MC100EP195FAR2 [ONSEMI]

3.3V ECL Programmable Delay Chip; 3.3V ECL可编程延迟芯片
MC100EP195FAR2
型号: MC100EP195FAR2
厂家: ONSEMI    ONSEMI
描述:

3.3V ECL Programmable Delay Chip
3.3V ECL可编程延迟芯片

延迟线
文件: 总20页 (文件大小:130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC10EP195, MC100EP195  
3.3V ECL Programmable  
Delay Chip  
The MC10/100EP195 is a Programmable Delay Chip (PDC)  
designed primarily for clock deskewing and timing adjustment. It  
provides variable delay of a differential NECL/PECL input transition.  
The delay section consists of a programmable matrix of gates and  
multiplexers as shown in the logic diagram, Figure 2. The delay  
increment of the EP195 has a digitally selectable resolution of about  
10 ps and a net range of up to 10.2 ns. The required delay is selected by  
the 10 data select inputs D[9:0] values and controlled by the LEN  
(pin 10). A LOW level on LEN allows a transparent LOAD mode of  
real time delay values by D[9:0]. A LOW to HIGH transition on LEN  
will LOCK and HOLD current values present against any subsequent  
changes in D[10:0]. The approximate delay values for varying tap  
numbers correlating to D0 (LSB) through D9 (MSB) are shown in  
Table 6 and Figure 3.  
http://onsemi.com  
MARKING  
DIAGRAM*  
MCXXX  
EP195  
AWLYYWW  
32  
LQFP−32  
FA SUFFIX  
CASE 873A  
1
Because the EP195 is designed using a chain of multiplexers it has a  
fixed minimum delay of 2.2 ns. An additional pin D10 is provided for  
controlling Pins 14 and 15, CASCADE and CASCADE, also latched  
by LEN, in cascading multiple PDCs for increased programmable  
range. The cascade logic allows full control of multiple PDCs.  
Switching devices from all “1” states on D[0:9] with SETMAX LOW  
to all “0” states on D[0:9] with SETMAX HIGH will increase the  
delay equivalent to “D0”, the minimum increment.  
XXX  
A
WL  
YY  
= 10 or 100  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
WW  
*For additional marking information, refer to  
Application Note AND8002/D.  
Select input pins D[10:0] may be threshold controlled by  
combinations of interconnects between V (pin 7) and V (pin 8)  
EF  
CF  
for LVCMOS, ECL, or LVTTL level signals. For LVCMOS input  
levels, leave V and V open. For ECL operation, short V and  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 17 of this data sheet.  
CF  
EF  
CF  
V
EF  
(pins 7 and 8). For LVTTL level operation, connect a 1.5 V  
supply reference to V and leave open V pin. The 1.5 V reference  
CF  
EF  
voltage to V pin can be accomplished by placing a 2.2 kW resistor  
CF  
between V and V for a 3.3 V power supply.  
CF  
EE  
The V pin, an internally generated voltage supply, is available to  
BB  
this device only. For single-ended input conditions, the unused  
differential input is connected to V as a switching reference voltage.  
BB  
V
BB  
may also rebias AC coupled inputs. When used, decouple V  
BB  
and V via a 0.01 mF capacitor and limit current sourcing or sinking  
CC  
to 0.5 mA. When not used, V should be left open.  
BB  
The 100 Series contains temperature compensation.  
Maximum Input Clock Frequency >1.2 GHz Typical  
Programmable Range: 0 ns to 10 ns  
Delay Range: 2.2 ns to 12.2 ns  
Open Input Default State  
Safety Clamp on Inputs  
A Logic High on the EN Pin Will Force Q to Logic  
Low  
10 ps Increments  
PECL Mode Operating Range:  
D[10:0] Can Accept Either ECL, LVCMOS, or LVTTL  
Inputs  
V
CC  
= 3.0 V to 3.6 V with V = 0 V  
EE  
V Output Reference Voltage  
BB  
NECL Mode Operating Range:  
= 0 V with V = −3.0 V to −3.6 V  
V
CC  
EE  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
October, 2004 − Rev. 13  
MC10EP195/D  
MC10EP195, MC100EP195  
V
EE  
D0 V  
Q
Q
V
V
NC  
CC  
CC CC  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
D1  
D2  
D3  
EN  
CASCADE  
CASCADE  
V
MC10EP195  
MC100EP195  
V
CC  
EE  
D4  
D5  
SETMAX  
SETMIN  
LEN  
D6  
D7  
V
EE  
1
2
3
4
5
6
7
8
D8 D9 D10 IN IN  
V
V
V
BB EF CF  
Figure 1. 32−Lead LQFP Pinout (Top View)  
http://onsemi.com  
2
MC10EP195, MC100EP195  
Table 1. PIN DESCRIPTION  
Pin  
Name  
I/O  
Default State  
Description  
23, 25, 26, 27,  
29, 30, 31, 32,  
1, 2  
D[0:9]  
LVCMOS, LVTTL,  
ECL Input  
Low  
Single−Ended Parallel Data Inputs [0:9]. Internal 75 kW to V  
(Note 1)  
.
EE  
3
D[10]  
LVCMOS, LVTTL,  
ECL Input  
Low  
Single−Ended CASCADE/CASCADE Control Input. Internal 75 kW  
to V . (Note 1)  
EE  
4
5
IN  
IN  
ECL Input  
ECL Input  
Low  
Noninverted Differential Input. Internal 75 kW to V  
.
EE  
High  
Inverted Differential Input. Internal 75 kW to V and 36.5 kW to  
EE  
V
CC  
.
6
V
BB  
V
EF  
V
CF  
V
EE  
ECL Reference Voltage Output  
7
8
Reference Voltage for ECL Mode Connection  
LVCMOS, ECL, OR LVTTL Input Mode Select  
9, 24, 28  
Negative Supply Voltage. All V Pins must be Externally  
EE  
Connected to Power Supply to Guarantee Proper Operation.  
(Note 2)  
13, 18, 19, 22  
V
CC  
Positive Supply Voltage. All V Pins must be externally  
Connected to Power Supply to Guarantee Proper Operation.  
(Note 2)  
CC  
10  
11  
LEN  
ECL Input  
ECL Input  
Low  
Low  
Single−ended D pins LOAD / HOLD input. Internal 75 kW to V  
.
EE  
SETMIN  
Single−ended Minimum Delay Set Logic Input. Internal 75 kW to  
. (Note 1)  
V
EE  
12  
14  
15  
SETMAX  
CASCADE  
CASCADE  
ECL Input  
ECL Output  
ECL Output  
Low  
Single−ended Maximum Delay Set Logic Input. Internal 75 kW to  
. (Note 1)  
V
EE  
Inverted Differential Cascade Output for D[10]. Typically Terminated  
with 50 W to V = V − 2 V.  
TT  
CC  
Noninverted Differential Cascade Output. for D[10] Typically  
Terminated with 50 W to V = V − 2 V.  
TT  
CC  
16  
17  
EN  
NC  
ECL Input  
Low  
Single−ended Output Enable Pin. Internal 75 kW to V  
.
EE  
No Connect. The NC Pin is Electrically Connected to the Die and  
”MUST BE” Left Open  
21  
20  
Q
Q
ECL Output  
ECL Output  
Noninverted Differential Output. Typically Terminated with 50 W to  
V
TT  
= V − 2 V.  
CC  
Inverted Differential Output. Typically Terminated with 50 W to  
= V − 2 V.  
V
TT  
CC  
1. SETMIN will override SETMAX if both are high. SETMAX and SETMIN will override all D[0:10] inputs.  
2. All V and V pins must be externally connected to Power Supply to guarantee proper operation.  
CC  
EE  
http://onsemi.com  
3
 
MC10EP195, MC100EP195  
Table 2. CONTROL PIN  
Pin  
State  
LOW (Note 3)  
HIGH  
Function  
EN  
Input Signal is Propagated to the Output  
Output Holds Logic Low State  
LEN  
LOW (Note 3)  
HIGH  
Transparent or LOAD mode for real time delay values present on D[0:10].  
LOCK and HOLD mode for delay values on D[0:10]; further changes on D[0:10]  
are not recognized and do not affect delay.  
SETMIN  
SETMAX  
D10  
LOW (Note 3)  
HIGH  
Output Delay set by D[0:10]  
Set Minimum Output Delay  
LOW (Note 3)  
HIGH  
Output Delay set by D[0:10]  
Set Maximum Output Delay  
LOW (Note 3)  
HIGH  
CASCADE Output LOW, CASCADE Output HIGH  
CASCADE Output LOW, CASCADE Output HIGH  
3. Internal pulldown resistor will provide a logic LOW if pin is left unconnected.  
Table 3. CONTROL D[0:10] INTERFACE  
V
Pin (Note 4)  
ECL Mode  
VCF  
VCF  
EF  
No Connect  
LVCMOS Mode  
LVTTL Mode (Note 5)  
V
CF  
1.5 V $ 100 mV  
4. Short V (pin 8) and V (pin 7).  
CF  
EF  
5. When Operating in LVTTL Mode, the reference voltage can be provided by connecting an external resistor, R (suggested resistor value  
CF  
is 2.2 kW $5%), between V and V pins.  
CF  
EE  
Table 4. DATA INPUT ALLOWED OPERATING VOLTAGE MODE TABLE  
CONTROL DATA SELECT INPUTS PINS (D [0:10])  
LVCMOS  
YES  
LVTTL  
YES  
LVPECL  
YES  
LVNECL  
N/A  
POWER SUPPLY  
PECL Mode Operating Range  
NECL Mode Operating Range  
N/A  
N/A  
N/A  
YES  
Table 5. ATTRIBUTES  
Characteristics  
Value  
Internal Input Pulldown Resistor  
ESD Protection  
(R1)  
75 kW  
Human Body Model  
Machine Model  
Charged Device Model  
> 2 kV  
> 100 V  
> 2 kV  
Moisture Sensitivity (Note 6)  
Flammability Rating  
Transistor Count  
Level 2  
Oxygen Index: 28 to 34  
UL 94 V−0 @ 0.125 in  
1217 Devices  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
6. For additional information, see Application Note AND8003/D.  
http://onsemi.com  
4
 
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
IN  
Q
Q
R1  
512  
GD*  
256  
GD*  
128  
GD*  
64  
GD*  
32  
GD*  
16  
GD*  
8
GD*  
4
GD*  
2
GD*  
1
GD*  
1
GD*  
IN  
R1  
EN  
R1  
LEN  
R1  
R1  
10 BIT LATCH  
R1  
SET MIN  
SET MAX  
R1  
D9  
R1  
R1  
R1  
R1  
R1  
R1  
R1  
R1  
D0  
R1  
V
V
V
V
BB  
CF  
EF  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
EE  
*GD = (GATE DELAY) APPROXIMATELY 10 ps DELAY PER GATE  
(MINIMUM FIXED DELAY APPROX. 2.2 ns)  
CASCADE  
CASCADE  
Latch  
D10  
R1  
MC10EP195, MC100EP195  
Table 6. THEORETICAL DELAY VALUES  
D(9:0) Value  
XXXXXXXXXX  
0000000000  
SETMIN  
SETMAX  
Programmable Delay*  
0 ps  
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
0 ps  
0000000001  
10 ps  
0000000010  
20 ps  
0000000011  
30 ps  
0000000100  
40 ps  
0000000101  
50 ps  
0000000110  
60 ps  
0000000111  
70 ps  
0000001000  
80 ps  
0000010000  
160 ps  
320 ps  
640 ps  
1280 ps  
2560 ps  
5120 ps  
10230 ps  
10240 ps  
0000100000  
0001000000  
0010000000  
0100000000  
1000000000  
1111111111  
XXXXXXXXXX  
*Fixed minimum delay not included.  
http://onsemi.com  
6
MC10EP195, MC100EP195  
14000.0  
13000.0  
12000.0  
11000.0  
10000.0  
9000.0  
8000.0  
7000.0  
6000.0  
5000.0  
4000.0  
3000.0  
2000.0  
1000.0  
0.0  
85°C  
25°C  
−40°C  
V
V
= 0 V  
CC  
= −3.3 V  
EE  
0.0  
100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0  
Decimal Value of Select Inputs (D[9:0])  
Figure 3. Measured Delay vs. Select Inputs  
Table 7. MAXIMUM RATINGS  
Symbol  
Parameter  
Condition 1  
= 0 V  
Condition 2  
Rating  
Unit  
V
V
CC  
V
EE  
V
I
Positive Mode Power Supply  
Negative Mode Power Supply  
V
V
6
EE  
= 0 V  
−6  
V
CC  
Positive Mode Input Voltage  
Negative Mode Input Voltage  
V
V
= 0 V  
= 0 V  
V V  
6
V
V
EE  
I
CC  
V V  
−6  
CC  
I
EE  
I
I
Output Current  
Continuous  
Surge  
50  
mA  
mA  
out  
100  
V
BB  
Sink/Source  
±0.5  
mA  
°C  
BB  
T
Operating Temperature Range  
−40 to +85  
−65 to +150  
A
T
Storage Temperature Range  
°C  
stg  
q
Thermal Resistance (Junction−to−Ambient)  
0 lfpm  
500 lfpm  
LQFP−23  
LQFP−23  
80  
55  
°C/W  
°C/W  
JA  
q
Thermal Resistance (Junction−to−Case)  
Wave Solder  
Standard Board  
LQFP−23  
12 to 17  
265  
°C/W  
°C  
JC  
T
sol  
< 2 to 3 sec @ 248°C  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
http://onsemi.com  
7
MC10EP195, MC100EP195  
Table 8. 10EP DC CHARACTERISTICS, PECL V = 3.3 V, V = 0 V (Note 7)  
CC  
EE  
−40°C  
25°C  
Typ  
150  
85°C  
Typ  
150  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Negative Power Supply Current  
Output HIGH Voltage (Note 8)  
Output LOW Voltage (Note 8)  
Input HIGH Voltage (Single−Ended)  
Unit  
mA  
mV  
mV  
mV  
I
EE  
100  
145  
175  
100  
180  
100  
180  
V
OH  
V
OL  
V
IH  
2165 2290 2415 2230 2355 2480 2290 2415 2540  
1365 1490 1615 1430 1555 1680 1490 1615 1740  
2090  
2000  
2000  
2415 2155  
3300 2000  
3300 2000  
2480 2215  
3300 2000  
3300 2000  
2540  
3300  
3300  
LVPECL  
LVCMOS  
LVTTL  
V
IL  
Input LOW Voltage (Single−Ended)  
mV  
1365  
0
0
1690 1430  
1755 1490  
1815  
800  
800  
LVPECL  
LVCMOS  
LVTTL  
800  
800  
0
0
800  
800  
0
0
V
V
V
V
ECL Output Voltage Reference  
LVTTL Mode Input Detect Voltage  
1790 1890 1990 1855 1955 2055 1915 2015 2115  
1.4 1.5 1.6 1.4 1.5 1.6 1.4 1.5 1.6  
1915 2020 2120 1940 2080 2190 1985 2130 2265  
mV  
V
BB  
CF  
Reference Voltage for ECL Mode Connection  
mV  
V
EF  
Input HIGH Voltage Common Mode Range  
(Differential Configuration) (Note 9)  
2.0  
3.3  
2.0  
3.3  
2.0  
3.3  
IHCMR  
I
I
Input HIGH Current (@ V  
)
150  
150  
150  
mA  
mA  
IH  
IH  
Input LOW Current (@ V )  
IN  
IN  
0.5  
−150  
0.5  
−150  
0.5  
−150  
IL  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
7. Input and output parameters vary 1:1 with V . V can vary +0.3 V to −0.3 V.  
CC  
EE  
8. All loading with 50 W to V − 2.0 V.  
CC  
9. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
8
 
MC10EP195, MC100EP195  
Table 9. 10EP DC CHARACTERISTICS, NECL V = 0 V, V = −3.3 V to −3.0 V (Note 10)  
CC  
EE  
−40°C  
25°C  
Typ  
150  
85°C  
Typ  
150  
Min  
100  
Typ  
Max  
Min  
Max  
Min  
Max  
180  
Symbol  
Characteristic  
Unit  
mA  
mV  
I
EE  
Negative Power Supply Current  
Output HIGH Voltage (Note 11)  
Output LOW Voltage (Note 11)  
145  
175  
100  
180  
100  
V
OH  
V
OL  
V
IH  
1135 −1010 −885 −1070 −945  
−820 −1010 −885  
−760  
−1935 −1810 −1685 −1870 −1745 −1620 −1810 −1685 −1560 mV  
mV  
Input HIGH Voltage (Single−Ended)  
LVNECL  
−1210  
−885 −1145  
−820 −1085  
−760  
V
IL  
Input LOW Voltage (Single−Ended)  
LVNECL  
mV  
−1935  
−1610 −1870  
−1545 −1810  
−1485  
V
V
ECL Output Voltage Reference  
−1510 −1410 −1310 −1445 −1345 −1245 −1385 −1285 −1185 mV  
−1385 −1280 −1180 −1360 −1220 −1110 −1315 −1170 −1035 mV  
BB  
Reference Voltage for ECL Mode  
Connection  
EF  
V
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 12)  
V
EE  
+2.0  
0.0  
V
EE  
+2.0  
0.0  
V
EE  
+2.0  
0.0  
V
IHCMR  
I
I
Input HIGH Current (@ V  
)
150  
150  
150  
mA  
mA  
IH  
IH  
Input LOW Current (@ V )  
IN  
IN  
0.5  
−150  
0.5  
−150  
0.5  
−150  
IL  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
10.Input and output parameters vary 1:1 with V  
V
can vary +0.3 V to −0.3 V.  
CC. EE  
11. All loading with 50 W to V − 2.0 V.  
CC  
12.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
9
 
MC10EP195, MC100EP195  
Table 10. 100EP DC CHARACTERISTICS, PECL V = 3.3 V, V = 0 V (Note 13)  
CC  
EE  
−40°C  
25°C  
Typ  
140  
85°C  
Typ  
145  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Unit  
I
EE  
Negative Power Supply Current  
100  
135  
160  
100  
170  
100  
175  
mA  
V
OH  
V
OL  
V
IH  
Output HIGH Voltage (Note 14)  
Output LOW Voltage (Note 14)  
Input HIGH Voltage (Single−Ended)  
2155 2280 2405 2155 2280 2405 2155 2280 2405 mV  
1355 1480 1605 1355 1480 1605 1355 1480 1605 mV  
mV  
2075  
2000  
2000  
2420 2075  
3300 2000  
3300 2000  
2420 2075  
3300 2000  
3300 2000  
2420  
3300  
3300  
LVPECL  
CMOS  
TTL  
V
IL  
Input LOW Voltage (Single−Ended)  
mV  
1355  
0
0
1675 1490  
1675 1490  
1675  
800  
800  
LVPECL  
CMOS  
TTL  
800  
800  
0
0
800  
800  
0
0
V
V
V
V
ECL Output Voltage Reference  
LVTTL Mode Input Detect Voltage  
1775 1875 1975 1775 1875 1975 1775 1875 1975 mV  
1.4 1.5 1.6 1.4 1.5 1.6 1.4 1.5 1.6  
1915 2020 2120 1940 2080 2190 1985 2130 2265 mV  
BB  
V
CF  
Reference Voltage for ECL Mode Connection  
EF  
Input HIGH Voltage Common Mode Range  
(Differential Configuration) (Note 15)  
2.0  
3.3  
2.0  
3.3  
2.0  
3.3  
V
IHCMR  
I
I
Input HIGH Current (@ V  
)
150  
150  
150  
mA  
mA  
IH  
IH  
Input LOW Current (@ V )  
IN  
IN  
0.5  
−150  
0.5  
−150  
0.5  
−150  
IL  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
13.Input and output parameters vary 1:1 with V  
V
can vary +0.3 V to −0.3 V.  
CC. EE  
14.All loading with 50 W to V − 2.0 V.  
CC  
15.V  
min varies 1:1 with V , V  
max varies 1:1 with V  
The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC.  
IHCMR  
input signal.  
http://onsemi.com  
10  
 
MC10EP195, MC100EP195  
Table 11. 100EP DC CHARACTERISTICS, NECL V = 0 V, V = −3.3 V (Note 16)  
CC  
EE  
−40°C  
Typ  
25°C  
Typ  
140  
85°C  
Typ  
145  
Min  
Max  
160  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Unit  
I
EE  
Negative Power Supply Current  
(Note 17)  
100  
135  
100  
170  
100  
175  
mA  
V
OH  
V
OL  
V
IH  
Output HIGH Voltage (Note 18)  
Output LOW Voltage (Note 18)  
Input HIGH Voltage (Single−Ended)  
1145 −1020 −895 −1145 −1020 −895 −1145 −1020 −895  
mV  
−1945 −1820 −1695 −1945 −1820 −1695 −1945 −1820 −1695 mV  
mV  
−1225  
−880 −1225  
−880 −1225  
−880  
LVNECL  
V
IL  
Input LOW Voltage (Single−Ended)  
mV  
−1945  
−1625 −1945  
−1625 −1945  
−1625  
LVNECL  
V
V
ECL Output Voltage Reference  
−1525 −1425 −1325 −1525 −1425 −1325 −1525 −1425 −1325 mV  
−1385 −1280 −1180 −1360 −1220 −1110 −1315 −1170 −1035 mV  
BB  
Reference Voltage for ECL Mode Con-  
nection  
EF  
V
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 19)  
V
EE  
+2.0  
0.0  
V
EE  
+2.0  
0.0  
V
EE  
+2.0  
0.0  
V
IHCMR  
I
I
Input HIGH Current (@ V  
)
150  
150  
150  
mA  
mA  
IH  
IH  
Input LOW Current (@ V )  
IN  
IN  
0.5  
−150  
0.5  
−150  
0.5  
−150  
IL  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
16.Input and output parameters vary 1:1 with V  
V
can vary +0.3 V to −0.3 V.  
CC. EE  
17.Required 500 lfpm air flow when using +5 V power supply. For (V − V ) > 3.3 V, 5 W to 10 W in line with V required for maximum thermal  
CC  
EE  
EE  
protection at elevated temperatures. Recommend V − V operation at 3.8 V.  
CC  
EE  
18.All loading with 50 W to V − 2.0 V.  
CC  
19.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V range is referenced to the most positive side of the differential  
IHCMR  
IHCMR  
EE IHCMR  
CC  
input signal.  
http://onsemi.com  
11  
 
MC10EP195, MC100EP195  
Table 12. AC CHARACTERISTICS V = 0 V; V = −3.0 V to −3.6 V or V = 3.0 V to 3.6 V; V = 0 V (Note 20)  
CC  
EE  
CC  
EE  
−40°C  
Typ  
25°C  
Typ  
1.2  
85°C  
Typ  
1.2  
Min  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Maximum Frequency  
Propagation Delay  
Unit  
GHz  
ps  
f
1.2  
max  
t
t
PLH  
PHL  
1650  
2050  
2450  
1800  
2200  
2600  
1950  
2350  
2750  
IN to Q; D(0−10) = 0  
9500 11500 13500 10000 12200 14000 10800 13300 15800  
IN to Q; D(0−10) = 1023  
EN to Q; D(0−10) = 0  
D0 to CASCADE  
1600  
300  
2150  
420  
2600  
500  
1800  
350  
2300  
450  
2800  
550  
2000  
425  
2500  
525  
3000  
625  
t
Programmable Range  
ps  
ps  
RANGE  
7850  
9450  
8200 10000  
8850 10950  
t
(max) − t (min)  
PD  
PD  
Dt  
Step Delay (Note 21)  
13  
27  
44  
14  
30  
47  
D0 High  
D1 High  
D2 High  
D3 High  
D4 High  
D5 High  
D6 High  
D7 High  
D8 High  
D9 High  
41  
100  
145  
360  
90  
97  
130  
312  
590  
1100  
2250  
4500  
140  
335  
650  
1180  
2400  
4800  
690  
1300  
2650  
5300  
mono  
Monotonicity (Note 27)  
TBD  
25  
t
Duty Cycle Skew (Note 22)  
ps  
ps  
SKEW  
25  
25  
|t  
−t  
|
PHL PLH  
t
s
Setup Time  
200  
300  
300  
0
140  
150  
200  
300  
300  
0
160  
170  
200  
300  
300  
0
180  
180  
D to LEN  
D to IN (Note 23)  
EN to IN (Note 24)  
t
t
Hold Time  
ps  
ps  
h
200  
400  
60  
250  
200  
400  
100  
280  
200  
400  
80  
300  
LEN to D  
IN to EN (Note 25)  
Release Time  
R
150  
400  
350  
−25  
200  
275  
150  
400  
350  
−75  
250  
200  
150  
400  
350  
−50  
300  
225  
EN to IN (Note 26)  
SET MAX to LEN  
SET MIN to LEN  
t
RMS Random Clock Jitter  
@ 1.2 GHz  
3
3
3
ps  
mV  
ps  
jitter  
V
Input Voltage Swing  
(Differential Configuration)  
150  
800  
1200  
150  
800  
1200  
150  
800  
1200  
PP  
t
r
t
f
Output Rise/Fall Time @ 50 MHz  
85  
100  
100  
140  
135  
200  
85  
110  
110  
150  
135  
200  
95  
130  
125  
170  
155  
220  
20−80% (Q)  
20−80% (CASCADE)  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
20.Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to V − 2.0 V.  
CC  
21.Specification limits represent the amount of delay added with the assertion of each individual delay control pin. The various combinations  
of asserted delay control inputs will typically realize D0 resolution steps across the specified programmable range.  
22.Duty cycle skew guaranteed only for differential operation measured from the cross point of the input to the cross point of the output.  
23.This setup time defines the amount of time prior to the input signal the delay tap of the device must be set.  
24.This setup time is the minimum time that EN must be asserted prior to the next transition of IN/IN to prevent an output response greater than  
±75 mV to that IN/IN transition.  
25.This hold time is the minimum time that EN must remain asserted after a negative going IN or positive going IN to prevent an output response  
greater than ±75 mV to that IN/IN transition.  
26.This release time is the minimum time that EN must be deasserted prior to the next IN/IN transition to ensure an output response that meets  
the specified IN to Q propagation delay and transition times.  
27.The monotonicity indicates the increasing delay value for each binary count increment on the control inputs D[9:0].  
http://onsemi.com  
12  
 
MC10EP195, MC100EP195  
IN  
V
INPP  
= V (D) − V (D)  
IH IL  
IN  
Q
V
= V (Q) − V (Q)  
OUTPP  
OH  
OL  
Q
t
PHL  
t
PLH  
Figure 4. AC Reference Measurement  
Cascading Multiple EP195s  
Figure 5 illustrates the interconnect scheme for cascading  
two EP195s. As can be seen, this scheme can easily be  
expanded for larger EP195 chains. The D10 input of the  
EP195 is the CASCADE control pin. With the interconnect  
scheme of Figure 5 when D10 is asserted, it signals the need  
for a larger programmable range than is achievable with a  
single device and switches output pin CASCADE HIGH and  
pin CASCADE LOW. The A11 address can be added to  
generate a cascade output for the next EP195. For a 2−device  
configuration, A11 is not required.  
To increase the programmable range of the EP195,  
internal cascade circuitry has been included. This circuitry  
allows for the cascading of multiple EP195s without the  
need for any external gating. Furthermore, this capability  
requires only one more address line per added E195.  
Obviously, cascading multiple programmable delay chips  
will result in a larger programmable range: however, this  
increase is at the expense of a longer minimum delay.  
Need if Chip #3 is used  
ADDRESS BUS  
A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5 D4  
D8  
V
EE  
D3 D2 D1  
D7 D6 D5 D4  
D8  
V
EE  
D3 D2 D1  
V
EE  
V
EE  
D9  
D0  
D9  
D0  
D10  
D10  
V
CC  
V
CC  
EP195  
EP195  
IN  
IN  
Q
IN  
IN  
Q
INPUT  
OUTPUT  
Q
CC  
CC  
Q
CC  
CC  
CHIP #2  
CHIP #1  
V
V
V
V
V
V
BB  
EF  
BB  
EF  
V
V
V
CF  
NC  
V
CF  
NC  
Figure 5. Cascading Interconnect Architecture  
http://onsemi.com  
13  
 
MC10EP195, MC100EP195  
An expansion of the latch section of the block diagram is  
pictured in Figure 6. Use of this diagram will simplify the  
explanation of how the cascade circuitry works. When D10  
(1111111111 on the A0—A9 address bus) D10 will be  
asserted to signal the need to cascade the delay to the next  
EP195 device. When D10 is asserted, the SET MIN pin of  
chip #2 will be deasserted and SET MAX pin asserted  
resulting in the device delay to be the maximum delay.  
Table 13 shows the delay time of two EP195 chips in  
cascade.  
To expand this cascading scheme to more devices, one  
simply needs to connect the D10 pin from the next chip to  
the address bus and CASCADE outputs to the next chip in  
the same manner as pictured in Figure 5. The only addition  
to the logic is the increase of one line to the address bus for  
cascade control of the second programmable delay chip.  
of chip #1 in Figure  
5 is LOW this device’s  
CASCADE output will also be low while the CASCADE  
output will be high. In this condition the SET MIN pin of  
chip #2 will be asserted HIGH and thus all of the latches of  
chip #2 will be reset and the device will be set at its minimum  
delay.  
Chip #1, on the other hand, will have both SET MIN and  
SET MAX deasserted so that its delay will be controlled  
entirely by the address bus A0—A9. If the delay needed is  
greater than can be achieved with 1023 gate delays  
TO SELECT MULTIPLEXERS  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
D4 Q4  
BIT 5  
D5 Q5  
BIT 6  
BIT 7  
BIT 8  
BIT 9  
D0 Q0  
D1 Q1  
D2 Q2  
D3 Q3  
D6 Q6  
D7 Q7  
D8 Q8  
D9 Q9  
LEN  
Set Reset  
LEN  
Set Reset  
LEN  
Set Reset  
LEN  
Set Reset  
LEN  
Set Reset  
LEN  
Set Reset  
LEN  
Set Reset  
LEN  
Set Reset  
LEN  
Set Reset  
LEN  
Set Reset  
SET  
MIN  
SET  
MAX  
Figure 6. Expansion of the Latch Section of the EP195 Block Diagram  
http://onsemi.com  
14  
 
MC10EP195, MC100EP195  
Table 13. Delay Value of Two EP195 Cascaded  
VARIABLE INPUT TO CHIP #1 AND SETMIN FOR CHIP #2  
INPUT FOR CHIP #1  
Total  
D10  
0
D9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
D8  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
D7  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
D6  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
D5  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
D4  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
D3  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
D2  
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
D1  
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
1
D0  
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
1
Delay Value  
Delay Value  
0 ps  
4400 ps  
0
10 ps  
20 ps  
4410 ps  
4420 ps  
4430 ps  
4440 ps  
4450 ps  
4460 ps  
4470 ps  
4480 ps  
4560 ps  
4720 ps  
5040 ps  
5680 ps  
6960 ps  
9520 ps  
14630 ps  
0
0
30 ps  
0
40 ps  
0
50 ps  
0
60 ps  
0
70 ps  
0
80 ps  
0
160 ps  
220 ps  
640 ps  
1280 ps  
2560 ps  
5120 ps  
10230 ps  
0
0
0
0
0
0
VARIABLE INPUT TO CHIP #1 AND SETMAX FOR CHIP #2  
INPUT FOR CHIP #1  
Total  
Delay Value  
14640 ps  
D10  
1
D9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
D8  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
D7  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
D6  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
D5  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
D4  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
D3  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
D2  
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
D1  
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
1
D0  
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
1
Delay Value  
10240 ps  
10250 ps  
10260 ps  
10270 ps  
10280 ps  
10290 ps  
10300 ps  
10310 ps  
10320 ps  
10400 ps  
10560 ps  
10880 ps  
11520 ps  
12800 ps  
15360 ps  
20470 ps  
1
14650 ps  
14660 ps  
14670 ps  
14680 ps  
14690 ps  
14700 ps  
14710 ps  
14720 ps  
14800 ps  
14960 ps  
15280 ps  
15920 ps  
17200 ps  
19760 ps  
24870 ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
http://onsemi.com  
15  
MC10EP195, MC100EP195  
Multi−Channel Deskewing  
be sent through each EP195 as shown in Figure 7. One signal  
channel can be used as reference and the other EP195s can be  
used to adjust the delay to eliminate the timing skews. Nearly  
any high−speed system can be fine−tuned (as small as 10 ps)  
to reduce the skew to extremely tight tolerances.  
The most practical application for EP195 is in multiple  
channel delay matching. Slight differences in impedance and  
cable length can create large timing skews within a high−speed  
system. To deskew multiple signal channels, each channel can  
EP195  
IN  
IN  
Q
Q
#1  
EP195  
#2  
IN  
IN  
Q
Q
EP195  
#N  
IN  
IN  
Q
Q
Digital  
Data  
Control  
Logic  
Figure 7. Multiple Channel Deskewing Diagram  
Measure Unknown High Speed Device Delays  
If the programmed delay through the second EP195 is too  
long, the flip−flop output will be at logic high. On the other  
hand, if the programmed delay through the second EP195 is  
too short, the flip−flop output will be at a logic low. If the  
programmed delay is correctly fine−tuned in the second  
EP195, the flip−flop will bounce between logic high and logic  
low. The digital code in the second EP195 can be directly  
correlated into an accurate device delay.  
EP195s provide a possible solution to measure the  
unknown delay of a device with a high degree of precision.  
By combining two EP195s and EP31 as shown in Figure 8,  
the delay can be measured. The first EP195 can be set to  
SETMIN and its output is used to drive the unknown delay  
device, which in turn drives the input of a D flip−flop of  
EP31. The second EP195 is triggered along with the first  
EP195 and its output provides a clock signal for EP31.  
The programmed delay of the second EP195 is varied to  
detect the output edge from the unknown delay device.  
EP195  
CLOCK  
IN  
IN  
Q
Q
Unknown Delay  
Device  
CLOCK  
#1  
D
Q
Q
EP31  
CLK  
EP195  
#2  
IN  
IN  
Q
Q
Control  
Logic  
Figure 8. Multiple Channel Deskewing Diagram  
http://onsemi.com  
16  
 
MC10EP195, MC100EP195  
Z = 50 W  
Q
Q
D
D
o
Receiver  
Device  
Driver  
Device  
Z = 50 W  
o
50 W  
50 W  
V
TT  
V
TT  
= V − 2.0 V  
CC  
Figure 9. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020/D − Termination of ECL Logic Devices.)  
ORDERING INFORMATION  
Device  
MC10EP195FA  
Package  
LQFP−32  
LQFP−32  
LQFP−32  
LQFP−32  
Shipping  
250 Units / Tray  
2000 / Tape & Reel  
250 Units / Tray  
MC10EP195FAR2  
MC100EP195FA  
MC100EP195FAR2  
2000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
17  
MC10EP195, MC100EP195  
Resource Reference of Application Notes  
AN1405/D  
AN1406/D  
AN1503/D  
AN1504/D  
AN1568/D  
AN1642/D  
AND8001/D  
AND8002/D  
AND8020/D  
AND8066/D  
AND8090/D  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
ECLinPSt I/O SPiCE Modeling Kit  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
Termination of ECL Logic Devices  
Interfacing with ECLinPS  
AC Characteristics of ECL Devices  
http://onsemi.com  
18  
MC10EP195, MC100EP195  
PACKAGE DIMENSIONS  
32 LEAD LQFP  
CASE 873A−02  
ISSUE B  
4X  
A
A1  
0.20 (0.008) AB T−U  
Z
32  
25  
1
AE  
AE  
−U−  
V
−T−  
P
B
B1  
DETAIL Y  
−Z−  
BASE  
METAL  
DETAIL Y  
V1  
17  
8
N
9
4X  
0.20 (0.008) AC T−U  
Z
9
F
D
S1  
S
_
8X M  
J
R
DETAIL AD  
G
SECTION AE−AE  
−AB−  
−AC−  
E
C
SEATING  
PLANE  
0.10 (0.004) AC  
W
_
Q
H
K
X
DETAIL AD  
NOTES:  
MILLIMETERS  
DIM MIN MAX  
7.000 BSC  
INCHES  
MIN MAX  
0.276 BSC  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION:  
A
A1  
B
3.500 BSC  
7.000 BSC  
3.500 BSC  
0.138 BSC  
0.276 BSC  
0.138 BSC  
MILLIMETER.  
3. DATUM PLANE −AB− IS LOCATED AT  
BOTTOM OF LEAD AND IS COINCIDENT  
WITH THE LEAD WHERE THE LEAD  
EXITS THE PLASTIC BODY AT THE  
BOTTOM OF THE PARTING LINE.  
4. DATUMS −T−, −U−, AND −Z− TO BE  
DETERMINED AT DATUM PLANE −AB−.  
5. DIMENSIONS S AND V TO BE  
DETERMINED AT SEATING PLANE −AC−.  
6. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.250 (0.010) PER SIDE.  
DIMENSIONS A AND B DO INCLUDE  
MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE −AB−.  
7. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. DAMBAR  
PROTRUSION SHALL NOT CAUSE THE  
D DIMENSION TO EXCEED 0.520 (0.020).  
8. MINIMUM SOLDER PLATE THICKNESS  
SHALL BE 0.0076 (0.0003).  
B1  
C
1.400  
1.600  
0.450  
1.450  
0.400  
0.055  
0.063  
0.018  
0.057  
0.016  
D
0.300  
1.350  
0.300  
0.012  
0.053  
0.012  
E
F
G
H
0.800 BSC  
0.031 BSC  
0.050  
0.090  
0.500  
0.150  
0.200  
0.700  
0.002  
0.004  
0.020  
0.006  
0.008  
0.028  
J
K
_
12 REF  
_
12 REF  
M
N
0.090  
0.160  
0.004  
0.006  
P
0.400 BSC  
1_  
0.016 BSC  
1_  
Q
R
5_  
5_  
0.150  
0.250  
0.006  
0.010  
S
9.000 BSC  
0.354 BSC  
S1  
V
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
0.177 BSC  
0.354 BSC  
0.177 BSC  
0.008 REF  
0.039 REF  
V1  
W
X
9. EXACT SHAPE OF EACH CORNER MAY  
VARY FROM DEPICTION.  
http://onsemi.com  
19  
MC10EP195, MC100EP195  
ECLinPS is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
MC10EP195/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY