MC33102 [ONSEMI]

DUAL SLEEP-MODE OPERATIONAL AMPLIFIER; 双休眠模式运算放大器
MC33102
型号: MC33102
厂家: ONSEMI    ONSEMI
描述:

DUAL SLEEP-MODE OPERATIONAL AMPLIFIER
双休眠模式运算放大器

运算放大器
文件: 总14页 (文件大小:304K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by MC33102/D  
The MC33102 dual operational amplifier is an innovative design concept  
employing Sleep–Mode technology. Sleep–Mode amplifiers have two  
separate states, a sleepmode and an awakemode. In sleepmode, the  
amplifier is active and waiting for an input signal. When a signal is applied  
causing the amplifier to source or sink 160 µA (typically) to the load, it will  
automatically switch to the awakemode which offers higher slew rate, gain  
bandwidth, and drive capability.  
DUAL SLEEP–MODE  
OPERATIONAL AMPLIFIER  
SEMICONDUCTOR  
TECHNICAL DATA  
Two States: “Sleepmode” (Micropower) and “Awakemode”  
(High Performance)  
Switches from Sleepmode to Awakemode in 4.0 µs when Output Current  
Exceeds the Threshold Current (R = 600 )  
L
Independent Sleepmode Function for Each Op Amp  
Standard Pinouts – No Additional Pins or Components Required  
D SUFFIX  
PLASTIC PACKAGE  
8
CASE 751  
(SO–8)  
Sleepmode State – Can Be Used in the Low Current Idle State as a  
1
Fully Functional Micropower Amplifier  
Automatic Return to Sleepmode when Output Current Drops Below  
Threshold  
No Deadband/Crossover Distortion; as Low as 1.0 Hz in the Awakemode  
Drop–in Replacement for Many Other Dual Op Amps  
P SUFFIX  
ESD Clamps on Inputs Increase Reliability without Affecting Device  
PLASTIC PACKAGE  
8
CASE 626  
Operation  
1
Sleep–Mode is a trademark of Motorola, Inc.  
TYPICAL SLEEPMODE/AWAKEMODE PERFORMANCE  
Sleepmode Awakemode  
Characteristic  
(Typical)  
(Typical)  
750  
0.15  
50  
Unit  
µA  
Low Current Drain  
45  
Low Input Offset Voltage  
High Output Current Capability  
Low T.C. of Input Offset Voltage  
High Gain Bandwidth (@ 20 kHz)  
High Slew Rate  
0.15  
0.15  
1.0  
mV  
PIN CONNECTIONS  
mA  
1.0  
µV/°C  
MHz  
V/µs  
Output 1  
Inputs 1  
1
2
3
4
8
7
6
5
V
CC  
0.33  
0.16  
28  
4.6  
Output 2  
1.7  
1
Low Noise (@ 1.0 kHz)  
9.0  
nV/Hz  
2
Inputs  
2
V
EE  
MAXIMUM RATINGS  
Ratings  
Symbol  
Value  
+36  
Unit  
V
(Dual, Top View)  
Supply Voltage (V  
to V  
)
V
S
CC  
EE  
Input Differential Voltage Range  
Input Voltage Range  
V
V
(Note 1)  
V
IDR  
IR  
Output Short Circuit Duration (Note 2)  
t
(Note 2)  
sec  
SC  
Maximum Junction Temperature  
Storage Temperature  
T
T
stg  
+150  
65 to +150  
°C  
ORDERING INFORMATION  
Operating  
J
Temperature Range  
Device  
Package  
Maximum Power Dissipation  
P
D
(Note 2)  
mW  
NOTES: 1. Either or both input voltages should not exceed V  
or V  
.
MC33102D  
MC33102P  
SO–8  
CC  
EE  
T
A
= – 40° to +85°C  
2. Power dissipation must be considered to ensure maximum junction temperature (T )  
is not exceeded (refer to Figure 1).  
J
Plastic DIP  
Motorola, Inc. 1996  
Rev 0  
MC33102  
Simplified Block Diagram  
Current  
Threshold  
Detector  
Awake to  
Sleepmode  
Delay Circuit  
Fractional  
Load Current  
Detector  
I
% of I  
Hysteresis  
L
Buffer  
Buffer  
I
Enable  
C
Storage  
I
ref  
I
L
V
Op Amp  
in  
V
out  
R
L
I
Bias  
Enable  
Sleepmode  
Current  
Awakemode  
Current  
I
sleep  
Regulator  
Regulator  
I
awake  
DC ELECTRICAL CHARACTERISTICS (V  
= +15 V, V  
= –15 V, T = 25°C, unless otherwise noted.)  
EE A  
CC  
Characteristics  
Figure  
Symbol  
Min  
Typ  
Max  
Unit  
Input Offset Voltage (R = 50 , V  
Sleepmode  
= 0 V, V = 0 V)  
2
V
IO  
mV  
S
CM  
O
T
= +25°C  
= –40° to +85°C  
0.15  
2.0  
3.0  
A
T
A
Awakemode  
T
T
A
= +25°C  
= –40° to +85°C  
0.15  
2.0  
3.0  
A
Input Offset Voltage Temperature Coefficient  
(R = 50 , V = 0 V, V = 0 V)  
3
V /T  
IO  
µV/°C  
S
CM  
O
T
= –40° to +85°C (Sleepmode and Awakemode)  
1.0  
A
Input Bias Current (V  
Sleepmode  
= 0 V, V = 0 V)  
4, 6  
I
IB  
nA  
CM  
O
T
= +25°C  
= –40° to +85°C  
8.0  
50  
60  
A
T
A
Awakemode  
T
T
A
= +25°C  
= –40° to +85°C  
100  
500  
600  
A
Input Offset Current (V  
Sleepmode  
= 0 V, V = 0 V)  
I
IO  
nA  
CM  
O
T
= +25°C  
= –40° to +85°C  
0.5  
5.0  
6.0  
A
T
A
Awakemode  
T
T
A
= +25°C  
= –40° to +85°C  
5.0  
50  
60  
A
2
MOTOROLA ANALOG IC DEVICE DATA  
MC33102  
DC ELECTRICAL CHARACTERISTICS (V  
Characteristics  
= +15 V, V  
= –15 V, T = 25°C, unless otherwise noted.)  
EE A  
CC  
Figure  
Symbol  
Min  
Typ  
Max  
Unit  
Common Mode Input Voltage Range  
5
7
V
V
ICR  
(V = 5.0 mV, V = 0 V)  
IO  
O
Sleepmode and Awakemode  
–13  
–14.8  
+14.2  
+13  
Large Signal Voltage Gain  
Sleepmode (RL = 1.0 M)  
A
VOL  
kV/V  
T
= +25°C  
= –40° to +85°C  
25  
15  
200  
A
T
A
Awakemode (V = ±10 V, R = 600 )  
O
L
T
= +25°C  
= –40° to +85°C  
50  
25  
700  
A
T
A
Output Voltage Swing (V = ±1.0 V)  
ID  
8, 9, 10  
V
V
Sleepmode (V  
= +15 V, V  
= –15 V)  
EE  
CC  
= 1.0 MΩ  
= 1.0 MΩ  
R
R
V
V
+13.5  
+14.2  
–14.2  
–13.5  
L
L
O+  
O–  
Awakemode (V  
= +15 V, V  
= –15 V)  
CC  
CC  
EE  
R
L
R
L
R
L
R
L
= 600 Ω  
= 600 Ω  
= 2.0 kΩ  
= 2.0 kΩ  
V
O+  
V
O–  
V
O+  
V
O–  
+12.5  
+13.3  
+13.6  
–13.6  
+14  
–12.5  
–14  
–13.3  
Awakemode (V  
= +2.5 V, V  
EE  
= –2.5 V)  
R
L
R
L
= 600 Ω  
= 600 Ω  
V
V
+1.1  
+1.6  
–1.6  
–1.1  
O +  
O–  
Common Mode Rejection (V  
= ±13 V)  
11  
12  
CMR  
PSR  
dB  
dB  
CM  
Sleepmode and Awakemode  
80  
80  
90  
Power Supply Rejection (V /V  
= +15 V/–15 V,  
CC EE  
5.0 V/–15 V, +15 V/–5.0 V)  
Sleepmode and Awakemode  
100  
Output Transition Current  
13, 14  
µA  
Sleepmode to Awakemode (Source/Sink)  
(V = ±15 V)  
I
I
TH1  
200  
250  
160  
200  
S
(V = ±2.5 V)  
S
Awakemode to Sleepmode (Source/Sink)  
TH2  
(V = ±15 V)  
142  
180  
90  
140  
S
(V = ±2.5 V)  
S
Output Short Circuit Current (Awakemode)  
15, 16  
17  
I
mA  
SC  
(V = ±1.0 V, Output to Ground)  
ID  
Source  
Sink  
50  
50  
110  
110  
Power Supply Current (per Amplifier) (A  
= 1, V = 0V)  
I
D
µA  
CL  
O
Sleepmode (V = ±15 V)  
S
T
T
A
= +25°C  
45  
48  
65  
70  
A
= 40° to +85°C  
Sleepmode (V = ±2.5 V)  
S
T
= +25°C  
38  
42  
65  
A
T
= 40° to +85°C  
A
Awakemode (V = ±15 V)  
S
T
= +25°C  
750  
800  
800  
900  
A
T
= 40° to +85°C  
A
3
MOTOROLA ANALOG IC DEVICE DATA  
MC33102  
AC ELECTRICAL CHARACTERISTICS (V  
= +15 V, V  
= –15 V, T = 25°C, unless otherwise noted.)  
EE A  
CC  
Characteristics  
Figure  
Symbol  
Min  
Typ  
Max  
Unit  
Slew Rate (V = –5.0 V to +5.0 V, C = 50 pF, A = 1.0)  
in  
18  
SR  
V/µs  
L
V
Sleepmode (R = 1.0 M)  
0.10  
1.0  
0.16  
1.7  
L
Awakemode (R = 600 )  
L
Gain Bandwidth Product  
Sleepmode (f = 10 kHz)  
Awakemode (f = 20 kHz)  
19  
GBW  
MHz  
0.25  
3.5  
0.33  
4.6  
Sleepmode to Awakemode Transition Time  
20, 21  
t
µs  
tr1  
(A  
R
R
= 0.1, V = 0 V to +5.0 V)  
= 600 Ω  
= 10 kΩ  
CL  
in  
4.0  
15  
L
L
Awakemode to Sleepmode Transition Time  
22  
t
1.5  
sec  
tr2  
Unity Gain Frequency (Open Loop)  
f
U
kHz  
Sleepmode (R = 100 k, C = 0 pF)  
200  
2500  
L
L
Awakemode (R = 600 , C = 0 pF)  
L
L
Gain Margin  
Sleepmode (R = 100 k, C = 0 pF)  
23, 25  
24, 26  
29  
A
dB  
M
13  
12  
L
L
Awakemode (R = 600 , C = 0 pF)  
L
L
Phase Margin  
Sleepmode (R = 100 k, C = 0 pF)  
Degrees  
M
60  
60  
L
L
Awakemode (R = 600 , C = 0 pF)  
L
L
Channel Separation (f = 100 Hz to 20 kHz)  
Sleepmode and Awakemode  
CS  
dB  
kHz  
%
120  
20  
Power Bandwidth (Awakemode)  
BW  
P
(V = 10 V , R = 100 k, THD 1%)  
O
pp  
L
Total Harmonic Distortion (V = 2.0 V , A = 1.0)  
pp  
30  
31  
THD  
O
V
Awakemode (R = 600 )  
L
f = 1.0 kHz  
f = 10 kHz  
f = 20 kHz  
0.005  
0.016  
0.031  
DC Output Impedance (V = 0 V, A = 10, I = 10 µA)  
R
R
C
e
i
O
V
Q
O
in  
in  
n
Sleepmode  
Awakemode  
1.0 k  
96  
Differential Input Resistance (V  
Sleepmode  
= 0 V)  
MΩ  
pF  
CM  
1.3  
0.17  
Awakemode  
Differential Input Capacitance (V  
Sleepmode  
= 0 V)  
CM  
0.4  
4.0  
Awakemode  
Equivalent Input Noise Voltage (f = 1.0 kHz, R = 100 )  
Sleepmode  
Awakemode  
32  
33  
nV/Hz  
pA/Hz  
S
28  
9.0  
Equivalent Input Noise Current (f = 1.0 kHz)  
Sleepmode  
Awakemode  
n
0.01  
0.05  
4
MOTOROLA ANALOG IC DEVICE DATA  
MC33102  
Figure 1. Maximum Power Dissipation  
versus Temperature  
Figure 2. Distribution of Input Offset Voltage  
(MC33102D Package)  
2500  
2000  
50  
40  
Percent Sleepmode  
Percent Awakemode  
204 Amplifiers tested  
from 3 wafer lots.  
V
V
= +15 V  
= –15 V  
CC  
EE  
T
= 25  
°C  
MC33102P  
MC33102D  
A
30  
20  
1500  
1000  
500  
10  
0
0
–55 –40 –25  
0
25  
50  
85  
125  
–1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
T , AMBIENT TEMPERATURE (  
°C)  
V
, INPUT OFFSET VOLTAGE (mV)  
A
IO  
Figure 3. Input Offset Voltage Temperature  
Coefficient Distribution (MC33102D Package)  
Figure 4. Input Bias Current versus  
Common Mode Input Voltage  
10.5  
9.5  
8.5  
7.5  
6.5  
100  
35  
30  
25  
20  
15  
10  
5.0  
0
204 Amplifiers tested  
from 3 wafer lots.  
Percent Sleepmode  
Percent Awakemode  
V
V
= +15 V  
= –15 V  
CC  
EE  
V
V
= +15 V  
= –15 V  
CC  
EE  
90  
T
= 25  
°C  
A
T
= 40°C to 85  
°C  
A
Sleepmode  
80  
70  
Awakemode  
60  
–5.0 –4.0 –3.0 –2.0 –1.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
–15  
–10  
–5.0  
0
5.0  
10  
15  
TCV , INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (  
µV/°C)  
V , COMMON MODE INPUT VOLTAGE (V)  
CM  
IO  
Figure 5. Input Common Mode Voltage Range  
versus Temperature  
Figure 6. Input Bias Current versus Temperature  
V
100  
10.0  
CC  
Sleepmode  
Awakemode  
Sleepmode  
V
V
–0.5  
CC  
80  
60  
8.0  
Awakemode  
–1.0  
CC  
6.0  
4.0  
2.0  
40  
20  
V
V
+1.0  
+0.5  
V
V
= +15 V  
= –15 V  
= 5.0 mV  
EE  
CC  
EE  
IO  
V
V
V
= +15 V  
= –15 V  
= 0 V  
CC  
EE  
CM  
Awakemode  
Sleepmode  
85  
V
EE  
V
0
125  
EE  
0
–55 –40 –25  
0
25  
50  
125  
–55 –40 –25  
0
25  
50  
85  
T , AMBIENT TEMPERATURE (  
°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
5
MOTOROLA ANALOG IC DEVICE DATA  
MC33102  
Figure 7. Open Loop Voltage Gain  
versus Temperature  
Figure 8. Output Voltage Swing  
versus Supply Voltage  
130  
120  
110  
100  
90  
35  
30  
25  
20  
15  
10  
5
T
= 25°C  
A
Sleepmode (R = 1.0 M)  
L
Awakemode (R = 1.0 M)  
L
Awakemode (R = 600  
)  
Sleepmode (R = 1.0 M  
)  
L
L
80  
0
0
3.0  
6.0  
9.0  
12  
15  
18  
–55 –40 –25  
0
25  
50  
85  
125  
T , AMBIENT TEMPERATURE (  
°C)  
V
, V  
, SUPPLY VOLTAGE (V)  
A
CC EE  
Figure 10. Maximum Peak–to–Peak Output  
Voltage Swing versus Load Resistance  
Figure 9. Output Voltage versus Frequency  
30  
25  
20  
30  
25  
20  
Sleepmode  
(R = 1.0 M  
Awakemode  
Awakemode  
)  
(R = 600 )  
15  
10  
L
L
15  
V
V
= +15 V  
= –15 V  
CC  
EE  
V
V
= +15 V  
= –15 V  
CC  
EE  
10  
A
= +1.0  
V
A
f = 1.0 kHz  
5.0  
0
T
= 25°C  
T
= 25°C  
A
5.0  
100  
1.0 k  
10 k  
f, FREQUENCY (Hz)  
100 k  
500 k  
10  
100  
1.0 k  
10 k  
R , LOAD RESISTANCE TO GROUND (  
)  
L
Figure 11. Common Mode Rejection  
versus Frequency  
Figure 12. Power Supply Rejection  
versus Frequency  
100  
80  
120  
+PSR  
Sleepmode  
100  
80  
+PSR  
Awakemode  
Awakemode  
60  
–PSR  
Awakemode  
60  
Sleepmode  
–PSR  
Sleepmode  
40  
V
V
V
= +15 V  
= –15 V  
= 0 V  
40  
20  
0
CC  
EE  
CM  
V
V
CC  
EE  
20  
0
V
V
=
°
±
C
1.5 V  
CM  
= 25  
T
A
T
A
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10  
1.0 k  
10 k  
100 k  
1.0 M  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
6
MOTOROLA ANALOG IC DEVICE DATA  
MC33102  
Figure 13. Sleepmode to Awakemode  
Figure 14. Awakemode to Sleepmode  
Current Threshold versus Supply Voltage  
Current Threshold versus Supply Voltage  
190  
200  
190  
180  
170  
180  
170  
160  
150  
140  
130  
120  
T
= 25°C  
A
T
= 25°C  
A
T
= 55°C  
A
T
= 55°C  
A
T
= 125  
6.0  
°C  
A
160  
150  
140  
T
= 125°C  
A
3.0  
6.0  
9.0  
12  
15  
18  
3.0  
9.0  
12  
15  
18  
V
,
V
, SUPPLY VOLTAGE (V)  
V
, V  
, SUPPLY VOLTAGE (V)  
CC  
EE  
CC EE  
Figure 15. Output Short Circuit Current  
versus Output Voltage  
Figure 16. Output Short Circuit Current  
versus Temperature  
120  
100  
80  
60  
40  
20  
0
150  
V
V
V
= +15 V  
= –15 V  
Sink  
CC  
EE  
ID  
140  
130  
120  
110  
100  
90  
Source  
Sink  
=
< 10  
±
1.0 V  
Source  
R
L
Awakemode  
V
= +15 V  
= –15 V  
1.0 V  
CC  
EE  
V
V
R
=
±
ID  
< 10  
L
80  
Awakemode  
70  
0
3.0  
6.0  
9.0  
12  
15  
–55 –40 –25  
0
25  
50  
85  
125  
V
, OUTPUT VOLTAGE (V)  
T , AMBIENT TEMPERATURE (°C)  
O
A
Figure 17. Power Supply Current Per Amplifier  
versus Temperature  
Figure 18. Slew Rate versus Temperature  
1.2  
1.0  
0.8  
2.0  
60  
55  
50  
45  
40  
35  
30  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
Awakemode (R = 600  
)  
L
V
V
= +15 V  
= –15 V  
= 5.0 V to +5.0 V  
CC  
EE  
in  
1.8  
1.6  
1.4  
V
Awakemode (mA)  
0.6  
Sleepmode (µA)  
0.4  
0.2  
0
V
V
= +15 V  
= –15 V  
CC  
EE  
1.2  
1.0  
Sleepmode (R = 1.0 M)  
No Load  
L
–55 –40 –25  
0
25  
50  
85  
125  
–55 –40 –25  
0
25  
50  
85  
C)  
125  
T , AMBIENT TEMPERATURE (  
°
C)  
T , AMBIENT TEMPERATURE (°  
A
A
7
MOTOROLA ANALOG IC DEVICE DATA  
MC33102  
Figure 19. Gain Bandwidth Product  
versus Temperature  
Figure 20. Sleepmode to Awakemode  
Transition Time  
5.0  
Awakemode (MHz)  
4.5  
4.0  
3.5  
R
= 10 k  
L
350  
300  
250  
200  
Sleepmode (kHz)  
V
V
= +15 V  
= –15 V  
CC  
EE  
f = 20 kHz  
–55 –40 –25  
0
25  
50  
85  
C)  
125  
t, TIME (5.0 µs/DIV)  
T , AMBIENT TEMPERATURE (  
°
A
Figure 21. Sleepmode to Awakemode  
Transition Time  
Figure 22. Awakemode to Sleepmode  
Transition Time versus Supply Voltage  
2.0  
1.5  
1.0  
R
= 600 Ω  
L
T
= 25°C  
A
T
= 55°C  
A
0.5  
0
T
= 125  
15  
°C  
A
3.0  
6.0  
9.0  
12  
18  
t, TIME (2.0 µs/DIV)  
V
, V  
EE  
, SUPPLY VOLTAGE (V)  
CC  
Figure 23. Gain Margin versus Differential  
Source Resistance  
Figure 24. Phase Margin versus Differential  
Source Resistance  
15  
13  
70  
60  
50  
40  
30  
20  
Sleepmode  
Sleepmode  
Awakemode  
V
V
R
= +15 V  
= –15 V  
= R1 + R2  
= 0 V  
CC  
EE  
T
11  
V
O
T
= 25°C  
A
Awakemode  
9.0  
V
V
R
= +15 V  
= –15 V  
= R1 + R2  
= 0 V  
CC  
EE  
T
R1  
R2  
7.0  
5.0  
R1  
R2  
V
O
10  
0
V
V
O
O
T
= 25°C  
A
10  
100  
1.0 k  
10 k  
10  
100  
1.0 k  
10 k  
100 k  
R , DIFFERENTIAL SOURCE RESISTANCE (  
)  
R , DIFFERENTIAL SOURCE RESISTANCE ()  
T
T
8
MOTOROLA ANALOG IC DEVICE DATA  
MC33102  
Figure 25. Open Loop Gain Margin versus  
Output Load Capacitance  
Figure 26. Phase Margin versus  
Output Load Capacitance  
14  
12  
10  
70  
V
V
V
= +15 V  
= –15 V  
= 0 V  
CC  
EE  
O
60  
50  
40  
30  
20  
10  
0
Sleepmode  
8.0  
6.0  
4.0  
Awakemode  
Awakemode  
V
V
V
= +15 V  
CC  
= –15 V  
EE  
= 0 V  
Sleepmode  
O
2.0  
0
10  
100  
C , OUTPUT LOAD CAPACITANCE (pF)  
1.0 k  
10  
100  
1.0 k  
10 k  
C , OUTPUT LOAD CAPACITANCE (pF)  
L
L
Figure 27. Sleepmode Voltage Gain and Phase  
versus Frequency  
Figure 28. Awakemode Voltage Gain and  
Phase versus Frequency  
70  
50  
30  
70  
50  
40  
40  
T
R
C
= 25°C  
= 600 Ω  
< 10 pF  
1A) Phase, V  
2A) Phase, V  
=
=
±
±
±
18 V  
2.5 V  
18 V  
2.5 V  
A
L
L
S
S
1B) Gain, V  
2B) Gain, V  
=
80  
S
S
80  
Awakemode  
=
±
1A  
2A  
1B  
1A  
120  
160  
200  
30  
10  
120  
160  
2A  
2B  
10  
1B  
2B  
T
R
C
= 25°C  
= 1.0 MΩ  
< 10 pF  
1A) Phase, V  
2A) Phase, V  
=
=
±
±
±
18 V  
2.5 V  
18 V  
2.5 V  
A
L
L
S
–10  
–30  
200  
240  
–10  
–30  
S
1B) Gain, V  
2B) Gain, V  
=
S
S
Sleepmode  
=
±
240  
10 M  
10 k  
100 k  
1.0 M  
30 k  
100 k  
1.0 M  
f, FREQUENCY (Hz)  
10 M  
f, FREQUENCY (Hz)  
Figure 30. Total Harmonic Distortion  
versus Frequency  
Figure 29. Channel Separation versus Frequency  
100  
10  
140  
V
V
R
= +15 V  
= –15 V  
V
= 2.0 Vpp  
O
CC  
EE  
L
T
= 25°C  
120  
100  
80  
A
= 600  
Awakemode  
A
= +1000  
V
1.0  
A
= +100  
V
60  
0.1  
A
= +10  
V
40  
20  
0
A
= +1.0  
V
V
R
= +15 V  
= –15 V  
= 600 Ω  
V
CC  
EE  
L
0.01  
0.001  
Awakemode  
100  
1.0 k  
10 k  
100 k  
100  
1.0 k  
10 k  
100 k  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
9
MOTOROLA ANALOG IC DEVICE DATA  
MC33102  
Figure 31. Awakemode Output Impedance  
versus Frequency  
Figure 32. Input Referred Noise Voltage  
versus Frequency  
100  
250  
200  
V
V
T
= +15 V  
= –15 V  
V
V
V
V
= +15 V  
= –15 V  
= 0 V  
= 0 V  
= 25°C  
CC  
EE  
A
V
CC  
EE  
CM  
O
O
= 25  
°C  
50  
T
A
150  
100  
Awakemode  
Sleepmode  
A
= 100  
V
A
= 10  
A
= 1000  
Awakemode  
V
V
10  
50  
0
A
= 1.0  
V
5.0  
1.0 k  
10 k  
100 k  
f, FREQUENCY (Hz)  
1.0 M  
10 M  
10  
100  
1.0 k  
10 k  
100 k  
f, FREQUENCY (Hz)  
Figure 34. Percent Overshoot  
versus Load Capacitance  
Figure 33. Current Noise versus Frequency  
1.0  
0.8  
70  
60  
V
V
T
= +15 V  
= –15 V  
V
= +15 V  
= –15 V  
CC  
EE  
A
CC  
EE  
V
RS  
O
V
T
= 25  
°C  
= 25  
°C  
A
0.6  
0.4  
(RS = 10 k)  
50  
40  
30  
20  
Sleepmode  
(R = 1.0 M)  
L
Awakemode  
Sleepmode  
0.2  
0.1  
Awakemode  
(R = 600  
)  
10  
0
L
10  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
100 k  
10  
100  
1.0 k  
C , LOAD CAPACITANCE (pF)  
L
Figure 35. Sleepmode Large Signal  
Transient Response  
Figure 36. Awakemode Large Signal  
Transient Response  
R
= 600 Ω  
L
R
=
L
t, TIME (50  
µs/DIV)  
t, TIME (5.0 µs/DIV)  
10  
MOTOROLA ANALOG IC DEVICE DATA  
MC33102  
Figure 37. Sleepmode Small Signal  
Transient Response  
Figure 38. Awakemode Small Signal  
Transient Response  
R
C
= 600 Ω  
= 0 pF  
R
C
=
L
L
L
L
= 0 pF  
t, TIME (50 µs/DIV)  
t, TIME (50 µs/DIV)  
CIRCUIT INFORMATION  
The MC33102 was designed primarily for applications  
where high performance (which requires higher current drain)  
is required only part of the time. The two–state feature of this  
op amp enables it to conserve power during idle times, yet be  
powered up and ready for an input signal. Possible  
applications include laptop computers, automotive, cordless  
phones, baby monitors, and battery operated test equipment.  
Although most applications will require low power  
consumption, this device can be used in any application  
where better efficiency and higher performance is needed.  
The Sleep–Mode amplifier has two states; a sleepmode  
and an awakemode. In the sleepmode state, the amplifier is  
active and functions as a typical micropower op amp. When a  
signal is applied to the amplifier causing it to source or sink  
sufficient current (see Figure 13), the amplifier will  
automatically switch to the awakemode. See Figures 20 and  
21 for transition times with 600 and 10 kloads.  
The awakemode uses higher drain current to provide a  
high slew rate, gain bandwidth, and output current capability.  
In the awakemode, this amplifier can drive 27 Vpp into a  
600 load with V = ±15 V.  
S
An internal delay circuit is used to prevent the amplifier  
from returning to the sleepmode at every zero crossing. This  
delay circuit also eliminates the crossover distortion  
commonly found in micropower amplifiers. This amplifier can  
process frequencies as low as 1.0 Hz without the amplifier  
returning to sleepmode, depending on the load.  
The first stage PNP differential amplifier provides low noise  
performance in both the sleep and awake modes, and an all  
NPN output stage provides symmetrical source and sink AC  
frequency response.  
APPLICATIONS INFORMATION  
The MC33102 will begin to function at power supply  
current threshold (I ) of approximately 160 µA. As a result,  
TH  
voltages as low as V = ±1.0 V at room temperature. (At this  
the output switching threshold voltage (V ) is controlled by  
ST  
S
voltage, the output voltage swing will be limited to a few  
hundred millivolts.) The input voltages must range between  
the output loading resistance (R ). This loading can be a load  
L
resistor, feedback resistors, or both. Then:  
V
and V supply voltages as shown in the maximum  
CC  
EE  
rating table. Specifically, allowing the input to go more  
negative than 0.3 V below V may cause product  
damage. Also, exceeding the input common mode voltage  
V
= (160 µA) × R  
L
ST  
EE  
Large valued load resistors require a large output voltage  
to switch, but reduce unwanted transitions to the  
awakemode. For instance, in cases where the amplifier is  
range on either input may cause phase reversal, even if the  
inputs are between V  
and V  
.
CC  
EE  
When power is initially applied, the part may start to  
operate in the awakemode. This is because of the currents  
generated due to charging of internal capacitors. When this  
occurs and the sleepmode state is desired, the user will have  
to wait approximately 1.5 seconds before the device will  
switch back to the sleepmode. To prevent this from occurring,  
ramp the power supplies from 1.0 V to full supply. Notice that  
the device is more prone to switch into the awakemode when  
connected with a large closed loop gain (A ), the input offset  
CL  
voltage (V ) is multiplied by the gain at the output and could  
IO  
produce an output voltage exceeding V  
signal applied.  
with no input  
ST  
Small values of R allow rapid transition to the awakemode  
L
because most of the transition time is consumed slewing in  
the sleepmode until V is reached (see Figures 20, 21). The  
ST  
output switching threshold voltage V  
is higher for larger  
ST  
V
is adjusted than with a similar change in V .  
EE  
The amplifier is designed to switch from sleepmode to  
CC  
values of R , requiring the amplifier to slew longer in the  
slower sleepmode state before switching to the awakemode.  
L
awakemode whenever the output current exceeds a preset  
11  
MOTOROLA ANALOG IC DEVICE DATA  
MC33102  
The transition time (t ) required to switch from sleep to  
tr1  
minimize this problem, a resistor may be added in series with  
the output of the device (inserted as close to the device as  
possible) to isolate the op amp from both parasitic and load  
capacitance.  
The awakemode to sleepmode transition time is controlled  
by an internal delay circuit, which is necessary to prevent the  
amplifier from going to sleep during every zero crossing. This  
time is a function of supply voltage and temperature as  
shown in Figure 22.  
Gain bandwidth product (GBW) in both modes is an  
important system design consideration when using a  
sleepmode amplifier. The amplifier has been designed to  
obtain the maximum GBW in both modes. “Smooth” AC  
transitions between modes with no noticeable change in the  
amplitude of the output voltage waveform will occur as long  
awake mode is:  
t
= t = I  
TH  
(R /SR  
L
)
sleepmode  
tr1  
D
Where: t  
I
= Amplifier delay (<1.0 µs)  
D
TH  
= Output threshold current for  
= more transition (160 µA)  
= Load resistance  
R
SR  
L
= Sleepmode slew rate (0.16 V/µs)  
sleepmode  
Although typically 160 µA, I  
varies with supply voltage  
TH  
and temperature. In general, any current loading on the  
output which causes a current greater than I to flow will  
TH  
switch the amplifier into the awakemode. This includes  
transition currents such as those generated by charging load  
capacitances. In fact, the maximum capacitance that can be  
driven while attempting to remain in the sleepmode is  
approximately 1000 pF.  
as the closed loop gains (A ) in both modes are  
CL  
substantially equal at the frequency of operation. For smooth  
AC transitions:  
(A  
) (BW) < GBW  
sleepmode  
CLsleepmode  
C
= I /SR  
TH  
L(max)  
sleepmode  
= 160 µA/(0.16 V/µs)  
= 1000 pF  
Where: A  
A
= Closed loop gain in  
= the sleepmode  
CLsleepmode  
CLsleepmode  
BW = The required system bandwidth  
BW = or operating frequency  
Any electrical noise seen at the output of the MC33102  
may also cause the device to transition to the awakemode. To  
TESTING INFORMATION  
To determine if the MC33102 is in the awakemode or the  
of the currents caused by both the feedback loop and load  
resistance. The total I needs to be subtracted from the  
sleepmode, the power supply currents (I + and I –) must be  
D
D
out  
measured I to obtain the correct I of the dual op amp.  
measured. When the magnitude of either power supply  
current exceeds 400 µA, the device is in the awakemode.  
When the magnitudes of both supply currents are less than  
400 µA, the device is in the sleepmode. Since the total supply  
current is typically ten times higher in the awakemode than  
the sleepmode, the two states are easily distinguishable.  
D
D
An accurate way to measure the awakemode I  
current  
current on  
out  
on automatic test equipment is to remove the I  
both Channel A and B. Then measure the I values before  
out  
D
the device goes back to the sleepmode state. The transition  
will take typically 1.5 seconds with ±15 V power supplies.  
The large signal sleepmode testing in the characterization  
was accomplished with a 1.0 Mload resistor which ensured  
the device would remain in sleepmode despite large  
voltage swings.  
The measured value of I + equals the I of both devices  
D
D
(for a dual op amp) plus the output source current of device A  
and the output source current of device B. Similarly, the  
measured value of I – is equal to the I – of both devices plus  
D
D
the output sink current of each device. I  
is the sum  
out  
12  
MOTOROLA ANALOG IC DEVICE DATA  
MC33102  
OUTLINE DIMENSIONS  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751–05  
(SO–8)  
ISSUE R  
NOTES:  
D
A
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
C
2. DIMENSIONS ARE IN MILLIMETERS.  
3. DIMENSION D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
8
1
5
4
M
M
0.25  
B
H
E
h X 45  
MILLIMETERS  
B
e
DIM  
A
A1  
B
C
D
E
e
H
h
MIN  
1.35  
0.10  
0.35  
0.18  
4.80  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
5.00  
4.00  
A
C
SEATING  
PLANE  
L
1.27 BSC  
0.10  
5.80  
0.25  
0.40  
0
6.20  
0.50  
1.25  
7
A1  
B
L
M
S
S
0.25  
C
B
A
P SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–B–  
MILLIMETERS  
INCHES  
1
4
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
0.370  
0.240  
0.155  
0.015  
0.040  
F
–A–  
NOTE 2  
L
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
7.62 BSC  
–––  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.300 BSC  
–––  
0.050  
0.012  
0.135  
C
10  
1.01  
10  
0.040  
0.76  
0.030  
J
–T–  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
13  
MOTOROLA ANALOG IC DEVICE DATA  
MC33102  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arisingoutof,directlyorindirectly,anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorizeduse,evenifsuchclaimallegesthatMotorola  
was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,  
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488  
Customer Focus Center: 1–800–521–6274  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
Motorola Fax Back System  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
– http://sps.motorola.com/mfax/  
HOME PAGE: http://motorola.com/sps/  
MC33102/D  

相关型号:

MC33102D

DUAL SLEEP-MODE OPERATIONAL AMPLIFIER
MOTOROLA

MC33102D

DUAL SLEEP-MODE OPERATIONAL AMPLIFIER
ONSEMI

MC33102P

DUAL SLEEP-MODE OPERATIONAL AMPLIFIER
ONSEMI

MC33102P

DUAL SLEEP-MODE OPERATIONAL AMPLIFIER
MOTOROLA

MC33110

LOW VOLTAGE COMPANDER
MOTOROLA

MC33110D

LOW VOLTAGE COMPANDER
MOTOROLA

MC33110DR2

COMPANDER, 0.0199MHz BAND WIDTH, PDSO14, PLASTIC, SOP-14
MOTOROLA

MC33110P

LOW VOLTAGE COMPANDER
MOTOROLA

MC33111

Low Voltage Compander
FREESCALE

MC33111D

LOW VOLTAGE COMPANDER
MOTOROLA

MC33111D

Low Voltage Compander Silicon Monolithic Integrated Circuit
LANSDALE

MC33111D

Low Voltage Compander
FREESCALE