NCS2501DG [ONSEMI]

1.1 mA 200 MHz Current Feedback Op Amp with Enable Feature; 1.1毫安200 MHz的电流反馈运算放大器使能功能
NCS2501DG
型号: NCS2501DG
厂家: ONSEMI    ONSEMI
描述:

1.1 mA 200 MHz Current Feedback Op Amp with Enable Feature
1.1毫安200 MHz的电流反馈运算放大器使能功能

运算放大器
文件: 总16页 (文件大小:250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCS2501  
1.1 mA 200 MHz Current  
Feedback Op Amp with  
Enable Feature  
NCS2501 is a 1.1 mA 200 MHz current feedback monolithic  
operational amplifier featuring high slew rate and low differential gain  
and phase error. The current feedback architecture allows for a  
superior bandwidth and low power consumption. This device features  
an enable pin.  
http://onsemi.com  
MARKING  
DIAGRAMS  
Features  
8
−3.0 dB Small Signal BW (A = +2.0, V = 0.5 V ) 200 MHz Typ  
Slew Rate 450 V/ms  
Supply Current 1.1 mA  
Input Referred Voltage Noise 4.0 nV/ Hz  
THD −55 dB (f = 5.0 MHz, V = 2.0 V  
Output Current 100 mA  
Enable Pin Available  
Pin Compatible with EL5160, MAX4180, OPA683  
Pb−Free Packages are Available  
V
O
p−p  
SO−8  
D SUFFIX  
CASE 751  
N2501  
ALYW  
G
8
1
1
Ǹ
)
p−p  
O
6
1
SC−70−6  
(SC−88)  
SQ SUFFIX  
CASE 419B  
4
1
5
6
M
YA1  
3
G
2
6
6
SOT23−6  
(TSOP−6)  
Applications  
YA1YW  
G
Portable Video  
Line Drivers  
SN SUFFIX  
CASE 318G  
1
1
Radar/Communication Receivers  
Set Top Box  
NTSC/PAL/HDTV  
YA1, N2501 = NCS2501  
A
L
= Assembly Location  
= Wafer Lot  
Y
= Year  
W
= Work Week  
= Date Code  
= Pb−Free Package  
3
M
V
= ±5V  
= 0.5V  
S
Gain = +2  
G
2
1
V
OUT  
V
= ±5V  
= 0.7V  
R
F
R
L
= 1.2kW  
= 100W  
S
V
OUT  
SO−8 PINOUT  
0
−1  
−2  
NC  
1
2
8
7
6
5
EN  
V
V
= ±2.5V  
= 2.0V  
S
V
OUT  
−IN  
+IN  
+
CC  
V
S
= ±5V  
OUT  
NC  
3
4
V
OUT  
= 2.0V  
−3  
−4  
−5  
−6  
V
EE  
V
= ±2.5V  
= 0.7V  
S
V
OUT  
(Top View)  
V
S
= ±2.5V  
V
OUT  
= 0.5V  
SOT23−6/SC70−6 PINOUT  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
OUT  
1
2
6
5
4
V
CC  
Figure 1. Frequency Response:  
Gain (dB) vs. Frequency Av = +2.0, RL = 100 W  
V
EE  
EN  
+IN  
3
−IN  
(Top View)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 13 of this data sheet.  
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
May, 2005 − Rev. 1  
NCS2501/D  
NCS2501  
PIN FUNCTION DESCRIPTION  
Pin  
Pin  
(SO−8)  
(SOT23/SC70)  
Symbol  
Function  
Equivalent Circuit  
V
CC  
6
1
OUT  
Output  
ESD  
OUT  
V
EE  
4
3
2
3
V
Negative Power Supply  
Non−inverted Input  
EE  
V
CC  
+IN  
ESD  
ESD  
+IN  
−IN  
V
EE  
2
7
8
4
6
5
−IN  
Inverted Input  
Positive Power Supply  
Enable  
See Above  
V
CC  
V
CC  
EN  
ESD  
EN  
V
EE  
1, 8  
N/A  
NC  
No Connect  
ENABLE PIN TRUTH TABLE  
High*  
Low  
Disabled  
Enable  
Enabled  
*Default open state  
V
CC  
+IN  
−IN  
OUT  
C
C
V
EE  
Figure 2. Simplified Device Schematic  
http://onsemi.com  
2
NCS2501  
ATTRIBUTES  
Characteristics  
Value  
ESD  
Human Body Model  
Machine Model  
2.0 kV (Note 1)  
200 V  
Charged Device Model  
1.0 kV  
Moisture Sensitivity (Note 2)  
Level 1  
Flammability Rating  
Oxygen Index: 28 to 34  
UL 94 V−0 @ 0.125 in  
1. 0.8 kV between the input pairs +IN and −IN pins only. All other pins are 2.0 kV.  
2. For additional information, see Application Note AND8003/D.  
MAXIMUM RATINGS  
Parameter  
Symbol  
Rating  
Unit  
Power Supply Voltage  
Input Voltage Range  
V
11  
V
V
V
S
DC  
DC  
DC  
V
vV  
I
S
Input Differential Voltage Range  
Output Current  
V
vV  
ID  
O
S
I
100  
mA  
°C  
Maximum Junction Temperature (Note 3)  
Operating Ambient Temperature  
Storage Temperature Range  
Power Dissipation  
T
150  
J
T
A
−40 to +85  
−60 to +150  
(See Graph)  
°C  
T
stg  
°C  
P
D
mW  
°C/W  
Thermal Resistance, Junction−to−Air  
R
q
JA  
SO−8  
SC70−6  
SOT23−6  
172  
215  
154  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
3. Power dissipation must be considered to ensure maximum junction temperature (T ) is not exceeded.  
J
MAXIMUM POWER DISSIPATION  
1400  
The maximum power that can be safely dissipated is limited  
by the associated rise in junction temperature. For the plastic  
packages, the maximum safe junction temperature is 150°C.  
If the maximum is exceeded momentarily, proper circuit  
operation will be restored as soon as the die temperature is  
reduced. Leaving the device in the “overheated’’ condition for  
an extended period can result in device damage.  
1200  
1000  
SO−8 Pkg  
SOT23 Pkg  
800  
600  
400  
200  
0
SC70 Pkg  
−50  
−25  
0
25  
50  
75  
100  
125 150  
Ambient Temperature (°C)  
Figure 3. Power Dissipation vs. Temperature  
http://onsemi.com  
3
 
NCS2501  
AC ELECTRICAL CHARACTERISTICS (V = +5.0 V, V = −5.0 V, T = −40°C to +85°C, R = 100 W to GND, R = 1.2 kW,  
CC  
EE  
A
L
F
A = +2.0, Enable is left open, unless otherwise specified).  
V
Symbol  
Characteristic  
Conditions  
Min  
Typ  
Max  
Unit  
FREQUENCY DOMAIN PERFORMANCE  
BW  
Bandwidth  
MHz  
3.0 dB Small Signal  
3.0 dB Large Signal  
A = +2.0, V = 0.5 V  
200  
140  
V
O
p−p  
p−p  
A = +2.0, V = 2.0 V  
V
O
GF  
0.1 dB Gain Flatness  
Bandwidth  
A = +2.0  
V
30  
MHz  
0.1dB  
dG  
dP  
Differential Gain  
A = +2.0, R = 150 W, f = 3.58 MHz  
0.02  
0.1  
%
V
L
Differential Phase  
A = +2.0, R = 150 W, f = 3.58 MHz  
°
V
L
TIME DOMAIN RESPONSE  
SR  
Slew Rate  
A = +2.0, V  
= 2.0 V  
450  
V/ms  
V
step  
t
s
Settling Time  
0.01%  
0.1%  
ns  
A = +2.0, V  
A = +2.0, V  
V
= 2.0 V  
= 2.0 V  
35  
18  
V
step  
step  
t t  
Rise and Fall Time  
Turn−on Time  
(10%−90%) A = +2.0, V = 2.0 V  
step  
5.0  
900  
500  
ns  
ns  
ns  
r
f
V
t
ON  
t
Turn−off Time  
OFF  
HARMONIC/NOISE PERFORMANCE  
THD  
HD2  
HD3  
IP3  
Total Harmonic Distortion  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
Third−Order Intercept  
f = 5.0 MHz, V = 2.0 V , R = 150 W  
−55  
−67  
−57  
35  
dB  
dBc  
dBc  
dBm  
dBc  
O
p−p  
L
f = 5.0 MHz, V = 2.0 V  
O
p−p  
p−p  
p−p  
f = 5.0 MHz, V = 2.0 V  
O
f = 10 MHz, V = 2.0 V  
O
SFDR  
Spurious−Free Dynamic  
Range  
f = 5.0 MHz, V = 2.0 V  
58  
O
p−p  
Ǹ
e
i
Input Referred Voltage Noise  
Input Referred Current Noise  
f = 1.0 MHz  
4.0  
N
nVń Hz  
f = 1.0 MHz, Inverting  
f = 1.0 MHz, Non−Inverting  
15  
15  
Ǹ
N
pAń Hz  
http://onsemi.com  
4
NCS2501  
DC ELECTRICAL CHARACTERISTICS (V = +5.0 V, V = −5.0 V, T = −40°C to +85°C, R = 100 W to GND, R = 1.2 kW,  
CC  
EE  
A
L
F
A = +2.0, Enable is left open, unless otherwise specified).  
V
Symbol  
Characteristic  
Conditions  
Min  
Typ  
Max  
Unit  
DC PERFORMANCE  
V
OS  
Offset Voltage  
−4.0  
"0.7  
+4.0  
mV  
DV /DT  
Input Offset Voltage  
6.0  
mV/°C  
IO  
Temperature Coefficient  
I
Input Bias Current  
+Input (Non−Inverting), V = 0 V  
−4.0  
−4.0  
"2.0  
"0.4  
+4.0  
+4.0  
mA  
nA/°C  
V
IB  
O
−Input (Inverting), V = 0 V (Note 4)  
O
DI /DT  
IB  
Input Bias Current  
Temperature Coefficient  
+Input (Non−Inverting), V = 0 V  
"40  
"10  
O
−Input (Inverting), V = 0 V  
O
V
Input High Voltage (Enable)  
(Note 4)  
V
−1.5 V  
IH  
CC  
V
IL  
Input Low Voltage (Enable)  
(Note 4)  
V
CC  
−3.5 V  
V
INPUT CHARACTERISTICS  
Input Common Mode Voltage  
V
CM  
"3.0  
"4.0  
V
Range (Note 4)  
CMRR  
Common Mode Rejection  
Ratio  
(See Graph)  
50  
55  
65  
dB  
R
C
Input Resistance  
+Input (Non−Inverting)  
−Input (Inverting)  
4.0  
350  
MW  
W
IN  
IN  
Differential Input  
Capacitance  
1.0  
pF  
OUTPUT CHARACTERISTICS  
R
Output Resistance  
Output Voltage Swing  
Output Current  
0.02  
"3.5  
"100  
W
V
OUT  
V
I
"3.0  
"60  
O
mA  
O
POWER SUPPLY  
V
Operating Voltage Supply  
Range  
10  
1.1  
0.11  
60  
V
S
I
Power Supply Current −  
Enabled  
V
V
= 0 V  
= 0 V  
0.5  
0
2.0  
0.3  
70  
mA  
mA  
dB  
S,ON  
O
I
Power Supply Current −  
Disabled  
S,OFF  
O
PSRR  
Power Supply Rejection  
Ratio  
(See Graph)  
50  
4. Guaranteed by design and/or characterization.  
http://onsemi.com  
5
 
NCS2501  
AC ELECTRICAL CHARACTERISTICS (V = +2.5 V, V = −2.5 V, T = −40°C to +85°C, R = 100 W to GND, R = 1.2 kW,  
CC  
EE  
A
L
F
A = +2.0, Enable is left open, unless otherwise specified).  
V
Symbol  
Characteristic  
Conditions  
Min  
Typ  
Max  
Unit  
FREQUENCY DOMAIN PERFORMANCE  
BW  
Bandwidth  
MHz  
3.0 dB Small Signal  
3.0 dB Large Signal  
A = +2.0, V = 0.5 V  
180  
130  
V
O
p−p  
p−p  
A = +2.0, V = 1.0 V  
V
O
GF  
0.1 dB Gain Flatness  
Bandwidth  
A = +2.0  
V
15  
MHz  
0.1dB  
dG  
dP  
Differential Gain  
A = +2.0, R = 150 W, f = 3.58 MHz  
0.02  
0.1  
%
V
L
Differential Phase  
A = +2.0, R = 150 W, f = 3.58 MHz  
°
V
L
TIME DOMAIN RESPONSE  
SR  
Slew Rate  
A = +2.0, V  
= 1.0 V  
350  
V/ms  
V
step  
t
s
Settling Time  
0.01%  
0.1%  
ns  
A = +2.0, V  
A = +2.0, V  
V
= 1.0 V  
= 1.0 V  
40  
18  
V
step  
step  
t t  
Rise and Fall Time  
Turn−on Time  
(10%−90%) A = +2.0, V = 1.0 V  
step  
8.0  
900  
500  
ns  
ns  
ns  
r
f
V
t
ON  
t
Turn−off Time  
OFF  
HARMONIC/NOISE PERFORMANCE  
THD  
HD2  
HD3  
IP3  
Total Harmonic Distortion  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
Third−Order Intercept  
f = 5.0 MHz, V = 1.0 V , R = 150 W  
−55  
−67  
−57  
35  
dB  
dBc  
dBc  
dBm  
dBc  
O
p−p  
L
f = 5.0 MHz, V = 1.0 V  
O
p−p  
p−p  
p−p  
f = 5.0 MHz, V = 1.0 V  
O
f = 10 MHz, V = 1.0 V  
O
SFDR  
Spurious−Free Dynamic  
Range  
f = 5.0 MHz, V = 1.0 V  
58  
O
p−p  
e
Input Referred Voltage Noise  
Input Referred Current Noise  
f = 1.0 MHz  
4.0  
Ǹ
N
nVń Hz  
i
N
f = 1.0 MHz, Inverting  
f = 1.0 MHz, Non−Inverting  
15  
15  
Ǹ
pAń Hz  
http://onsemi.com  
6
NCS2501  
DC ELECTRICAL CHARACTERISTICS (V = +2.5 V, V = −2.5 V, T = −40°C to +85°C, R = 100 W to GND, R = 1.2 kW,  
CC  
EE  
A
L
F
A = +2.0, Enable is left open, unless otherwise specified).  
V
Symbol  
Characteristic  
Conditions  
Min  
Typ  
Max  
Unit  
DC PERFORMANCE  
V
OS  
Offset Voltage  
−4.0  
"0.5  
+4.0  
mV  
DV /DT  
Input Offset Voltage  
6.0  
mV/°C  
IO  
Temperature Coefficient  
I
Input Bias Current  
+Input (Non−Inverting), V = 0 V  
−4.0  
−4.0  
"2.0  
"0.4  
+4.0  
+4.0  
mA  
nA/°C  
V
IB  
O
−Input (Inverting), V = 0 V (Note 5)  
O
DI /DT  
IB  
Input Bias Current  
Temperature Coefficient  
+Input (Non−Inverting), V = 0 V  
"40  
"10  
O
−Input (Inverting), V = 0 V  
O
V
Input High Voltage (Enable)  
(Note 5)  
V
−1.5 V  
IH  
CC  
V
IL  
Input Low Voltage (Enable)  
(Note 5)  
V
CC  
−3.5 V  
V
INPUT CHARACTERISTICS  
Input Common Mode Voltage  
V
CM  
"1.3  
"1.5  
V
Range (Note 5)  
CMRR  
Common Mode Rejection  
Ratio  
(See Graph)  
50  
55  
65  
dB  
R
C
Input Resistance  
+Input (Non−Inverting)  
−Input (Inverting)  
4.0  
350  
MW  
W
IN  
IN  
Differential Input  
Capacitance  
1.0  
pF  
OUTPUT CHARACTERISTICS  
R
Output Resistance  
Output Voltage Swing  
Output Current  
0.02  
"1.4  
"80  
W
V
OUT  
V
I
"1.1  
"40  
O
mA  
O
POWER SUPPLY  
V
Operating Voltage Supply  
Range  
5.0  
0.9  
0.05  
60  
V
S
I
Power Supply Current −  
Enabled  
V
V
= 0 V  
= 0 V  
0.5  
0
1.9  
0.3  
70  
mA  
mA  
dB  
S,ON  
O
I
Power Supply Current −  
Disabled  
S,OFF  
O
PSRR  
Power Supply Rejection  
Ratio  
(See Graph)  
50  
5. Guaranteed by design and/or characterization.  
V
IN  
+
V
OUT  
R
L
R
F
R
F
Figure 4. Typical Test Setup  
(AV = +2.0, RF = 1.8 kW or 1.2 kW or 1.0 kW, RL = 100 W)  
http://onsemi.com  
7
 
NCS2501  
3
2
1
6
V
= ±5V  
= 0.5V  
Gain = +2  
V
= ±2.5V  
= 0.5V  
Gain = +1  
S
S
V
= ±2.5V  
= 0.5V  
S
V
R = 1.2kW  
V
OUT  
R = 1.2kW  
OUT  
F
F
V
OUT  
V
= ±5V  
= 0.5V  
3
0
S
R = 100W  
L
R = 100W  
L
V
OUT  
0
−1  
−2  
V
= ±2.5V  
= 2.0V  
S
V
S
= ±5V  
V
OUT  
V
= 0.7V  
OUT  
−3  
−6  
V
= ±5V  
= 2.0V  
S
V
S
= ±2.5V  
V
OUT  
V
OUT  
= 0.7V  
−3  
−4  
−5  
−6  
V
= ±2.5V  
S
V
S
= ±5V  
V
= 0.7V  
OUT  
V
OUT  
= 1.0V  
−9  
V
= ±2.5V  
S
V
S
= ±2.5V  
V
= 0.7V  
OUT  
V
= 1.0V  
OUT  
−12  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.10  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 5. Frequency Response:  
Gain (dB) vs. Frequency  
Av = +2.0  
Figure 6. Frequency Response:  
Gain (dB) vs. Frequency  
Av = +1.0  
6
6
3
V
= ±5V  
A = +2  
V
V
= ±5V  
A = +1  
V
S
S
V
= ±5V  
A = +4  
V
S
V
= ±5V  
A = +4  
V
S
3
0
0
V
V
= ±2.5V  
A = +2  
V
S
V
S
= ±2.5V  
A = +1  
V
−3  
−6  
−3  
−6  
V
S
= ±5V  
V
S
= ±2.5V  
A = +2  
V
A = +4  
V
V
= 0.5V  
= ±2.5V  
A = +4  
V
OUT  
V
= 2.0V  
S
OUT  
−9  
−9  
R = 100W  
V
S
= ±2.5V  
L
R = 100W  
L
A = +4  
V
−12  
−12  
0.01  
0.10  
1
10  
100  
1000  
0.01  
0.10  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. Large Signal Frequency Response  
Gain (dB) vs. Frequency  
Figure 8. Small Signal Frequency Response  
Gain (dB) vs. Frequency  
Figure 9. Small Signal Step Response  
Vertical: 500 mV/div  
Figure 10. Large Signal Step Response  
Vertical: 500 mV/div  
Horizontal: 10 ns/div  
Horizontal: 10 ns/div  
http://onsemi.com  
8
NCS2501  
−40  
−45  
−50  
−40  
V
= ±5V  
V
V
= ±5V  
S
S
f = 5MHz  
R = 150W  
−45  
−50  
= 2V  
OUT  
PP  
R = 150W  
L
L
−55  
−60  
−65  
THD  
THD  
−55  
−60  
−65  
HD3  
HD3  
HD2  
−70  
HD2  
3
−75  
−80  
−70  
0.5  
1
1.5  
2
2.5  
(V  
3.5  
4
10  
100  
FREQUENCY (MHz)  
1000  
V
OUT  
)
PP  
Figure 11. THD, HD2, HD3 vs. Frequency  
Figure 12. THD, HD2, HD3 vs. Output Voltage  
7
6
−20  
−25  
V
S
= ±5V  
±2.5V  
−30  
−35  
−40  
−45  
−50  
−55  
5
4
3
2
±5.0V  
1
0
−60  
−65  
1
10  
100  
1000  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
Figure 13. Input Referred Noise vs. Frequency  
Figure 14. CMRR vs. Frequency  
0
−10  
−20  
−30  
−40  
−50  
0.06  
V
= ±5V  
S
0.04 R = 150W  
L
4.43MHz  
0.02  
3.58MHz  
+5.0V  
0
+2.5  
−2.5V  
−0.02  
10MHz  
20MHz  
−5.0V  
−0.04  
−0.06  
−60  
−70  
0.01  
0.1  
1
10  
100  
−0.8 −0.6 −0.4 −0.2  
0
0.2  
0.4  
0.6  
0.8  
FREQUENCY (MHz)  
OFFSET VOLTAGE (V)  
Figure 15. PSRR vs. Frequency  
Figure 16. Differential Gain  
http://onsemi.com  
9
NCS2501  
0.06  
0.04  
1.4  
1.3  
1.2  
1.1  
1
20MHz  
10MHz  
85°C  
25°C  
0.02  
0
4.43MHz  
0.9  
0.8  
−40°C  
−0.02  
3.58MHz  
0.2  
−0.04  
−0.06  
V
= ±5V  
0.7  
0.6  
S
R = 150W  
L
−0.8 −0.6 −0.4 −0.2  
0
0.4  
0.6  
0.8  
4
5
6
7
8
9
10  
11  
OFFSET VOLTAGE (V)  
Power Supply Voltage (V)  
Figure 17. Differential Phase  
Figure 18. Supply Current vs. Power Supply  
vs. Temperature (Enabled)  
.14  
8
7
6
85°C  
25°C  
.12  
.1  
−40°C  
25°C  
85°C  
.08  
5
4
−40°C  
.06  
.04  
.02  
3
2
0
4
5
6
7
8
9
10  
11  
4
5
6
7
8
9
10  
11  
Power Supply Voltage (V)  
SUPPLY VOLTAGE (V)  
Figure 19. Supply Current vs. Power Supply  
vs. Temperature (Disabled)  
Figure 20. Output Voltage Swing vs. Supply  
Voltage  
9
100  
10  
1
8
7
6
V
S
= ±5V  
V
S
= ±5V  
5
4
V
S
= ±2.5V  
3
2
0.1  
A = +2  
V
f = 1MHz  
1
0
0.01  
1
10  
100  
1000  
10k  
0.01  
0.1  
1
10  
100  
LOAD RESISTANCE (W)  
FREQUENCY (MHz)  
Figure 22. Output Impedance vs. Frequency  
Figure 21. Output Voltage Swing vs. Load  
Resistance  
http://onsemi.com  
10  
NCS2501  
18  
12  
6
10M  
1M  
V
S
= ±5V  
100k  
10k  
0
100pF  
47pF  
−6  
−12  
1k  
V
S
= ±5V  
100  
10  
1
−18  
R = 1.2kW  
F
10pF  
R = 100W  
L
−24  
−30  
Gain= +2  
0.01  
0.1  
1
10  
100  
1000  
10k  
1
10  
100  
Frequency (MHz)  
1000  
FREQUENCY (MHz)  
Figure 23. Frequency Response vs. CL  
Figure 24. Transimpedance (ROL) vs. Frequency  
EN  
EN  
OUT  
OUT  
Output Signal: Squarewave, 10MHz, 2V  
Output Signal: Squarewave, 10MHz, 2V  
PP  
PP  
Figure 25. Turn ON Time Delay  
Horizontal: 4 ns / Div  
Figure 26. Turn OFF Time Delay  
Horizontal: 4 ns / Div  
Vertical: 10mV/Div  
Vertical: 10mV/Div  
http://onsemi.com  
11  
NCS2501  
General Design Considerations  
resistor too far below its recommended value will cause  
overshoot, ringing, and eventually oscillation.  
The current feedback amplifier is optimized for use in high  
performance video and data acquisition systems. For current  
feedback architecture, its closed−loop bandwidth depends on  
the value of the feedback resistor. The closed−loop bandwidth  
is not a strong function of gain, as is for a voltage feedback  
amplifier, as shown in Figure 27.  
Since each application is slightly different, it is worth some  
experimentation to find the optimal RF for a given circuit. A  
value of the feedback resistor that produces X0.1 dB of  
peaking is the best compromise between stability and  
maximal bandwidth. It is not recommended to use a current  
feedback amplifier with the output shorted directly to the  
inverting input.  
10  
5
Printed Circuit Board Layout Techniques  
R = 1 kW  
F
Proper high speed PCB design rules should be used for all  
wideband amplifiers as the PCB parasitics can affect the  
overall performance. Most important are stray capacitances at  
the output and inverting input nodes as it can effect peaking  
and bandwidth. A space (3/16is plenty) should be left around  
the signal lines to minimize coupling. Also, signal lines  
connecting the feedback and gain resistors should be short  
enough so that their associated inductance does not cause high  
frequency gain errors. Line lengths less than 1/4are  
recommended.  
0
−5  
R = 1.2 kW  
F
R = 1.8 kW  
F
−10  
A = +2  
V
V
CC  
V
EE  
= +5 V  
= −5 V  
−15  
−20  
0.01  
0.1  
1.0  
10  
100  
1000  
10000  
Video Performance  
FREQUENCY (MHz)  
This device designed to provide good performance with  
NTSC, PAL, and HDTV video signals. Best performance is  
obtained with back terminated loads as performance is  
degraded as the load is increased. The back termination  
reduces reflections from the transmission line and effectively  
masks transmission line and other parasitic capacitances from  
the amplifier output stage.  
Figure 27. Frequency Response vs. RF  
The −3.0 dB bandwidth is, to some extent, dependent on the  
power supply voltages. By using lower power supplies, the  
bandwidth is reduced, because the internal capacitance  
increases. Smaller values of feedback resistor can be used at  
lower supply voltages, to compensate for this affect.  
ESD Protection  
Feedback and Gain Resistor Selection for Optimum  
Frequency Response  
This device is protected against electrostatic discharge  
(ESD) on all pins as specified in the attributes table. Note:  
Human Body Model for +IN and −IN pins are rated at 0.8 kV  
while all other pins are rated at 2.0 kV. Under closed−loop  
operation, the ESD diodes have no effect on circuit  
performance. However, under certain conditions the ESD  
diodes will be evident. If the device is driven into a slewing  
condition, the ESD diodes will clamp large differential  
voltages until the feedback loop restores closed−loop  
operation. Also, if the device is powered down and a large  
input signal is applied, the ESD diodes will conduct.  
A current feedback operational amplifier’s key advantage  
is the ability to maintain optimum frequency response  
independent of gain by using appropriate values for the  
feedback resistor. To obtain a very flat gain response, the  
feedback resistor tolerance should be considered as well.  
Resistor tolerance of 1% should be used for optimum flatness.  
Normally, lowering RF resistor from its recommended value  
will peak the frequency response and extend the bandwidth  
while increasing the value of RF resistor will cause the  
frequency response to roll off faster. Reducing the value of RF  
http://onsemi.com  
12  
 
NCS2501  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCS2501SQT2*  
SC70−6 (SC88)  
3000 Tape & Reel  
3000 Tape & Reel  
NCS2501SQT2G*  
SC70−6 (SC88)  
(Pb−Free)  
NCS2501SNT1  
SOT23−6 (TSOP−6)  
3000 Tape & Reel  
3000 Tape & Reel  
NCS2501SNT1G  
SOT23−6 (TSOP−6)  
(Pb−Free)  
NCS2501D*  
SO−8  
SO−8  
98 Units/Rail  
2500 Tape & Reel  
98 Units/Rail  
NCS2501DR2*  
NCS2501DG*  
SO−8  
(Pb−Free)  
NCS2501DR2G*  
SO−8  
(Pb−Free)  
2500 Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*Contact ON Semiconductor for ordering information.  
http://onsemi.com  
13  
NCS2501  
PACKAGE DIMENSIONS  
SO−8  
D SUFFIX  
CASE 751−07  
ISSUE AF  
NOTES:  
−X−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
A
8
5
4
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
−Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
0.275  
4.0  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
14  
NCS2501  
PACKAGE DIMENSIONS  
SC−70−6 (SC−88)  
SQ SUFFIX  
CASE 419B−02  
ISSUE U  
A
NOTES:  
G
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. 419B−01 OBSOLETE, NEW STANDARD 419B−02.  
6
1
5
4
3
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
S
−B−  
A
B
C
D
G
H
J
K
N
S
0.071 0.087  
0.045 0.053  
0.031 0.043  
0.004 0.012  
0.026 BSC  
−−− 0.004  
0.004 0.010  
0.004 0.012  
0.008 REF  
2
0.65 BSC  
−−−  
0.10  
0.10  
0.10  
0.25  
0.30  
D 6 PL  
M
M
B
0.2 (0.008)  
0.20 REF  
0.079 0.087  
2.00  
2.20  
N
J
C
H
K
SOLDERING FOOTPRINT*  
0.50  
0.0197  
0.65  
0.025  
0.65  
0.025  
0.40  
0.0157  
1.9  
0.0748  
mm  
inches  
ǒ
Ǔ
SCALE 20:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
15  
NCS2501  
PACKAGE DIMENSIONS  
SOT23−6 (TSOP−6)  
SN SUFFIX  
CASE 318G−02  
ISSUE M  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
L
6
5
2
4
B
C
S
1
3
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
D
A
B
C
D
G
H
J
K
L
M
S
2.90  
1.30  
0.90  
0.25  
0.85  
3.10 0.1142 0.1220  
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
G
M
J
0.013 0.100 0.0005 0.0040  
0.05 (0.002)  
0.10  
0.20  
1.25  
0
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
K
H
10  
0
10  
_
_
_
_
2.50  
3.00 0.0985 0.1181  
SOLDERING FOOTPRINT*  
2.4  
0.094  
0.95  
0.037  
1.9  
0.075  
0.95  
0.037  
0.7  
0.028  
1.0  
mm  
inches  
0.039  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCS2501/D  

相关型号:

NCS2501DR2

1.1 mA 200 MHz Current Feedback Op Amp with Enable Feature
ONSEMI

NCS2501DR2G

1.1 mA 200 MHz Current Feedback Op Amp with Enable Feature
ONSEMI

NCS2501SNT1

1.1 mA 200 MHz Current Feedback Op Amp with Enable Feature
ONSEMI

NCS2501SNT1G

1.1 mA 200 MHz Current Feedback Op Amp with Enable Feature
ONSEMI

NCS2501SQT2

1.1 mA 200 MHz Current Feedback Op Amp with Enable Feature
ONSEMI

NCS2501SQT2G

1.1 mA 200 MHz Current Feedback Op Amp with Enable Feature
ONSEMI

NCS2502

650 uA 110 MHz Current Feedback Op Amp with Enable Feature
ONSEMI

NCS2502D

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, SO-8
ONSEMI

NCS2502DG

650 uA 110 MHz Current Feedback Op Amp with Enable Feature
ONSEMI

NCS2502DR2G

650 uA 110 MHz Current Feedback Op Amp with Enable Feature
ONSEMI

NCS2502SNT1G

650 uA 110 MHz Current Feedback Op Amp with Enable Feature
ONSEMI

NCS2502SQT2

1 CHANNEL, VIDEO AMPLIFIER, PDSO6, SC-88, SC-70, 6 PIN
ONSEMI