MTD2955V [ONSEMI]

Power MOSFET 12A, 60V P-Channel DPAK; 功率MOSFET的12A , 60V P沟道DPAK
MTD2955V
型号: MTD2955V
厂家: ONSEMI    ONSEMI
描述:

Power MOSFET 12A, 60V P-Channel DPAK
功率MOSFET的12A , 60V P沟道DPAK

文件: 总10页 (文件大小:75K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MTD2955V  
Power MOSFET 12 A, 60 V  
P−Channel DPAK  
This Power MOSFET is designed to withstand high energy in the  
avalanche and commutation modes. Designed for low voltage, high  
speed switching applications in power supplies, converters and power  
motor controls, these devices are particularly well suited for bridge  
circuits where diode speed and commutating safe operating areas are  
critical and offer additional safety margin against unexpected voltage  
transients.  
http://onsemi.com  
12 A, 60 V  
R
DS(on) = 185 mW (Typ)  
Features  
Avalanche Energy Specified  
I  
and V  
Specified at Elevated Temperature  
DSS  
DS(on)  
P−Channel  
Pb−Free Packages are Available  
D
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
C
Rating  
Symbol  
Value  
60  
Unit  
Vdc  
Vdc  
Drain−to−Source Voltage  
V
DSS  
G
Drain−to−Gate Voltage (R = 1.0 MW)  
V
DGR  
60  
GS  
S
Gate−to−Source Voltage  
− Continuous  
V
± 20  
± 25  
Vdc  
Vpk  
GS  
− Non−repetitive (t 10 ms)  
V
GSM  
p
Drain Current − Continuous  
Drain Current − Continuous @ 100°C  
Drain Current − Single Pulse (t 10 ms)  
I
I
12  
8.0  
42  
Adc  
D
D
I
DM  
Apk  
p
4
DPAK−3  
Total Power Dissipation  
Derate above 25°C  
Total Power Dissipation @ 25°C (Note 2)  
P
D
60  
0.4  
2.1  
Watts  
W/°C  
Watts  
CASE 369C  
STYLE 2  
2
1
3
Operating and Storage Temperature  
Range  
T , T  
55 to  
175  
°C  
J
stg  
Single Pulse Drain−to−Source Avalanche  
E
AS  
216  
mJ  
Energy − Starting T = 25°C  
J
4
(V = 25 Vdc, V = 10 Vdc, Peak  
DD  
GS  
I = 12 Apk, L = 3.0 mH, R = 25 W)  
L
G
DPAK−3  
CASE 369D  
STYLE 2  
Thermal Resistance  
− Junction to Case  
− Junction to Ambient (Note 1)  
− Junction to Ambient (Note 2)  
°C/W  
°C  
R
R
R
2.5  
100  
71.4  
q
JC  
JA  
JA  
1
q
2
3
q
Maximum Lead Temperature for Soldering  
Purposes, 1/8from case for 10  
seconds  
T
260  
L
ORDERING INFORMATION  
See detailed ordering and shipping information in the  
package dimensions section on page 7 of this data sheet.  
Maximum ratings are those values beyond which device damage can occur.  
Maximum ratings applied to the device are individual stress limit values (not  
normal operating conditions) and are not valid simultaneously. If these limits  
are exceeded, device functional operation is not implied, damage may occur  
and reliability may be affected.  
1. When surface mounted to an FR4 board using the minimum recommended  
pad size.  
2. When surface mounted to an FR4 board using the 0.5 sq.in. pad size.  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 7 of this data sheet.  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
April, 2004 − Rev. 7  
MTD2955V/D  
 
MTD2955V  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain−to−Source Breakdown Voltage  
(V = 0 Vdc, I = 0.25 mAdc)  
Temperature Coefficient (Positive)  
(Cpk 2.0) (Note 5)  
V
Vdc  
mV/°C  
mAdc  
(BR)DSS  
60  
58  
GS  
D
Zero Gate Voltage Drain Current  
I
DSS  
10  
100  
(V = 60 Vdc, V = 0 Vdc)  
DS  
GS  
(V = 60 Vdc, V = 0 Vdc, T = 150°C)  
DS  
GS  
J
Gate−Body Leakage Current (V = ± 20 Vdc, V = 0 Vdc)  
I
100  
nAdc  
GS  
DS  
GSS  
ON CHARACTERISTICS (Note 3)  
Gate Threshold Voltage  
(V = V , I = 250 mAdc)  
(Cpk 2.0) (Note 5)  
(Cpk 1.5) (Note 5)  
V
Vdc  
mV/°C  
W
GS(th)  
2.0  
2.8  
5.0  
4.0  
DS  
GS  
D
Threshold Temperature Coefficient (Negative)  
Static Drain−to−Source On−Resistance  
R
V
DS(on)  
0.185  
0.230  
(V = 10 Vdc, I = 6.0 Adc)  
GS  
D
Drain−to−Source On−Voltage  
(V = 10 Vdc, I = 12 Adc)  
Vdc  
DS(on)  
2.9  
2.5  
GS  
D
(V = 10 Vdc, I = 6.0 Adc, T = 150°C)  
GS  
D
J
Forward Transconductance (V = 10 Vdc, I = 6.0 Adc)  
g
FS  
3.0  
5.0  
mhos  
pF  
DS  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
Output Capacitance  
C
550  
200  
50  
770  
280  
100  
iss  
(V = 25 Vdc, V = 0 Vdc,  
DS  
GS  
C
oss  
f = 1.0 MHz)  
Reverse Transfer Capacitance  
SWITCHING CHARACTERISTICS (Note 4)  
Turn−On Delay Time  
C
rss  
t
15  
50  
30  
100  
50  
80  
30  
ns  
d(on)  
(V = 30 Vdc, I = 12 Adc,  
Rise Time  
t
r
DD  
D
V
GS  
= 10 Vdc,  
= 9.1 W)  
Turn−Off Delay Time  
Fall Time  
t
24  
R
d(off)  
G
t
f
39  
Gate Charge  
Q
T
Q
1
Q
2
Q
3
19  
nC  
4.0  
9.0  
7.0  
(V = 48 Vdc, I = 12 Adc,  
DS  
D
V
GS  
= 10 Vdc)  
SOURCE−DRAIN DIODE CHARACTERISTICS  
Forward On−Voltage (Note 3)  
V
Vdc  
ns  
SD  
(I = 12 Adc, V = 0 Vdc)  
S
GS  
1.8  
1.5  
3.0  
(I = 12 Adc, V = 0 Vdc, T = 150°C)  
S
GS  
J
Reverse Recovery Time  
t
115  
90  
rr  
t
a
(I = 12 Adc, V = 0 Vdc,  
S
GS  
t
25  
b
dI /dt = 100 A/ms)  
S
Reverse Recovery Stored  
Charge  
Q
0.53  
mC  
RR  
INTERNAL PACKAGE INDUCTANCE  
Internal Drain Inductance  
(Measured from contact screw on tab to center of die)  
(Measured from the drain lead 0.25from package to center of die)  
L
nH  
nH  
D
3.5  
4.5  
Internal Source Inductance  
L
S
7.5  
(Measured from the source lead 0.25from package to source bond pad)  
3. Pulse Test: Pulse Width 300 ms, Duty Cycle 2%.  
4. Switching characteristics are independent of operating junction temperature.  
5. Reflects typical values.  
Max limit − Typ  
C
=
pk  
3 x SIGMA  
http://onsemi.com  
2
 
MTD2955V  
TYPICAL ELECTRICAL CHARACTERISTICS  
24  
25  
20  
15  
10  
5
V
DS  
10 V  
T = 25°C  
J
T = −ꢀ55°C  
J
V
GS  
= 10 V  
9 V  
8 V  
7 V  
21  
18  
15  
12  
9
100°C  
25°C  
6 V  
5 V  
6
3
0
0
0
1
2
3
4
5
6
7
8
9
10  
2
3
4
5
6
7
8
9
10  
V
DS  
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
V , GATE−TO−SOURCE VOLTAGE (VOLTS)  
GS  
Figure 1. On−Region Characteristics  
Figure 2. Transfer Characteristics  
0.250  
0.225  
0.200  
0.175  
0.150  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
T = 25°C  
V
GS  
= 10 V  
J
V
GS  
= 10 V  
T = 100°C  
J
25°C  
15 V  
0.125  
0.100  
0.075  
0.050  
−ꢀ55°C  
0
3
6
9
12  
15  
18  
21  
24  
0
3
6
9
12  
15  
18  
21  
24  
I , DRAIN CURRENT (AMPS)  
D
I , DRAIN CURRENT (AMPS)  
D
Figure 3. On−Resistance versus Drain Current  
and Temperature  
Figure 4. On−Resistance versus Drain Current  
and Gate Voltage  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1000  
100  
10  
V
GS  
= 0 V  
V
= 10 V  
GS  
I
D
= 6 A  
T = 125°C  
J
100°C  
−ꢀ50 −ꢀ25  
0
25  
50  
75  
100 125  
150 175  
0
10  
20  
30  
40  
50  
60  
T , JUNCTION TEMPERATURE (°C)  
J
V
DS  
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
Figure 5. On−Resistance Variation with  
Temperature  
Figure 6. Drain−To−Source Leakage  
Current versus Voltage  
http://onsemi.com  
3
MTD2955V  
POWER MOSFET SWITCHING  
Switching behavior is most easily modeled and predicted  
by recognizing that the power MOSFET is charge  
controlled. The lengths of various switching intervals (Dt)  
are determined by how fast the FET input capacitance can  
be charged by current from the generator.  
The capacitance (C ) is read from the capacitance curve at  
a voltage corresponding to the off−state condition when  
iss  
calculating t  
and is read at a voltage corresponding to the  
d(on)  
on−state when calculating t  
.
d(off)  
At high switching speeds, parasitic circuit elements  
complicate the analysis. The inductance of the MOSFET  
source lead, inside the package and in the circuit wiring  
which is common to both the drain and gate current paths,  
produces a voltage at the source which reduces the gate drive  
current. The voltage is determined by Ldi/dt, but since di/dt  
is a function of drain current, the mathematical solution is  
complex. The MOSFET output capacitance also  
complicates the mathematics. And finally, MOSFETs have  
finite internal gate resistance which effectively adds to the  
resistance of the driving source, but the internal resistance  
is difficult to measure and, consequently, is not specified.  
The resistive switching time variation versus gate  
resistance (Figure 9) shows how typical switching  
performance is affected by the parasitic circuit elements. If  
the parasitics were not present, the slope of the curves would  
maintain a value of unity regardless of the switching speed.  
The circuit used to obtain the data is constructed to minimize  
common inductance in the drain and gate circuit loops and  
is believed readily achievable with board mounted  
components. Most power electronic loads are inductive; the  
data in the figure is taken with a resistive load, which  
approximates an optimally snubbed inductive load. Power  
MOSFETs may be safely operated into an inductive load;  
however, snubbing reduces switching losses.  
The published capacitance data is difficult to use for  
calculating rise and fall because drain−gate capacitance  
varies greatly with applied voltage. Accordingly, gate  
charge data is used. In most cases, a satisfactory estimate of  
average input current (I  
) can be made from a  
G(AV)  
rudimentary analysis of the drive circuit so that  
t = Q/I  
G(AV)  
During the rise and fall time interval when switching a  
resistive load, V remains virtually constant at a level  
GS  
known as the plateau voltage, V . Therefore, rise and fall  
SGP  
times may be approximated by the following:  
t = Q x R /(V − V )  
GSP  
r
2
G
GG  
t = Q x R /V  
f
2
G
GSP  
where  
= the gate drive voltage, which varies from zero to V  
V
GG  
GG  
R = the gate drive resistance  
G
and Q and V  
are read from the gate charge curve.  
2
GSP  
During the turn−on and turn−off delay times, gate current is  
not constant. The simplest calculation uses appropriate  
values from the capacitance curves in a standard equation for  
voltage change in an RC network. The equations are:  
t
t
= R C In [V /(V − V )]  
G iss GG GG GSP  
d(on)  
d(off)  
= R C In (V /V )  
GG GSP  
G
iss  
1800  
1600  
V
DS  
= 0 V  
V
GS  
= 0 V  
T = 25°C  
J
C
iss  
1400  
1200  
1000  
800  
600  
400  
200  
0
C
rss  
C
iss  
C
C
oss  
rss  
10  
5
0
5
10  
15  
20  
25  
V
GS  
V
DS  
GATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
Figure 7. Capacitance Variation  
http://onsemi.com  
4
MTD2955V  
1000  
30  
10  
9
8
7
6
5
4
3
2
1
0
V
= 30 V  
DD  
QT  
27  
24  
I
D
= 12 A  
V
= 10 V  
GS  
T = 25°C  
Q1  
Q2  
J
21  
V
GS  
100  
18  
15  
12  
t
r
t
f
t
d(off)  
d(on)  
t
10  
9
I
= 12 A  
D
T = 25°C  
6
3
J
Q3  
V
DS  
1
0
20  
1
10  
R , GATE RESISTANCE (OHMS)  
100  
0
2
4
6
8
10  
12  
14  
16  
18  
Q , TOTAL CHARGE (nC)  
T
G
Figure 8. Gate−To−Source and Drain−To−Source  
Voltage versus Total Charge  
Figure 9. Resistive Switching Time  
Variation versus Gate Resistance  
DRAIN−TO−SOURCE DIODE CHARACTERISTICS  
12  
V
= 0 V  
11  
GS  
T = 25°C  
J
10  
9
8
7
6
5
4
3
2
1
0
0.5  
0.7  
V
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
, SOURCE−TO−DRAIN VOLTAGE (VOLTS)  
SD  
Figure 10. Diode Forward Voltage versus Current  
SAFE OPERATING AREA  
The Forward Biased Safe Operating Area curves define  
the maximum simultaneous drain−to−source voltage and  
drain current that a transistor can handle safely when it is  
forward biased. Curves are based upon maximum peak  
reliable operation, the stored energy from circuit inductance  
dissipated in the transistor while in avalanche must be less  
than the rated limit and adjusted for operating conditions  
differing from those specified. Although industry practice is  
to rate in terms of energy, avalanche energy capability is not  
a constant. The energy rating decreases non−linearly with an  
increase of peak current in avalanche and peak junction  
temperature.  
junction temperature and a case temperature (T ) of 25°C.  
C
Peak repetitive pulsed power limits are determined by using  
the thermal response data in conjunction with the procedures  
discussed  
in  
AN569,  
“Transient  
Thermal  
Resistance−General Data and Its Use.”  
Switching between the off−state and the on−state may  
traverse any load line provided neither rated peak current  
Although many E−FETs can withstand the stress of  
drain−to−source avalanche at currents up to rated pulsed  
current (I ), the energy rating is specified at rated  
DM  
(I ) nor rated voltage (V ) is exceeded and the  
continuous current (I ), in accordance with industry  
DM  
DSS  
D
transition time (t ,t ) do not exceed 10 ms. In addition the total  
power averaged over a complete switching cycle must not  
custom. The energy rating must be derated for temperature  
as shown in the accompanying graph (Figure 12). Maximum  
r f  
exceed (T  
− T )/(R ).  
energy at currents below rated continuous I can safely be  
J(MAX)  
C
qJC  
D
A Power MOSFET designated E−FET can be safely used  
in switching circuits with unclamped inductive loads. For  
assumed to equal the values indicated.  
http://onsemi.com  
5
MTD2955V  
SAFE OPERATING AREA  
225  
200  
175  
150  
125  
100  
10  
V
= 15 V  
GS  
SINGLE PULSE  
= 25°C  
I
D
= 12 A  
T
C
100 ms  
1 ms  
100  
75  
50  
25  
0
10 ms  
1.0  
0.1  
dc  
R
LIMIT  
DS(on)  
THERMAL LIMIT  
PACKAGE LIMIT  
0.1  
1.0  
10  
100  
25  
50  
75  
100  
125  
150  
175  
V
DS  
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
T , STARTING JUNCTION TEMPERATURE (°C)  
J
Figure 11. Maximum Rated Forward Biased  
Safe Operating Area  
Figure 12. Maximum Avalanche Energy versus  
Starting Junction Temperature  
1.0  
D = 0.5  
0.2  
0.1  
P
(pk)  
0.05  
0.1  
R
q
(t) = r(t) R  
q
JC  
JC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
0.02  
0.01  
SINGLE PULSE  
t
READ TIME AT t  
1
1
t
2
T
− T = P  
C
R (t)  
q
JC  
J(pk)  
(pk)  
DUTY CYCLE, D = t /t  
1 2  
0.01  
1.0E−05  
1.0E−04  
1.0E−03  
1.0E−02  
t, TIME (s)  
1.0E−01  
1.0E+00  
1.0E+01  
Figure 13. Thermal Response  
di/dt  
I
S
t
rr  
t
a
t
b
TIME  
0.25 I  
t
p
S
I
S
Figure 14. Diode Reverse Recovery Waveform  
http://onsemi.com  
6
MTD2955V  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MTD2955V  
DPAK−3  
75 Units/Rail  
75 Units/Rail  
MTD2955VG  
DPAK−3  
(Pb−Free)  
MTD2955V−1  
DPAK−3  
75 Units/Rail  
MTD2955V−1G  
DPAK−3  
(Pb−Free)  
75 Units/Rail  
MTD2955VT4  
DPAK−3  
2500 Tape & Reel  
2500 Tape & Reel  
MTD2955VT4G  
DPAK−3  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
MARKING DIAGRAMS  
DPAK−3  
DPAK−3  
CASE 369D  
CASE 369C  
STYLE 2  
STYLE 2  
4
Drain  
4
Drain  
2
1
Gate  
3
Drain  
1
2
3
Source  
Gate Drain Source  
2955V  
Y
Device Code  
= Year  
WW  
= Work Week  
http://onsemi.com  
7
MTD2955V  
PACKAGE DIMENSIONS  
DPAK−3  
CASE 369C−01  
ISSUE O  
NOTES:  
SEATING  
PLANE  
−T−  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
C
2. CONTROLLING DIMENSION: INCH.  
B
R
INCHES  
DIM MIN MAX  
MILLIMETERS  
E
V
MIN  
5.97  
6.35  
2.19  
0.69  
0.46  
0.94  
MAX  
6.22  
6.73  
2.38  
0.88  
0.58  
1.14  
A
B
C
D
E
F
G
H
J
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.027 0.035  
0.018 0.023  
0.037 0.045  
0.180 BSC  
0.034 0.040  
0.018 0.023  
0.102 0.114  
0.090 BSC  
4
2
Z
A
K
S
1
3
4.58 BSC  
U
0.87  
0.46  
2.60  
1.01  
0.58  
2.89  
K
L
2.29 BSC  
F
J
R
S
U
V
Z
0.180 0.215  
0.025 0.040  
4.57  
0.63  
0.51  
0.89  
3.93  
5.45  
1.01  
−−−  
1.27  
−−−  
L
H
0.020  
0.035 0.050  
0.155 −−−  
−−−  
D 2 PL  
M
G
0.13 (0.005)  
T
STYLE 2:  
PIN 1. GATE  
2. DRAIN  
3. SOURCE  
4. DRAIN  
SOLDERING FOOTPRINT*  
6.20  
3.0  
0.244  
0.118  
2.58  
0.101  
5.80  
0.228  
1.6  
0.063  
6.172  
0.243  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
8
MTD2955V  
DPAK−3  
CASE 369D−01  
ISSUE B  
C
B
R
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
V
S
E
INCHES  
DIM MIN MAX  
MILLIMETERS  
4
2
MIN  
5.97  
6.35  
2.19  
0.69  
0.46  
0.94  
MAX  
6.35  
6.73  
2.38  
0.88  
0.58  
1.14  
Z
A
B
C
D
E
F
G
H
J
K
R
S
V
Z
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.027 0.035  
0.018 0.023  
0.037 0.045  
0.090 BSC  
0.034 0.040  
0.018 0.023  
0.350 0.380  
0.180 0.215  
0.025 0.040  
0.035 0.050  
A
K
1
3
−T−  
SEATING  
PLANE  
2.29 BSC  
0.87  
0.46  
8.89  
4.45  
0.63  
0.89  
3.93  
1.01  
0.58  
9.65  
5.45  
1.01  
1.27  
−−−  
J
F
H
0.155  
−−−  
D 3 PL  
STYLE 2:  
PIN 1. GATE  
G
M
T
0.13 (0.005)  
2. DRAIN  
3. SOURCE  
4. DRAIN  
http://onsemi.com  
9
MTD2955V  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
MTD2955V/D  

相关型号:

MTD2955V-1

Power MOSFET 12A, 60V P-Channel DPAK
ONSEMI

MTD2955V-1G

Power MOSFET 12A, 60V P-Channel DPAK
ONSEMI

MTD2955V1

Transistor
MOTOROLA

MTD2955V1

TRANSISTOR 12 A, 60 V, 0.23 ohm, P-CHANNEL, Si, POWER, MOSFET, DPAK-3, FET General Purpose Power
ONSEMI

MTD2955VG

Power MOSFET 12A, 60V P-Channel DPAK
ONSEMI

MTD2955VT4

Power MOSFET 12A, 60V P-Channel DPAK
ONSEMI

MTD2955VT4G

Power MOSFET 12A, 60V P-Channel DPAK
ONSEMI

MTD2K5P20KM3

-200V P-Channel Enhancement Mode MOSFET
CYSTEKEC

MTD2K5P20KM3-0-T2-G

-200V P-Channel Enhancement Mode MOSFET
CYSTEKEC

MTD2N20

POWER FIELD EFFECT TRANSISTOR N-CHANNEL ENHANCEMENT-MODE SILICON GATE
MOTOROLA

MTD2N20-1

Power Field-Effect Transistor, 2A I(D), 200V, 1.5ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-251
MOTOROLA

MTD2N20T4

2A, 200V, 1.5ohm, N-CHANNEL, Si, POWER, MOSFET, TO-252
MOTOROLA