MC33074ADR2G

更新时间:2024-09-18 12:15:35
品牌:ONSEMI
描述:Single Supply 3.0 V to 44 V Operational Amplifiers

MC33074ADR2G 概述

Single Supply 3.0 V to 44 V Operational Amplifiers 单电源3.0 V至44 V运算放大器 运算放大器

MC33074ADR2G 数据手册

通过下载MC33074ADR2G数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
MC34071,2,4,A  
MC33071,2,4,A,  
NCV33072,4,A  
Single Supply 3.0 V to 44 V  
Operational Amplifiers  
Quality bipolar fabrication with innovative design concepts are  
employed for the MC33071/72/74, MC34071/72/74, NCV33072/74A  
series of monolithic operational amplifiers. This series of operational  
amplifiers offer 4.5 MHz of gain bandwidth product, 13 V/ms slew rate  
and fast settling time without the use of JFET device technology.  
Although this series can be operated from split supplies, it is  
particularly suited for single supply operation, since the common  
http://onsemi.com  
PDIP8  
P SUFFIX  
CASE 626  
8
1
mode input voltage range includes ground potential (V ). With a  
EE  
SOIC8  
Darlington input stage, this series exhibits high input resistance, low  
input offset voltage and high gain. The all NPN output stage,  
characterized by no deadband crossover distortion and large output  
voltage swing, provides high capacitance drive capability, excellent  
phase and gain margins, low open loop high frequency output  
impedance and symmetrical source/sink AC frequency response.  
The MC33071/72/74, MC34071/72/74, NCV33072/74,A series of  
devices are available in standard or prime performance (A Suffix)  
grades and are specified over the commercial, industrial/vehicular or  
military temperature ranges. The complete series of single, dual and  
quad operational amplifiers are available in plastic DIP, SOIC, QFN  
and TSSOP surface mount packages.  
D SUFFIX  
CASE 751  
8
1
WQFN10  
MT SUFFIX  
CASE 510AJ  
PDIP14  
P SUFFIX  
CASE 646  
Features  
14  
Wide Bandwidth: 4.5 MHz  
High Slew Rate: 13 V/ms  
Fast Settling Time: 1.1 ms to 0.1%  
Wide Single Supply Operation: 3.0 V to 44 V  
1
SOIC14  
D SUFFIX  
CASE 751A  
14  
1
Wide Input Common Mode Voltage Range: Includes Ground (V  
EE)  
Low Input Offset Voltage: 3.0 mV Maximum (A Suffix)  
Large Output Voltage Swing: 14.7 V to +14 V (with 15 V  
TSSOP14  
DTB SUFFIX  
CASE 948G  
Supplies)  
14  
Large Capacitance Drive Capability: 0 pF to 10,000 pF  
Low Total Harmonic Distortion: 0.02%  
1
Excellent Phase Margin: 60°  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 17 of this data sheet.  
Excellent Gain Margin: 12 dB  
Output Short Circuit Protection  
ESD Diodes/Clamps Provide Input Protection for Dual and Quad  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 20 of this data sheet.  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
These Devices are PbFree, Halogen Free/BFR Free and are RoHS  
Compliant  
© Semiconductor Components Industries, LLC, 2012  
1
Publication Order Number:  
August, 2012 Rev. 18  
MC34071/D  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
PIN CONNECTIONS  
CASE 646/CASE 751A/CASE 948G  
CASE 510AJ  
CASE 626/CASE 751  
VCC  
1
2
3
4
8
7
6
5
1
Offset Null  
Inputs  
NC  
V
Output 1  
Inputs 1  
14  
13  
Output 4  
Inputs 4  
10  
-
+
CC  
2
3
4
1
9
8
7
6
1
4
3
Output 2  
NC  
Output 1  
NC  
-
+
-
+
Output  
12  
11  
2
V
EE  
Offset Null  
V
CC  
V
EE  
3
4
In ­ 2  
In ­ 1  
(Single, Top View)  
5
6
10  
9
2
+
-
+
-
­
Inputs 2  
Output 2  
Inputs 3  
Output 3  
In + 1  
In + 2  
1
2
3
4
8
7
6
5
Output 1  
Inputs 1  
V
CC  
5
Output 2  
-
7
8
+
VEE/GND  
(Top View)  
-
+
Inputs 2  
(Quad, Top View)  
V
EE  
(Dual, Top View)  
V
CC  
Q3  
Q8  
Q4  
Q6  
Q5  
Q7  
Q1  
Q17  
Q2  
R2  
R1  
C1  
D2  
Q18  
Bias  
R6  
R7  
Q11  
Q9  
Q10  
Output  
-
R8  
Inputs  
+
C2  
D3  
Q19  
Q15  
Q16  
Q13  
Q14  
Base  
Current  
Cancellation  
Q12  
D1  
Current  
Limit  
R5  
R3  
R4  
V
EE  
/GND  
Offset Null  
(MC33071, MC34071 only)  
Figure 1. Representative Schematic Diagram  
(Each Amplifier)  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Supply Voltage (from V to V  
)
V
S
+44  
V
V
EE  
CC  
Input Differential Voltage Range  
Input Voltage Range  
V
IDR  
(Note 1)  
(Note 1)  
Indefinite  
+150  
V
IR  
V
Output Short Circuit Duration (Note 2)  
Operating Junction Temperature  
Storage Temperature Range  
t
Sec  
°C  
°C  
SC  
T
J
T
stg  
60 to +150  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. Either or both input voltages should not exceed the magnitude of V or V  
.
CC  
EE  
2. Power dissipation must be considered to ensure maximum junction temperature (T ) is not exceeded (see Figure 2).  
J
http://onsemi.com  
2
 
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
ELECTRICAL CHARACTERISTICS (V = +15 V, V = 15 V, R = connected to ground, unless otherwise noted. See Note 3 for  
CC  
EE  
L
T = T  
to T  
)
A
low  
high  
A Suffix  
Typ  
NonSuffix  
Characteristics  
Input Offset Voltage (R = 100 W, V  
Symbol  
Min  
Max  
Min  
Typ  
Max  
Unit  
= 0 V, V = 0 V)  
V
IO  
mV  
S
CM  
O
V
CC  
V
CC  
V
CC  
= +15 V, V = 15 V, T = +25°C  
0.5  
0.5  
3.0  
3.0  
5.0  
1.0  
1.5  
5.0  
5.0  
7.0  
EE  
A
= +5.0 V, V = 0 V, T = +25°C  
EE  
A
= +15 V, V = 15 V, T = T  
to T  
high  
EE  
A
low  
Average Temperature Coefficient of Input Offset  
Voltage  
DV /DT  
10  
10  
mV/°C  
IO  
R
= 10 W, V = 0 V, V = 0 V,  
CM O  
S
T = T  
to T  
A
low  
high  
Input Bias Current (V  
= 0 V, V = 0 V)  
I
nA  
nA  
CM  
O
IB  
T = +25°C  
100  
500  
700  
100  
500  
700  
A
T = T  
to T  
A
low  
high  
Input Offset Current (V  
= 0 V, V = 0V)  
I
IO  
CM  
O
T = +25°C  
6.0  
50  
300  
6.0  
75  
300  
A
T = T  
to T  
A
low  
high  
Input Common Mode Voltage Range  
V
ICR  
V
V
EE  
V
EE  
to (V 1.8)  
V
V
to (V 1.8)  
T = +25°C  
CC  
EE  
EE  
CC  
A
to (V 2.2)  
to (V 2.2)  
T = T  
to T  
CC  
CC  
A
low  
high  
Large Signal Voltage Gain (V  
=
10 V, R = 2.0 kW)  
A
VOL  
V/mV  
V
O
L
T = +25°C  
50  
25  
100  
25  
20  
100  
A
T = T  
to T  
A
low  
high  
Output Voltage Swing (V  
=
1.0 V)  
V
OH  
ID  
V
CC  
V
CC  
V
CC  
= +5.0 V, V = 0 V, R = 2.0 kW, T = +25°C  
3.7  
13.6  
13.4  
4.0  
14  
3.7  
13.6  
13.4  
4.0  
14  
EE  
L
A
= +15 V, V = 15 V, R = 10 kW, T = +25°C  
EE  
L
A
= +15 V, V = 15 V, R = 2.0 kW,  
EE  
L
T = T  
to T  
A
low  
high  
V
V
V
= +5.0 V, V = 0 V, R = 2.0 kW, T = +25°C  
V
OL  
0.1  
14.7  
0.3  
14.3  
13.5  
0.1  
14.7  
0.3  
14.3  
13.5  
V
CC  
EE  
L
A
= +15 V V = 15 V, R = 10 kW, T = +25°C  
CC  
CC  
,
EE  
L
A
= +15 V, V = 15 V, R = 2.0 kW,  
EE  
L
T = T to T  
A
low  
high  
Output Short Circuit Current (V = 1.0 V, V = 0 V,  
I
mA  
ID  
O
SC  
T = 25°C)  
Source  
Sink  
A
10  
20  
30  
30  
10  
20  
30  
30  
Common Mode Rejection  
CMR  
PSR  
80  
97  
70  
97  
dB  
dB  
R
10 kW, V = V , T = 25°C  
CM ICR A  
S
Power Supply Rejection (R = 100 W)  
80  
97  
70  
97  
S
V /V = +16.5 V/16.5 V to +13.5 V/13.5 V,  
CC EE  
T = 25°C  
A
Power Supply Current (Per Amplifier, No Load)  
I
D
mA  
V
CC  
V
CC  
V
CC  
= +5.0 V, V = 0 V, V = +2.5 V, T = +25°C  
1.6  
1.9  
2.0  
2.5  
2.8  
1.6  
1.9  
2.0  
2.5  
2.8  
EE  
O
A
= +15 V, V = 15 V, V = 0 V, T = +25°C  
EE  
O
A
= +15 V, V = 15 V, V = 0 V,  
EE  
O
T = T  
to T  
A
low  
high  
3. T  
=
=
=
40°C for MC33071,2,4,/A, NCV33074  
0°C for MC34071,2,4,/A  
T
=
=
=
+85°C for MC33071,2,4,/A, NCV33074  
+70°C for MC34071,2,4,/A  
low  
high  
40°C for MC34072,4/V, NCV33072,4A  
+125°C for MC34072,4/V, NCV33072,4A  
Case 510AJ T /T  
guaranteed by product characterization.  
low high  
http://onsemi.com  
3
 
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
AC ELECTRICAL CHARACTERISTICS (V = +15 V, V = 15 V, R = connected to ground. T = +25°C, unless otherwise noted.)  
CC  
EE  
L
A
A Suffix  
Typ  
NonSuffix  
Characteristics  
Slew Rate (V = 10 V to +10 V, R = 2.0 kW, C = 500 pF)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
Unit  
SR  
V/ms  
in  
L
L
A = +1.0  
A = 1.0  
V
8.0  
10  
13  
8.0  
10  
13  
V
Setting Time (10 V Step, A = 1.0)  
t
s
ms  
V
To 0.1% (+1/2 LSB of 9Bits)  
To 0.01% (+1/2 LSB of 12Bits)  
1.1  
2.2  
1.1  
2.2  
Gain Bandwidth Product (f = 100 kHz)  
Power Bandwidth  
GBW  
BW  
3.5  
4.5  
3.5  
4.5  
MHz  
kHz  
160  
160  
A = +1.0, R = 2.0 kW, V = 20 V , THD = 5.0%  
V
L
O
pp  
Phase margin  
f
Deg  
dB  
m
R = 2.0 kW  
60  
40  
60  
40  
L
R = 2.0 kW, C = 300 pF  
L
L
Gain Margin  
A
m
R = 2.0 kW  
R = 2.0 kW, C = 300 pF  
L
12  
4.0  
12  
4.0  
L
L
Equivalent Input Noise Voltage  
= 100 W, f = 1.0 kHz  
e
i
32  
32  
nV/Hz  
n
R
S
Equivalent Input Noise Current  
f = 1.0 kHz  
0.22  
150  
2.5  
0.22  
150  
2.5  
pA/Hz  
MW  
n
Differential Input Resistance  
R
C
in  
in  
V
CM  
= 0 V  
Differential Input Capacitance  
= 0 V  
pF  
V
CM  
Total Harmonic Distortion  
THD  
0.02  
0.02  
%
A = +10, R = 2.0 kW, 2.0 V V 20 V , f = 10 kHz  
V
L
pp  
O
pp  
Channel Separation (f = 10 kHz)  
120  
30  
120  
30  
dB  
W
Open Loop Output Impedance (f = 1.0 MHz)  
|Z |  
O
Single Supply  
Split Supplies  
3.0 V to 44 V  
V
CC  
+|V |44 V  
EE  
V
CC  
V
CC  
V
CC  
7
2
3
-
+
1
2
V
CC  
1
6
5
1
2
4
3
4
3
4
10 k  
V
EE  
V
EE  
Offset nulling range is approximately 80 mV with a 10 k  
potentiometer (MC33071, MC34071 only).  
V
EE  
V
EE  
Figure 2. Power Supply Configurations  
Figure 3. Offset Null Circuit  
http://onsemi.com  
4
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
2400  
2000  
1600  
1200  
800  
400  
0
V
CC  
V
EE  
V
CM  
= +15 V  
= -15 V  
= 0  
4.0  
2.0  
8 & 14 Pin Plastic Pkg  
SOIC-14 Pkg  
0
-2.0  
-4.0  
SOIC-8 Pkg  
-55 -40 -20  
0
20 40 60 80 100 120 140 160  
-55  
-25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 4. Maximum Power Dissipation versus  
Temperature for Package Types  
Figure 5. Input Offset Voltage versus  
Temperature for Representative Units  
1.3  
V
CC  
V
CC  
V
EE  
V
CM  
= +15 V  
= -15 V  
= 0  
V
CC  
V /V = +1.5 V/ -1.5 V to +22 V/ -22 V  
CC EE  
1.2  
1.1  
1.0  
0.9  
V
V
V
-0.8  
-1.6  
-2.4  
CC  
CC  
CC  
V
EE  
+0.01  
0.8  
0.7  
V
EE  
V
EE  
-55  
-25  
0
25  
50  
75  
100  
125  
-55  
-25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 6. Input Common Mode Voltage  
Range versus Temperature  
Figure 7. Normalized Input Bias Current  
versus Temperature  
50  
40  
30  
20  
10  
0
1.4  
1.2  
R Connected  
L
V
V
= +15 V  
= -15 V  
CC  
to Ground T = 25°C  
A
EE  
T = 25°C  
A
R = 10 k  
R = 2.0 k  
L
L
1.0  
0.8  
0.6  
-12  
-8.0  
-4.0  
0
4.0  
8.0  
12  
0
5.0  
10  
15  
20  
25  
V , INPUT COMMON MODE VOLTAGE (V)  
IC  
V , |V |, SUPPLY VOLTAGE (V)  
CC EE  
Figure 8. Normalized Input Bias Current versus  
Input Common Mode Voltage  
Figure 9. Split Supply Output Voltage  
Swing versus Supply Voltage  
http://onsemi.com  
5
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
V
CC  
V
CC  
V
V /V = +4.5 V/ -4.5 V to +22 V/ -22 V  
CC EE  
CC  
Source  
V
V
-1.0  
-2.0  
CC  
V
V
-2.0  
-4.0  
CC  
40  
25  
125  
V
= +15 V  
CC  
R = GND  
T = 25°C  
A
L
CC  
CC  
V
EE  
V
EE  
+2.0  
+1.0  
0.2  
0.1  
0
Sink  
25  
85  
GND  
125  
V
EE  
0
5.0  
10  
LOAD CURRENT ( mA)  
15  
20  
100  
1.0 k  
10 k  
100 k  
I
L,  
R , LOAD RESISTANCE TO GROUND (W)  
L
Figure 10. Split Supply Output Saturation  
versus Load Current  
Figure 11. Single Supply Output Saturation  
versus Load Resistance to Ground  
0
60  
50  
40  
30  
20  
V
CC  
-0.4  
-0.8  
Sink  
Source  
2.0  
1.0  
V
= +15 V  
CC  
R to V  
T = 25°C  
A
L
CC  
V
V
= +15 V  
= -15 V  
CC  
EE  
10  
0
R 0.1 W  
L
GND  
DV = 1.0 V  
in  
100  
1.0 k  
10 k  
100 k  
-55  
-25  
0
25  
50  
75  
100  
125  
R , LOAD RESISTANCE TO V (W)  
T , AMBIENT TEMPERATURE (°C)  
A
L
CC  
Figure 12. Single Supply Output Saturation  
versus Load Resistance to VCC  
Figure 13. Output Short Circuit Current  
versus Temperature  
50  
40  
30  
20  
28  
24  
V
V
V
= +15 V  
= -15 V  
= 0  
CC  
EE  
CM  
V
V
= +15 V  
= -15 V  
CC  
EE  
A = +1.0  
V
V = 0  
O
20  
16  
12  
R = 2.0 k  
L
DI  
=
0.5 mA  
O
THD 1.0%  
T = 25°C  
A
T = 25°C  
A
A = 1000  
V
A = 100  
V
A = 10  
V
A = 1.0  
V
8.0  
4.0  
10  
0
0
1.0 k  
10 k  
100  
f, FREQUENCY (Hz)  
1.0 M  
10 M  
3.0 k  
10 k  
30 k  
100 k  
300 k  
1.0 M 3.0 M  
f, FREQUENCY (Hz)  
Figure 14. Output Impedance  
versus Frequency  
Figure 15. Output Voltage Swing  
versus Frequency  
http://onsemi.com  
6
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
4.0  
0.4  
0.3  
V
V
= +15 V  
= -15 V  
CC  
A = 1000  
V
EE  
R = 2.0 k  
T = 25°C  
A
3.0  
2.0  
1.0  
0
L
A = 1000  
V
V
V
= +15 V  
= -15 V  
CC  
EE  
V = 2.0 V  
O
pp  
0.2  
0.1  
0
R = 2.0 k  
T = 25°C  
A
L
A = 100  
V
A = 100  
V
A = 10  
V
A = 10  
V
A = 1.0  
V
A = 1.0  
V
10  
100  
1.0 k  
10 k  
100 k  
0
4.0  
8.0  
12  
16  
20  
f, FREQUENCY (Hz)  
V , OUTPUT VOLTAGE SWING (V )  
O
pp  
Figure 16. Total Harmonic Distortion  
versus Frequency  
Figure 17. Total Harmonic Distortion  
versus Output Voltage Swing  
100  
116  
112  
108  
104  
100  
96  
0
V
V
= +15 V  
= -15 V  
CC  
80  
60  
40  
20  
0
Gain  
EE  
45  
90  
135  
Phase  
V = -10 V to +10 V  
O
R = 10 k  
f 10Hz  
L
Phase  
Margin  
= 60°  
V
V
= +15 V  
= -15 V  
CC  
EE  
V = 0 V  
O
R = 2.0 k  
T = 25°C  
A
L
180  
-55  
-25  
0
25  
50  
75  
100  
125  
1.0  
10  
100 1.0 k  
10 k 100 k 1.0 M 10 M 100 M  
T , AMBIENT TEMPERATURE (°C)  
A
f, FREQUENCY (Hz)  
Figure 18. Open Loop Voltage Gain  
versus Temperature  
Figure 19. Open Loop Voltage Gain and  
Phase versus Frequency  
20  
10  
1.15  
1.1  
1
100  
120  
140  
160  
180  
Phase  
Margin = 60°  
V
V
= +15 V  
= -15 V  
CC  
EE  
Gain  
Margin = 12 dB  
R = 2.0 k  
L
0
1.05  
-10  
-20  
-30  
-40  
1.0  
1. Phase R = 2.0 k  
2. Phase R = 2.0 k, C = 300 pF  
3. Gain R = 2.0 k  
4. Gain R = 2.0 k, C = 300 pF  
L
L
L
3
0.95  
L
L
L
4
V
V
= +15 V  
= 15 V  
CC  
0.9  
2
EE  
V = 0 VꢁꢁꢁꢁꢁT = 25°C  
O
A
0.85  
1.0  
2.0  
3.0 5.0  
7.0 10  
20  
30  
-55  
-25  
0
25  
50  
75  
100  
125  
f, FREQUENCY (MHz)  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 20. Open Loop Voltage Gain and  
Phase versus Frequency  
Figure 21. Normalized Gain Bandwidth  
Product versus Temperature  
http://onsemi.com  
7
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
70  
60  
100  
80  
V
V
= +15 V  
= -15 V  
V
V
= +15 V  
= -15 V  
CC  
EE  
CC  
EE  
R = 2.0 k  
A = +1.0  
V
L
50  
40  
30  
20  
10  
0
V = -10 V to +10 V  
T = 25°C  
A
R = 2.0 k to R  
O
T = 25°C  
A
O
L
V = -10 V to +10 V  
60  
40  
20  
0
10  
100  
1.0 k  
10 k  
10  
100  
1.0 k  
10 k  
C , LOAD CAPACITANCE (pF)  
L
C , LOAD CAPACITANCE (pF)  
L
Figure 22. Percent Overshoot versus  
Load Capacitance  
Figure 23. Phase Margin versus  
Load Capacitance  
14  
12  
80  
V
V
= +15 V  
= -15 V  
CC  
C = 10 pF  
L
EE  
C = 100 pF  
A = +1.0  
L
60  
40  
20  
0
V
10  
8.0  
6.0  
4.0  
2.0  
0
R = 2.0 k to ∞  
L
V = -10 V to +10 V  
O
V
V
= +15 V  
= -15 V  
T = 25°C  
A
CC  
EE  
A = +1.0  
V
R = 2.0 k to  
L
V = -10 V to +10 V  
C = 1,000 pF  
L
O
C = 10,000 pF  
L
10  
100  
1.0 k  
10 k  
-55  
-25  
0
25  
50  
75  
100  
125  
C , LOAD CAPACITANCE (pF)  
L
T , AMBIENT TEMPERATURE (°C)  
A
Figure 24. Gain Margin versus Load Capacitance  
Figure 25. Phase Margin versus Temperature  
70  
60  
50  
40  
30  
20  
10  
16  
12  
8.0  
4.0  
0
12  
V
= +15 V  
= -15 V  
CC  
10  
8.0  
6.0  
4.0  
2.0  
0
Gain  
C = 10 pF  
L
V
EE  
R
A = +1.0  
1
V
V
O
-
+
R = 2.0 k to ∞  
L
V = -10 V to +10 V  
O
C = 100 pF  
L
R
2
V
V
= +15 V  
= -15 V  
R = R + R  
A = +100  
V = 0 V  
CC  
EE  
C = 10,000 pF  
L
T
1
2
C = 1,000 pF  
L
Phase  
V
O
T = 25°C  
A
0
-55  
-25  
0
25  
50  
75  
100  
125  
1.0  
10  
100  
1.0 k  
10 k  
100 k  
T , AMBIENT TEMPERATURE (°C)  
A
R , DIFFERENTIAL SOURCE RESISTANCE (W)  
T
Figure 26. Gain Margin versus Temperature  
Figure 27. Phase Margin and Gain Margin  
versus Differential Source Resistance  
http://onsemi.com  
8
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
10  
1.15  
1.1  
V
CC  
V
EE  
= +15 V  
= -15 V  
V
V
= +15 V  
= -15 V  
CC  
EE  
1.0 mV  
10 mV  
1.0 mV  
A = +1.0  
V
A = -1.0  
5.0  
0
V
R = 2.0 k  
L
T = 25°C  
A
1.05  
1.0  
C = 500 pF  
L
Compensated  
Uncompensated  
0.95  
1.0 mV  
-5.0  
10 mV  
0.9  
1.0 mV  
0.85  
-10  
-55  
-25  
0
25  
50  
75  
100  
125  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
T , AMBIENT TEMPERATURE (°C)  
A
t , SETTLING TIME (ms)  
s
Figure 28. Normalized Slew Rate  
versus Temperature  
Figure 29. Output Settling Time  
V
CC  
V
EE  
= +15 V  
= -15 V  
A = +1.0  
V
R = 2.0 k  
L
C = 300 pF  
L
T = 25°C  
A
0
0
V
CC  
V
EE  
= +15 V  
= -15 V  
A = +1.0  
V
R = 2.0 k  
L
C = 300 pF  
L
T = 25°C  
A
2.0 ms/DIV  
1.0 ms/DIV  
Figure 30. Small Signal Transient Response  
Figure 31. Large Signal Transient Response  
100  
80  
100  
80  
T = 125°C  
A
V
V
= +15 V  
= -15 V  
V
CC  
V
EE  
V
CM  
= +15 V  
= -15 V  
= 0 V  
CC  
EE  
T = 25°C  
A
T = 25°C  
A
DV  
=
1.5 V  
DV  
DV  
T = -55°C  
CC  
CM  
A
(DV = +1.5 V)  
-
DM  
+
CC  
60  
40  
20  
0
60  
A
DV  
O
EE  
+PSR  
-
A
+
40  
20  
0
DV /A  
O
DM  
DM  
DV  
CM  
DV  
O
+PSR = 20 Log  
DV  
CC  
DV  
CM  
DV /A  
O
DM  
-PSR  
(DV = +1.5 V)  
CMR = 20 Log  
x A  
DM  
-PSR = 20 Log  
1.0  
DV  
O
DV  
EE  
EE  
0.1  
1.0  
10  
100  
1.0 k 10 k 100 k 1.0 M 10 M  
0.1  
10  
100  
1.0 k 10 k 100 k 1.0 M 10 M  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 32. Common Mode Rejection  
versus Frequency  
Figure 33. Power Supply Rejection  
versus Frequency  
http://onsemi.com  
9
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
105  
9.0  
8.0  
7.0  
-PSR (DV = +1.5 V)  
EE  
V
CC  
V
EE  
= +15 V  
= -15 V  
T = -55°C  
A
95  
85  
75  
65  
(DV = +1.5 V)  
+PSR  
CC  
T = 25°C  
A
DV  
CC  
6.0  
DV /A  
O
DM  
T = 125°C  
A
-
A
+
+PSR = 20 Log  
-PSR = 20 Log  
DV  
CC  
DM  
DV  
O
5.0  
4.0  
DV /A  
O
DM  
DV  
EE  
DV  
EE  
Quad device  
0
5.0  
10  
15  
20  
25  
-55  
-25  
0
25  
50  
75  
100  
125  
V , |V |, SUPPLY VOLTAGE (V)  
CC EE  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 34. Supply Current versus  
Supply Voltage  
Figure 35. Power Supply Rejection  
versus Temperature  
2.8  
120  
100  
80  
60  
40  
20  
0
70  
V
V
V
= +15 V  
= -15 V  
= 0  
CC  
EE  
CM  
60  
50  
40  
30  
20  
10  
0
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
V
V
= +15 V  
= -15 V  
CC  
EE  
T = 25°C  
A
T = 25°C  
A
Voltage  
Current  
0
10  
20  
30  
50  
70  
100  
200  
300  
10  
100  
1.0 k  
f, FREQUENCY (kHz)  
10 k  
100 k  
f, FREQUENCY (kHz)  
Figure 36. Channel Separation versus Frequency  
Figure 37. Input Noise versus Frequency  
APPLICATIONS INFORMATION  
CIRCUIT DESCRIPTION/PERFORMANCE FEATURES  
Although the bandwidth, slew rate, and settling time of the  
MC34071 amplifier series are similar to op amp products  
utilizing JFET input devices, these amplifiers offer other  
additional distinct advantages as a result of the PNP  
transistor differential input stage and an all NPN transistor  
output stage.  
up to approximately 5.0 mA of current from V through  
either inputs clamping diode without damage or latching,  
although phase reversal may again occur.  
If one or both inputs exceed the upper common mode  
voltage limit, the amplifier output is readily predictable and  
may be in a low or high state depending on the existing input  
bias conditions.  
EE  
Since the input common mode voltage range of this input  
stage includes the V potential, single supply operation is  
feasible to as low as 3.0 V with the common mode input  
voltage at ground potential.  
The input stage also allows differential input voltages up  
to 44 V, provided the maximum input voltage range is not  
exceeded. Specifically, the input voltages must range  
Since the input capacitance associated with the small  
geometry input device is substantially lower (2.5 pF) than  
the typical JFET input gate capacitance (5.0 pF), better  
frequency response for a given input source resistance can  
be achieved using the MC34071 series of amplifiers. This  
performance feature becomes evident, for example, in fast  
settling DtoA current to voltage conversion applications  
where the feedback resistance can form an input pole with  
the input capacitance of the op amp. This input pole creates  
a 2nd order system with the single pole op amp and is  
therefore detrimental to its settling time. In this context,  
lower input capacitance is desirable especially for higher  
EE  
between V and V supply voltages as shown by the  
EE  
CC  
maximum rating table. In practice, although not  
recommended, the input voltages can exceed the V  
CC  
voltage by approximately 3.0 V and decrease below the V  
EE  
voltage by 0.3 V without causing product damage, although  
output phase reversal may occur. It is also possible to source  
http://onsemi.com  
10  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
values of feedback resistances (lower current DACs). This  
Because the PNP output emitterfollower transistor has  
been eliminated, the MC34071 series offers a 20 mA  
minimum current sink capability, typically to an output  
input pole can be compensated for by creating a feedback  
zero with a capacitance across the feedback resistance, if  
necessary, to reduce overshoot. For 2.0 kW of feedback  
resistance, the MC34071 series can settle to within 1/2 LSB  
of 8bits in 1.0 ms, and within 1/2 LSB of 12bits in 2.2 ms  
for a 10 V step. In a inverting unity gain fast settling  
configuration, the symmetrical slew rate is 13 V/ms. In the  
classic noninverting unity gain configuration, the output  
positive slew rate is +10 V/ms, and the corresponding  
negative slew rate will exceed the positive slew rate as a  
function of the fall time of the input waveform.  
Since the bipolar input device matching characteristics  
are superior to that of JFETs, a low untrimmed maximum  
offset voltage of 3.0 mV prime and 5.0 mV downgrade can  
be economically offered with high frequency performance  
characteristics. This combination is ideal for low cost  
precision, high speed quad op amp applications.  
voltage of (V +1.8 V). In single supply applications the  
EE  
output can directly source or sink base current from a  
common emitter NPN transistor for fast high current  
switching applications.  
In addition, the all NPN transistor output stage is  
inherently fast, contributing to the bipolar amplifier’s high  
gain bandwidth product and fast settling capability. The  
associated high frequency low output impedance (30 W typ  
@ 1.0 MHz) allows capacitive drive capability from 0 pF to  
10,000 pF without oscillation in the unity closed loop gain  
configuration. The 60° phase margin and 12 dB gain margin  
as well as the general gain and phase characteristics are  
virtually independent of the source/sink output swing  
conditions. This allows easier system phase compensation,  
since output swing will not be a phase consideration. The  
high frequency characteristics of the MC34071 series also  
allow excellent high frequency active filter capability,  
especially for low voltage single supply applications.  
Although the single supply specifications is defined at  
5.0 V, these amplifiers are functional to 3.0 V @ 25°C  
although slight changes in parametrics such as bandwidth,  
slew rate, and DC gain may occur.  
The all NPN output stage, shown in its basic form on the  
equivalent circuit schematic, offers unique advantages over  
the more conventional NPN/PNP transistor Class AB output  
stage. A 10 kW load resistance can swing within 1.0 V of the  
positive rail (V ), and within 0.3 V of the negative rail  
CC  
(V ), providing a 28.7 V swing from 15 V supplies.  
EE  
pp  
This large output swing becomes most noticeable at lower  
supply voltages.  
The positive swing is limited by the saturation voltage of  
If power to this integrated circuit is applied in reverse  
polarity or if the IC is installed backwards in a socket, large  
unlimited current surges will occur through the device that  
may result in device destruction.  
the current source transistor Q , and V of the NPN pull up  
7
BE  
transistor Q , and the voltage drop associated with the short  
17  
Special static precautions are not necessary for these  
bipolar amplifiers since there are no MOS transistors on the  
die.  
circuit resistance, R . The negative swing is limited by the  
7
saturation voltage of the pulldown transistor Q , the  
16  
voltage drop I R , and the voltage drop associated with  
L
6
As with most high frequency amplifiers, proper lead  
dress, component placement, and PC board layout should be  
exercised for optimum frequency performance. For  
example, long unshielded input or output leads may result in  
unwanted inputoutput coupling. In order to preserve the  
relatively low input capacitance associated with these  
amplifiers, resistors connected to the inputs should be  
immediately adjacent to the input pin to minimize additional  
stray input capacitance. This not only minimizes the input  
pole for optimum frequency response, but also minimizes  
extraneous “pick up” at this node. Supply decoupling with  
adequate capacitance immediately adjacent to the supply pin  
is also important, particularly over temperature, since many  
types of decoupling capacitors exhibit great impedance  
changes over temperature.  
resistance R , where I is the sink load current. For small  
valued sink currents, the above voltage drops are negligible,  
allowing the negative swing voltage to approach within  
7
L
millivolts of V . For large valued sink currents (>5.0 mA),  
EE  
diode D3 clamps the voltage across R , thus limiting the  
6
negative swing to the saturation voltage of Q , plus the  
16  
forward diode drop of D3 (V +1.0 V). Thus for a given  
EE  
supply voltage, unprecedented peaktopeak output voltage  
swing is possible as indicated by the output swing  
specifications.  
If the load resistance is referenced to V instead of  
CC  
ground for single supply applications, the maximum  
possible output swing can be achieved for a given supply  
voltage. For light load currents, the load resistance will pull  
the output to V during the positive swing and the output  
CC  
The output of any one amplifier is current limited and thus  
protected from a direct short to ground. However, under  
such conditions, it is important not to allow the device to  
exceed the maximum junction temperature rating. Typically  
for 15 V supplies, any one output can be shorted  
continuously to ground without exceeding the maximum  
temperature rating.  
will pull the load resistance near ground during the negative  
swing. The load resistance value should be much less than  
that of the feedback resistance to maximize pull up  
capability.  
http://onsemi.com  
11  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
(Typical Single Supply Applications VCC = 5.0 V)  
V
CC  
5.1 M  
V
O
3.7 V  
pp  
0
0
+
3.7 V  
pp  
V
CC  
100 k  
1.0 M  
20 k  
C
in  
C
+
O
V
O
68 k  
MC34071  
36.6 mV  
C
in  
-
pp  
MC34071  
-
10 k  
V
O
100 k  
C
O
V
in  
10 k  
10 k  
R
100 k  
R
L
L
V 370 mV  
in  
pp  
1.0 k  
A = 101  
V
BW (-3.0 dB) = 45 kHz  
A = 10 BW (-3.0 dB) = 450 kHz  
V
Figure 38. AC Coupled Noninverting Amplifier  
Figure 39. AC Coupled Inverting Amplifier  
V
O
V
CC  
4.75 V  
pp  
2.63 V  
91 k  
5.1 k  
R
L
5.1 k  
100 k  
2.5 V  
+
MC34071  
V
O
0
0 to 10,000 pF  
Cable  
-
+
MC34071  
V
in  
MC54/74XX  
1.0 M  
A = 10  
-
TTL Gate  
V
V
in  
BW (-3.0 dB) = 450 kHz  
Figure 40. DC Coupled Inverting Amplifier  
Maximum Output Swing  
Figure 41. Unity Gain Buffer TTL Driver  
C
R3  
0.047  
2.2 k  
R1  
-
MC34071  
V
in  
1.1 k  
V
O
C
0.047  
+
R2  
5.6 k  
V
CC  
f = 30 kHz  
o
V
0.2 Vdc  
in  
V
O
H = 10  
H = 1.0  
o
-
MC34071  
o
0.4 V  
R2 =  
CC  
R
R
+
Given f = Center Frequency  
V
in  
o
16 k  
16 k  
A = Gain at Center Frequency  
O
C
0.01  
Choose Value f , Q, A , C  
o
o
Then:  
Q
R3  
R1 = ꢁ  
2H  
R1 R3  
2
R3 =  
f = 1.0 kHz  
pf C  
o
4Q R1-R3  
o
o
2.0 R  
32 k  
Q f  
o o  
1
< 0.1  
f =  
o
For less than 10% error from operational amplifier  
GBW  
4pRC  
where f and GBW are expressed in Hz.  
2.0 C  
0.02  
2.0 C  
0.02  
o
GBW = 4.5 MHz Typ.  
Figure 43. Active Bandpass Filter  
Figure 42. Active HighQ Notch Filter  
http://onsemi.com  
12  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
V
in  
C
F
2.0 V  
R
F
V
in  
+
MC34071  
-
V
O
t
5.0 k  
5.0 k  
5.0 k  
-
V
O
2.0 k  
MC34071  
V
O
R
+
L
10 k  
10 k  
10 k  
V
CC  
0.2 ms  
Delay  
1.0 V  
4.0 V  
0.1  
Bit  
Switches  
13 V/ms  
25 V/ms  
(R-2R) Ladder Network  
t
Delay  
Settling Time  
1.0 ms  
1.0 ms (8-Bits, 1/2 LSB)  
Figure 44. Low Voltage Fast D/A Converter  
Figure 45. High Speed Low Voltage Comparator  
V
CC  
“ON"  
V < V  
in  
ref  
V
CC  
V
CC  
+
MC34071  
V
in  
R
L
-
+
MC34071  
+
MC34071  
V
ref  
-
-
“ON"  
R
L
V > V  
in  
ref  
(A) PNP  
(B) NPN  
Figure 46. LED Driver  
Figure 47. Transistor Driver  
I
Load  
R
F
+
MC34071  
V
O
-
Ground Current  
Sense Resistor  
-
MC34071  
R
S
I
Cell  
V
O
R1  
+
R1  
R2  
R2  
V
O
= I  
R
1+  
Load S  
For V > 0.1V  
O
V
Cell  
= 0 V  
R2  
R1+R2  
V
O
= I  
R
Cell F  
BW ( -3.0 dB) = GBW  
V > 0.1 V  
O
Figure 48. AC/DC Ground Current Monitor  
Figure 49. Photovoltaic Cell Amplifier  
http://onsemi.com  
13  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
V
O
Hysteresis  
R2  
V
V
V
OH  
ref  
R1  
I
out  
+
MC34071  
OL  
V
in  
-
V
in  
+
MC34071  
V
in  
V
inL  
V
inH  
R1  
V
ref  
-
V
=
=
(V -V )+V  
OL ref  
inL  
ref  
R1+R2  
R1  
V
inH  
(V -V )+V  
OH ref  
ref  
R1+R2  
R
V
V
R1  
in IO  
V =  
H
(V -V  
)
OL  
I
=
OH  
out  
R1+R  
R
Figure 50. Low Input Voltage Comparator  
with Hysteresis  
Figure 51. High Compliance Voltage to  
Sink Current Converter  
R1  
R2  
+V  
R4  
ref  
R
F
-
MC34072  
R3  
1/2  
R
R
-
MC34072  
V
O
1/2  
+
+V1  
-
MC34071  
V
O
+
+V2  
R
+
R = DR  
R2  
R1  
R4  
R3  
=
(Critical to CMRR)  
DR R  
F
R4  
R3  
R4  
V
O
= V  
ref  
V = 1  
O
+
V2-V1  
2
2R  
R
F
R3  
DR < < R  
R > > R  
For (V2 V1), V > 0  
(V 0.1 V)  
F
O
Figure 52. High Input Impedance  
Differential Amplifier  
Figure 53. Bridge Current Amplifier  
0.85  
f
^
OSC  
+
I
B
RC  
+
SC  
V
I
V
t
P
0
-
t
V
in  
Base Charge  
Removal  
+
V
+
= V (pk)  
in  
O
MC34071  
-
I
out  
R
-
MC34072  
+
1/2  
MC34072  
1/2  
R
V
P
10,000 pF  
C
L
+
-
I
B
V+  
100 k  
Pulse Width  
Control Group  
100 k  
V
P
V
in  
47 k  
V
P
OSC  
Comparator  
High Current  
Output  
t
Figure 54. Low Voltage Peak Detector  
Figure 55. High Frequency Pulse  
Width Modulation  
http://onsemi.com  
14  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
GENERAL ADDITIONAL APPLICATIONS INFORMATION VS = 15.0 V  
R1  
46.1 k  
C2  
0.02  
C2  
0.05  
C1  
1.0  
-
R2  
5.6 k  
R1  
560  
R3  
510  
MC34071  
C1  
1.0  
f = 100 Hz  
o
R2  
1.1 k  
-
+
H = 20  
o
MC34071  
C1  
0.44  
f = 1.0 kHz  
H = 10  
o
o
+
H +0.5  
o
Then: R1 =  
R2 =  
Choose: f , H , C1  
o
o
Ǹ
pf C1  
o
2
Choose: f , H , C2  
o
o
Ǹ
2
Then: C1 = 2C2 (H +1)  
o
2pf C1 (1/H +2)  
o
o
Ǹ
2
R2  
R2  
C
R2 =  
C2 =  
R3 =  
R1 =  
4pf C2  
o
H +1  
o
H
H
o
o
Figure 56. Second Order LowPass Active Filter  
Figure 57. Second Order HighPass Active Filter  
C *  
F
V = 10 V  
O
Step  
R
F
2.0 k  
+
-
MC34071  
V
O
R1  
MC34071  
V
O
-
R
L
+
I
V
in  
R2  
t = 1.0 ms  
s
Uncompensated  
to 1/2 LSB (8-Bits)  
t = 2.2 ms  
s
V
High Speed  
DAC  
R2  
R1  
O
R1  
R1 +R2  
Compensated  
=
BW (-3.0 dB) = GBW  
to 1/2 LSB (12-Bits)  
V
in  
SR = 13 V/ms  
*Optional Compensation  
SR = 13 V/ms  
Figure 58. Fast Settling Inverter  
Figure 59. Basic Inverting Amplifier  
+
MC34071  
V
O
-
V
in  
+
V
in  
R2  
MC34071  
V
O
R
L
-
R1  
V
V
O
R2  
R1  
=
1 +  
in  
BW = 200 kHz  
p
R1  
V = 20 V  
O
pp  
BW (-3.0 dB) = GBW  
SR = 10 V/ms  
R1 +R2  
Figure 60. Basic Noninverting Amplifier  
Figure 61. Unity Gain Buffer (AV = +1.0)  
http://onsemi.com  
15  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
+
R
R
MC34074  
-
R
R
-
MC34074  
V
O
R
E
+
-
R
Example:  
Let: R = R = 12 k  
MC34074  
E
R
Then: A = 3.0  
BW = 1.5 MHz  
A = 1 +ꢀ2  
V
V
+
R
E
R
Figure 62. High Impedance Differential Amplifier  
+V  
O
+
+
+
MC34074  
R
100 k  
L
-
10  
10  
+10  
-
MC34074  
220 pF  
+
100 k  
100 k  
-10  
+
+
R
L
+
10  
MC34074  
R
+V  
-V  
O
L
O
10  
-
18.93 -18.78  
10 k  
18  
-18  
-V  
O
5.0 k  
15.4  
-15.4  
Figure 63. Dual Voltage Doubler  
http://onsemi.com  
16  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
ORDERING INFORMATION  
Op Amp  
Operating  
Temperature Range  
Shipping  
Function  
Device  
Package  
MC34071PG  
MC34071APG  
MC34071DG  
PDIP8  
(PbFree)  
50 Units / Rail  
50 Units / Rail  
PDIP8  
(PbFree)  
SOIC8  
(PbFree)  
98 Units / Rail  
T = 0° to +70°C  
A
MC34071DR2G  
MC34071ADG  
MC34071ADR2G  
MC33071PG  
SOIC8  
(PbFree)  
2500 / Tape & Reel  
98 Units / Rail  
SOIC8  
(PbFree)  
SOIC8  
(PbFree)  
2500 / Tape & Reel  
50 Units / Rail  
Single  
PDIP8  
(PbFree)  
MC33071APG  
MC33071DG  
PDIP8  
(PbFree)  
50 Units / Rail  
SOIC8  
(PbFree)  
98 Units / Rail  
T = 40° to +85°C  
A
MC33071DR2G  
MC33071ADG  
MC33071ADR2G  
SOIC8  
(PbFree)  
2500 / Tape & Reel  
98 Units / Rail  
SOIC8  
(PbFree)  
SOIC8  
(PbFree)  
2500 / Tape & Reel  
http://onsemi.com  
17  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
ORDERING INFORMATION (continued)  
Op Amp  
Function  
Operating  
Temperature Range  
Shipping  
Device  
Package  
MC34072PG  
MC34072APG  
MC34072DG  
MC34072ADG  
PDIP8  
(PbFree)  
50 Units / Rail  
98 Units / Rail  
PDIP8  
(PbFree)  
SOIC8  
(PbFree)  
SOIC8  
(PbFree)  
T = 0° to +70°C  
A
MC34072DR2G  
MC34072ADR2G  
MC34072AMTTBG  
MC33072PG  
SOIC8  
(PbFree)  
2500 Units / Tape & Reel  
3000 Units / Tape & Reel  
SOIC8  
(PbFree)  
WQFN10  
(PbFree)  
PDIP8  
(PbFree)  
50 Units / Rail  
98 Units / Rail  
MC33072APG  
MC33072DG  
PDIP8  
(PbFree)  
Dual  
SOIC8  
(PbFree)  
T = 40° to +85°C  
A
MC33072ADG  
MC33072DR2G  
MC33072ADR2G  
MC34072VDG  
MC34072VDR2G  
MC34072VPG  
NCV33072DR2G*  
SOIC8  
(PbFree)  
SOIC8  
(PbFree)  
2500 / Tape & Reel  
SOIC8  
(PbFree)  
SOIC8  
(PbFree)  
98 Units / Rail  
SOIC8  
(PbFree)  
2500 / Tape & Reel  
T = 40° to +125°C  
A
PDIP8  
(PbFree)  
50 Units / Rail  
SOIC8  
2500 / Tape & Reel  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV prefix for automotive and other applications requiring unique site and control change requirements; AECQ100 qualified and PPAP  
capable.  
http://onsemi.com  
18  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
ORDERING INFORMATION (continued)  
Op Amp  
Function  
Operating  
Temperature Range  
Shipping  
Device  
Package  
MC34074PG  
MC34074APG  
MC34074DG  
MC34074ADG  
PDIP14  
(PbFree)  
25 Units / Rail  
55 Units / Rail  
PDIP14  
(PbFree)  
SOIC14  
(PbFree)  
T = 0° to +70°C  
A
SOIC14  
(PbFree)  
MC34074ADR2G  
MC34074DR2G  
MC33074PG  
SOIC14  
(PbFree)  
2500 Units / Tape & Reel  
25 Units / Rail  
SOIC14  
(PbFree)  
PDIP14  
(PbFree)  
MC33074APG  
PDIP14  
(PbFree)  
MC33074DG  
SOIC14  
(PbFree)  
55 Units / Rail  
MC33074ADG  
SOIC14  
(PbFree)  
MC33074DR2G  
MC33074ADR2G  
MC33074DTBG  
MC33074DTBR2G  
MC33074ADTBG  
MC33074ADTBR2G  
NCV33074DR2G*  
MC34074VDG  
SOIC14  
(PbFree)  
Quad  
2500 / Tape & Reel  
SOIC14  
(PbFree)  
T = 40° to +85°C  
A
TSSOP14  
(PbFree)  
96 Units / Rail  
2500 / Tape & Reel  
96 Units / Rail  
TSSOP14  
(PbFree)  
TSSOP14  
(PbFree)  
TSSOP14  
(PbFree)  
2500 / Tape & Reel  
2500 / Tape & Reel  
55 Units / Rail  
SOIC14  
(PbFree)  
SOIC14  
(PbFree)  
MC34074VDR2G  
MC34074VPG  
SOIC14  
(PbFree)  
2500 / Tape & Reel  
25 Units / Rail  
T = 40° to +125°C  
A
PDIP14  
(PbFree)  
NCV33074ADTBR2G*  
TSSOP14  
(PbFree)  
2500 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV prefix for automotive and other applications requiring unique site and control change requirements; AECQ100 qualified and PPAP  
capable.  
http://onsemi.com  
19  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
MARKING DIAGRAMS  
PDIP8  
P SUFFIX  
CASE 626  
8
1
8
1
8
1
8
1
8
1
MC3x071P  
AWL  
MC3x071AP  
AWL  
MC3x072P  
AWL  
MC3x072AP  
AWL  
MC34072VP  
AWL  
YYWWG  
YYWWG  
YYWWG  
YYWWG  
YYWWG  
SOIC8  
D SUFFIX  
CASE 751  
8
8
8
8
8
3x071  
ALYWA  
3x072  
ALYW  
34072  
ALYWV  
3x071  
ALYW  
3x072  
ALYWA  
1
1
1
1
1
PDIP14  
P SUFFIX  
CASE 646  
14  
14  
14  
MC3x074P  
AWLYYWWG  
MC3x074AP  
AWLYYWWG  
MC34074VP  
AWLYYWWG  
1
1
1
SOIC14  
D SUFFIX  
CASE 751A  
TSSOP14  
DTB SUFFIX  
CASE 948G  
14  
14  
14  
14  
14  
14  
MC3x074DG  
AWLYWW  
MC3x074ADG  
AWLYWW  
MC34074VDG  
AWLYWW  
MC33  
074  
ALYWꢀ  
MC33  
074A  
ALYWꢀ  
NCV3  
074A  
ALYWꢀ  
1
1
1
1
1
1
WQFN10  
MT SUFFIX  
CASE 510AJ  
4072  
AAYW  
x
= 3 or 4  
A
WL, L  
YY, Y  
= Assembly Location  
= Wafer Lot  
= Year  
WW, W = Work Week  
G or = PbFree Package  
(Note: Microdot may be in either location)  
http://onsemi.com  
20  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
PACKAGE DIMENSIONS  
8 LEAD PDIP  
CASE 62605  
ISSUE M  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER ASME  
A
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: INCHES.  
3. DIMENSION E IS MEASURED WITH THE LEADS RE-  
STRAINED PARALLEL AT WIDTH E2.  
4. DIMENSION E1 DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
D1  
E
8
5
4
INCHES  
NOM  
−−−− 0.210  
MILLIMETERS  
E1  
DIM MIN  
−−−−  
A1 0.015  
b
C
D
MAX  
MIN  
NOM  
−−−−  
MAX  
5.33  
A
−−−−  
0.38  
0.35  
0.20  
9.02  
0.13  
7.62  
6.10  
1
−−−− −−−−  
−−−− −−−−  
0.014 0.018 0.022  
0.008 0.010 0.014  
0.355 0.365 0.400  
0.46  
0.25  
0.56  
0.36  
NOTE 5  
9.27 10.02  
F
c
D1 0.005  
0.300 0.310 0.325  
E1 0.240 0.250 0.280  
−−−− −−−−  
−−−− −−−−  
E
7.87  
6.35  
8.26  
7.11  
E2  
TOP VIEW  
END VIEW  
E2  
E3  
e
0.300 BSC  
−−−− 0.430  
0.100 BSC  
7.62 BSC  
NOTE 3  
−−−−  
−−−−  
−−−− 10.92  
2.54 BSC  
3.30 3.81  
e/2  
L
0.115 0.130 0.150  
2.92  
A
L
A1  
SEATING  
PLANE  
C
E3  
e
8X  
b
M
0.010  
C A  
END VIEW  
SIDE VIEW  
PDIP14  
CASE 64606  
ISSUE P  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
14  
1
8
B
7
INCHES  
MILLIMETERS  
A
F
DIM  
A
B
C
D
F
MIN  
MAX  
0.770  
0.260  
0.185  
0.021  
0.070  
MIN  
18.16  
6.10  
3.69  
0.38  
1.02  
MAX  
19.56  
6.60  
4.69  
0.53  
1.78  
0.715  
0.240  
0.145  
0.015  
0.040  
L
N
C
G
H
J
K
L
M
N
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.290  
−−−  
0.095  
0.015  
0.135  
0.310  
10 ꢁ  
0.039  
1.32  
0.20  
2.92  
7.37  
−−−  
0.38  
2.41  
0.38  
3.43  
7.87  
10 ꢁ  
1.01  
T−  
SEATING  
PLANE  
J
K
0.015  
D 14 PL  
H
G
M
M
0.13 (0.005)  
http://onsemi.com  
21  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
PACKAGE DIMENSIONS  
TSSOP14  
CASE 948G  
ISSUE B  
NOTES:  
14X K REF  
1. DIMENSIONING AND TOLERANCING PER  
M
S
S
ANSI Y14.5M, 1982.  
0.10 (0.004)  
T U  
V
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
S
0.15 (0.006) T U  
N
0.25 (0.010)  
14  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08  
(0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
8
2X L/2  
M
B
L
N
U−  
PIN 1  
IDENT.  
F
7
1
DETAIL E  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE W.  
S
K
0.15 (0.006) T U  
A
V−  
MILLIMETERS  
INCHES  
K1  
DIM MIN  
MAX  
MIN MAX  
A
B
C
D
F
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
1.20  
0.15 0.002 0.006  
0.75 0.020 0.030  
J J1  
−−− 0.047  
SECTION NN  
G
H
J
J1  
K
0.65 BSC  
0.026 BSC  
0.60 0.020 0.024  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.50  
0.09  
0.09  
0.19  
W−  
C
K1 0.19  
L
M
6.40 BSC  
0.252 BSC  
0.10 (0.004)  
0 ꢁ  
8 ꢁ  
0 ꢁ  
8 ꢁ  
SEATING  
PLANE  
T−  
H
G
DETAIL E  
D
SOLDERING FOOTPRINT*  
7.06  
1
0.65  
PITCH  
01.34X6  
14X  
1.26  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
22  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
X−  
ANSI Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45ꢁ  
SEATING  
PLANE  
Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
M
J
H
D
0
0.25  
5.80  
8
0
8
0.50 0.010  
6.20 0.228  
0.020  
0.244  
M
S
S
0.25 (0.010)  
Z
Y
X
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
23  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
PACKAGE DIMENSIONS  
SOIC14  
CASE 751A03  
ISSUE K  
NOTES:  
D
A
B
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.13 TOTAL IN EXCESS OF AT  
MAXIMUM MATERIAL CONDITION.  
4. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD PROTRUSIONS.  
14  
8
7
A3  
E
H
5. MAXIMUM MOLD PROTRUSION 0.15 PER  
SIDE.  
L
DETAIL A  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
13X b  
M
M
0.25  
B
A
A1  
A3  
b
D
E
1.35  
0.10  
0.19  
0.35  
8.55  
3.80  
1.75 0.054 0.068  
0.25 0.004 0.010  
0.25 0.008 0.010  
0.49 0.014 0.019  
8.75 0.337 0.344  
4.00 0.150 0.157  
M
S
S
0.25  
C A  
B
DETAIL A  
h
X 45ꢁ  
A
e
H
h
L
1.27 BSC  
0.050 BSC  
6.20 0.228 0.244  
0.50 0.010 0.019  
1.25 0.016 0.049  
5.80  
0.25  
0.40  
0 ꢁ  
M
A1  
e
M
7ꢁ  
0 ꢁ  
7ꢁ  
SEATING  
PLANE  
C
SOLDERING FOOTPRINT*  
6.50  
14X  
1.18  
1
1.27  
PITCH  
14X  
0.58  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
24  
MC34071,2,4,A MC33071,2,4,A, NCV33072,4,A  
PACKAGE DIMENSIONS  
WQFN10  
CASE 510AJ  
ISSUE A  
NOTES:  
L
L
D
B
E
A
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.30mm FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
L1  
PIN ONE  
REFERENCE  
DETAIL A  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
MILLIMETERS  
DIM  
A
MIN  
0.70  
0.00  
0.20 REF  
0.20  
MAX  
0.80  
0.05  
0.15  
C
A1  
A3  
b
EXPOSED Cu  
MOLD CMPD  
0.15  
C
TOP VIEW  
0.30  
D
2.60 BSC  
E
2.60 BSC  
0.50 BSC  
A3  
DETAIL B  
e
0.10  
0.08  
C
C
DETAIL B  
L
0.45  
0.00  
0.55  
0.55  
0.15  
0.65  
ALTERNATE  
L1  
L2  
A
CONSTRUCTIONS  
A1  
NOTE 4  
SEATING  
PLANE  
SOLDERING FOOTPRINT*  
C
SIDE VIEW  
2.90  
DETAIL A  
5
9X  
L
1
0.50  
PITCH  
2.90  
4
1
6
9
10X  
0.30  
e
10X  
0.73  
10  
L2  
DIMENSIONS: MILLIMETERS  
10X b  
0.10  
C
A
B
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
NOTE 3  
0.05  
C
BOTTOM VIEW  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MC34071/D  

MC33074ADR2G CAD模型

  • 引脚图

  • 封装焊盘图

  • MC33074ADR2G 替代型号

    型号 制造商 描述 替代类型 文档
    MC33074ADG ONSEMI Single Supply 3.0 V to 44 V Operational Amplifiers 完全替代
    MC33074APG ONSEMI Single Supply 3.0 V to 44 V Operational Amplifiers 完全替代
    NCV33074ADR2G ONSEMI Single Supply 3.0 V to 44 V Operational Amplifiers 完全替代

    MC33074ADR2G 相关器件

    型号 制造商 描述 价格 文档
    MC33074ADTB ONSEMI High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers 获取价格
    MC33074ADTBG ONSEMI Single Supply 3.0 V to 44 V Operational Amplifiers 获取价格
    MC33074ADTBR2 ONSEMI High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers 获取价格
    MC33074ADTBR2G ONSEMI Single Supply 3.0 V to 44 V Operational Amplifiers 获取价格
    MC33074AP ONSEMI High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers 获取价格
    MC33074AP MOTOROLA HIGH BANDWIDTH SINGLE SUPPLY OPERATIONAL AMPLIFIERS 获取价格
    MC33074AP FREESCALE High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers 获取价格
    MC33074APG ONSEMI Single Supply 3.0 V to 44 V Operational Amplifiers 获取价格
    MC33074AU MOTOROLA High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers 获取价格
    MC33074AU FREESCALE High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers 获取价格

    MC33074ADR2G 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    5
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6