NCV4269APD50R2G [ONSEMI]

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output; 5.0 V微150毫安LDO线性稳压器与延迟,可调复位和检测输出
NCV4269APD50R2G
型号: NCV4269APD50R2G
厂家: ONSEMI    ONSEMI
描述:

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
5.0 V微150毫安LDO线性稳压器与延迟,可调复位和检测输出

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总17页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV4269A  
5.0 V Micropower 150 mA  
LDO Linear Regulator with  
DELAY, Adjustable RESET,  
and Sense Output  
http://onsemi.com  
MARKING  
The NCV4269A is a 5.0 V precision micropower voltage regulator  
with an output current capability of 150 mA.  
DIAGRAMS  
The output voltage is accurate within 2.0% with a maximum  
dropout voltage of 0.5 V at 100 mA. Low quiescent current is a feature  
drawing only 240 mA with a 1.0 mA load. This part is ideal for any and  
all battery operated microprocessor equipment.  
Microprocessor control logic includes an active reset output RO  
with delay and a SI/SO monitor which can be used to provide an early  
warning signal to the microprocessor of a potential impending reset  
signal. The use of the SI/SO monitor allows the microprocessor to  
finish any signal processing before the reset shuts the microprocessor  
down.  
8
SO8  
D SUFFIX  
CASE 751  
4269A5  
ALYW  
8
1
G
1
8
SO8  
EXPOSED PAD  
PD SUFFIX  
4269A5  
ALYW  
G
8
The active Reset circuit operates correctly at an output voltage as  
low as 1.0 V. The Reset function is activated during the power up  
sequence or during normal operation if the output voltage drops  
outside the regulation limits.  
1
CASE 751AC  
1
14  
SO14  
D SUFFIX  
CASE 751A  
The reset threshold voltage can be decreased by the connection of an  
NCV4269A5G  
AWLYWW  
external resistor divider to the R  
lead. The regulator is protected  
ADJ  
14  
against reverse battery, short circuit, and thermal overload conditions.  
The device can withstand load dump transients making it suitable for  
use in automotive environments. The device has also been optimized  
for EMC conditions.  
1
1
20  
20  
SO20  
DW SUFFIX  
CASE 751D  
NCV4269A5  
AWLYYWWG  
Features  
5.0 V 2.0% Output  
Low 240 mA Quiescent Current  
1
1
Active Reset Output Low Down to V = 1.0 V  
Q
A
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
Adjustable Reset Threshold  
150 mA Output Current Capability  
Fault Protection  
G, G  
= Pb Free  
+60 V Peak Transient Voltage  
40 V Reverse Voltage  
Short Circuit  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 13 of this data sheet.  
Thermal Overload  
Early Warning through SI/SO Leads  
Internally Fused Leads in SO14 and SO20 Packages  
Integrated Pullup Resistor at Logic Outputs (To Use External  
Resistors, Select the NCV4279A)  
Very Low Dropout Voltage  
Electrical Parameters Guaranteed Over Entire Temperature Range  
NCV Prefix for Automotive and Other Applications Requiring Site  
and Control Changes  
These are PbFree Devices  
© Semiconductor Components Industries, LLC, 2009  
1
Publication Order Number:  
December, 2009 Rev. 1  
NCV4269A/D  
NCV4269A  
I
Q
Error  
Amplifier  
Current and  
Reference  
and Trim  
R
SO  
Saturation  
Control  
R
RO  
RO  
D
or  
Reference  
SO  
R
ADJ  
+
SI  
GND  
Figure 1. Block Diagram  
PIN CONNECTIONS  
1
20  
R
SI  
ADJ  
D
NC  
1
14  
I
R
SI  
ADJ  
1
8
NC  
GND  
GND  
GND  
GND  
NC  
Q
D
I
I
Q
GND  
GND  
GND  
GND  
GND  
RO  
GND  
GND  
GND  
Q
SI  
SO  
RO  
GND  
GND  
GND  
GND  
R
ADJ  
D
NC  
NC  
RO  
SO  
SO  
SO8  
SO14  
SO20L  
PACKAGE PIN DESCRIPTION  
Package Pin Number  
Pin  
Symbol  
SO8 SO8 EP  
SO14  
SO20L  
Function  
Reset Threshold Adjust; if not used to connect to GND.  
3
4
5
3
4
5
1
2
1
2
R
ADJ  
D
Reset Delay; To Set Time Delay, Connect to GND with Capacitor  
Ground  
3, 4, 5, 6,  
10, 11, 12  
4, 5, 6, 7, 14,  
15, 16, 17  
GND  
3, 8, 9, 13, 18  
10  
NC  
RO  
No connection to these pins from the IC.  
6
6
7
Reset Output; The OpenCollector Output has a 20 kW Pullup Resistor  
to Q. Leave Open if Not Used.  
7
7
8
11  
SO  
Sense Output; This OpenCollector Output is Internally Pulled Up by  
20 kW pullup resistor to Q. If not used, keep open.  
8
1
2
8
1
9
13  
14  
12  
19  
20  
Q
I
5 V Output; Connect to GND with a 10 mF Capacitor, ESR < 10 W.  
Input; Connect to GND Directly at the IC with a Ceramic Capacitor.  
Sense Input; If not used, Connect to Q.  
2
SI  
EPAD  
EPAD  
Connect to ground potential or leave unconnected  
http://onsemi.com  
2
NCV4269A  
MAXIMUM RATINGS (T = 40°C to 150°C)  
J
Parameter  
Symbol  
Min  
Max  
Unit  
Input to Regulator  
V
I
40  
45  
V
I
I
Internally Limited Internally Limited  
Input Transient to Regulator  
Sense Input  
V
60  
V
I
V
40  
1  
45  
1
V
mA  
SI  
SI  
I
Reset Threshold Adjust  
Reset Delay  
V
0.3  
10  
7
V
RADJ  
RADJ  
I
10  
mA  
V
0.3  
7
V
D
I
Internally Limited Internally Limited  
D
Ground  
I
50  
mA  
V
q
Reset Output  
V
RO  
RO  
0.3  
7
I
Internally Limited Internally Limited  
Sense Output  
V
0.3  
7
V
SO  
SO  
I
Internally Limited Internally Limited  
Regulated Output  
V
Q
0.5  
10  
7.0  
V
mA  
Q
I
Junction Temperature  
Storage Temperature  
T
STG  
50  
150  
150  
°C  
°C  
J
T
Input Voltage Operating Range  
Junction Temperature Operating Range  
V
J
40  
45  
150  
V
°C  
I
T
LEAD TEMPERATURE SOLDERING AND MSL  
Parameter  
Symbol  
MSL  
Value  
MSL, 20Lead LS Temperature 265°C Peak (Note 3)  
3
1
2
MSL, 8Lead, 14Lead, LS Temperature 265°C Peak (Note 3)  
MSL, 8Lead EP, LS Temperature 260°C  
MSL  
MSL  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. This device series incorporates ESD protection and exceeds the following ratings:  
Human Body Model (HBM) 4.0 kV per AECQ100002.  
Machine Model (MM) 200 V per AECQ100003.  
2. Latchup Current Maximum Rating: 150 mA per AECQ100004.  
3. +5°C/0°C, 40 Sec MaxatPeak, 60 150 Sec above 217°C.  
http://onsemi.com  
3
 
NCV4269A  
THERMAL CHARACTERISTICS  
Characteristic  
Test Conditions (Typical Values)  
Unit  
SO8 Package (Note 4)  
JunctiontoPin 4 ( Y JL4, Y  
)
53.8  
°C/W  
°C/W  
L4  
JunctiontoAmbient Thermal Resistance (R , q  
)
)
170.9  
q
JA JA  
SO8 EP Package (Note 4)  
JunctiontoPin 8 ( Y JL8, Y  
)
23.7  
71.4  
7.7  
°C/W  
°C/W  
°C/W  
L8  
JunctiontoAmbient Thermal Resistance (R , q  
q
JA JA  
JunctiontoPad ( Y JPad)  
SO14 Package (Note 4)  
JunctiontoPin 4 ( Y JL4, Y  
)
18.4  
°C/W  
°C/W  
L4  
JunctiontoAmbient Thermal Resistance (R , q  
)
)
111.6  
q
JA JA  
SO20 Package (Note 4)  
JunctiontoPin 4 ( Y JL4, Y  
)
21.8  
95.3  
°C/W  
°C/W  
L4  
JunctiontoAmbient Thermal Resistance (R , q  
q
JA JA  
2
4. 2 oz copper, 50 mm copper area, 1.5 mm thick FR4  
http://onsemi.com  
4
 
NCV4269A  
ELECTRICAL CHARACTERISTICS (T = 40°C T 125°C, V = 13.5 V unless otherwise specified)  
J
J
I
Characteristic  
REGULATOR  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Current Limit  
V
1 mA v I v 100 mA 6 V v V v 16 V  
4.90  
150  
5.00  
200  
190  
250  
2.0  
5.10  
500  
250  
450  
3.0  
0.5  
20  
V
Q
Q
I
I
Q
mA  
mA  
mA  
mA  
V
Current Consumption; I = I – I  
I
I
= 1 mA, RO, SO High  
= 10 mA, RO, SO High  
= 50 mA, RO, SO High  
q
I
Q
Q
Q
q
q
q
Q
Current Consumption; I = I – I  
I
I
I
I
q
I
Q
Current Consumption; I = I – I  
q
I
Q
Dropout Voltage  
Load Regulation  
Line Regulation  
V
dr  
V = 5 V, I = 100 mA  
0.25  
10  
I
Q
DV  
DV  
I
Q
= 5 mA to 100 mA  
mV  
mV  
Q
V = 6 V to 26 V I = 1 mA  
10  
30  
Q
I
Q
RESET GENERATOR  
Reset Switching Threshold  
V
4.50  
1.26  
10  
4.65  
1.35  
20  
4.80  
1.44  
40  
V
V
RT  
Reset Adjust Switching Threshold  
Reset Pullup Resistance  
Reset Output Saturation Voltage  
Upper Delay Switching Threshold  
Lower Delay Switching Threshold  
Saturation Voltage on Delay Capacitor  
Charge Current  
V
V
> 3.5 V  
RADJ,TH  
Q
R
kW  
V
SO,INT  
RO,SAT  
V
V
Q
< V , R  
0.1  
1.8  
0.45  
0.4  
2.2  
0.60  
0.1  
9.5  
RT RO, INT  
V
UD  
1.4  
0.3  
V
V
V
LD  
V
D,SAT  
V
< V  
RT  
V
Q
I
V
= 1 V  
3.0  
17  
6.5  
28  
mA  
ms  
ms  
D,C  
D
Delay Time L ³ H  
t
C
C
= 100 nF  
= 100 nF  
d
D
D
Delay Time H ³ L  
t
3.15  
RR  
INPUT VOLTAGE SENSE  
Sense Threshold High  
V
1.24  
1.16  
1.31  
1.20  
0.1  
1.38  
1.28  
0.4  
V
V
SI,High  
Sense Threshold Low  
V
SI,Low  
Sense Output Saturation Voltage  
Sense Resistor Pullup  
V
V
SI  
< 1.20 V; V > 3 V; R  
V
SO,Low  
Q
SO  
R
10  
20  
40  
kW  
mA  
SO,INT  
Sense Input Current  
I
SI  
1.0  
0.1  
1.0  
http://onsemi.com  
5
NCV4269A  
I
I
I
Q
I
Q
C
I
C
Q
22 mF  
R
1000 mF  
ADJ1  
470 nF  
I
SI  
I
RADJ  
SI  
D
RADJ  
V
Q
GND  
RO  
SO  
V
I
I
D
I
q
V
RO  
V
SO  
V
SI  
V
RADJ  
V
D
C
R
D
ADJ2  
100 nF  
Figure 2. Measuring Circuit  
V
I
t
t
< t  
RR  
V
Q
V
RT  
dV  
dt  
I
C
D
D
+
V
D
V
UD  
V
LD  
t
t
t
d
RR  
V
RO  
V
RO,SAT  
t
PoweronReset  
Thermal  
Shutdown  
Voltage Dip  
at Input  
Undervoltage  
Secondary  
Spike  
Overload  
at Output  
Figure 3. Reset Timing Diagram  
http://onsemi.com  
6
NCV4269A  
Sense Input Voltage  
V
SI,High  
V
SI,Low  
t
Sense Output Voltage  
High  
Low  
t
Figure 4. Sense Timing Diagram  
TYPICAL PERFORMANCE CHARACTERISTICS  
16  
3.2  
V = 13.5 V  
V = 13.5 V  
I
14  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
I
V
D
= 1.0 V  
12  
10  
8
V
UD  
6
4
V
LD  
2
0
40  
0
40  
80  
120  
160  
40  
0
40  
80  
120  
160  
T , (°C)  
J
T , (°C)  
J
Figure 5. Charge Current ID,C vs. Temperature TJ  
Figure 6. Switching Voltage VUD and VLD vs.  
Temperature TJ  
http://onsemi.com  
7
 
NCV4269A  
TYPICAL PERFORMANCE CHARACTERISTICS  
500  
400  
300  
200  
100  
0
1.7  
1.6  
1.5  
1.4  
T = 125°C  
J
T = 25°C  
J
1.3  
1.2  
1.1  
1.0  
0.9  
T = 40°C  
J
40  
0
30  
60  
90  
I , (mA)  
120  
150  
180  
0
40  
80  
120  
160  
T , (°C)  
J
Q
Figure 8. Reset Adjust Switching Threshold,  
RADJ,TH vs. Temperature TJ  
Figure 7. Drop Voltage Vdr vs. Output Current IQ  
V
35  
30  
25  
20  
15  
10  
5
12  
10  
8
6
R = 50 W  
L
R = 33 W  
L
R = 100 W  
L
4
R = 200 W  
L
R = 50 W  
L
2
0
0
0
0
10  
20  
30  
40  
50  
2
4
6
8
10  
V , (V)  
I
V , (V)  
I
Figure 10. Output Voltage VQ vs. Input Voltage VI  
Figure 9. Current Consumption Iq vs. Input  
Voltage VI  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
V = 13.5 V  
I
V = 13.5 V  
I
V
SI, High  
V
SI, Low  
40  
0
40  
80  
120  
160  
40  
0
40  
80  
120  
160  
T , (°C)  
J
T , (°C)  
J
Figure 11. Sense Threshold VSI vs. Temperature TJ  
Figure 12. Output Voltage VQ vs. Temperature TJ  
http://onsemi.com  
8
NCV4269A  
TYPICAL PERFORMANCE CHARACTERISTICS  
350  
300  
250  
200  
150  
100  
50  
12  
V = 13.5 V  
T = 25°C  
J
I
10  
8
T = 25°C  
J
T = 125°C  
J
6
4
2
0
0
0
10  
20  
30  
40  
50  
0
20  
40  
60  
I , (mA)  
80  
100  
120  
V , (V)  
I
Q
Figure 13. Output Current Limit IQ vs. Input  
Voltage VI  
Figure 14. Current Consumption Iq vs. Output  
Current IQ  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
7
6
5
4
3
2
1
0
T = 125°C  
J
V = 13.5 V  
T = 25°C  
J
I
I
= 100 mA  
Q
I
I
= 50 mA  
= 10 mA  
Q
Q
0
10  
20  
30  
40  
50  
6
8
10  
12 14  
16  
18  
20 22  
24 26  
V , (V)  
I
I , (mA)  
Q
Figure 15. Current Consumption Iq vs.  
Output Current IQ  
Figure 16. Quiescent Current Iq vs.  
Input Voltage VI  
250  
200  
150  
100  
50  
100  
10  
1
T = 25°C  
J
Unstable Region  
I
= 100 mA  
Q
Stable Region for  
2.2 mF to 10 mF  
0.1  
6
8
10  
12 14  
16 18  
20 22  
24 26  
0
25  
50  
75  
100  
125  
150  
V , (V)  
I
OUTPUT CURRENT IN MILLIAMPS  
Figure 18. Output Stability, Capacitance ESR  
vs. Output Load Current  
Figure 17. Quiescent Current Iq vs. Input Voltage VI  
http://onsemi.com  
9
NCV4269A  
TYPICAL THERMAL CHARACTERISTICS  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
100  
200  
300  
400  
500  
600  
700  
2
COPPER HEATSPREADER AREA (mm )  
SO8 Std Package NCV4269A, 1.0 oz  
SO8 Std Package NCV4269A, 2.0 oz  
SO14 w/6 Thermal Leads NCV4269A, 1.0 oz  
SO14 w/6 Thermal Leads NCV4269A, 2.0 oz  
SO20 w/8 Thermal Leads NCV4269A, 1.0 oz  
SO20 w/8 Thermal Leads NCV4269A, 2.0 oz  
Figure 19. JunctiontoAmbient Thermal Resistance (qJA) vs. Heat Spreader Area  
1000  
100  
10  
1
0.1  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
PULSE TIME (s)  
2
Single Pulse (SO8 Std Package) PCB = 50 mm , 2.0 oz  
Single Pulse (SO8 EP Package)  
2
Single Pulse (SO14 w/6 Thermal Leads) PCB = 50 mm , 2.0 oz  
2
Single Pulse (SO20 w/8 Thermal Leads) PCB = 50 mm , 2.0 oz  
YLA (SO8)  
YLA (SO14)  
YLA (SO20)  
Figure 20. R(t) vs. Pulse Time  
http://onsemi.com  
10  
NCV4269A  
APPLICATION DESCRIPTION  
OUTPUT REGULATOR  
If the reset adjust option is not needed, the R  
pin  
ADJ  
The output is controlled by a precision trimmed reference.  
The PNP output has base drive quiescent current control for  
regulation while the input voltage is low, preventing over  
saturation. Current limit and voltage monitors complement  
the regulator design to give safe operating signals to the  
processor and control circuits.  
should be connected to GND causing the reset threshold to  
go to its default value (typically 4.65 V).  
RESET DELAY (D)  
The reset delay circuit provides a delay (programmable by  
capacitor C ) on the reset output lead RO. The delay lead D  
D
provides charge current I  
(typically 6.5 mA) to the  
D,C  
RESET OUTPUT (RO)  
A reset signal, Reset Output, RO, (low voltage) is  
external delay capacitor C during the following times:  
D
1. During Powerup (once the regulation threshold has  
been exceeded).  
2. After a reset event has occurred and the device is  
back in regulation. The delay capacitor is set to  
generated as the IC powers up. After the output voltage V  
Q
increases above the reset threshold voltage V , the delay  
RT  
timer D is started. When the voltage on the delay timer V  
D
passes V , the reset signal RO goes high. A discharge of  
discharge when the regulation (V , reset  
UD  
RT  
the delay timer V is started when V drops and stays below  
threshold voltage) has been violated. When the  
D
Q
the reset threshold voltage V . When the voltage of the  
delay capacitor discharges to V , the reset signal  
RT  
LD  
delay timer V drops below the lower threshold voltage V  
RO pulls low.  
D
LD  
the reset output voltage V is brought low to reset the  
RO  
SETTING THE DELAY TIME  
processor.  
The delay time is set by the delay capacitor C and the  
D
The reset output RO is an open collector NPN transistor  
with an internal 20 kW pullup resistor connected to the  
output Q, controlled by a low voltage detection circuit. The  
circuit is functionally independent of the rest of the IC,  
charge current I . The time is measured by the delay  
D
capacitor voltage charging from the low level of V  
to  
DSAT  
the higher level V . The time delay follows the equation:  
UD  
+ [C (V * V  
UD  
(eq. 2)  
t
d
)]ńI  
D, SAT D, C  
D
thereby guaranteeing that RO is valid for V as low as 1.0 V.  
Q
Example:  
Using C = 100 nF.  
Use the typical value for V  
Use the typical value for V = 1.8 V.  
Use the typical value for Delay Charge Current I = 6.5 mA.  
RESET ADJUST (RADJ  
The reset threshold V can be decreased from a typical  
value of 4.65 V to as low as 3.5 V by using an external  
voltage divider connected from the Q lead to the pin R  
)
D
RT  
= 0.1 V.  
D,SAT  
UD  
,
ADJ  
D
as shown in Figure 21. The resistor divider keeps the voltage  
above the V (typical 1.35 V) for the desired input  
(eq. 3)  
t
d
+ [100 nF(1.8 * 0.1 V)]ń6.5 mA + 26.2 ms  
RADJ,TH  
voltages, and overrides the internal threshold detector.  
Adjust the voltage divider according to the following  
relationship:  
V
RT  
+ V  
@ (R  
) R  
)ńR  
ADJ2 ADJ2  
(eq. 1)  
RADJ, TH  
ADJ1  
V
BAT  
I
Q
V
DD  
C **  
10 mF  
(2.2 mF)  
R
R
Q
ADJ1  
ADJ2  
C *  
0.1 mF  
I
R
ADJ  
NCV4269A  
R
R
SI1  
SI2  
D
SI  
C
D
RO  
I/O  
SO  
I/O  
GND  
*C required if regulator is located far from the power supply filter.  
I
** C minimum cap required for stability is 2.2 mF while higher over/undershoots may be  
Q
expected. Cap must operate at minimum temperature expected.  
Figure 21. Application Diagram  
http://onsemi.com  
11  
 
NCV4269A  
SENSE INPUT (SI) / SENSE OUTPUT (SO) VOLTAGE  
MONITOR  
(25°C to 40°C), both the value and ESR of the capacitor  
will vary considerably. The capacitor manufacturer’s data  
sheet usually provides this information.  
An onchip comparator is available to provide early  
warning to the microprocessor of a possible reset signal  
(Figure 4). The output is from an open collector driver with  
an internal 20 kW pull up resistor to output Q. The reset signal  
typically turns the microprocessor off instantaneously. This  
can cause unpredictable results with the microprocessor. The  
signal received from the SO pin will allow the microprocessor  
time to complete its present task before shutting down. This  
function is performed by a comparator referenced to the band  
gap voltage. The actual trip point can be programmed  
externally using a resistor divider to the input monitor SI  
The 10 mF output capacitor C shown in Figure 21 should  
Q
work for most applications; however, it is not necessarily the  
optimized solution. Stability is guaranteed at C is min  
Q
2.2 mF and max ESR is 10 W. There is no min ESR limit  
which was proved with MURATA’s ceramic caps  
GRM31MR71A225KA01 (2.2 mF, 10 V, X7R, 1206) and  
GRM31CR71A106KA01 (10 mF, 10 V, X7R, 1206) directly  
soldered between output and ground pins.  
CALCULATING POWER DISSIPATION IN A SINGLE  
OUTPUT LINEAR REGULATOR  
The maximum power dissipation for a single output  
regulator (Figure 21) is:  
(Figure 21). The values for R and R are selected for a  
SI1  
SI2  
typical threshold of 1.20 V on the SI Pin.  
SIGNAL OUTPUT  
Figure 22 shows the SO Monitor timing waveforms as a  
result of the circuit depicted in Figure 21. As the output  
P
+ [V  
I(max)  
* V  
]I  
) V  
I
(eq. 4)  
D(max)  
Q(min) Q(max)  
I(max) q  
where:  
V
V
I
is the maximum input voltage,  
is the minimum output voltage,  
is the maximum output current for the application,  
I(max)  
Q(min)  
Q(max)  
voltage (V ) falls, the monitor threshold (V  
), is  
Q
SI,Low  
crossed. This causes the voltage on the SO output to go low  
sending a warning signal to the microprocessor that a reset  
and I is the quiescent current the regulator consumes at  
q
signal may occur in a short period of time. T  
is the  
WARNING  
I
.
Q(max)  
time the microprocessor has to complete the function it is  
currently working on and get ready for the reset  
shutdown signal. When the voltage on the SO goes low and  
the RO stays high the current consumption is typically  
560 mA at 1 mA load current.  
Once the value of P  
is known, the maximum  
D(max)  
permissible value of R  
can be calculated:  
qJA  
= (150°C – T ) / P  
D
R
(eq. 5)  
q
JA  
A
The value of R  
can then be compared with those in the  
qJA  
package section of the data sheet. Those packages with  
’s less than the calculated value in equation 2 will keep  
V
Q
R
qJA  
the die temperature below 150°C. In some cases, none of the  
packages will be sufficient to dissipate the heat generated by  
the IC, and an external heatsink will be required. The current  
SI  
V
flow  
and  
voltages  
are  
shown  
in  
the  
SI,Low  
Measurement Circuit Diagram.  
HEATSINKS  
V
RO  
A heatsink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed to  
SO  
T
WARNING  
determine the value of R  
:
qJA  
Figure 22. SO Warning Waveform Time Diagram  
R
+ R  
) R  
) R  
qCS qSA  
(eq. 6)  
qJA  
qJC  
where:  
STABILITY CONSIDERATIONS  
R
qJC  
R
qCS  
R
qSA  
= the junctiontocase thermal resistance,  
= the casetoheat sink thermal resistance, and  
= the heat sinktoambient thermal resistance.  
The input capacitor C in Figure 21 is necessary for  
I
compensating input line reactance. Possible oscillations caused  
by input inductance and input capacitance can be damped by  
using a resistor of approximately 1.0 W in series with C  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: startup delay,  
load transient response and loop stability.  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. The  
aluminum electrolytic capacitor is the least expensive  
solution, but, if the circuit operates at low temperatures  
R
qJC  
appears in the package section of the data sheet. Like  
I.  
R
qJA  
, it too is a function of package type. R  
and R  
are  
qCS  
qSA  
functions of the package type, heatsink and the interface  
between them. These values appear in data sheets of  
heatsink manufacturers. Thermal, mounting, and  
heatsinking considerations are discussed in the  
ON Semiconductor application note AN1040/D, available  
on the ON Semiconductor website.  
http://onsemi.com  
12  
 
NCV4269A  
ORDERING INFORMATION  
Device  
Output Voltage  
Package  
Shipping  
NCV4269AD150G  
SO8  
98 Units/Rail  
2500 Tape & Reel  
98 Units/Rail  
(PbFree)  
NCV4269AD150R2G  
NCV4269APD50G  
NCV4269APD50R2G  
NCV4269AD250G  
SO8  
(PbFree)  
SO8 EP  
(PbFree)  
SO8 EP  
(PbFree)  
2500 Tape & Reel  
55 Units/Rail  
5.0 V  
SO14  
(PbFree)  
NCV4269AD250R2G  
NCV4269ADW50G  
NCV4269ADW50R2G  
SO14  
2500 Tape & Reel  
38 Units/Rail  
(PbFree)  
SO20L  
(PbFree)  
SO20L  
(PbFree)  
1000 Tape & Reel  
†For information on tape and reel specifications,including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
13  
NCV4269A  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AJ  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
14  
NCV4269A  
PACKAGE DIMENSIONS  
SOIC8 EP  
CASE 751AC01  
ISSUE B  
2 X  
NOTES:  
1. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. DIMENSIONS IN MILLIMETERS (ANGLES  
IN DEGREES).  
3. DIMENSION b DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE  
0.08 MM TOTAL IN EXCESS OF THE “b”  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
0.10  
C A-B  
D
DETAIL A  
D
A
8
EXPOSED  
PAD  
F
5
5
8
4. DATUMS A AND B TO BE DETERMINED  
AT DATUM PLANE H.  
G
E1  
E
2 X  
MILLIMETERS  
DIM MIN  
MAX  
1.75  
0.10  
1.65  
0.51  
0.48  
0.25  
0.23  
h
0.10 C D  
2 X  
A
A1  
A2  
b
b1  
c
1.35  
0.00  
1.35  
0.31  
0.28  
0.17  
0.17  
1
e
4
4
1
0.20  
C
PIN ONE  
LOCATION  
BOTTOM VIEW  
8 X b  
0.25 C A-B D  
A
A
B
END VIEW  
c
c1  
D
TOP VIEW  
4.90 BSC  
E
E1  
e
6.00 BSC  
3.90 BSC  
1.27 BSC  
H
A
0.10  
C
A2  
L
L1  
F
0.40  
1.04 REF  
2.24  
1.27  
8 X  
(b)  
b1  
GAUGE  
PLANE  
0.10  
C
3.20  
2.51  
0.50  
8
G
h
1.55  
0.25  
0
SEATING  
PLANE  
L
q
0.25  
q
_
_
c1  
SECTION AA  
(L1)  
DETAIL A  
A1  
SIDE VIEW  
C
SOLDERING FOOTPRINT*  
2.72  
0.107  
1.52  
0.060  
Exposed  
Pad  
4.0  
0.155  
2.03  
0.08  
7.0  
0.275  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
15  
NCV4269A  
PACKAGE DIMENSIONS  
SO14  
CASE 751A03  
ISSUE G  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
A−  
14  
8
7
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
B−  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
G
DIM MIN  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
_
C
A
B
C
D
F
8.55  
3.80  
1.35  
0.35  
0.40  
0.337  
0.150  
0.054  
0.014  
0.016  
T−  
SEATING  
PLANE  
J
M
G
J
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T B  
A
K
M
P
R
_
_
_
_
5.80  
0.25  
6.20  
0.50  
0.228  
0.010  
0.244  
0.019  
http://onsemi.com  
16  
NCV4269A  
PACKAGE DIMENSIONS  
SO20 WB  
CASE 751D05  
ISSUE G  
D
A
q
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
20  
11  
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
E
B
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.13 TOTAL IN EXCESS OF B  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
1
10  
MILLIMETERS  
DIM MIN  
MAX  
2.65  
0.25  
0.49  
0.32  
12.95  
7.60  
20X B  
A
A1  
B
C
D
E
2.35  
0.10  
0.35  
0.23  
12.65  
7.40  
M
S
S
B
T
0.25  
A
A
e
1.27 BSC  
H
h
10.05  
0.25  
0.50  
0
10.55  
0.75  
0.90  
7
SEATING  
PLANE  
L
18X e  
q
_
_
A1  
C
T
SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLIC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer  
purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV4269A/D  

相关型号:

NCV4269A_15

Micropower 150 mA LDO Linear Regulator
ONSEMI

NCV4269C

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET and Sense Output
ONSEMI

NCV4269CD150R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET and Sense Output
ONSEMI

NCV4269CD250R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET and Sense Output
ONSEMI

NCV4269CPA50R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET and Sense Output
ONSEMI

NCV4269CPD50R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET and Sense Output
ONSEMI

NCV4269D1

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269D1G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269D1R2

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269D1R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269D2

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269D2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI