NCS2325DR2G [ONSEMI]

Zero-Drift Operational Amplifier;
NCS2325DR2G
型号: NCS2325DR2G
厂家: ONSEMI    ONSEMI
描述:

Zero-Drift Operational Amplifier

放大器 光电二极管
文件: 总15页 (文件大小:762K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCS325, NCS2325,  
NCS4325  
50 mV Offset, 0.25 mV/5C,  
35 mA, Zero-Drift  
Operational Amplifier  
www.onsemi.com  
The NCS325, NCS2325 and NCS4325 are CMOS operational  
amplifiers providing precision performance. The Zero−Drift  
architecture allows for continuous auto−calibration, which provides  
very low offset, near−zero drift over time and temperature, and near  
flat 1/f noise at only 35 mA (max) quiescent current. These benefits  
make these devices ideal for precision DC applications. These op  
amps provide rail−to−rail input and output performance and are  
optimized for low voltage operation as low as 1.8 V and up to 5.5 V.  
The single channel NCS325 is available in the space−saving SOT23−5  
package. The dual channel NCS2325 is available in Micro8, SOIC−8,  
and DFN−8. The quad channel NCS4325 is available in SOIC−14.  
MARKING  
DIAGRAMS  
5
TSOP−5  
(SOT23−5)  
SN SUFFIX  
CASE 483  
32A AYWG  
G
1
1
1
DFN−8  
MN SUFFIX  
CASE 506BW  
NCS  
2325  
ALYWG  
G
Features  
1
Low Offset Voltage: 14 mV typ, 50 mV max at 25°C for NCS325  
Zero Drift: 0.25 mV/°C max  
8
Low Noise: 1 mVpp, 0.1 Hz to 10 Hz  
Quiescent Current: 21 mA typ, 35 mA max at 25°C  
Supply Voltage: 1.8 V to 5.5 V  
Rail−to−Rail Input and Output  
Internal EMI Filtering  
SOIC−8  
D SUFFIX  
CASE 751  
N2325  
AYWW  
G
1
1
8
MSOP−8  
DM SUFFIX  
CASE 846A  
2325  
AYWG  
G
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS  
Compliant  
1
1
Typical Applications  
14  
Battery Powered Instruments  
Temperature Measurements  
Transducer Applications  
Electronic Scales  
SOIC−14  
SUFFIX  
CASE 751A  
NCS4325G  
AWLYWW  
1
1
Medical Instrumentation  
Current Sensing  
A
Y
WL  
= Assembly Location  
= Year  
= Wafer Lot  
This document contains information on some products that are still under development.  
ON Semiconductor reserves the right to change or discontinue these products without  
notice.  
W or WW = Work Week  
G or G = Pb−Free Package  
(Note: Microdot may be in either location)  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
October, 2016 − Rev. 3  
NCS325/D  
NCS325, NCS2325, NCS4325  
PIN CONNECTIONS  
Dual Channel  
NCS2325  
Quad Channel  
NCS4325  
Single Channel  
NCS325  
OUT 1  
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT 1  
IN− 1  
1
2
3
5
VDD  
IN−  
OUT  
VSS  
IN+  
VDD  
OUT 4  
IN− 4  
+
OUT 2  
IN− 1  
IN+ 1  
VSS  
+
+
IN− 2  
IN+ 2  
IN+ 4  
VSS  
IN+ 1  
VDD  
+
4
SOT23  
DFN−8, SOIC−8, MSOP−8  
IN+ 2  
IN− 2  
OUT 2  
IN+ 3  
IN− 3  
OUT 3  
+
+
8
SOIC14  
ORDERING INFORMATION  
Configuration  
Device  
NCS325SN2T1G  
Package  
Shipping  
Single  
SOT23−5 / TSOP−5  
DFN8  
3000 / Tape & Reel  
3000 / Tape & Reel  
2500 / Tape & Reel  
4000 / Tape & Reel  
2500 / Tape & Reel  
Dual  
NCS2325MNTXG* (In Development)  
NCS2325DR2G  
SOIC−8  
NCS2325DMR2G  
Micro8 / MSOP−8  
SOIC−14  
Quad  
NCS4325DR2G* (In Development)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*Contact local sales office for more information  
www.onsemi.com  
2
NCS325, NCS2325, NCS4325  
ABSOLUTE MAXIMUM RATINGS Over operating free−air temperature, unless otherwise stated.  
Parameter  
Rating  
Unit  
Supply Voltage  
6
V
INPUT AND OUTPUT PINS  
Input Voltage (Note 1)  
Input Current (Note 1)  
Output Short Circuit Current (Note 2)  
TEMPERATURE  
(V ) − 0.3 to (V ) + 0.3  
V
SS  
DD  
10  
mA  
Continuous  
Operating Temperature  
Storage Temperature  
Junction Temperature  
ESD RATINGS (Note 3)  
Human Body Model (HBM)  
Machine Model (MM)  
OTHER RATINGS  
−40 to +150  
−65 to +150  
+150  
°C  
°C  
°C  
4000  
200  
V
V
Latch−up Current (Note 4)  
MSL  
100  
mA  
Level 1  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Input terminals are diode−clamped to the power−supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should  
be current limited to 10 mA or less  
2. Short−circuit to ground.  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AEC−Q100−002 (JEDEC standard: JESD22−A114)  
ESD Machine Model tested per AEC−Q100−003 (JEDEC standard: JESD22−A115)  
4. Latch−up Current tested per JEDEC standard: JESD78.  
THERMAL INFORMATION  
Thermal Metric  
Symbol  
Package  
SOT23−5 / TSOP−5  
Micro8 / MSOP−8  
SOIC−8  
Value  
235  
298  
250  
130  
216  
Unit  
Junction to Ambient (Note 5)  
q
°C/W  
JA  
DFN−8  
SOIC−14  
2
5. As mounted on an 80x80x1.5 mm FR4 PCB with 650 mm and 2 oz (0.034 mm) thick copper heat spreader. Following JEDEC JESD/EIA  
51.1, 51.2, 51.3 test guidelines  
OPERATING CONDITIONS  
Parameter  
Symbol  
Range  
Unit  
V
Supply Voltage (V − V  
)
V
T
1.8 to 5.5  
−40 to 125  
DD  
SS  
S
Specified Operating Range  
Input Common Mode Voltage Range  
°C  
V
A
V
ICMR  
V
−0.1 to V +0.1  
SS DD  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
3
 
NCS325, NCS2325, NCS4325  
ELECTRICAL CHARACTERISTICS: V = 1.8 V to 5.5 V  
S
At T = +25°C, R = 10 kW connected to midsupply, V  
= V  
= midsupply, unless otherwise noted.  
A
L
CM  
OUT  
Boldface limits apply over the specified temperature range, T = −40°C to 125°C, guaranteed by characterization and/or design.  
A
Parameter  
INPUT CHARACTERISTICS  
Offset Voltage  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OS  
NCS325  
V
V
= +5V  
= +5V  
14  
14  
50  
75  
mV  
S
NCS2325,  
NCS4325  
S
Offset Voltage Drift vs Temp  
Input Bias Current  
DV /DT  
T = −40°C to 125°C  
A
0.02  
50  
0.25  
mV/°C  
pA  
OS  
I
IB  
Input Offset Current  
I
100  
108  
pA  
OS  
Common Mode Rejection Ratio  
CMRR  
NCS325  
V
SS  
V
SS  
V
SS  
+0.3 < V  
< V − 0.3,  
85  
90  
90  
dB  
CM  
DD  
V
S
= 1.8 V  
+0.3 < V  
< V − 0.3,  
110  
110  
CM  
DD  
V
S
= 5.5 V  
NCS2325,  
NCS4325  
+0.3 < V  
< V − 0.3,  
= 5 V  
CM DD  
V
S
V
V
−0.1 < V  
−0.1 < V  
< V + 0.1, V = 1.8 V  
80  
92  
SS  
CM  
DD  
S
< V + 0.1, V = 5.5 V  
SS  
CM  
DD  
S
Input Resistance  
Input Capacitance  
R
C
15  
GW  
pF  
pF  
pF  
pF  
IN  
IN  
NCS325  
Differential  
Common Mode  
Differential  
1.8  
3.5  
4.1  
8.0  
NCS2325,  
NCS4325  
Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
V
Output swing within V  
Output swing within V  
12  
100  
100  
mV  
mV  
mA  
kW  
OH  
DD  
Output Voltage Low  
V
8
OL  
SC  
SS  
Short Circuit Current  
I
5
1.4  
Open Loop Output Impedance  
Z
f = 350 kHz, I = 0 mA, V = 1.8 V  
O S  
out−OL  
f = 350 kHz, I = 0 mA, V = 5.5 V  
2.7  
O
S
Capacitive Load Drive  
NOISE PERFORMANCE  
Voltage Noise Density  
Voltage Noise  
C
e
See Figure  
L
f
= 1 kHz  
100  
0.3  
1
nV / Hz  
N
IN  
e
P−P  
f
f
= 0.01 Hz to 1 Hz  
= 0.1 Hz to 10 Hz  
mV  
PP  
IN  
mV  
PP  
IN  
Current Noise Density  
i
N
f
IN  
= 10 Hz  
0.3  
pA / Hz  
DYNAMIC PERFORMANCE  
Open Loop Voltage Gain  
Gain Bandwidth Product  
A
R = 10 kW, V = 5.5 V  
114  
350  
270  
dB  
VOL  
L
S
GBWP  
NCS325  
kHz  
C = 100 pF, R = 10 kW  
L
L
NCS2325,  
NCS4325  
C = 100 pF, R = 10 kW  
L
L
Phase Margin  
Gain Margin  
Slew Rate  
f
C = 100 pF  
60  
20  
°
M
L
A
C = 100 pF  
L
dB  
M
SR  
G = +1, C = 100 pF, Vs = 1.8 V  
0.10  
0.16  
V/ms  
L
G = +1, C = 100 pF, Vs = 5.5 V  
L
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
100  
107  
dB  
T = −40°C to 125°C  
A
95  
Turn−on Time  
t
V
= 5 V  
100  
21  
ms  
ON  
S
Quiescent Current  
I
Q
No load  
35  
mA  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
4
NCS325, NCS2325, NCS4325  
12  
10  
8
100  
80  
90  
V
V
= 5 V  
S
Gain, V = 1.8 V  
S
60  
= midsupply  
CM  
Gain, V = 5.5 V  
S
T = 25°C  
A
Phase, V = 1.8 V  
60  
S
GAIN  
30  
Sample size = 31  
Phase, V = 5.5 V  
S
40  
20  
0
0
−30  
−60  
−90  
−120  
−150  
−180  
6
PHASE  
−20  
4
−40  
−60  
−80  
2
0
0
3
6
9
12 15 18  
21 24 27  
30  
10  
100  
1000  
10k  
100k  
1M  
OFFSET VOLTAGE (mV)  
FREQUENCY (Hz)  
Figure 1. Offset Voltage Distribution  
Figure 2. Gain and Phase vs. Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
V
= 5 V  
T = 25°C  
S
A
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R = 10 kW  
L
T = 25°C  
A
V
S
V
S
= 1.8 V  
= 5 V  
V
V
SS  
DD  
10  
100  
1000  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1000  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 3. CMRR vs. Frequency  
Figure 4. PSRR vs. Frequency  
3
2
500  
400  
V
, V = 5 V  
T = 25°C  
A
V
= 1.8 V  
OH  
S
S
T = 25°C  
A
300  
IIB+  
IIB−  
200  
V
OH  
, V = 1.8 V  
S
1
100  
0
0
−100  
−200  
−300  
−400  
−500  
V
, V = 1.8 V  
S
OL  
−1  
−2  
−3  
V
, V = 5 V  
S
OL  
0
1
2
3
4
5
6
7
8
9
10  
−1 −0.8 −0.6 −0.4 −0.2  
0
0.2 0.4 0.6 0.8  
1
OUTPUT CURRENT (mA)  
COMMON MODE VOLTAGE (V)  
Figure 6. Input Bias Current vs. Common  
Mode Voltage, VS = 1.8 V  
Figure 5. Output Voltage Swing vs. Output  
Current  
www.onsemi.com  
5
NCS325, NCS2325, NCS4325  
500  
400  
500  
V
= 5.5 V  
V
S
= 5.5 V  
IIB+  
S
400  
300  
T = 25°C  
A
IIB+  
IIB−  
IIB−  
300  
200  
200  
100  
100  
0
0
−100  
−200  
−300  
−400  
−500  
−100  
−200  
−300  
−400  
−500  
−3 −2.5 −2 −1.5 −1  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
−50  
−25  
0
25  
50  
70  
100  
125 150  
COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 7. Input Bias Current vs. Common  
Mode Voltage, VS = 5.5 V  
Figure 8. Input Bias Current vs. Temperature  
1.0  
0.75  
0.5  
3
2
T = 25°C  
A
V
= 5.0 V  
S
IIB+  
IIB−  
R = 10 kW  
L
C = 10 pF  
L
Av = 1 V/V  
1
0.25  
0
0
−0.25  
−0.5  
−0.75  
−1  
−1  
−2  
−3  
−1 −0.75 −0.5 −0.25  
0
0.25  
0.5 0.75  
1
−200 −100  
0
100  
200  
300  
400  
500  
DIFFERENTIAL VOLTAGE (V)  
TIME (ms)  
Figure 9. Input Bias Current vs. Input  
Differential Voltage  
Figure 10. Large Signal Step Response  
0.2  
0.1  
3
2
V
= 5.0 V  
S
Input  
Output  
R = 10 kW  
L
C = 10 pF  
L
Av = 1 V/V  
1
0
0
−1  
−2  
−3  
V
= 5.0 V  
S
−0.1  
−0.2  
R = 10 kW  
L
C = 10 pF  
L
Av = −10 V/V  
−200 −100  
0
100  
200  
300  
400  
500  
−100  
−50  
0
50  
100  
150  
200  
TIME (ms)  
TIME (ms)  
Figure 12. Positive Over Voltage Recovery  
Figure 11. Small Signal Step Response  
www.onsemi.com  
6
NCS325, NCS2325, NCS4325  
3
2
700  
V
= 5.0 V  
S
Input  
Output  
R = 10 kW  
L
600  
500  
400  
300  
200  
100  
0
Output = 4 V Step  
1
0
−1  
−2  
−3  
V
= 5.0 V  
S
R = 10 kW  
L
C = 10 pF  
L
Av = −10 V/V  
−100  
−50  
0
50  
100  
150  
200  
1
10  
100  
TIME (ms)  
GAIN (dB)  
Figure 13. Negative Over Voltage Recovery  
Figure 14. Setting Time vs. Closed Loop Gain  
70  
60  
50  
40  
30  
20  
10  
0
V
S
V
S
= 1.8 V  
= 5.5 V  
R = 10 kW  
Input = 50 mV  
L
10  
100  
LOAD CAPACITANCE (pF)  
1000  
TIME (1 s/div)  
Figure 15. Small Signal Overshoot vs. Load  
Capacitance  
Figure 16. 0.1 Hz to 10 Hz Noise  
1000  
100  
10  
1000  
100  
10  
V
S
V
S
= 1.8 V  
= 5.5 V  
1
0.1  
0.01  
V
S
V
S
= 1.8 V  
= 5.5 V  
1
10  
100  
FREQUENCY (Hz)  
1000  
0.1  
1
10  
100  
1000  
10k  
FREQUENCY (Hz)  
Figure 18. Current Noise Spectral Density vs.  
Frequency  
Figure 17. Voltage Noise Spectral Density vs.  
Frequency  
www.onsemi.com  
7
NCS325, NCS2325, NCS4325  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
30  
V
S
= 5.5 V  
V
= 5.0 V  
= 5 V  
PP  
S
SR−  
SR+  
25  
20  
V
IN  
R = 10 kW  
C = 100 pF  
Av = −10 V/V  
L
V
S
= 1.8 V  
L
V
V
= 1.8 V  
15  
S
= 1.5 V  
IN  
SR+  
10  
SR−  
0.08  
5
0
0.06  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. Slew Rate vs. Temperature  
Figure 20. Quiescent Current vs. Temperature  
6
5
5
4.99  
4.98  
4.97  
4.96  
4.95  
4.94  
4.93  
4.92  
4.90  
4.89  
4.88  
V
DD  
Pulse  
4
3
Output  
2
1
0
R = 10 kW  
T = 25°C  
A
L
4.87  
4.86  
120  
−1  
−20  
0
20  
40  
60  
80  
100  
TIME (ms)  
Figure 21. Turn−on Response  
www.onsemi.com  
8
NCS325, NCS2325, NCS4325  
APPLICATIONS INFORMATION  
INPUT VOLTAGE  
EMI SUSCEPTIBILITY AND INPUT FILTERING  
Op amps have varying amounts of EMI susceptibility.  
Semiconductor junctions can pick up and rectify EMI  
signals, creating an EMI−induced voltage offset at the  
output, adding another component to the total error. Input  
pins are the most sensitive to EMI. The NCS325, NCS2325  
and NCS4325 integrate a low−pass filter to decrease its  
sensitivity to EMI.  
The NCS325, NCS2325 and NCS4325 have rail−to−rail  
common mode input voltage range. Diodes between the  
inputs and the supply rails keep the input voltage from  
exceeding the rails.  
VDD  
10 kΩ  
IN+  
IN−  
APPLICATION CIRCUITS  
+
Low−Side Current Sensing  
The goal of low−side current sensing is to detect  
over−current conditions or as a method of feedback control.  
A sense resistor is placed in series with the load to ground.  
Typically, the value of the sense resistor is less than 100 mW  
to reduce power loss across the resistor. The op amp  
amplifies the voltage drop across the sense resistor with a  
gain set by external resistors R1, R2, R3, and R4 (where R1  
= R2, R3 = R4). Precision resistors are required for high  
accuracy, and the gain is set to utilize the full scale of the  
ADC for the highest resolution.  
10 kΩ  
VSS  
Figure 22. Equivalent Input Circuit  
R3  
VLOAD  
VDD  
VDD  
VDD  
Load  
R1  
Microcontroller  
+
RSENSE  
ADC  
control  
R2  
R4  
Figure 23. Low−Side Current Sensing  
www.onsemi.com  
9
NCS325, NCS2325, NCS4325  
Differential Amplifier for Bridged Circuits  
produced is relatively small and needs to be amplified before  
going into an ADC. Precision amplifiers are recommended  
in these types of applications due to their high gain, low  
noise, and low offset voltage.  
Sensors to measure strain, pressure, and temperature are  
often configured in a Wheatstone bridge circuit as shown in  
Figure 24. In the measurement, the voltage change that is  
VDD  
VDD  
+
Figure 24. Bridge Circuit Amplification  
GENERAL LAYOUT GUIDELINES  
the device pins. These techniques will reduce susceptibility  
to electromagnetic interference (EMI). Thermoelectric  
effects can create an additional temperature dependent  
offset voltage at the input pins. To reduce these effects, use  
metals with low thermoelectric−coefficients and prevent  
temperature gradients from heat sources or cooling fans.  
To ensure optimum device performance, it is important to  
follow good PCB design practices. Place 0.1 mF decoupling  
capacitors as close as possible to the supply pins. Keep traces  
short, utilize a ground plane, choose surface−mount  
components, and place components as close as possible to  
www.onsemi.com  
10  
 
NCS325, NCS2325, NCS4325  
PACKAGE DIMENSIONS  
TSOP−5  
CASE 483−02  
ISSUE K  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
NOTE 5  
5X  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH  
THICKNESS. MINIMUM LEAD THICKNESS IS THE  
MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT  
EXCEED 0.15 PER SIDE. DIMENSION A.  
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL  
TRIMMED LEAD IS ALLOWED IN THIS LOCATION.  
TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2  
FROM BODY.  
0.20 C A B  
2X  
0.10  
T
M
5
4
3
2X  
0.20  
T
B
S
1
2
K
B
A
DETAIL Z  
G
A
MILLIMETERS  
TOP VIEW  
DIM  
A
B
MIN  
3.00 BSC  
1.50 BSC  
MAX  
DETAIL Z  
C
D
0.90  
0.25  
1.10  
0.50  
J
G
H
J
K
M
S
0.95 BSC  
C
0.01  
0.10  
0.20  
0
0.10  
0.26  
0.60  
0.05  
H
SEATING  
PLANE  
END VIEW  
C
10  
_
_
SIDE VIEW  
2.50  
3.00  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
11  
NCS325, NCS2325, NCS4325  
PACKAGE DIMENSIONS  
DFN8, 3x3, 0.65P  
CASE 506BW−01  
ISSUE O  
NOTES:  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
L
L
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND  
0.30mm FROM THE TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
L1  
DETAIL A  
OPTIONAL  
CONSTRUCTIONS  
E
MILLIMETERS  
PIN ONE  
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
REFERENCE  
A
2X  
EXPOSED Cu  
MOLD CMPD  
0.10  
C
A3  
b
0.20 REF  
0.25  
0.35  
D
3.00 BSC  
2.50  
3.00 BSC  
1.75  
0.65 BSC  
2X  
0.10  
C
C
D2 2.30  
E
E2 1.55  
e
K
L
TOP VIEW  
DETAIL B  
A
C
DETAIL B  
(A3)  
OPTIONAL  
0.05  
CONSTRUCTIONS  
0.20  
0.35  
−−−  
0.45  
0.15  
L1 0.00  
0.05  
C
NOTE 4  
SEATING  
PLANE  
A1  
SIDE VIEW  
D2  
RECOMMENDED  
SOLDERING FOOTPRINT*  
DETAIL A  
8X  
0.62  
2.50  
1
4
8X  
L
E2  
3.30  
1.75  
8X  
K
8
5
8X b  
1
e/2  
08.4X0  
0.10 C A B  
e
0.65  
PITCH  
NOTE 3  
C
0.05  
DIMENSIONS: MILLIMETERS  
BOTTOM VIEW  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
12  
NCS325, NCS2325, NCS4325  
PACKAGE DIMENSIONS  
SOIC−8 NB  
CASE 751−07  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
−X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
−Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
13  
NCS325, NCS2325, NCS4325  
PACKAGE DIMENSIONS  
Micro8t  
CASE 846A−02  
ISSUE J  
D
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE  
BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED  
0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.  
H
E
E
MILLIMETERS  
INCHES  
NOM  
−−  
0.003  
0.013  
0.007  
0.118  
DIM  
A
A1  
b
c
D
MIN  
−−  
NOM  
−−  
MAX  
MIN  
−−  
MAX  
0.043  
0.006  
0.016  
0.009  
0.122  
0.122  
PIN 1 ID  
e
1.10  
0.15  
0.40  
0.23  
3.10  
3.10  
b 8 PL  
0.05  
0.25  
0.13  
2.90  
2.90  
0.08  
0.002  
0.010  
0.005  
0.114  
0.114  
0.33  
M
S
S
0.08 (0.003)  
T B  
A
0.18  
3.00  
E
3.00  
0.118  
e
L
0.65 BSC  
0.55  
4.90  
0.026 BSC  
0.021  
0.193  
SEATING  
PLANE  
0.40  
4.75  
0.70  
5.05  
0.016  
0.187  
0.028  
0.199  
−T−  
H
E
A
0.038 (0.0015)  
L
A1  
c
RECOMMENDED  
SOLDERING FOOTPRINT*  
8X  
8X  
0.48  
0.80  
5.25  
0.65  
PITCH  
DIMENSION: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
14  
NCS325, NCS2325, NCS4325  
PACKAGE DIMENSIONS  
SOIC−14 NB  
CASE 751A−03  
NOTES:  
ISSUE L  
D
A
B
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.13 TOTAL IN EXCESS OF AT  
MAXIMUM MATERIAL CONDITION.  
4. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD PROTRUSIONS.  
14  
8
7
A3  
E
H
5. MAXIMUM MOLD PROTRUSION 0.15 PER  
SIDE.  
L
DETAIL A  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
13X b  
M
M
B
0.25  
A
A1  
A3  
b
D
E
1.35  
0.10  
0.19  
0.35  
8.55  
3.80  
1.75 0.054 0.068  
0.25 0.004 0.010  
0.25 0.008 0.010  
0.49 0.014 0.019  
8.75 0.337 0.344  
4.00 0.150 0.157  
M
S
S
B
0.25  
C A  
DETAIL A  
h
A
X 45  
_
e
H
h
L
1.27 BSC  
0.050 BSC  
6.20 0.228 0.244  
0.50 0.010 0.019  
1.25 0.016 0.049  
5.80  
0.25  
0.40  
0
0.10  
M
A1  
e
M
7
0
7
_
_
_
_
SEATING  
PLANE  
C
SOLDERING FOOTPRINT*  
6.50  
14X  
1.18  
1
1.27  
PITCH  
14X  
0.58  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCS325/D  

相关型号:

NCS2325MNTXG

Zero-Drift Operational Amplifier
ONSEMI

NCS2333DMR2G

Low Power, Zero-Drift Operational Amplifier
ONSEMI

NCS2333DR2G

Low Power, Zero-Drift Operational Amplifier
ONSEMI

NCS2333MNTXG

Low Power, Zero-Drift Operational Amplifier
ONSEMI

NCS2333MUTBG

Zero-Drift Operational Amplifier
ONSEMI

NCS2372

1.0 A Output Current Dual Power Operational Amplifiers
ONSEMI

NCS2372DWR2G

1.0 A Output Current Dual Power Operational Amplifiers
ONSEMI

NCS245-1300

Analog IC
ETC

NCS2500

1.1 mA 200 MHz Current Feedback Op Amp
ONSEMI

NCS2500D

1.1 mA 200 MHz Current Feedback Op Amp
ONSEMI

NCS2500DG

1.1 mA 200 MHz Current Feedback Op Amp
ONSEMI

NCS2500DR2

1.1 mA 200 MHz Current Feedback Op Amp
ONSEMI