NCV21874DR2G [ONSEMI]

45 V Offset, 0.4 V/C, Zero-Drift Operational Amplifier;
NCV21874DR2G
型号: NCV21874DR2G
厂家: ONSEMI    ONSEMI
描述:

45 V Offset, 0.4 V/C, Zero-Drift Operational Amplifier

文件: 总19页 (文件大小:726K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
45 mV Offset, 0.4 mV/5C,  
Zero-Drift Operational  
Amplifier  
NCS21871, NCV21871,  
NCS21872, NCV21872,  
NCS21874, NCV21874  
www.onsemi.com  
The NCS21871, NCS21872 and NCS21874 family of zerodrift op  
amps feature offset voltage as low as 45 mV over the 1.8 V to 5.5 V  
supply voltage range. The zerodrift architecture reduces the offset  
drift to as low as 0.4 mV/°C and enables high precision measurements  
over both time and temperature. This family has low power  
consumption over a wide dynamic range and is available in space  
saving packages. These features make it well suited for signal  
conditioning circuits in portable, industrial, automotive, medical and  
consumer markets.  
5
5
1
1
SOT235  
SN SUFFIX  
CASE 483  
SC705  
SQ SUFFIX  
CASE 419A  
Features  
1
GainBandwidth Product: 270 kHz to 350 kHz  
Low Supply Current: 17 mA (typ at 3.3 V)  
Low Offset Voltage: 45 mV max  
Low Offset Drift: 0.4 mV/°C max  
Wide Supply Range: 1.8 V to 5.5 V  
Wide Temperature Range: 40°C to +125°C  
RailtoRail Input and Output  
UDFN8  
MU SUFFIX  
CASE 517AW  
MSOP8  
DM SUFFIX  
CASE 846A02  
8
14  
1
1
SOIC8  
D SUFFIX  
CASE 751  
SOIC14  
D SUFFIX  
CASE 751A  
Available in Single, Dual and Quad Packages  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
ECP5  
FCT SUFFIX  
CASE 971BE  
Applications  
Automotive  
Battery Powered/ Portable Application  
Sensor Signal Conditioning  
Low Voltage Current Sensing  
Filter Circuits  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 2 of this data sheet.  
Bridge Circuits  
Medical Instrumentation  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 3 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
June, 2020 Rev. 1  
NCS21871/D  
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
DEVICE MARKING INFORMATION  
Single Channel Configuration  
NCS21871, NCV21871  
XXX  
AYW  
G
7AAYWG  
7CMG  
G
G
TSOP5/SOT235  
SC705  
ECP5  
CASE 483  
CASE 419A  
CASE 971BE  
Dual Channel Configuration  
NCS21872, NCV21872  
8
8
1
2187  
AYWG  
G
21872  
ALYW  
G
72  
YM  
1
1
UDFN8, 2x2, 0.5P  
CASE 517AW  
Micro8/MSOP8  
CASE 846A02  
SOIC8  
CASE 751  
Quad Channel Configuration  
NCS21874, NCV21874  
14  
N874G  
AWLYWW  
1
SOIC14  
CASE 751A  
X
A
Y
= Specific Device Code  
= Assembly Location  
= Year  
W
M
= Work Week  
= Date Code  
G or G = PbFree Package  
(Note: Microdot may be in either location)  
www.onsemi.com  
2
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
PIN CONNECTIONS  
Single Channel Configuration  
NCS21871, NCV21871  
1
2
3
5
OUT  
VSS  
VDD  
IN  
OUT  
VSS  
IN+  
IN+  
VSS  
IN−  
VDD  
1
2
3
VDD  
5
4
C3 C1  
B2  
4
OUT  
IN  
A3 A1 IN+  
ECP5 (Top View)  
SC705 / SC885 / SOT3535  
SOT235 / TSOP5  
Dual Channel Configuration  
NCS21872, NCV21872  
Quad Channel Configuration  
NCS21874, NCV21874  
1
OUT 1  
IN1  
IN+ 1  
VDD  
14  
13  
12  
11  
10  
9
OUT 4  
IN4  
IN+ 4  
OUT 1  
IN1  
IN+ 1  
VSS  
1
2
3
4
8
7
6
5
VDD  
2
OUT 2  
IN2  
IN+ 2  
+
+
+
3
4
5
6
7
+
VSS  
IN+ 3  
IN3  
OUT 3  
IN+ 2  
IN2  
+
+
UDFN8* / Micro8 / SOIC8  
*The exposed pad of the UDFN8 package  
can be floated or connected to VSS.  
8
OUT 2  
SOIC14  
ORDERING INFORMATION  
Temperature  
Channels  
Package  
Device Part Number  
Shipping  
COMMERCIAL AND INDUSTRIAL  
40°C to 125°C  
Single  
SOT23*5 / TSOP*5  
NCS21871SN2T1G  
NCS21871SQ3T2G  
3000 / Tape & Reel  
SC70*5 / SC*88*5 /  
SOT*353*5  
ECP5  
MICRO*8  
SOIC8  
NCS21871FCTTAG*  
NCS21872DMR2G*  
NCS21872DR2G*  
NCS21872MUTBG*  
NCS21874DR2G*  
Dual  
4000 / Tape & Reel  
3000 / Tape & Reel  
40°C to 125°C  
UDFN8  
SOIC14  
Quad  
2500 / Tape & Reel  
3000 / Tape & Reel  
AUTOMOTIVE  
40°C to 125°C  
Single  
SOT23*5 / TSOP*5  
NCV21871SN2T1G  
NCV21871SQ3T2G  
SC70*5 / SC*88*5 /  
SOT*353*5  
Dual  
MICRO*8  
SOIC8  
NCV21872DMR2G*  
NCV21872DR2G*  
NCV21874DR2G*  
4000 / Tape & Reel  
3000 / Tape & Reel  
2500 / Tape & Reel  
Quad  
SOIC14  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*In Development. Contact local sales office for more information.  
www.onsemi.com  
3
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
ABSOLUTE MAXIMUM RATINGS  
Over operating freeair temperature, unless otherwise stated.  
Parameter  
Rating  
Unit  
Supply Voltage  
6
V
INPUT AND OUTPUT PINS  
Input Voltage (Note 1)  
(VSS) 0.3 to (VDD) + 0.3  
V
Input Current (Note 1)  
10  
mA  
Output Short Circuit Current (Note 2)  
TEMPERATURE  
Continuous  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
40 to +125  
65 to +150  
+150  
°C  
°C  
°C  
ESD RATINGS (Note 3)  
Human Body Model (HBM)  
Charged Device Model (CDM)  
OTHER RATINGS  
4000  
2000  
V
V
Latchup Current (Note 4)  
MSL  
100  
mA  
Level 1  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Input terminals are diodeclamped to the powersupply rails. Input signals that can swing more than 0.3 V beyond the supply rails should  
be current limited to 10 mA or less  
2. Shortcircuit to ground.  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per JEDEC standard JS001 (AECQ100002)  
ESD Charged Device Model tested per JEDEC standard JESD22C101 (AECQ100011)  
4. Latchup Current tested per JEDEC standard: JESD78.  
THERMAL INFORMATION (Note 5)  
Parameter  
Symbol  
Package  
SOT235 / TSOP5  
SC705 / SC885 / SOT3535  
ECP5  
Value  
290  
290  
157  
298  
250  
228  
216  
Unit  
Thermal Resistance,  
Junction to Ambient  
q
°C/W  
JA  
Micro8 / MSOP8  
SOIC8  
UDFN8  
SOIC14  
2
5. As mounted on an 80x80x1.5 mm FR4 PCB with 650 mm and 2 oz (0.07 mm) thick copper heat spreader. Following JEDEC JESD/EIA 51.1,  
51.2, 51.3 test guidelines  
RECOMMENDED OPERATING CONDITIONS  
Parameter  
Symbol  
Range  
Unit  
V
Supply Voltage (V V  
)
V
S
1.8 to 5.5  
40 to 125  
DD  
SS  
Specified Operating Temperature Range  
Input Common Mode Voltage Range  
T
A
°C  
V
V
CM  
V
0.1 to V +0.1  
SS DD  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
4
 
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
ELECTRICAL CHARACTERISTICS: V = 1.8 V to 5.5 V  
S
At T = +25°C, R = 10 kW connected to midsupply, V  
= V  
= midsupply, unless otherwise noted.  
A
L
CM  
OUT  
Boldface limits apply over the specified operating temperature range, guaranteed by characterization and/or design.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
V
V
= +5 V  
= 5 V  
6
45  
0.4  
8
mV  
OS  
S
Offset Voltage Drift vs Temp  
Offset Voltage Drift vs Supply  
DV /DT  
V
0.1  
0.4  
mV/°C  
mV/V  
OS  
S
DV /DV  
T = +25°C  
A
OS  
S
Full temperature range  
12.6  
400  
Input Bias Current  
(Note 6)  
I
IB  
T = +25°C  
A
60  
+400  
50  
pA  
Full temperature range  
Input Offset Current  
(Note 6)  
I
T = +25°C  
A
800  
pA  
dB  
OS  
Common Mode Rejection Ratio  
(Note 7)  
CMRR  
V
V
V
V
= 1.8 V  
= 3.3 V  
= 5.0 V  
= 5.5 V  
111  
118  
123  
127  
4.1  
S
S
S
S
102  
Input Capacitance  
C
Differential  
pF  
dB  
IN  
Common Mode  
7.9  
OUTPUT CHARACTERISTICS  
Open Loop Voltage Gain  
(Note 6)  
A
VOL  
V
SS  
+ 100 mV < V < V 100 mV  
106  
145  
O
DD  
Open Loop Output Impedance  
Output Voltage High,  
Z
See Figure 18  
10  
W
outOL  
V
OH  
T = +25°C  
80  
80  
80  
80  
mV  
A
Referenced to V  
DD  
Full temperature range  
Output Voltage Low,  
Referenced to V  
V
OL  
T = +25°C  
A
10  
mV  
mA  
SS  
Full temperature range  
Sinking Current  
I
O
11  
5.0  
Sourcing Current  
Capacitive Load Drive  
NOISE PERFORMANCE  
Voltage Noise Density  
Voltage Noise  
C
See Figure 14  
L
e
N
f
= 1 kHz  
62  
1.1  
0.5  
350  
135  
nV / Hz  
IN  
e
PP  
f
f
= 0.1 Hz to 10 Hz  
= 0.01 Hz to 1 Hz  
mV  
PP  
IN  
IN  
Current Noise Density  
Channel Separation  
i
N
f
IN  
= 10 Hz  
fA / Hz  
NCS21872, NCS21874  
dB  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
GBWP  
C = 100 pF  
NCS21871, NCS21874  
NCS21872  
350  
270  
18  
kHz  
L
Gain Margin  
Phase Margin  
Slew Rate  
A
M
C = 100 pF  
dB  
°
L
f
M
C = 100 pF  
55  
L
SR  
G = 1, V = 5.5 V  
0.1  
0.05  
V/ms  
DD  
G = 1, V = 1.8 V  
DD  
6. Guaranteed by characterization and/or design  
7. Specified over the full common mode range: V 0.1 < V  
< V + 0.1  
DD  
SS  
CM  
8. No load, per channel  
www.onsemi.com  
5
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
ELECTRICAL CHARACTERISTICS: V = 1.8 V to 5.5 V  
S
At T = +25°C, R = 10 kW connected to midsupply, V  
= V  
= midsupply, unless otherwise noted.  
A
L
CM  
OUT  
Boldface limits apply over the specified operating temperature range, guaranteed by characterization and/or design.  
Parameter  
POWER SUPPLY  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Power Supply Rejection Ratio  
PSRR  
T = +25°C  
A
106  
130  
dB  
Full temperature range  
98  
Turnon Time  
t
V
= 5 V  
100  
20  
ms  
ON  
S
Quiescent Current  
(Note 8)  
I
Q
1.8 V V 3.3 V  
40  
40  
45  
45  
mA  
S
3.3 V < V 5.5 V  
28  
S
6. Guaranteed by characterization and/or design  
7. Specified over the full common mode range: V 0.1 < V  
< V + 0.1  
DD  
SS  
CM  
8. No load, per channel  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
6
 
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
TYPICAL CHARACTERISTICS  
120  
100  
80  
60  
40  
20  
0
120  
105  
90  
120  
110  
100  
90  
T = 25°C  
A
Phase Margin  
80  
75  
70  
60  
Gain  
60  
50  
45  
40  
C = 100 pF  
R = 10 kW  
T = 25°C  
L
30  
30  
L
20  
A
20  
40  
15  
0
10  
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 1. Open Loop Gain and Phase Margin  
vs. Frequency  
Figure 2. CMRR vs. Frequency  
3
2
120  
100  
80  
T
= 40 °C  
= 25 °C  
A
A
T
T
T = 25°C  
A
= 125 °C  
V
OH  
A
VDD = 2.75 V  
VSS = 2.75 V  
1
+PSRR  
0
60  
PSRR  
40  
1  
2  
3  
V
OL  
20  
0
10  
100  
1k  
10k  
100k  
1M  
0
2
4
6
8
10 12 14 16 18  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
Figure 3. PSRR vs. Frequency  
Figure 4. Output Voltage Swing vs. Output  
Current at VS = 5.5 V  
1
T
= 40 °C  
= 25 °C  
= 125 °C  
A
0.8  
0.6  
200  
150  
100  
50  
V
OH  
T
T
A
T = 25°C  
S
A
A
V
= 1.8 V  
VDD = 0.9 V  
VSS = 0.9 V  
0.4  
0.2  
I
I
IB+  
0
0
IB−  
0.2  
0.4  
0.6  
0.8  
1  
50  
V
OL  
100  
150  
200  
0.2  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
COMMON MODE VOLTAGE (V)  
0
2
4
6
8
10  
OUTPUT CURRENT (mA)  
Figure 5. Output Voltage Swing vs. Output  
Current at VS = 1.8 V  
Figure 6. Input Bias Current vs. Common  
Mode Voltage  
www.onsemi.com  
7
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
TYPICAL CHARACTERISTICS  
200  
150  
100  
50  
30  
V
= 5.5 V  
S
25  
20  
15  
10  
V
V
= 5.0 V  
= 3.3 V  
S
I
I
IB+  
S
IB−  
0
V
S
= 1.8 V  
50  
100  
T = 25°C  
S
A
V
= 5 V  
5
0
150  
200  
Per Channel  
40 20  
0
20  
40  
60  
80  
100  
40 20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. Input Bias Current vs. Temperature  
Figure 8. Quiescent Current vs. Temperature  
5
0.20  
0.15  
0.10  
0.05  
0
4
3
4
3
Input  
Input  
2
1
2
Output  
V
S
= 5.0 V  
0
1
A = 1  
V
1  
2  
0
R = 10 kW  
L
0.05  
V
= 5.0 V  
A = +1  
R = 10 kW  
S
1  
Output  
V
0.10  
0.15  
3  
4  
2  
3  
L
TIME (50 ms/div)  
TIME (5 ms/div)  
Figure 10. Small Signal Step Response  
Figure 9. Large Signal Step Response  
1.0  
3.0  
3.0  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
0.5  
0
Output  
Input  
0.5  
1.0  
1.5  
2.0  
2.5  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
V
= 5.0 V  
S
A = 10  
V = 5.0 V  
S
V
A = 10  
R = 10 kW  
V
L
Output  
R = 10 kW  
L
Input  
0.5  
1.0  
0.5  
1.0  
3.0  
3.0  
INPUT (V)  
OUTPUT (V)  
INPUT (V)  
OUTPUT (V)  
TIME (50 ms/div)  
TIME (50 ms/div)  
Figure 12. Negative Overvoltage Recovery  
Figure 11. Positive Overvoltage Recovery  
www.onsemi.com  
8
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
TYPICAL CHARACTERISTICS  
500  
400  
300  
200  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
T = 25°C  
R = 10 kW  
L
A
T = 25°C  
A
100  
0
5
0
1
10  
100  
10  
100  
LOAD CAPACITANCE (pF)  
1000  
GAIN (V/V)  
Figure 13. Setting Time to 0.1% vs.  
Figure 14. SmallSignal Overshoot vs. Load  
ClosedLoop Gain  
Capacitance  
2000  
1500  
1000  
500  
1000  
V
= V /2  
S
CM  
T = 25°C  
A
R = 10 kW  
T = 25°C  
A
L
100  
10  
0
500  
1000  
1500  
2000  
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1000  
10,000  
TIME (s)  
FREQUENCY (Hz)  
Figure 15. 0.1 Hz to 10 Hz Noise  
Figure 16. Voltage Noise Density vs.  
Frequency  
10k  
1k  
1000  
T = 25°C  
A
100  
10  
100  
10  
1
10  
100  
1000  
10,000  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Current Noise Density vs.  
Frequency  
Figure 18. Open Loop Output Impedance vs.  
Frequency  
www.onsemi.com  
9
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
APPLICATIONS INFORMATION  
OVERVIEW  
The NCS21871, NCS21872, and NCS21874 precision op  
The NCS21871 series of precision op amps uses a  
chopperstabilized architecture, which provides the  
advantage of minimizing offset voltage drift over  
temperature and time. The simplified block diagram is  
shown in Figure 19. Unlike the classical chopper  
architecture, the chopper stabilized architecture has two  
signal paths.  
amps provide low offset voltage and zero drift over  
temperature. The input common mode voltage range  
extends 100 mV beyond the supply rails to allow for sensing  
near ground or VDD. These features make the NCS21871  
series wellsuited for applications where precision is  
required, such as current sensing and interfacing with  
sensors.  
Main amp  
+
IN+  
O
IN  
+
+
+
Chopper  
Chopper  
RC notch filter  
RC notch filter  
Figure 19. Simplified NCS21871 Block Diagram  
In Figure 19, the lower signal path is where the chopper  
samples the input offset voltage, which is then used to  
correct the offset at the output. The offset correction occurs  
at a frequency of 125 kHz. The chopperstabilized  
architecture is optimized for best performance at  
frequencies up to the related Nyquist frequency (1/2 of the  
offset correction frequency). As the signal frequency  
exceeds the Nyquist frequency, 62.5 kHz, aliasing may  
occur at the output. This is an inherent limitation of all  
cascaded, symmetrical, RC notch filters tuned to the  
chopper frequency and its fifth harmonic to reduce aliasing  
effects.  
The chopperstabilized architecture also benefits from  
the feedforward path, which is shown as the upper signal  
path of the block diagram in Figure 19. This is the high speed  
signal path that extends the gain bandwidth up to 350 kHz.  
Not only does this help retain high frequency components of  
the input signal, but it also improves the loop gain at low  
frequencies. This is especially useful for lowside current  
sensing and sensor interface applications where the signal is  
low frequency and the differential voltage is relatively  
small.  
chopper  
and  
chopperstabilized  
architectures.  
Nevertheless, the NCS21871 op amps have minimal  
aliasing up to 125 kHz and low aliasing up to 190 kHz when  
compared to competitor parts from other manufacturers.  
ON Semiconductor’s patented approach utilizes two  
www.onsemi.com  
10  
 
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
APPLICATION CIRCUITS  
LowSide Current Sensing  
Lowside current sensing is used to monitor the current  
through a load. This method can be used to detect  
overcurrent conditions and is often used in feedback  
control, as shown in Figure 20. A sense resistor is placed in  
series with the load to ground. Typically, the value of the  
sense resistor is less than 100 mW to reduce power loss  
across the resistor. The op amp amplifies the voltage drop  
across the sense resistor with a gain set by external resistors  
R1, R2, R3, and R4 (where R1 = R2, R3 = R4). Precision  
resistors are required for high accuracy, and the gain is set  
to utilize the full scale of the ADC for the highest resolution.  
R3  
VLOAD  
VDD  
VDD  
VDD  
Load  
R1  
Microcontroller  
+
RSENSE  
ADC  
control  
R2  
R4  
Figure 20. LowSide Current Sensing  
Differential Amplifier for Bridged Circuits  
produced is relatively small and needs to be amplified before  
going into an ADC. Precision amplifiers are recommended  
in these types of applications due to their high gain, low  
noise, and low offset voltage.  
Sensors to measure strain, pressure, and temperature are  
often configured in a Wheatstone bridge circuit as shown in  
Figure 21. In the measurement, the voltage change that is  
VDD  
VDD  
+
Figure 21. Bridge Circuit Amplification  
EMI Susceptibility and Input Filtering  
General Layout Guidelines  
Op amps have varying amounts of EMI susceptibility.  
Semiconductor junctions can pick up and rectify EMI  
signals, creating an EMIinduced voltage offset at the  
output, adding another component to the total error. Input  
pins are the most sensitive to EMI. The NCS21871 op amp  
family integrates lowpass filters to decrease sensitivity to  
EMI.  
To ensure optimum device performance, it is important to  
follow good PCB design practices. Place 0.1 mF decoupling  
capacitors as close as possible to the supply pins. Keep traces  
short, utilize a ground plane, choose surfacemount  
components, and place components as close as possible to  
the device pins. These techniques will reduce susceptibility  
to electromagnetic interference (EMI). Thermoelectric  
effects can create an additional temperature dependent  
offset voltage at the input pins. To reduce these effects, use  
metals with low thermoelectriccoefficients and prevent  
temperature gradients from heat sources or cooling fans.  
www.onsemi.com  
11  
 
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
UDFN8 Package Guidelines  
center pad can be electrically connected to VSS or it may be  
left floating. When connected to VSS, the center pad acts as  
a heat sink, improving the thermal resistance of the part.  
The UDFN8 package has an exposed leadframe die pad on  
the underside of the package. This pad should be soldered to  
the PCB, as shown in the recommended soldering footprint  
in the Package Dimensions section of this datasheet. The  
www.onsemi.com  
12  
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
PACKAGE DIMENSIONS  
SC88A (SC705/SOT353)  
CASE 419A02  
ISSUE L  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. 419A01 OBSOLETE. NEW STANDARD  
419A02.  
G
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
B−  
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
1
2
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
0.026 BSC  
0.65 BSC  
M
M
B
D 5 PL  
0.2 (0.008)  
---  
0.004  
0.004  
0.004  
0.010  
0.012  
---  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
N
0.008 REF  
0.20 REF  
0.079  
0.087  
2.00  
2.20  
J
C
K
H
SOLDER FOOTPRINT  
0.50  
0.0197  
0.65  
0.025  
0.65  
0.025  
0.40  
0.0157  
1.9  
0.0748  
mm  
inches  
ǒ
Ǔ
SCALE 20:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
13  
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
PACKAGE DIMENSIONS  
TSOP5  
CASE 48302  
ISSUE K  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
NOTE 5  
5X  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH  
THICKNESS. MINIMUM LEAD THICKNESS IS THE  
MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT  
EXCEED 0.15 PER SIDE. DIMENSION A.  
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL  
TRIMMED LEAD IS ALLOWED IN THIS LOCATION.  
TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2  
FROM BODY.  
0.20 C A B  
2X  
0.10  
T
M
5
4
3
2X  
0.20  
T
B
S
1
2
K
B
A
DETAIL Z  
G
A
MILLIMETERS  
TOP VIEW  
DIM  
A
B
MIN  
3.00 BSC  
1.50 BSC  
MAX  
DETAIL Z  
C
D
0.90  
0.25  
1.10  
0.50  
J
G
H
J
K
M
S
0.95 BSC  
C
0.01  
0.10  
0.20  
0
0.10  
0.26  
0.60  
10  
3.00  
0.05  
H
SEATING  
PLANE  
END VIEW  
C
_
_
SIDE VIEW  
2.50  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
14  
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
PACKAGE DIMENSIONS  
UDFN8, 2x2  
CASE 517AW  
ISSUE A  
A
B
E
NOTES:  
D
L
L
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINALS AND IS MEASURED BETWEEN  
0.15 AND 0.30 MM FROM THE TERMINAL  
TIP.  
L1  
PIN ONE  
REFERENCE  
DETAIL A  
ALTERNATE  
CONSTRUCTIONS  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
5. FOR DEVICE OPN CONTAINING W OPTION,  
DETAIL B ALTERNATE CONSTRUCTION IS  
2X  
0.10  
C
2X  
0.10  
C
NOT APPLICABLE.  
TOP VIEW  
MILLIMETERS  
MOLD CMPD  
DIM MIN  
MAX  
0.55  
0.05  
EXPOSED Cu  
A
A1  
A3  
b
D
D2  
E
E2  
e
L
0.45  
0.00  
DETAIL B  
A
0.13 REF  
0.10  
C
A3  
C
0.18  
0.30  
2.00 BSC  
A3  
A1  
1.50  
1.70  
0.08  
C
DETAIL B  
2.00 BSC  
A1  
SIDE VIEW  
0.80  
1.00  
NOTE 4  
ALTERNATE  
SEATING  
PLANE  
0.50 BSC  
CONSTRUCTION  
0.20  
0.45  
L1  
−−−  
0.15  
D2  
DETAIL A  
RECOMMENDED  
8X L  
SOLDERING FOOTPRINT*  
1
4
8X  
0.50  
1.73  
PACKAGE  
OUTLINE  
E2  
b
5
8
8X  
e
1.00  
2.30  
0.10 C A B  
e/2  
0.05  
C
NOTE 3  
BOTTOM VIEW  
1
8X  
0.30  
0.50  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
15  
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
PACKAGE DIMENSIONS  
Micro8t  
CASE 846A02  
ISSUE J  
D
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE  
BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED  
0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.  
H
E
E
MILLIMETERS  
INCHES  
NOM  
−−  
0.003  
0.013  
0.007  
0.118  
DIM  
A
A1  
b
c
D
E
MIN  
−−  
NOM  
−−  
MAX  
MIN  
−−  
MAX  
0.043  
0.006  
0.016  
0.009  
0.122  
0.122  
PIN 1 ID  
e
1.10  
0.15  
0.40  
0.23  
3.10  
3.10  
b 8 PL  
0.05  
0.25  
0.13  
2.90  
2.90  
0.08  
0.002  
0.010  
0.005  
0.114  
0.114  
0.33  
M
S
S
0.08 (0.003)  
T B  
A
0.18  
3.00  
3.00  
0.118  
e
L
0.65 BSC  
0.55  
4.90  
0.026 BSC  
0.021  
0.193  
SEATING  
PLANE  
0.40  
4.75  
0.70  
5.05  
0.016  
0.187  
0.028  
0.199  
T−  
H
E
A
0.038 (0.0015)  
L
A1  
c
RECOMMENDED  
SOLDERING FOOTPRINT*  
8X  
8X  
0.48  
0.80  
5.25  
0.65  
PITCH  
DIMENSION: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
16  
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
X−  
ANSI Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
17  
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
PACKAGE DIMENSIONS  
SOIC14 NB  
CASE 751A03  
ISSUE K  
NOTES:  
D
A
B
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.13 TOTAL IN EXCESS OF AT  
MAXIMUM MATERIAL CONDITION.  
4. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD PROTRUSIONS.  
14  
8
7
A3  
E
H
5. MAXIMUM MOLD PROTRUSION 0.15 PER  
SIDE.  
L
DETAIL A  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
13X b  
M
M
B
0.25  
A
A1  
A3  
b
D
E
1.35  
0.10  
0.19  
0.35  
8.55  
3.80  
1.75 0.054 0.068  
0.25 0.004 0.010  
0.25 0.008 0.010  
0.49 0.014 0.019  
8.75 0.337 0.344  
4.00 0.150 0.157  
M
S
S
B
0.25  
C A  
DETAIL A  
h
A
X 45  
_
e
H
h
L
1.27 BSC  
0.050 BSC  
6.20 0.228 0.244  
0.50 0.010 0.019  
1.25 0.016 0.049  
5.80  
0.25  
0.40  
0
M
A1  
e
M
7
0
7
_
_
_
_
SEATING  
PLANE  
C
SOLDERING FOOTPRINT*  
6.50  
14X  
1.18  
1
1.27  
PITCH  
14X  
0.58  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
18  
NCS21871, NCV21871, NCS21872, NCV21872, NCS21874, NCV21874  
PACKAGE DIMENSIONS  
ECP5, 1.116x0.822x0.58  
CASE 971BE  
ISSUE O  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

NCV21874DTBR2G

45 µV Offset, 0.4 µV/°C, Zero-Drift Operational Amplifier
ONSEMI

NCV21911

Precision Operational Amplifier, 25 V Offset, Zero-Drift, 36 V Supply, 2 MHz
ONSEMI

NCV21911SN2T1G

Precision Operational Amplifier, 25 V Offset, Zero-Drift, 36 V Supply, 2 MHz
ONSEMI

NCV21912

Precision Operational Amplifier, 25 V Offset, Zero-Drift, 36 V Supply, 2 MHz
ONSEMI

NCV21912DMR2G

Precision Operational Amplifier, 25 V Offset, Zero-Drift, 36 V Supply, 2 MHz
ONSEMI

NCV21912DR2G

Precision Operational Amplifier, 25 V Offset, Zero-Drift, 36 V Supply, 2 MHz
ONSEMI

NCV21914

Precision Operational Amplifier, 25 V Offset, Zero-Drift, 36 V Supply, 2 MHz
ONSEMI

NCV21914DR2G

Precision Operational Amplifier, 25 V Offset, Zero-Drift, 36 V Supply, 2 MHz
ONSEMI

NCV21914DTBR2G

Precision Operational Amplifier, 25 V Offset, Zero-Drift, 36 V Supply, 2 MHz
ONSEMI

NCV2200

Low Voltage Comparators
ONSEMI

NCV2200AMUTBG

Comparators
ONSEMI

NCV2200SN1T1G

Low Voltage Comparators
ONSEMI