MC78PC50NTR [ONSEMI]

Low Noise 150 mA Low Drop Out(LDO) Linear Voltage Regulator; 低噪声150毫安低压降( LDO )线性稳压器
MC78PC50NTR
型号: MC78PC50NTR
厂家: ONSEMI    ONSEMI
描述:

Low Noise 150 mA Low Drop Out(LDO) Linear Voltage Regulator
低噪声150毫安低压降( LDO )线性稳压器

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总16页 (文件大小:351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The MC78PC00 are a series of CMOS linear voltage regulators with  
high output voltage accuracy, low supply current, low dropout voltage,  
and high Ripple Rejection. Each of these voltage regulators consists of  
an internal voltage reference, an error amplifier, resistors, a current  
limiting circuit and a chip enable circuit.  
http://onsemi.com  
5
1
The dynamic Response to line and load is fast, which makes these  
products ideally suited for use in hand–held communication  
equipment.  
SOT–23–5  
N SUFFIX  
CASE 1212  
The MC78PC00 series are housed in the SOT–23 5 lead package,  
for maximum board space saving.  
PIN CONNECTIONS  
1
V
IN  
1
2
3
5
4
V
OUT  
MC78PC00 Features:  
2
GND  
CE  
Ultra–Low Supply Current: typical 35 A in ON mode with no load.  
Standby Mode: typical 0.1 A.  
3
4
N/C  
Low Dropout Voltage: typical 0.2 V @ I  
= 100 mA.  
OUT  
(Top View)  
High Ripple Rejection: typical 70 dB @ f = 1 kHz.  
Low Temperature–Drift Coefficient of Output Voltage:  
typical ±100 ppm/°C.  
DEVICE MARKING  
(4 digits are available for device marking)  
Marking  
Voltage Version  
K8  
F5  
F8  
G0  
1.8 V  
2.5 V  
2.8 V  
3.0 V  
1
2
Excellent Line Regulation: typical 0.05%/V.  
High Accuracy Output Voltage: ±2.0%.  
Fast Dynamic Response to Line and Load.  
Small Package: SOT–23 5 leads.  
Built–in Chip Enable circuit (CE input pin).  
Identical Pinout to the LP2980/1/2.  
G3  
J0  
3.3 V  
5.0 V  
3
4
Lot Number  
MC78PC00 Applications:  
PINS DESCRIPTION  
Power source for cellular phones (GSM, CDMA, TDMA), Cordless  
Phones (PHS, DECT) and 2–way radios.  
Power source for domestic appliances such as cameras, VCRs and  
camcorders.  
Pin #  
Symbol  
Description  
1
2
V
IN  
Input Pin  
GND  
Ground Pin  
3
4
5
CE  
Chip Enable Pin  
No Connection  
Output Pin  
Power source for battery–powered equipment.  
N/C  
Block Diagram  
V
OUT  
MC78PCxx  
1
5
V
IN  
V
OUT  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC78PC18NTR  
MC78PC25NTR  
MC78PC28NTR  
MC78PC30NTR  
SOT–23  
5 Leads  
3000 Units  
Tape & Reel  
MC78PC33NTR  
MC78PC50NTR  
CURRENT LIMIT  
V
ref  
3
2
GND  
Other voltages are available. Consult your ON Semiconductor  
representative.  
CE  
Semiconductor Components Industries, LLC, 1999  
1
Publication Order Number:  
October, 1999 – Rev. 2  
MC78PC00/D  
MC78PC00 Series  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage  
V
IN  
9.0  
Input Voltage  
V
CE  
–0.3 ~V +0.3  
IN  
V
Output Voltage  
V
OUT  
–0.3 ~V +0.3  
IN  
V
Power Dissipation  
P
250  
–40 to +85  
+125  
mW  
°C  
°C  
°C  
°C  
D
Operating Temperature Range  
Operating Junction Temperature  
Maximum Junction Temperature  
Storage Temperature Range  
T
A
T
J
T
+150  
Jmax  
T
stg  
–55 to +125  
ELECTRICAL CHARACTERISTICS (T = 25°C)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (V = V  
IN  
+ 1.0 V, I  
= 30 mA)  
V
OUT  
V
OUT  
OUT  
MC78PC18  
MC78PC25  
MC78PC28  
MC78PC30  
MC78PC33  
MC78PC50  
1.764  
2.450  
2.744  
2.94  
3.234  
4.9  
1.80  
2.50  
2.80  
3.00  
3.3  
1.836  
2.550  
2.856  
3.06  
3.366  
5.1  
5.0  
Nominal Output Current  
I
150  
mA  
OUT  
(V = V  
+ 1.0 V, V  
= V  
– 0.1 V)  
OUT(nom)  
IN  
OUT  
OUT  
Load Regulation (V = V  
IN  
+ 1.0 V, 1.0 mA I  
OUT  
80 mA)  
= 0 mA)  
V
/ I  
12  
35  
40  
70  
mV  
A
OUT  
OUT OUT  
Supply Current in ON mode (V = V  
IN  
+ 1.0 V, I  
I
SS  
OUT  
= GND  
OUT  
Supply Current in OFF mode, i.e. V  
CE  
I
0.1  
1.0  
A
standby  
(V = V  
IN  
+ 1.0 V, I  
= 0 mA)  
OUT  
OUT  
Ripple Rejection (f = 1.0 kHz, Ripple 0.5 V  
Input Voltage  
, V = V  
p–p IN  
+ 1.0 V)  
RR  
70  
8.0  
dB  
V
OUT  
V
IN  
Output Voltage Temperature Coefficient  
V
/ T  
±100  
ppm/°C  
OUT  
(I  
OUT  
= 30 mA, –40°C T +85°C)  
A
Short Circuit Current Limit (V  
CE Pull–down Resistance  
= 0 V)  
I
2.5  
1.5  
0
50  
5.0  
mA  
M
OUT  
lim  
R
10  
PD  
CE Input Voltage “H” (ON Mode)  
CE Input Voltage “L” (OFF Mode)  
V
V
IN  
V
IH  
V
0.25  
V
IL  
Output Noise Voltage (f = 10 Hz to 100 kHz)  
e
30  
V
rms  
n
ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE V  
Characteristic  
(T = 25°C)  
A
OUT  
Symbol  
Min  
Typ  
Max  
Unit  
Dropout Voltage (I  
= 100 mA)  
V
DIF  
V
OUT  
1.9  
1.8 V  
2.0 V  
2.5 V  
2.8 V  
3.4 V  
0.60  
0.35  
0.24  
0.20  
0.17  
1.40  
0.70  
0.35  
0.30  
0.26  
OUT  
OUT  
OUT  
OUT  
OUT  
2.4  
2.7  
3.3  
6.0  
Line Regulation  
(V + 0.5 V V 8.0 V, I  
V / V  
OUT IN  
%/V  
= 30 mA)  
OUT  
0.05  
0.20  
OUT IN  
http://onsemi.com  
2
MC78PC00 Series  
OPERATION  
MC78PC00  
1
5
V
IN  
V
OUT  
ERROR AMP.  
R1  
R2  
CURRENT LIMIT  
V
ref  
3
2
GND  
CE  
In the MC78PC00, the output voltage V  
is detected by R1, R2. The detected output voltage is then compared to the  
OUT  
internal voltage reference by the error amplifier. Both a current limiting circuit for short circuit protection, and a chip enable  
circuit are included.  
http://onsemi.com  
3
MC78PC00 Series  
TEST CIRCUITS  
Figure 1. Standard Test Circuits  
Figure 2. Supply Current Test Circuit  
3
CE  
3
CE  
IN  
OUT  
OUT  
IN  
5
5
1
1
MC78PCxx  
Series  
MC78PCxx  
Series  
V
V
IN  
V
OUT  
V
OUT  
IN  
I
I
SS  
I
OUT  
OUT  
0.1  
F
2.2  
F
0.1  
F
2.2  
F
2
GND  
2
GND  
Figure 3. Ripple Rejection, Line  
Transient Response Test Circuit  
Figure 4. Load Transient Response  
Test Circuit  
3
CE  
3
CE  
IN  
OUT  
OUT  
I2  
IN  
5
5
1
1
MC78PCxx  
Series  
MC78PCxx  
Series  
V
V
IN  
V
OUT  
V
OUT  
IN  
I
OUT  
P.G.  
10  
F
10  
F
1 F  
2
GND  
2
GND  
I1  
http://onsemi.com  
4
MC78PC00 Series  
Figure 5. MC78PC18 Output Voltage versus  
Output Current  
Figure 6. MC78PC30 Output Voltage versus  
Output Current  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
5.0 V  
4.0 V  
3.8 V  
2.8 V  
3.5 V  
2.3 V  
V
IN  
= 3.3 V  
V
IN  
= 2.1 V  
0.5  
0
T = 25°C  
A
0.2  
0
T = 25°C  
A
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
I
, OUTPUT CURRENT (mA)  
I , OUTPUT CURRENT (mA)  
OUT  
OUT  
Figure 7. MC78PC40 (4.0 V) Output Voltage  
versus Output Current  
Figure 8. MC78PC50 Output Voltage versus  
Output Current  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
6.0  
5.0  
4.0  
3.0  
2.0  
6.0 V  
7.0 V  
5.0 V  
4.5 V  
6.0 V  
5.5 V  
V
IN  
= 4.3 V  
V
IN  
= 5.3 V  
1.0  
0
T = 25°C  
A
0.5  
0
T = 25°C  
A
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
I
, OUTPUT CURRENT (mA)  
I
, OUTPUT CURRENT (mA)  
OUT  
OUT  
Figure 9. MC78PC18 Output Voltage versus  
Input Voltage  
Figure 10. MC78PC30 Output Voltage versus  
Input Voltage  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
3.1  
3.0  
2.9  
2.8  
2.7  
I
= 1 mA  
OUT  
1.0 mA  
30 mA  
30 mA  
50 mA  
2.0  
2.6  
2.5  
1.3  
1.2  
I
= 50 mA  
3.0  
T = 25°C  
T = 25°C  
OUT  
A
A
1.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
2.0  
4.0  
5.0  
6.0  
7.0  
8.0  
V , INPUT VOLTAGE (VOLTS)  
IN  
V , INPUT VOLTAGE (VOLTS)  
IN  
http://onsemi.com  
5
MC78PC00 Series  
Figure 11. MC78PC40 (4.0 V) Output Voltage  
versus Input Voltage  
Figure 12. MC78PC50 Output Voltage versus  
Input Voltage  
4.5  
4.0  
3.5  
5.5  
5.0  
4.5  
4.0  
3.5  
I
= 1.0 mA  
OUT  
I
=
OUT  
3.0  
2.5  
1.0 mA  
3.0  
2.5  
T = 25°C  
A
30 mA  
50 mA  
50 mA  
3.0  
T = 25°C  
A
30 mA  
2.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
4.0  
5.0  
6.0  
7.0  
8.0  
V , INPUT VOLTAGE (VOLTS)  
IN  
V , INPUT VOLTAGE (VOLTS)  
IN  
Figure 13. MC78PC18 Dropout Voltage versus  
Output Current  
Figure 14. MC78PC30 Dropout Voltage versus  
Output Current  
1.2  
1.0  
0.8  
0.6  
0.4  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
T = 85°C  
A
T = 85°C  
A
25°C  
–40°C  
25°C  
–40°C  
0.2  
0
0.05  
0
0
50  
100  
150  
0
50  
100  
150  
I
, OUTPUT CURRENT (mA)  
I , OUTPUT CURRENT (mA)  
OUT  
OUT  
Figure 15. MC78PC40 (4.0 V) Dropout Voltage  
versus Output Current  
Figure 16. MC78PC50 Dropout Voltage versus  
Output Current  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
T = 85°C  
A
T = 85°C  
A
25°C  
25°C  
–40°C  
–40°C  
0.05  
0
0.05  
0
0
50  
100  
150  
0
50  
100  
150  
I
, OUTPUT CURRENT (mA)  
I
, OUTPUT CURRENT (mA)  
OUT  
OUT  
http://onsemi.com  
6
MC78PC00 Series  
Figure 17. MPC78PC18 Output Voltage  
versus Temperature  
Figure 18. MC78PC30 Output  
Voltage versus Temperature  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
3.08  
3.06  
3.05  
3.04  
3.02  
3.00  
2.98  
2.96  
2.94  
V
= 2.8 V  
= 30 mA  
V = 4.0 V  
IN  
IN  
OUT  
I
I
= 10 mA  
OUT  
1.72  
1.70  
2.92  
2.90  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 19. MC78PC40 (4.0 V) Output  
Voltage versus Temperature  
Figure 20. MC78PC50 Output  
Voltage versus Temperature  
4.10  
4.08  
4.06  
4.04  
4.02  
4.00  
3.98  
3.96  
3.94  
5.10  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
V
= 5.0 V  
= 10 mA  
V
I
= 6.0 V  
IN  
OUT  
IN  
I
= 10 mA  
OUT  
3.92  
3.90  
4.92  
4.90  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 21. MC78PC18 Supply Current  
versus Input Voltage  
Figure 22. MC78PC30 Supply Current  
versus Input Voltage  
60  
50  
40  
30  
20  
50  
40  
30  
20  
10  
0
10  
0
T = 25°C  
T = 25°C  
A
A
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
V , INPUT VOLTAGE (VOLTS)  
IN  
V , INPUT VOLTAGE (VOLTS)  
IN  
http://onsemi.com  
7
MC78PC00 Series  
Figure 23. MC78PC40 (4.0 V) Supply Current  
versus Input Voltage  
Figure 24. MC78PC50 Supply Current  
versus Input Voltage  
50  
40  
30  
20  
50  
40  
30  
20  
10  
0
10  
0
T = 25°C  
T = 25°C  
A
A
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
V , INPUT VOLTAGE (VOLTS)  
IN  
V , INPUT VOLTAGE (VOLTS)  
IN  
Figure 26. MC78PC40 (4.0 V) Supply  
Current versus Temperature  
Figure 25. MC78PC30 Supply Current  
versus Temperature  
50  
45  
40  
50  
45  
40  
35  
30  
35  
30  
25  
20  
25  
20  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
T , TEMPERATURE (°C)  
A
T , TEMPERATURE (°C)  
A
Figure 27. MC78PC50 Supply Current  
versus Temperature  
Figure 28. Dropout Voltage versus  
Output Voltage  
50  
0.7  
I
= 150 mA  
OUT  
0.6  
45  
40  
0.5  
0.4  
0.3  
0.2  
T = 25°C  
A
100 mA  
50 mA  
35  
30  
30 mA  
3.0  
25  
20  
0.1  
0
10 mA  
–50  
–25  
0
25  
50  
75  
100  
2.0  
4.0  
5.0  
6.0  
T , TEMPERATURE (°C)  
A
V , OUTPUT VOLTAGE (VOLTS)  
OUT  
http://onsemi.com  
8
MC78PC00 Series  
Figure 29. MC78PC18 Ripple Rejection  
versus Frequency  
Figure 30. MC78PC18 Ripple Rejection  
versus Frequency  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
I
= 1.0 mA  
= 30 mA  
= 50 mA  
I
= 1.0 mA  
= 30 mA  
= 50 mA  
OUT  
OUT  
I
I
OUT  
OUT  
V
C
= 2.8 V + 0.5 V  
DC p–p  
OUT  
V
C
= 2.8 V + 0.5 V  
IN  
IN DC p–p  
I
I
10  
0
10  
0
OUT  
OUT  
= 1.0  
F
= 1.0 F  
OUT  
0.1  
1.0  
10  
100  
0.1  
1.0  
10  
100  
f, FREQUENCY (kHz)  
f, FREQUENCY (kHz)  
Figure 31. MC78PC30 Ripple Rejection  
versus Frequency  
Figure 32. MC78PC30 Ripple Rejection  
versus Frequency  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
I
= 1.0 mA  
= 30 mA  
= 50 mA  
I
= 1.0 mA  
= 30 mA  
= 50 mA  
OUT  
OUT  
I
I
OUT  
OUT  
V
C
= 4.0 V + 0.5 V  
DC p–p  
OUT  
V
C
= 4.0 V + 0.5 V  
IN  
IN DC p–p  
I
10  
0
I
10  
0
OUT  
OUT  
= 4.7  
F
= 10 F  
OUT  
0.1  
1.0  
10  
100  
0.1  
1.0  
10  
100  
f, FREQUENCY (kHz)  
f, FREQUENCY (kHz)  
Figure 34. MC78PC40 (4.0 V) Ripple  
Rejection versus Frequency  
Figure 33. MC78PC40 (4.0 V) Ripple  
Rejection versus Frequency  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
I
= 1.0 mA  
= 30 mA  
= 50 mA  
I
= 1.0 mA  
= 30 mA  
= 50 mA  
OUT  
OUT  
I
I
OUT  
OUT  
V
C
= 5.0 V + 0.5 V  
DC p–p  
V
C
= 5.0 V + 0.5 V  
IN  
IN DC p–p  
I
10  
0
I
10  
0
OUT  
OUT  
= 4.7  
F
= 10 F  
OUT  
OUT  
0.1  
1.0  
10  
100  
0.1  
1.0  
10  
100  
f, FREQUENCY (kHz)  
f, FREQUENCY (kHz)  
http://onsemi.com  
9
MC78PC00 Series  
Figure 35. MC78PC50 Ripple Rejection  
versus Frequency  
80  
70  
60  
50  
40  
30  
20  
I
= 1.0 mA  
= 30 mA  
= 50 mA  
OUT  
I
OUT  
V
C
= 6.0 V + 0.5 V  
DC p–p  
OUT  
IN  
I
10  
0
OUT  
= 4.7 F  
0.1  
1.0  
10  
100  
f, FREQUENCY (kHz)  
Figure 37. MC78PC30 Ripple Rejection  
versus Input Voltage (DC Bias)  
Figure 36. MC78PC50 Ripple Rejection  
versus Frequency  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
I
C
= 1.0 mA  
OUT  
= 10  
F
OUT  
I
= 1.0 mA  
= 30 mA  
= 50 mA  
f = 400 Hz  
f = 1.0 kHz  
f = 10 kHz  
OUT  
I
OUT  
V
C
= 6.0 V + 0.5 V  
DC p–p  
OUT  
IN  
I
10  
0
10  
0
OUT  
= 10 F  
0.1  
1.0  
10  
100  
3.1  
3.2  
3.3  
3.4  
3.5  
f, FREQUENCY (kHz)  
V , INPUT VOLTAGE (VOLTS)  
IN  
Figure 38. MC78PC30 Ripple Rejection  
versus Input Voltage (DC Bias)  
Figure 39. MC78PC30 Ripple Rejection  
versus Input Voltage (DC Bias)  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
I
= 50 mA  
I
= 10 mA  
OUT  
OUT  
C = 10  
F
C
= 10  
F
OUT  
OUT  
f = 400 Hz  
f = 1.0 kHz  
f = 10 kHz  
f = 400 Hz  
f = 1.0 kHz  
f = 10 kHz  
10  
0
10  
0
3.1  
3.2  
3.3  
3.4  
3.5  
3.1  
3.2  
3.3  
3.4  
3.5  
V , INPUT VOLTAGE (VOLTS)  
IN  
V , INPUT VOLTAGE (VOLTS)  
IN  
http://onsemi.com  
10  
MC78PC00 Series  
Figure 40. MC78PC30 Line Transient Response  
Figure 41. MC78PC30 Line Transient Response  
3.4  
6.0  
3.4  
6.0  
3.3  
3.2  
3.1  
3.0  
5.0  
4.0  
3.0  
2.0  
3.3  
3.2  
3.1  
3.0  
5.0  
4.0  
3.0  
2.0  
INPUT VOLTAGE  
INPUT VOLTAGE  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
t = t = 5.0  
s
t = t = 5.0  
s
r
f
r
f
2.9  
2.8  
1.0  
0
2.9  
2.8  
1.0  
0
C
= 4.7 F (TANTALUM)  
= 30 mA  
C
OUT  
= 6.8 F (TANTALUM)  
OUT  
I
I
= 30 mA  
80  
OUT  
OUT  
0
20  
40  
60  
t, TIME ( s)  
80  
100  
120  
0
20  
40  
60  
t, TIME ( s)  
100  
120  
Figure 43. MC78PC30 Load Transient Response  
Figure 42. MC78PC30 Line Transient Response  
3.4  
6.0  
3.4  
150  
3.3  
3.2  
3.1  
3.0  
5.0  
4.0  
3.0  
2.0  
3.3  
3.2  
3.1  
3.0  
100  
50  
OUTPUT CURRENT  
OUTPUT VOLTAGE  
INPUT VOLTAGE  
0
OUTPUT VOLTAGE  
–50  
C
= 1.0 f (TANTALUM)  
= 4.7 F (TANTALUM)  
t = t = 5.0  
s
IN  
r
f
2.9  
2.8  
1.0  
0
2.9  
2.8  
–100  
–150  
C
C
OUT  
= 10 F (TANTALUM)  
= 30 mA  
OUT  
= 4.0 V  
V
I
IN  
OUT  
0
20  
40  
60  
t, TIME ( s)  
80  
100  
120  
0
2.0 4.0 6.0 8.0 10 12  
t, TIME ( s)  
14 16 18 20  
Figure 44. MC78PC30 Load Transient Response  
Figure 45. MC78PC30 Load Transient Response  
3.4  
150  
3.4  
150  
3.3  
3.2  
3.1  
3.0  
100  
50  
3.3  
3.2  
3.1  
3.0  
100  
50  
OUTPUT CURRENT  
OUTPUT CURRENT  
OUTPUT VOLTAGE  
0
0
OUTPUT VOLTAGE  
C = 1.0 f (TANTALUM)  
IN  
–50  
–50  
C
C
V
IN  
= 1.0 f (TANTALUM)  
= 6.8 F (TANTALUM)  
OUT  
= 4.0 V  
IN  
2.9  
2.8  
–100  
–150  
2.9  
2.8  
–100  
–150  
C
= 10 F (TANTALUM)  
OUT  
V = 4.0 V  
IN  
0
2.0 4.0 6.0 8.0 10  
t, TIME ( s)  
12  
14  
16  
18 20  
0
2.0 4.0 6.0 8.0 10 12  
t, TIME ( s)  
14 16 18 20  
http://onsemi.com  
11  
MC78PC00 Series  
APPLICATION HINTS  
When using these circuits, please be sure to observe the  
following points:  
Phase compensation is made for securing stable operation  
even if the load current varies. For this reason, be sure to  
and ESR of Output Capacitor are shown. The conditions  
where the white noise level is under 40 V (Avg.) are  
marked by the shaded area in the graph. (note: When  
additional ceramic capacitors are connected to the Output  
Pin with Output capacitor for phase compensation, there  
isapossibilitythattheoperationwillbeunstable. Because  
of this, test these circuits with as same external  
components as ones to be used on the PCB).  
useacapacitorC  
withgoodfrequencycharacteristics  
OUT  
and ESR (Equivalent Series Resistance) as described in  
the graphs on page 11.  
On page 11, the relations between I  
OUT  
(Output Current)  
Figure 46. Measuring Circuit for White Noise: MC78PC30  
3
2
CE  
5
1
V
V
OUT  
IN  
SPECTRUM  
ANALYSER  
S.A.  
CERAMIC  
CAPACITOR  
CERAMIC  
CAPACITOR  
4.0 V  
GND  
1.0  
F
ESR  
I
OUT  
MEASURING CONDITIONS: (1) FREQUENCY RANGE: 10 Hz TO 1.0 MHz  
MEASURING CONDITIONS: (2) TEMPERATURE: 25°C  
Please be sure the V and GND lines are sufficiently  
Setexternalcomponents,especiallytheOutputCapacitor,  
as close as possible to the circuit, and make the wiring as  
short as possible.  
in  
wide. When the impedance of these lines is high, there is  
a chance to pick up noise or to malfunction.  
Connect the capacitor with a capacitance of 1.0 F or  
more between V and GND as close as possible to V or  
in in  
GND.  
Figure 47. Typical Application  
CE  
IN  
MC78PCxx  
OUT  
V
IN  
V
OUT  
+
+
CAP.  
CAP.  
GND  
http://onsemi.com  
12  
MC78PC00 Series  
Figure 49. Ceramic Capacitor 6.8 F  
Figure 48. Ceramic Capacitor 4.7 F  
100  
10  
100  
10  
1.0  
0.1  
1.0  
0.1  
0
50  
100  
150  
0
50  
I , OUTPUT CURRENT (mA)  
OUT  
100  
150  
I
, OUTPUT CURRENT (mA)  
OUT  
Figure 50. Ceramic Capacitor 10 F  
100  
10  
1.0  
0.1  
0
50  
100  
150  
I
, OUTPUT CURRENT (mA)  
OUT  
http://onsemi.com  
13  
MC78PC00 Series  
TAPE AND REEL INFORMATION  
Component Taping Orientation for 5L SOT–23 Devices  
USER DIRECTION OF FEED  
DEVICE  
MARKING  
PIN 1  
Standard Reel Component Orientation  
for TR Suffix Device  
(Mark Right Side Up)  
Tape & Reel Specifications Table  
Package  
Tape Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Diameter  
5L SOT–23  
8 mm  
4 mm  
3000  
7 inches  
http://onsemi.com  
14  
MC78PC00 Series  
PACKAGE DIMENSIONS  
SOT–23–5  
N SUFFIX  
PLASTIC PACKAGE  
CASE 1212–01  
ISSUE O  
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
A2  
B
A
D
S
0.05  
3. DATUM C IS A SEATING PLANE.  
A1  
L
MILLIMETERS  
5
1
4
3
DIM MIN  
MAX  
0.10  
1.30  
0.50  
0.25  
3.00  
3.10  
1.80  
E
A1  
A2  
B
C
D
E
E1  
e
e1  
L
0.00  
1.00  
0.30  
0.10  
2.80  
2.50  
1.50  
0.95 BSC  
1.90 BSC  
0.20  
0.45  
2
E1  
C
L1  
B
5X  
C
M
S
S
0.10  
C B  
A
e
e1  
–––  
0.75  
L1  
Recommended Footprint for SOT–23–5 Surface Mount Applications  
0.7 MAX.  
1.0  
2.4  
0.95  
0.95  
(Unit: mm)  
1.9  
SOT–23–5  
http://onsemi.com  
15  
MC78PC00 Series  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
withoutfurthernoticetoanyproductsherein. SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLCproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orotherapplications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorneyfees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
USA/EUROPE Literature Fulfillment:  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Email: ONlit–asia@hibbertco.com  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549  
Phone: 81–3–5487–8345  
Fax Response Line*: 303–675–2167  
800–344–3810 Toll Free USA/Canada  
*To receive a Fax of our publications  
Email: r14153@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local Sales Representative.  
N. America Technical Support: 800–282–9855 Toll Free USA/Canada  
MC78PC00/D  

相关型号:

MC78PC50NTRG

Low Noise 150 mA Low Drop Out (LDO) Linear Voltage Regulator
ONSEMI

MC78T00

THREE-AMPERE POSITIVE FIXED VOLTAGE REGULATORS
MOTOROLA

MC78T00

THREE-AMPERE POSITIVE FIXED VOLTAGE REGULATORS
ONSEMI

MC78T00ABT

Fixed Positive Standard Regulator, 5VBIPolar, PSFM3, PLASTIC, SFM-3
MOTOROLA

MC78T00CT

5V FIXED POSITIVE REGULATOR, PSFM3, PLASTIC, SFM-3
MOTOROLA

MC78T00_04

3.0 A Positive Voltage Regulators
ONSEMI

MC78T05

3-Terminal 3A Positive Voltage Regulator
FAIRCHILD

MC78T05

THREE-AMPERE POSITIVE FIXED VOLTAGE REGULATORS
MOTOROLA

MC78T05ABT

THREE-AMPERE POSITIVE FIXED VOLTAGE REGULATORS
MOTOROLA

MC78T05ABT

THREE-AMPERE POSITIVE FIXED VOLTAGE REGULATORS
ONSEMI

MC78T05ABTG

5V FIXED POSITIVE REGULATOR, PSFM3, TO-220, 3 PIN
ONSEMI

MC78T05AC

THREE-AMPERE POSITIVE FIXED VOLTAGE REGULATORS
ONSEMI