MC34167TH [ONSEMI]

POWER SWITCHING REGULATORS; 电源开关稳压器
MC34167TH
型号: MC34167TH
厂家: ONSEMI    ONSEMI
描述:

POWER SWITCHING REGULATORS
电源开关稳压器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 电源开关 局域网
文件: 总16页 (文件大小:412K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by MC34167/D  
The MC34167, MC33167 series are high performance fixed frequency  
power switching regulators that contain the primary functions required for  
dc–to–dc converters. This series was specifically designed to be  
incorporated in step–down and voltage–inverting configurations with a  
minimum number of external components and can also be used cost  
effectively in step–up applications.  
POWER SWITCHING  
REGULATORS  
These devices consist of an internal temperature compensated  
reference, fixed frequency oscillator with on–chip timing components,  
latching pulse width modulator for single pulse metering, high gain error  
amplifier, and a high current output switch.  
SEMICONDUCTOR  
TECHNICAL DATA  
Protective features consist of cycle–by–cycle current limiting,  
undervoltage lockout, and thermal shutdown. Also included is a low power  
standby mode that reduces power supply current to 36 µA.  
TH SUFFIX  
PLASTIC PACKAGE  
CASE 314A  
Output Switch Current in Excess of 5.0 A  
Fixed Frequency Oscillator (72 kHz) with On–Chip Timing  
Provides 5.05 V Output without External Resistor Divider  
Precision 2% Reference  
1
5
0% to 95% Output Duty Cycle  
1
TV SUFFIX  
PLASTIC PACKAGE  
Cycle–by–Cycle Current Limiting  
Undervoltage Lockout with Hysteresis  
Internal Thermal Shutdown  
5
CASE 314B  
Heatsink surface connected to Pin 3.  
Operation from 7.5 V to 40 V  
Standby Mode Reduces Power Supply Current to 36 µA  
Economical 5–Lead TO–220 Package with Two Optional Leadforms  
T SUFFIX  
PLASTIC PACKAGE  
CASE 314D  
2
Also Available in Surface Mount D PAK Package  
1
5
Pin 1. Voltage Feedback Input  
2. Switch Output  
3. Ground  
4. Input Voltage/V  
5. Compensation/Standby  
CC  
Simplified Block Diagram  
(Step Down Application)  
V
in  
D2T SUFFIX  
4
2
I
LIMIT  
PLASTIC PACKAGE  
CASE 936A  
2
1
(D PAK)  
Oscillator  
5
S
R
Q
Heatsink surface (shown as terminal 6  
in case outline drawing) is connected to Pin 3.  
PWM  
ORDERING INFORMATION  
Operating  
UVLO  
Thermal  
L
Temperature Range  
Device  
Package  
Surface Mount  
Straight Lead  
Horiz. Mount  
Vertical Mount  
Surface Mount  
Straight Lead  
Horiz. Mount  
Vertical Mount  
Reference  
MC33167D2T  
MC33167T  
EA  
T
A
= 40° to +85°C  
MC33167TH  
MC33167TV  
MC34167D2T  
MC34167T  
1
V
O
5.05 V/5.0 A  
3
T
A
= 0° to + 70°C  
5
MC34167TH  
MC34167TV  
This device contains 143 active transistors.  
Motorola, Inc. 1996  
Rev 3  
MC34167 MC33167  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
40  
Unit  
V
Power Supply Input Voltage  
Switch Output Voltage Range  
V
CC  
V
–2.0 to + V  
V
O(switch)  
in  
Voltage Feedback and Compensation Input  
Voltage Range  
V
V
–1.0 to + 7.0  
V
FB, Comp  
Power Dissipation  
Case 314A, 314B and 314D (T = +25°C)  
P
D
Internally Limited  
W
A
Thermal Resistance, Junction–to–Ambient  
θ
θ
65  
°C/W  
°C/W  
W
JA  
JC  
Thermal Resistance, Junction–to–Case  
5.0  
2
Case 936A (D PAK) (T = +25°C)  
P
Internally Limited  
A
D
JA  
JC  
Thermal Resistance, Junction–to–Ambient  
θ
θ
70  
°C/W  
°C/W  
Thermal Resistance, Junction–to–Case  
5.0  
Operating Junction Temperature  
T
+150  
°C  
°C  
J
Operating Ambient Temperature (Note 3)  
MC34167  
MC33167  
T
A
0 to + 70  
– 40 to + 85  
Storage Temperature Range  
T
stg  
– 65 to +150  
°C  
ELECTRICAL CHARACTERISTICS (V  
= 12 V, for typical values T = +25°C, for min/max values T is the operating ambient  
CC  
A
A
temperature range that applies [Notes 2, 3], unless otherwise noted.)  
Characteristic  
OSCILLATOR  
Symbol  
Min  
Typ  
Max  
Unit  
Frequency (V  
= 7.5 V to 40 V)  
T
T
A
= +25°C  
f
OSC  
65  
62  
72  
79  
81  
kHz  
CC  
A
= T  
to T  
low  
high  
high  
ERROR AMPLIFIER  
Voltage Feedback Input Threshold  
T
=+ 25°C  
V
4.95  
4.85  
5.05  
5.15  
5.20  
V
A
FB(th)  
T
= T  
to T  
A
low  
Line Regulation (V  
CC  
= 7.5 V to 40 V, T = +25°C)  
Reg  
line  
0.03  
0.15  
80  
0.078  
1.0  
%/V  
µA  
dB  
V
A
Input Bias Current (V  
= V  
+ 0.15 V)  
I
FB  
FB(th)  
CC  
High State (I  
IB  
PSRR  
Power Supply Rejection Ratio (V  
= 10 V to 20 V, f = 120 Hz)  
= 75 µA, V = 4.5 V)  
60  
Output Voltage Swing  
V
OH  
V
OL  
4.2  
4.9  
1.6  
1.9  
Source  
= 0.4 mA, V  
FB  
= 5.5 V)  
Low State (I  
Sink  
FB  
PWM COMPARATOR  
Duty Cycle (V  
= 20 V)  
Maximum (V  
= 0 V)  
= 1.9 V)  
DC  
92  
0
95  
0
100  
0
%
CC  
FB  
(max)  
DC  
Minimum (V  
Comp  
(min)  
SWITCH OUTPUT  
Output Voltage Source Saturation (V  
= 7.5 V, I  
= 5.0 A)  
V
(V  
CC  
–1.5)  
(V  
–1.8)  
100  
V
µA  
A
CC  
= 40 V, Pin 2 = Gnd)  
Source  
sat  
CC  
Off–State Leakage (V  
CC  
I
0
sw(off)  
Current Limit Threshold (V  
CC  
= 7.5 V)  
I
5.5  
6.5  
8.0  
pk(switch)  
Switching Times (V  
= 40 V, I = 5.0 A, L = 225 µH, T = +25°C)  
pk  
ns  
CC  
A
Output Voltage Rise Time  
Output Voltage Fall Time  
t
t
100  
50  
200  
100  
r
f
UNDERVOLTAGE LOCKOUT  
Startup Threshold (V  
Increasing, T = +25°C)  
V
5.5  
0.6  
5.9  
0.9  
6.3  
1.2  
V
V
CC  
A
th(UVLO)  
Hysteresis (V  
CC  
Decreasing, T = +25°C)  
V
H(UVLO)  
A
TOTAL DEVICE  
Power Supply Current (T = +25°C )  
I
A
CC  
Standby (V  
= 12 V, V  
< 0.15 V)  
36  
40  
100  
60  
µA  
mA  
CC  
Operating (V  
Comp  
= 40 V, Pin 1 = Gnd for maximum duty cycle)  
CC  
NOTES: 1. Maximum package power dissipation limits must be observed to prevent thermal shutdown activation.  
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
3. T  
= 0°C for MC34167  
= – 40°C for MC33167  
T
high  
= + 70°C for MC34167  
= + 85°C for MC33167  
low  
2
MOTOROLA ANALOG IC DEVICE DATA  
MC34167 MC33167  
Figure 1. Voltage Feedback Input Threshold  
versus Temperature  
Figure 2. Voltage Feedback Input Bias  
Current versus Temperature  
5.25  
5.17  
5.09  
5.01  
4.93  
4.85  
100  
80  
60  
40  
20  
0
V
= 12 V  
CC  
V
FB(th)  
Max = 5.15 V  
Typ = 5.05 V  
Min = 4.95 V  
V
V
= 12 V  
CC  
FB  
= V  
FB(th)  
V
FB(th)  
V
FB(th)  
– 55  
– 25  
0
25  
50  
75  
100  
125  
– 55  
– 25  
0
25  
50  
75  
100  
125  
2.0  
4.5  
T , AMBIENT TEMPERATURE (  
°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
Figure 3. Error Amp Open Loop Gain and  
Phase versus Frequency  
Figure 4. Error Amp Output Saturation  
versus Sink Current  
100  
80  
60  
40  
20  
2.0  
1.6  
1.2  
0.8  
0.4  
0
0
30  
V
= 12 V  
CC  
V
R
= 3.25 V  
Comp  
= 100 k  
= +25°C  
L
Gain  
T
A
60  
90  
Phase  
120  
V
V
T
= 12 V  
= 5.5 V  
= +25°C  
CC  
FB  
A
0
150  
180  
– 20  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
0
0.4  
0.8  
1.2  
1.6  
f, FREQUENCY (Hz)  
I
Sink  
, OUTPUT SINK CURRENT (mA)  
Figure 5. Oscillator Frequency Change  
versus Temperature  
Figure 6. Switch Output Duty Cycle  
versus Compensation Voltage  
4.0  
0
100  
80  
V
T
= 12 V  
CC  
= +25°C  
V
= 12 V  
CC  
A
60  
– 4.0  
– 8.0  
– 12  
40  
20  
0
– 55  
– 25  
0
25  
50  
75  
100  
125  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
, COMPENSATION VOLTAGE (V)  
T , AMBIENT TEMPERATURE (  
°C)  
Comp  
A
3
MOTOROLA ANALOG IC DEVICE DATA  
MC34167 MC33167  
Figure 7. Switch Output Source Saturation  
versus Source Current  
Figure 8. Negative Switch Output Voltage  
versus Temperature  
0
– 0.5  
–1.0  
–1.5  
– 2.0  
0
– 0.2  
– 0.4  
– 0.6  
– 0.8  
V
Gnd  
CC  
V
= 12 V  
CC  
T
= +25°C  
A
Pin 5 = 2.0 V  
Pins 1, 3 = Gnd  
Pin 2 Driven Negative  
I
= 100 µA  
sw  
I
= 10 mA  
sw  
– 2.5  
– 3.0  
–1.0  
–1.2  
0
2.0  
4.0  
6.0  
8.0  
125  
125  
– 55  
– 25  
0
25  
50  
75  
100  
125  
I
, SWITCH OUTPUT SOURCE CURRENT (A)  
T , AMBIENT TEMPERATURE (°C)  
Source  
A
Figure 9. Switch Output Current Limit  
Threshold versus Temperature  
Figure 10. Standby Supply Current  
versus Supply Voltage  
7.2  
6.8  
6.4  
160  
120  
80  
40  
0
Pin 4 = V  
Pins 1, 3, 5 = Gnd  
Pin 2 Open  
= +25°C  
CC  
V
= 12 V  
CC  
Pins 1, 2, 3 = Gnd  
T
A
6.0  
5.6  
– 55  
– 25  
0
25  
50  
75  
C)  
100  
0
10  
20  
30  
40  
T , AMBIENT TEMPERATURE (  
°
V
, SUPPLY VOLTAGE (V)  
A
CC  
Figure 11. Undervoltage Lockout  
Thresholds versus Temperature  
Figure 12. Operating Supply Current  
versus Supply Voltage  
6.5  
6.0  
5.5  
5.0  
4.5  
50  
40  
30  
20  
10  
0
Startup Threshold  
V
Increasing  
CC  
Turn–Off Threshold  
Decreasing  
V
CC  
Pin 4 = V  
Pins 1, 3 = Gnd  
Pins 2, 5 Open  
CC  
T
= +25  
°C  
A
4.0  
– 55  
40  
– 25  
0
25  
50  
75  
C)  
100  
0
10  
20  
, SUPPLY VOLTAGE (V)  
30  
T , AMBIENT TEMPERATURE (  
°
V
CC  
A
4
MOTOROLA ANALOG IC DEVICE DATA  
MC34167 MC33167  
Figure 13. MC34167 Representative Block Diagram  
V
in  
Current  
Sense  
4
+
Input Voltage/V  
CC  
C
in  
Oscillator  
S
C
T
Switch  
Output  
Q
R
2
Pulse Width  
Modulator  
Undervoltage  
Lockout  
PWM Latch  
Thermal  
Shutdown  
L
5.05 V  
Reference  
+
Voltage  
Feedback  
Input  
+
Error  
Amp  
100 µA  
V
O
1
R
2
C
120  
5
O
C
F
R
F
Gnd  
Compensation  
3
R
1
Sink Only  
=
Positive True Logic  
Figure 14. Timing Diagram  
4.1 V  
Timing Capacitor C  
T
Compensation  
2.3 V  
ON  
Switch Output  
OFF  
5
MOTOROLA ANALOG IC DEVICE DATA  
MC34167 MC33167  
INTRODUCTION  
converter output. If the converter design requires an output  
The MC34167, MC33167 series are monolithic power  
switching regulators that are optimized for dc–to–dc converter  
applications. These devices operate as fixed frequency,  
voltage mode regulators containing all the active functions  
required to directly implement step–down and  
voltage–inverting converters with a minimum number of  
external components. They can also be used cost effectively  
in step–up converter applications. Potential markets include  
automotive, computer, industrial, and cost sensitive consumer  
products. A description of each section of the device is given  
below with the representative block diagram shown in  
Figure 13.  
voltage greater than 5.05 V, resistor R must be added to  
1
form a divider network at the feedback input as shown in  
Figures 13 and 18. The equation for determining the output  
voltage with the divider network is:  
R
R
2
1
V
1
5.05  
out  
External loop compensation is required for converter  
stability. A simple low–pass filter is formed by connecting a  
resistor (R ) from the regulated output to the inverting input,  
2
and a series resistor–capacitor (R , C ) between Pins 1 and  
F
F
5. The compensation network component values shown in  
each of the applications circuits were selected to provide  
stability over the tested operating conditions. The step–down  
converter (Figure 18) is the easiest to compensate for  
stability. The step–up (Figure 20) and voltage–inverting  
(Figure 22) configurations operate as continuous conduction  
flyback converters, and are more difficult to compensate. The  
simplest way to optimize the compensation network is to  
observe the response of the output voltage to a step load  
Oscillator  
The oscillator frequency is internally programmed to  
72 kHz by capacitor C and a trimmed current source. The  
charge to discharge ratio is controlled to yield a 95%  
maximum duty cycle at the Switch Output. During the  
discharge of C , the oscillator generates an internal blanking  
pulse that holds the inverting input of the AND gate high,  
disabling the output switch transistor. The nominal oscillator  
peak and valley thresholds are 4.1 V and 2.3 V respectively.  
T
T
change, while adjusting R and C for critical damping. The  
F
F
final circuit should be verified for stability under four boundary  
conditions. These conditions are minimum and maximum  
input voltages, with minimum and maximum loads.  
By clamping the voltage on the error amplifier output  
(Pin 5) to less than 150 mV, the internal circuitry will be  
placed into a low power standby mode, reducing the power  
supply current to 36 µA with a 12 V supply voltage. Figure 10  
illustrates the standby supply current versus supply voltage.  
The Error Amplifier output has a 100 µA current source  
pull–up that can be used to implement soft–start. Figure 17  
Pulse Width Modulator  
The Pulse Width Modulator consists of a comparator with  
the oscillator ramp voltage applied to the noninverting input,  
while the error amplifier output is applied into the inverting  
input. Output switch conduction is initiated when C is  
discharged to the oscillator valley voltage. As C charges to  
T
a voltage that exceeds the error amplifier output, the latch  
resets, terminating output transistor conduction for the  
duration of the oscillator ramp–up period. This PWM/Latch  
combination prevents multiple output pulses during a given  
oscillator clock cycle. Figures 6 and 14 illustrate the switch  
output duty cycle versus the compensation voltage.  
T
shows the current source charging capacitor C  
through a  
from the feedback  
SS  
series diode. The diode disconnects C  
SS  
loop when the 1.0 M resistor charges it above the operating  
range of Pin 5.  
Current Sense  
The MC34167 series utilizes cycle–by–cycle current  
limiting as a means of protecting the output switch transistor  
from overstress. Each on cycle is treated as a separate  
situation. Current limiting is implemented by monitoring the  
output switch transistor current buildup during conduction, and  
upon sensing an overcurrent condition, immediately turning off  
the switch for the duration of the oscillator ramp–up period.  
The collector current is converted to a voltage by an  
internal trimmed resistor and compared against a reference  
by the Current Sense comparator. When the current limit  
threshold is reached, the comparator resets the PWM latch.  
The current limit threshold is typically set at 6.5 A. Figure 9  
illustrates switch output current limit threshold versus  
temperature.  
Switch Output  
The output transistor is designed to switch a maximum of  
40 V, with a minimum peak collector current of 5.5 A. When  
configured for step–down or voltage–inverting applications,  
as in Figures 18 and 22, the inductor will forward bias the  
output rectifier when the switch turns off. Rectifiers with a  
high forward voltage drop or long turn on delay time should  
not be used. If the emitter is allowed to go sufficiently  
negative, collector current will flow, causing additional device  
heating and reduced conversion efficiency. Figure 8 shows  
that by clamping the emitter to 0.5 V, the collector current will  
be in the range of 100 µA over temperature. A 1N5825 or  
equivalent Schottky barrier rectifier is recommended to fulfill  
these requirements.  
Error Amplifier and Reference  
Undervoltage Lockout  
A high gain Error Amplifier is provided with access to the  
inverting input and output. This amplifier features a typical dc  
voltage gain of 80 dB, and a unity gain bandwidth of  
600 kHz with 70 degrees of phase margin (Figure 3). The  
noninverting input is biased to the internal 5.05 V reference  
and is not pinned out. The reference has an accuracy of  
± 2.0% at room temperature. To provide 5.0 V at the load, the  
reference is programmed 50 mV above 5.0 V to compensate  
for a 1.0% voltage drop in the cable and connector from the  
An Undervoltage Lockout comparator has been  
incorporated to guarantee that the integrated circuit is fully  
functional before the output stage is enabled. The internal  
reference voltage is monitored by the comparator which  
enables the output stage when V  
erratic output switching as the threshold is crossed, 0.9 V of  
hysteresis is provided.  
exceeds 5.9 V. To prevent  
CC  
6
MOTOROLA ANALOG IC DEVICE DATA  
MC34167 MC33167  
Thermal Protection  
Internal Thermal Shutdown circuitry is provided to protect  
the integrated circuit in the event that the maximum junction  
temperature is exceeded. When activated, typically at 170°C,  
the latch is forced into a ‘reset’ state, disabling the output  
switch. This feature is provided to prevent catastrophic failures  
from accidental device overheating. It is not intended to be  
used as a substitute for proper heatsinking. The MC34167  
is contained in a 5–lead TO–220 type package. The tab of the  
package is common with the center pin (Pin 3) and is normally  
connected to ground.  
DESIGN CONSIDERATIONS  
Do not attempt to construct a converter on wire–wrap  
or plug–in prototype boards. Special care should be taken  
to separate ground paths from signal currents and ground  
paths from load currents. All high current loops should be  
kept as short as possible using heavy copper runs to  
minimize ringing and radiated EMI. For best operation, a tight  
component layout is recommended. Capacitors C , C , and  
in  
O
all feedback components should be placed as close to the IC  
as physically possible. It is also imperative that the Schottky  
diode connected to the Switch Output be located as close to  
the IC as possible.  
Figure 16. Over Voltage Shutdown Circuit  
Figure 15. Low Power Standby Circuit  
+
+
Error  
Amp  
Error  
Amp  
100  
µA  
100 µA  
1
1
120  
5
120  
5
Compensation  
Compensation  
R
R
1
1
I = Standby Mode  
V
= V  
+ 0.7  
Shutdown  
Zener  
Figure 17. Soft–Start Circuit  
+
Error  
Amp  
100 µA  
1
120  
5
Compensation  
D
2
R
1
D
1
V
in  
C
ss  
1.0 M  
t
35,000 C  
ss  
Soft–Start  
7
MOTOROLA ANALOG IC DEVICE DATA  
MC34167 MC33167  
Figure 18. Step–Down Converter  
V
in  
12 V  
+
4
2
ILIMIT  
+
C
330  
in  
Oscillator  
S
Q
R
Q
1
D
1
PWM  
1N5825  
UVLO  
L
Thermal  
190 µH  
Reference  
EA  
+
+
R
2
V
O
+
C
4700  
1
6.8 k  
O
5.05 V/5.0 A  
C
R
F
5
F
3
0.1  
68 k  
R
1
Test  
Conditions  
= 10 V to 36 V, I = 5.0 A  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
Short Circuit Current  
Efficiency  
V
V
V
V
4.0 mV = ± 0.039%  
1.0 mV = ± 0.01%  
in  
in  
in  
in  
O
= 12 V, I = 0.25 A to 5.0 A  
O
= 12 V, I = 5.0 A  
20 mV  
6.5 A  
O
pp  
= 12 V, R = 0.1 Ω  
L
V
V
= 12 V, I = 5.0 A  
78.9%  
82.6%  
in  
in  
O
= 24 V, I = 5.0 A  
O
L = Coilcraft M1496–A or General Magnetics Technology GMT–0223, 42 turns of #16 AWG on  
Magnetics Inc. 58350–A2 core. Heatsink = AAVID Engineering Inc. 5903B, or 5930B.  
The Step–Down Converter application is shown in Figure 18. The output switch transistor Q interrupts the input voltage, generating a squarewave at the LC filter  
1
O
input. The filter averages the squarewaves, producing a dc output voltage that can be set to any level between V and V by controlling the percent conduction  
in ref  
time of Q to that of the total oscillator cycle time. If the converter design requires an output voltage greater than 5.05 V, resistor R must be added to form a divider  
1
1
network at the feedback input.  
Figure 19. Step–Down Converter Printed Circuit Board and Component Layout  
3.0″  
V
O
+
V
in  
+
+
C
F
RF  
R1  
+
(Bottom View)  
(Top View)  
8
MOTOROLA ANALOG IC DEVICE DATA  
MC34167 MC33167  
Figure 20. Step–Up/Down Converter  
V
12 V  
in  
4
+
ILIMIT  
+
C
in  
330  
Oscillator  
S
D
1
Q
Q
1
1N5825  
R
2
L
PWM  
UVLO  
190 µH  
*R  
620  
G
D
4
1N4148  
Thermal  
Q
2
MTP3055EL  
Reference  
EA  
D
+
3
+
1N967A  
D
2
1N5822  
R
2
V
O
+
C
2200  
1
6.8 k  
O
28 V/0.9 A  
C
R
F
5
F
3
R
1.5 k  
0.47  
4.7 k  
1
*Gate resistor R , zener diode D , and diode D are required only when V is greater than 20 V.  
G
3
4
in  
Test  
Conditions  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
V
V
V
V
= 10 V to 24 V, I = 0.9 A  
10 mV = ± 0.017%  
30 mV = ± 0.053%  
in  
in  
in  
in  
O
= 12 V, I = 0.1 A to 0.9 A  
O
= 12 V, I = 0.9 A  
140 mV  
6.0 A  
O
pp  
Short Circuit Current  
Efficiency  
= 12 V, R = 0.1 Ω  
L
V
V
= 12 V, I = 0.9 A  
80.1%  
87.8%  
in  
in  
O
= 24 V, I = 0.9 A  
O
L = Coilcraft M1496–A or General Magnetics Technology GMT–0223, 42 turns of #16 AWG on  
Magnetics Inc. 58350–A2 core.  
Heatsink = AAVID Engineering Inc.  
MC34167: 5903B, or 5930B  
MTP3055EL: 5925B  
Figure 20 shows that the MC34167 can be configured as a step–up/down converter with the addition of an external power MOSFET. Energy is stored in the  
inductor during the ON time of transistors Q and Q . During the OFF time, the energy is transferred, with respect to ground, to the output filter capacitor and load.  
1
2
This circuit configuration has two significant advantages over the basic step–up converter circuit. The first advantage is that output short circuit protection is  
provided by the MC34167, since Q is directly in series with V and the load. Second, the output voltage can be programmed to be less than V . Notice that during  
1
in  
in  
the OFF time, the inductor forward biases diodes D and D , transferring its energy with respect to ground rather than with respect to V . When operating with V  
in in  
1
2
greater than 20 V, a gate protection network is required for the MOSFET. The network consists of components R , D , and D .  
G
3
4
Figure 21. Step–Up/Down Converter Printed Circuit Board and Component Layout  
3.45″  
D3  
V
O
+
D2  
V
in  
+
+
C
F
RF  
R1  
R
G
+
(Bottom View)  
(Top View)  
9
MOTOROLA ANALOG IC DEVICE DATA  
MC34167 MC33167  
Figure 22. Voltage–Inverting Converter  
V
in  
12 V  
+
4
2
ILIMIT  
+
C
in  
330  
Oscillator  
S
Q
Q
1
R
L
PWM  
UVLO  
190 µH  
D
1
1N5825  
Thermal  
Reference  
EA  
+
+
R
1
V
O
1
2.4 k  
–12 V/1.7 A  
+
C
4700  
O
C
R
C
1
5
F
F
3
0.47  
4.7 k  
R
3.3 k  
2
0.047  
Test  
Conditions  
= 10 V to 24 V, I = 1.7 A  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
V
V
V
V
15 mV = ± 0.61%  
in  
in  
in  
in  
O
= 12 V, I = 0.1 A to 1.7 A  
4.0 mV = ± 0.020%  
O
= 12 V, I = 1.7 A  
78 mV  
5.7 A  
O
pp  
Short Circuit Current  
Efficiency  
= 12 V, R = 0.1 Ω  
L
V
V
= 12 V, I = 1.7 A  
79.5%  
86.2%  
in  
in  
O
= 24 V, I = 1.7 A  
O
L = Coilcraft M1496–A or General Magnetics Technology GMT–0223, 42 turns of #16 AWG on  
Magnetics Inc. 58350–A2 core. Heatsink = AAVID Engineering Inc. 5903B, or 5930B.  
Two potential problems arise when designing the standard voltage–inverting converter with the MC34167. First, the Switch Output emitter is limited to –1.5 V with  
respect to the ground pin and second, the Error Amplifier’s noninverting input is internally committed to the reference and is not pinned out. Both of these problems  
are resolved by connecting the IC ground pin to the converter’s negative output as shown in Figure 22. This keeps the emitter of Q positive with respect to the  
1
ground pin and has the effect of reversing the Error Amplifier inputs. Note that the voltage drop across R is equal to 5.05 V when the output is in regulation.  
1
Figure 23. Voltage–Inverting Converter Printed Circuit Board and Component Layout  
3.0″  
+
+
+
V
O
+
V
in  
+
RF  
C
F
+
+
+
(Bottom View)  
(Top View)  
10  
MOTOROLA ANALOG IC DEVICE DATA  
MC34167 MC33167  
Figure 24. Triple Output Converter  
V
24 V  
in  
4
2
+
ILIMIT  
+
1000  
Oscillator  
S
R
Q
1N5825  
PWM  
UVLO  
MUR110  
MUR110  
V
O3  
–12 V/200 mA  
1000  
1000  
+
Thermal  
T1  
V
O2  
Reference  
EA  
+
12 V/250 mA  
+
+
6.8 k  
V
O1  
5.0 V/3.0 A  
+
1
1000  
5
3
0.1  
68 k  
Tests  
Conditions  
= 3.0 A, I = 250 mA, I = 200 mA  
O3  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
5.0 V  
12 V  
–12 V  
V
in  
= 15 V to 30 V, I  
3.0 mV = ± 0.029%  
572 mV = ± 2.4%  
711 mV = ± 2.9%  
O1  
O2  
5.0 V  
12 V  
–12 V  
V
V
V
= 24 V, I  
= 24 V, I  
= 24 V, I  
= 30 mA to 3.0 A, I  
= 250 mA, I = 200 mA  
O3  
1.0 mV = ± 0.009%  
409 mV = ±1.5%  
528 mV = ± 2.0%  
in  
in  
in  
O1  
O1  
O1  
O2  
= 100 mA to 250 mA, I  
= 3.0 A, I  
= 3.0 A, I  
= 200 mA  
O3  
O2  
O2  
= 250 mA, I  
= 75 mA to 200 mA  
O3  
5.0 V  
12 V  
–12 V  
V
in  
= 24 V, I  
= 3.0 A, I  
= 250 mA, I  
= 200 mA  
75 mV  
20 mV  
20 mV  
O1  
O2  
O3  
pp  
pp  
pp  
Short Circuit Current  
Efficiency  
5.0 V  
12 V  
–12 V  
V
= 24 V, R = 0.1 Ω  
6.5 A  
2.7 A  
2.2 A  
in  
L
TOTAL  
V
= 24 V, I  
= 3.0 A, I  
= 250 mA, I  
= 200 mA  
84.2%  
in  
O1  
O2  
O3  
T1 = Primary: Coilcraft M1496–A or General Magnetics Technology GMT–0223, 42 turns of #16 AWG on Magnetics Inc. 58350–A2 core.  
T1 = Secondary: V  
T1 = Secondary: V  
Heatsink = AAVID Engineering Inc. 5903B, or 5930B.  
– 69 turns of #26 AWG  
– 104 turns of #28 AWG  
O2  
O3  
Multiple auxiliary outputs can easily be derived by winding secondaries on the main output inductor to form a transformer. The secondaries must be connected so  
that the energy is delivered to the auxiliary outputs when the Switch Output turns off. During the OFF time, the voltage across the primary winding is regulated by  
the feedback loop, yielding a constant Volts/Turn ratio. The number of turns for any given secondary voltage can be calculated by the following equation:  
V
V
F(SEC)  
O(SEC)  
# TURNS  
(SEC)  
V
V
O(PRI)  
F(PRI)  
(PRI)  
#TURNS  
Note that the 12 V winding is stacked on top of the 5.0 V output. This reduces the number of secondary turns and improves lead regulation. For best auxiliary  
regulation, the auxiliary outputs should be less than 33% of the total output power.  
11  
MOTOROLA ANALOG IC DEVICE DATA  
MC34167 MC33167  
Figure 25. Negative Input/Positive Output Regulator  
+
4
ILIMIT  
22  
0.01  
1N5825  
Oscillator  
S
R
R
1
R
2
Q
V
O
Q
5.05  
0.7  
1
2
UVLO  
PWM  
L
V
O
MUR415  
R
+ 36 V/0.3 A  
1
D
1
+
Thermal  
1000  
R
36 k  
1
MTP  
Reference  
EA  
+
3055E  
2N3906  
+
Z
1
1
6.8 k  
5
0.22  
470 k  
3
R
5.1 k  
2
0.002  
V
in  
–12 V  
1000  
+
*Gate resistor R , zener diode D , and diode D are required only when V is greater than 20 V.  
G
3
4
in  
Test  
Conditions  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
Efficiency  
V
= –10 V to – 20 V, I = 0.3 A  
266 mV = ± 0.38%  
7.90 mV = ±1.1%  
in  
in  
in  
O
V
V
= –12 V, I = 0.03 A to 0.3 A  
O
= –12 V, I = 0.3 A  
100 mV  
78.4%  
O
pp  
V
= –12 V, I = 0.3 A  
O
in  
L = General Magnetics Technology GMT–0223, 42 turns of #16 AWG on Magnetics Inc. 58350–A2  
core. Heatsink = AAVID Engineering Inc. 5903B or 5930B  
Figure 26. Variable Motor Speed Control with EMF Feedback Sensing  
V
18 V  
in  
+
4
2
ILIMIT  
+
1000  
Oscillator  
S
R
Q
UVLO  
1N5825  
PWM  
Brush  
Motor  
Thermal  
Reference  
EA  
+
+
50 k  
Faster  
1
5.6 k  
1.0 k  
47  
+
5
0.1  
56 k  
3
Test  
Conditions  
Results  
Low Speed Line Regulation  
High Speed Line Regulation  
V
= 12 V to 24 V  
= 12 V to 24 V  
1760 RPM ±1%  
3260 RPM ± 6%  
in  
V
in  
12  
MOTOROLA ANALOG IC DEVICE DATA  
MC34167 MC33167  
Figure 27. Off–Line Preconverter  
0.001  
T1  
MBR20100CT  
MC34167  
Step–Down  
Converter  
+
+
+
+
+
+
1000  
Output 1  
Output 2  
Output 3  
0.001  
0.001  
1N5404  
100k  
RFI  
Filter  
115 VAC  
+
220  
MJE13005  
MBR20100CT  
0.047  
1N4937  
T
2
MC34167  
Step–Down  
Converter  
0.01  
50  
1000  
0.001  
0.001  
3.3  
1N4003  
100  
+
MBR20100CT  
MC34167  
Step–Down  
Converter  
1000  
0.001  
T
T
T
T
T
= Core and Bobbin – Coilcraft PT3595  
= Primary – 104 turns #26 AWG  
= Base Drive – 3 turns #26 AWG  
= Secondaries – 16 turns #16 AWG  
= Total Gap – 0.002,  
T
T
T
T
T
= Core – TDK T6 x 1.5 x 3 H5C2  
= 14 turns center tapped #30 AWG  
= Heatsink = AAVID Engineering Inc.  
= MC34167 and MJE13005 – 5903B  
= MBR20100CT – 5925B  
1
1
1
1
1
2
2
2
2
2
The MC34167 can be used cost effectively in off–line applications even though it is limited to a maximum input voltage of 40 V. Figure 27 shows a simple and  
efficient method for converting the AC line voltage down to 24 V. This preconverter has a total power rating of 125 W with a conversion efficiency of 90%.  
Transformer T provides output isolation from the AC line and isolation between each of the secondaries. The circuit self–oscillates at 50 kHz and is controlled by  
1
the saturation characteristics of T . Multiple MC34167 post regulators can be used to provide accurate independently regulated outputs for a distributed power  
2
system.  
2
Figure 28. D PAK Thermal Resistance and Maximum  
Power Dissipation versus P.C.B. Copper Length  
80  
70  
3.5  
P
for T = +50°C  
A
D(max)  
3.0  
2.5  
2.0  
1.5  
1.0  
Free Air  
Mounted  
Vertically  
2.0 oz. Copper  
L
60  
50  
40  
30  
Minimum  
Size Pad  
L
R
θ
JA  
0
5.0  
10  
15  
20  
25  
30  
L, LENGTH OF COPPER (mm)  
13  
MOTOROLA ANALOG IC DEVICE DATA  
MC34167 MC33167  
Table 1. Design Equations  
Step–Down  
Calculation  
Step–Up/Down  
Voltage–Inverting  
t
t
on  
off  
V
out  
V
V
F2  
V
V
|V  
V
|
V
F
sat  
F1  
out  
V
F
V
out  
in  
V
V
V
V
V
in  
in  
satQ1  
satQ2  
sat  
out  
(Notes 1, 2)  
t
t
t
t
t
t
on  
off  
on  
off  
on  
off  
t
on  
t
on  
t
off  
t
on  
t
on  
t
off  
f
1
f
1
f
1
osc  
osc  
osc  
t
off  
Duty Cycle  
(Note 3)  
t
f
t
f
t
f
on osc  
on osc  
on osc  
t
t
t
t
on  
off  
on  
off  
I
I
I
1
I
1
I
L avg  
out  
out  
out  
I
2
I
L
2
L
L
I
pk(switch)  
I
I
I
L avg  
L avg  
L avg  
2
V
in  
V
V
V
in  
V
V
out  
V
in  
V
sat  
L
satQ1  
satQ2  
sat  
L
t
on  
t
on  
t
on  
I
L
I
L
I
t
on  
t
off  
t
on  
t
off  
1
1
1
V
2
2
(ESR)  
2
2
2
2
(ESR)  
I
L
1
(ESR)  
1
ripple(pp)  
8f  
C
f
C
f
C
osc o  
osc o  
osc o  
R
R
R
R
R
R
2
1
2
1
2
1
V
out  
V
ref  
1
V
ref  
1
V
ref  
1
NOTES: 1. V  
– Switch Output source saturation voltage, refer to Figure 7.  
sat  
2. V – Output rectifier forward voltage drop. Typical value for 1N5822 Schottky barrier rectifier is 0.35 V.  
F
3. Duty cycle is calculated at the minimum operating input voltage and must not exceed the guaranteed minimum DC  
specification of 0.92.  
(max)  
The following converter characteristics must be chosen:  
V
– Desired output voltage.  
– Desired output current.  
out  
I
out  
I – Desired peak–to–peak inductor ripple current. For maximum output current especially when the duty cycle is greater than 0.5, it is suggested that  
L
I be chosen minimum current limit threshold of 5.5 A. If the design goal is to use a minimum inductance value, let I = 2 (I  
proportionally reduce the converter’s output current capability.  
). This will  
L
L
L avg  
V
– Desired peak–to–peak output ripple voltage. For best performance, the ripple voltage should be kept to less than 2% of V . Capacitor C should  
be a low equivalent series resistance (ESR) electrolytic designed for switching regulator applications.  
ripple(pp)  
out  
O
14  
MOTOROLA ANALOG IC DEVICE DATA  
MC34167 MC33167  
OUTLINE DIMENSIONS  
TH SUFFIX  
PLASTIC PACKAGE  
CASE 314A–03  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
SEATING  
PLANE  
–T  
Y14.5M, 1982.  
–P  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 0.043 (1.092) MAXIMUM.  
C
B
E
Q
OPTIONAL  
CHAMFER  
INCHES  
MIN MAX  
0.613 14.529 15.570  
MILLIMETERS  
MIN MAX  
DIM  
A
B
C
D
E
F
G
J
K
L
Q
S
0.572  
0.390  
0.170  
0.025  
0.048  
0.570  
A
U
0.415  
0.180  
0.038  
0.055  
9.906 10.541  
F
L
4.318  
0.635  
1.219  
4.572  
0.965  
1.397  
K
1 2 3 4 5  
0.585 14.478 14.859  
1.702 BSC  
0.381 0.635  
0.745 18.542 18.923  
0.067 BSC  
0.015  
0.730  
0.320  
0.140  
0.210  
0.468  
0.025  
G
J 5 PL  
0.365  
0.153  
0.260  
8.128  
3.556  
5.334  
9.271  
3.886  
6.604  
S
D 5 PL  
0.014 (0.356)  
U
0.505 11.888 12.827  
M
M
T
P
TV SUFFIX  
PLASTIC PACKAGE  
CASE 314B–05  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 0.043 (1.092) MAXIMUM.  
C
B
–P  
OPTIONAL  
CHAMFER  
Q
E
INCHES  
MIN MAX  
0.613 14.529 15.570  
MILLIMETERS  
MIN MAX  
DIM  
A
B
C
D
E
A
0.572  
0.390  
0.170  
0.025  
0.048  
0.850  
U
0.415  
0.180  
0.038  
0.055  
9.906 10.541  
L
S
V
4.318  
0.635  
1.219  
4.572  
0.965  
1.397  
W
1 2 3 4 5  
F
K
F
0.935 21.590 23.749  
0.067 BSC  
0.166 BSC  
1.702 BSC  
4.216 BSC  
G
H
J
K
L
N
Q
S
U
V
0.015  
0.900  
0.320  
0.025  
1.100 22.860 27.940  
0.365  
8.128 9.271  
8.128 BSC  
0.381  
0.635  
0.320 BSC  
J 5 PL  
0.140  
0.153  
0.620  
3.556  
3.886  
G
M
0.24 (0.610)  
T
H
0.468  
15.748  
0.505 11.888 12.827  
0.735  
0.110  
D 5 PL  
18.669  
2.794  
N
M
M
0.10 (0.254)  
T
P
W
0.090  
2.286  
SEATING  
PLANE  
–T  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
15  
MOTOROLA ANALOG IC DEVICE DATA  
MC34167 MC33167  
OUTLINE DIMENSIONS  
T SUFFIX  
PLASTIC PACKAGE  
CASE 314D–03  
SEATING  
PLANE  
–T  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
C
Y14.5M, 1982.  
–Q  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 10.92 (0.043) MAXIMUM.  
B
E
U
INCHES  
MIN MAX  
0.613 14.529 15.570  
MILLIMETERS  
MIN MAX  
A
S
DIM  
A
B
C
D
E
G
H
J
K
L
Q
U
S
0.572  
0.390  
0.170  
0.025  
0.048  
L
0.415  
0.180  
0.038  
0.055  
9.906 10.541  
1 2 3  
4 5  
4.318  
0.635  
1.219  
4.572  
0.965  
1.397  
K
0.067 BSC  
1.702 BSC  
0.087  
0.015  
1.020  
0.320  
0.140  
0.105  
0.543  
0.112  
0.025  
2.210  
0.381  
2.845  
0.635  
1.065 25.908 27.051  
0.365  
0.153  
0.117  
8.128  
3.556  
2.667  
9.271  
3.886  
2.972  
J
G
0.582 13.792 14.783  
H
D 5 PL  
M
M
0.356 (0.014)  
T
Q
D2T SUFFIX  
PLASTIC PACKAGE  
CASE 936A–02  
2
(D PAK)  
OPTIONAL  
CHAMFER  
NOTES:  
TERMINAL 6  
–T  
1
DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
U
E
2
3
CONTROLLING DIMENSION: INCH.  
TAB CONTOUR OPTIONAL WITHIN DIMENSIONS  
A AND K.  
4
5
DIMENSIONS U AND V ESTABLISH A MINIMUM  
MOUNTING SURFACE FOR TERMINAL 6.  
DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH OR GATE PROTRUSIONS. MOLD FLASH  
AND GATE PROTRUSIONS NOT TO EXCEED  
0.025 (0.635) MAXIMUM.  
S
K
V
B
H
INCHES  
MILLIMETERS  
MIN MAX  
9.804 10.236  
1
2
3
4
5
DIM  
A
B
C
D
E
MIN  
MAX  
0.403  
0.368  
0.180  
0.036  
0.055  
0.386  
0.356  
0.170  
0.026  
0.045  
M
9.042  
4.318  
0.660  
1.143  
9.347  
4.572  
0.914  
1.397  
L
P
N
G
H
K
L
M
N
P
R
S
U
V
0.067 BSC  
0.539  
0.050 REF  
1.702 BSC  
0.579 13.691 14.707  
1.270 REF  
D
R
M
0.010 (0.254)  
T
0.000  
0.088  
0.018  
0.058  
5
0.010  
0.102  
0.026  
0.078  
0.000  
0.254  
2.591  
0.660  
1.981  
G
2.235  
0.457  
1.473  
5
REF  
REF  
0.116 REF  
0.200 MIN  
0.250 MIN  
2.946 REF  
5.080 MIN  
6.350 MIN  
C
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC34167/D  

相关型号:

MC34167THG

5.0 A, Step−Up/Down/Inverting Switching Regulators
ONSEMI

MC34167TV

POWER SWITCHING REGULATORS
ONSEMI

MC34167TV

POWER SWITCHING REGULATORS
MOTOROLA

MC34167TV

8 A SWITCHING REGULATOR, 81 kHz SWITCHING FREQ-MAX, PZFM5, TO-220, 5 PIN
ROCHESTER

MC34167TVG

5.0 A, Step−Up/Down/Inverting Switching Regulators
ONSEMI

MC34167TVG

8A SWITCHING REGULATOR, 81kHz SWITCHING FREQ-MAX, PZFM5, LEAD FREE, TO-220, 5 PIN
ROCHESTER

MC34167_05

5.0 A, Step−Up/Down/Inverting Switching Regulators
ONSEMI

MC34172D

IC,OP-AMP,DUAL,BIPOLAR,SOP,8PIN,PLASTIC
STMICROELECTR

MC34172N

IC,OP-AMP,DUAL,BIPOLAR,DIP,8PIN,PLASTIC
STMICROELECTR

MC3417L

CVSD, CVSD CODEC, CDIP16, CERAMIC, DIP-16
MOTOROLA

MC3418

N-Channel 20-V (D-S) MOSFET Fast switching speed
FREESCALE

MC34181

Amplifiers and Comparators
MOTOROLA