7. COLLECTOR/ANODE  
8. COLLECTOR/ANODE  
5. LINE 2 OUT  
6. COMMON ANODE/GND  
7. COMMON ANODE/GND  
8. LINE 1 OUT  
STYLE 25:  
PIN 1. VIN  
2. N/C  
STYLE 26:  
PIN 1. GND  
2. dv/dt  
STYLE 27:  
PIN 1. ILIMIT  
2. OVLO  
STYLE 28:  
PIN 1. SW_TO_GND  
2. DASIC_OFF  
3. DASIC_SW_DET  
4. GND  
3. REXT  
4. GND  
5. IOUT  
6. IOUT  
7. IOUT  
8. IOUT  
3. ENABLE  
4. ILIMIT  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. VCC  
3. UVLO  
4. INPUT+  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. DRAIN  
5. V_MON  
6. VBULK  
7. VBULK  
8. VIN  
STYLE 30:  
PIN 1. DRAIN 1  
2. DRAIN 1  
STYLE 29:  
PIN 1. BASE, DIE #1  
2. EMITTER, #1  
3. BASE, #2  
3. GATE 2  
4. SOURCE 2  
5. SOURCE 1/DRAIN 2  
6. SOURCE 1/DRAIN 2  
7. SOURCE 1/DRAIN 2  
8. GATE 1  
4. EMITTER, #2  
5. COLLECTOR, #2  
6. COLLECTOR, #2  
7. COLLECTOR, #1  
8. COLLECTOR, #1  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 2 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCV57252DWR2G

Isolated Dual-Channel IGBT Gate Driver
ONSEMI

NCV57255DR2G

Isolated Dual-Channel IGBT Gate Driver
ONSEMI

NCV57302

3.0 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator
ONSEMI

NCV57302DSADJR4G

3.0 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator
ONSEMI

NCV57530DWKR2G

Isolated Dual-Channel IGBT Gate Driver with >8mm Creepage and Clearance
ONSEMI

NCV57540DWKR2G

Isolated Dual-Channel IGBT Gate Driver with >8mm Creepage and Clearance
ONSEMI

NCV59150

1.5 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator Series
ONSEMI

NCV59150DS18R4G

1.5 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator Series
ONSEMI

NCV59150DS25R4G

1.5 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator Series
ONSEMI

NCV59150DS28R4G

1.5 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator Series
ONSEMI

NCV59150DS30R4G

1.5 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator Series
ONSEMI

NCV59150DS33R4G

1.5 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator Series
ONSEMI