LC872G04A(MFP24S) [ONSEMI]

IC,MICROCONTROLLER,8-BIT,CMOS,SOP,24PIN,PLASTIC;
LC872G04A(MFP24S)
型号: LC872G04A(MFP24S)
厂家: ONSEMI    ONSEMI
描述:

IC,MICROCONTROLLER,8-BIT,CMOS,SOP,24PIN,PLASTIC

微控制器 光电二极管 外围集成电路
文件: 总27页 (文件大小:168K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ordering number : ENA1400A  
LC872G08A  
LC872G06A  
LC872G04A  
CMOS IC  
8K/6K/4K-byte ROM and 256-byte RAM integrated  
8-bit 1-chip Microcontroller  
Overview  
The SANYO LC872G08A/06A/04A is an 8-bit microcomputer that, centered around a CPU running at a minimum bus  
cycle time of 83.3ns, integrates on a single chip a number of hardware features such as 8K/6K/4K-byte ROM, 256-byte  
RAM, sophisticated 16-bit timers/counters (may be divided into 8-bit timers), a 16-bit timer/counter (may be divided into  
8-bit timers/counters or 8-bit PWMs), two 8-bit timers with a prescaler, a base timer serving as a time-of-day clock, a  
high-speed clock counter, a synchronous SIO interface, an asynchronous/synchronous SIO interface, a UART interface  
(full duplex), a 12-bit/8-bit 8-channel AD converter, a system clock frequency divider, an internal reset and a 18-source  
10-vector interrupt feature.  
Features  
„ROM  
8192 × 8 bits (LC872G08A)  
6144 × 8 bits (LC872G06A)  
4096 × 8 bits (LC872G04A)  
„RAM  
256 × 9 bits (LC872G08A/06A/04A)  
Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to  
"standard application", intended for the use as general electronics equipment (home appliances, AV equipment,  
communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be  
intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace  
instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety  
equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case  
of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee  
thereof. If you should intend to use our products for applications outside the standard applications of our  
customer who is considering such use and/or outside the scope of our intended standard applications, please  
consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our  
customer shall be solely responsible for the use.  
Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate  
the performance, characteristics, and functions of the described products in the independent state, and are not  
guarantees of the performance, characteristics, and functions of the described products as mounted in the  
customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent  
device, the customer should always evaluate and test devices mounted in the customer  
's products or  
equipment.  
Ver. 0.41  
11310HKIM 20091224-S00005 No.A1400-1/27  
LC872G08A/06A/04A  
„Minimum Bus Cycle  
83.3ns (12MHz at V =2.7V to 5.5V)  
DD  
100ns (10MHz at V =2.2V to 5.5V)  
DD  
250ns (4MHz at V =1.8V to 5.5V)  
DD  
Note: The bus cycle time here refers to the ROM read speed.  
„Minimum Instruction Cycle Time  
250ns (12MHz at V =2.7V to 5.5V)  
DD  
300ns (10MHz at V =2.2V to 5.5V)  
DD  
750ns (4MHz at V =1.8V to 5.5V)  
DD  
„Ports  
Normal withstand voltage I/O ports  
Ports I/O direction can be designated in 1-bit units  
Ports I/O direction can be designated in 4-bit units  
Dedicated oscillator ports/input ports  
Reset pin  
11 (P1n, P20, P21, P70)  
8 (P0n)  
2 (CF1/XT1, CF2/XT2)  
1 (  
RES  
)
Power pins  
2 (V 1, V 1)  
SS DD  
„Timers  
Timer 0: 16-bit timer/counter with a capture register.  
Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) × 2 channels  
Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)  
+ 8-bit counter (with an 8-bit capture register)  
Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)  
Mode 3: 16-bit counter (with a 16-bit capture register)  
Timer 1: 16-bit timer/counter that supports PWM/toggle outputs  
Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/  
counter with an 8-bit prescaler (with toggle outputs)  
Mode 1: 8-bit PWM with an 8-bit prescaler × 2 channels  
Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)  
(toggle outputs also possible from the lower-order 8 bits)  
Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)  
(The lower-order 8 bits can be used as PWM)  
Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)  
Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)  
Base timer  
1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler  
output.  
2) Interrupts are programmable in 5 different time schemes  
„High-Speed Clock Counter  
Can count clocks with a maximum clock rate of 20MHz (at a main clock of 10MHz).  
Can generate output real time.  
„SIO  
SIO0: 8-bit Synchronous serial interface  
1) LSB first/MSB first mode selectable  
2)  
transfer clock cycle=4/3tCYC)  
Built-in 8-bit baudrate generator (maximum  
SIO1: 8-bit asynchronous/synchronous serial interface  
Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)  
Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)  
Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)  
Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)  
No.A1400-2/27  
LC872G08A/06A/04A  
„UART  
Full duplex  
7/8/9 bit data bits selectable  
1 stop bit (2 bits in continuous data transmission)  
Built-in baudrate generator  
„AD Converter: 12 bits/8 bits × 8 channels  
12 bits/8 bits AD converter resolution selectable  
„Remote Control Receiver Circuit (sharing pins with P15, SCK1, INT3, and T0IN)  
Noise rejection function (noise filter time constant selectable from 1 tCYC, 32 tCYC, and 128 tCYC)  
„Clock Output Function  
Can generate clock outputs with a frequency of 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 of the source clock selected as  
the system clock.  
Can generate the source clock for the subclock  
„Watchdog Timer  
External RC watchdog timer  
Interrupt and reset signals selectable  
„Interrupts  
18 sources, 10 vector addresses  
1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of  
the level equal to or lower than the current interrupt are not accepted.  
2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level  
takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector  
address takes precedence.  
No.  
1
Vector Address  
00003H  
Level  
X or L  
X or L  
H or L  
H or L  
H or L  
H or L  
H or L  
H or L  
H or L  
H or L  
Interrupt Source  
INT0  
2
0000BH  
00013H  
INT1  
3
INT2/T0L/INT4  
INT3/base timer  
T0H  
4
0001BH  
00023H  
5
6
0002BH  
00033H  
T1L/T1H  
7
SIO0/UART1 receive  
SIO1/UART1 transmit  
ADC/T6/T7  
Port 0  
8
0003BH  
00043H  
9
10  
0004BH  
Priority levels X > H > L  
Of interrupts of the same level, the one with the smallest vector address takes precedence.  
„Subroutine Stack Levels: 128levels (The stack is allocated in RAM.)  
„High-speed Multiplication/Division Instructions  
16 bits × 8 bits  
24 bits × 16 bits  
16 bits ÷ 8 bits  
24 bits ÷ 16 bits  
(5 tCYC execution time)  
(12 tCYC execution time)  
(8 tCYC execution time)  
(12 tCYC execution time)  
No.A1400-3/27  
LC872G08A/06A/04A  
„Oscillation Circuits  
Internal oscillation circuits  
Low-speed RC oscillation circuit :  
For system clock (100kHz)  
Medium-speed RC oscillation circuit : For system clock (1MHz)  
Multifrequency RC oscillation circuit : For system clock (8MHz)  
External oscillation circuits  
Hi-speed CF oscillation circuit:  
For system clock, with internal Rf  
Low speed crystal oscillation circuit:  
For low-speed system clock, with internal Rf  
1) The CF and crystal oscillation circuits share the same pins. The active circuit is selected under program control.  
2) Both the CF and crystal oscillator circuits stop operation on a system reset. When the reset is released, only the  
CF oscillation circuit resumes operation.  
„System Clock Divider Function  
Can run on low current.  
The minimum instruction cycle selectable from 300ns, 600ns, 1.2μs, 2.4μs, 4.8μs, 9.6μs, 19.2μs, 38.4μs, and  
76.8μs (at a main clock rate of 10MHz).  
„Internal Reset Function  
Power-on reset (POR) function  
1) POR reset is generated only at power-on time.  
2) The POR release level can be selected from 8 levels (1.67V, 1.97V, 2.07V, 2.37V, 2.57V, 2.87V, 3.86V, and  
4.35V) through option configuration.  
Low-voltage detection reset (LVD) function  
1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls  
below a certain level.  
2) The use/disuse of the LVD function and the low voltage threshold level (7 levels: 1.91V, 2.01V, 2.31V, 2.51V,  
2.81V, 3.79V, 4.28V).  
„Standby Function  
HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.  
1) Oscillation is not halted automatically.  
2) There are three ways of resetting the HALT mode.  
(1) Setting the reset pin to the low level  
(2) System resetting by watchdog timer or low-voltage detection  
(3) Occurrence of an interrupt  
HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.  
1) The CF, RC, and crystal oscillators automatically stop operation.  
2) There are four ways of resetting the HOLD mode.  
(1) Setting the reset pin to the lower level.  
(2) System resetting by watchdog timer or low-voltage detection  
(3) Having an interrupt source established at either INT0, INT1, INT2 or INT4  
* INT0 and INT1 HOLD mode reset is available only when level detection is set.  
(4) Having an interrupt source established at port 0.  
X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.  
1) The RC oscillator automatically stop operation.  
2) The state of crystal oscillations established when the X'tal HOLD mode is entered is retained.  
3) There are five ways of resetting the X'tal HOLD mode.  
(1) Setting the reset pin to the low level.  
(2) System resetting by watchdog timer or low-voltage detection.  
(3) Having an interrupt source established at either INT0, INT1, INT2 or INT4  
* INT0 and INT1 HOLD mode reset is available only when level detection is set.  
(4) Having an interrupt source established at port 0.  
(5) Having an interrupt source established in the base timer circuit.  
Note: Available only when X’tal oscillation is selected.  
No.A1400-4/27  
LC872G08A/06A/04A  
„Package Form  
MFP24S (300mil): Lead-/Halogen-free type  
SSOP24 (225mil): Lead-/Halogen-free type  
„Development Tools  
On-chip-debugger: TCB87 TypeB + LC87D2G08A  
: TCB87 TypeB + LC87F2G08A  
: TCB87 TypeC (3 wire version) + LC87D2G08A  
: TCB87 TypeC (3 wire version) + LC87F2G08A  
Note: LC87F2G08A has an On-chip debugger but its function is limited.  
„Flash ROM Version  
LC87F2G08A  
Package Dimensions  
unit : mm (typ)  
Package Dimensions  
unit : mm (typ)  
3112B  
3287  
12.5  
6.5  
24  
13  
24  
13  
12  
1
1
12  
1.0  
0.15  
0.35  
0.5  
0.22  
0.15  
(0.75)  
(0.5)  
SANYO : MFP24S(300mil)  
SANYO : SSOP24(225mil)  
No.A1400-5/27  
LC872G08A/06A/04A  
Pin Assignment  
P70/INT0/T0LCP/AN8  
RES  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
P07/T7O  
P06/AN6/T6O  
P05/AN5/CKO  
P04/AN4  
V
1
SS  
CF1/XT1  
CF2/XT2  
P03/AN3  
V
1
DD  
19  
P02/AN2  
LC872G08A  
LC872G06A  
LC872G04A  
P10/SO0  
P11/SI0/SB0  
18  
P01/AN1  
17  
P00/AN0  
P12/SCK0  
16  
P21/URX/INT4/T1IN  
P20/UTX/INT4/T1IN  
P17/T1PWMH/BUZ/INT1/T0HCP  
P16/T1PWML/INT2/T0IN  
P13/SO1  
10  
11  
12  
15  
14  
13  
P14/SI1/SB1  
P15/SCK1/INT3/T0IN  
Top view  
SANYO: MFP24S (300mil) “Lead-/Halogen-free type”  
SANYO: SSOP24 (225mil) “Lead-/Halogen-free type”  
MFP24S  
MFP24S  
NAME  
NAME  
SSOP24  
1
SSOP24  
P70/INT0/T0LCP/AN8  
RES  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P16/T1PWML/INT2/T0IN  
P17/T1PWMH/BUZ/INT1/T0HCP  
P20/UTX/INT4/T1IN  
P21/URX/INT4/T1IN  
P00/AN0  
2
3
V
1
SS  
4
CF1/XT1  
CF2/XT2  
5
6
V
1
P01/AN1  
DD  
7
P10/SO0  
P11/SI0/SB0  
P12/SCK0  
P02/AN2  
8
P03/AN3  
9
P04/AN4  
10  
11  
12  
P13/SO1  
P05/AN5/CKO  
P06/AN6/T6O  
P14/SI1/SB1  
P15/SCK1/INT3/T0IN  
P07/T7O  
No.A1400-6/27  
LC872G08A/06A/04A  
System Block Diagram  
Interrupt control  
IR  
PLA  
Flash ROM  
Standby control  
CF/  
X'tal  
SRC  
RC  
PC  
MRC  
ACC  
RES  
B register  
WDT  
Reset circuit  
(LVD/POR)  
C register  
SIO0  
SIO1  
Bus interface  
Port 0  
ALU  
PSW  
RAR  
Timer 0  
Port 1  
Port 2  
Port 7  
ADC  
Timer 1  
RAM  
Timer 6  
Timer 7  
Stack pointer  
INT0 to 2 INT3  
(Noise filter)  
Base timer  
UART1  
Port 2 INT4  
No.A1400-7/27  
LC872G08A/06A/04A  
Pin Description  
Pin Name  
I/O  
Description  
Option  
No  
V
V
1
-
- Power supply pin  
+ Power supply pin  
8-bit I/O port  
SS  
1
-
No  
DD  
Port 0  
I/O  
I/O specifiable in 4-bit units  
P00 to P07  
Pull-up resistors can be turned on and off in 4-bit units.  
HOLD reset input  
Port 0 interrupt input  
Yes  
Pin functions  
P05: System clock output  
P06: Timer 6 toggle output  
P07: Timer 7 toggle output  
P00(AN0) to P06(AN6): AD converter input  
Port 1  
I/O  
8-bit I/O port  
I/O specifiable in 1-bit units  
P10 to P17  
Pull-up resistors can be turned on and off in 1-bit units.  
Pin functions  
P10: SIO0 data output  
P11: SIO0 data input/bus I/O  
P12: SIO0 clock I/O  
P13: SIO1 data output  
P14: SIO1 data input / bus I/O  
P15: SIO1 clock I/O / INT3 input (with noise filter) / timer 0 event input / timer 0H capture input  
P16: Timer 1PWML output / INT2 input/HOLD reset input/timer 0 event input / timer 0L capture  
Yes  
input  
P17: Timer 1PWMH output / beeper output / INT1 input / HOLD reset input / timer 0H capture  
input  
Interrupt acknowledge type  
Rising &  
Rising  
Falling  
H level  
L level  
Falling  
disable  
enable  
enable  
INT1  
INT2  
INT3  
enable  
enable  
enable  
enable  
enable  
enable  
enable  
disable  
disable  
enable  
disable  
disable  
Port 2  
I/O  
2-bit I/O port  
I/O specifiable in 1-bit units  
P20 to P21  
Pull-up resistors can be turned on and off in 1-bit units.  
Pin functions  
P20: UART transmit  
P21: UART receive  
P20 to P21: INT4 input / HOLD reset input / timer 1 event input / timer 0L capture input / timer  
Yes  
0H capture input  
Interrupt acknowledge types  
Rising &  
Rising  
Falling  
H level  
disable  
L level  
disable  
Falling  
enable  
INT4  
enable  
enable  
Continued on next page.  
No.A1400-8/27  
LC872G08A/06A/04A  
Continued from preceding page.  
Pin Name  
Port 7  
I/O  
I/O  
Description  
Option  
1-bit I/O port  
I/O specifiable in 1-bit units  
P70  
Pull-up resistors can be turned on and off in 1-bit units.  
Pin functions  
P70: INT0 input / HOLD reset input / timer 0L capture input / watchdog timer output  
P70(AN8): AD converter input  
Interrupt acknowledge types  
Rising &  
No  
Rising  
Falling  
H level  
enable  
L level  
enable  
Falling  
disable  
INT0  
enable  
enable  
RES  
I/O  
I
External reset input / internal reset output  
No  
No  
CF1/XT1  
Ceramic resonator or 32.768kHz crystal oscillator input pin  
Pin function  
General-purpose input port  
CF2/XT2  
I/O  
Ceramic resonator or 32.768kHz crystal oscillator output pin  
Pin function  
No  
General-purpose input port  
Port Output Types  
The table below lists the types of port outputs and the presence/absence of a pull-up resistor.  
Data can be read into any input port even if it is in the output mode.  
Option selected in  
Port Name  
Option type  
Output type  
Pull-up resistor  
units of  
1 bit  
P00 to P07  
1
2
CMOS  
Programmable (Note 1)  
No  
Nch-open drain  
CMOS  
P10 to P17  
P20 to P21  
P70  
1 bit  
1 bit  
-
1
Programmable  
Programmable  
Programmable  
Programmable  
Programmable  
2
Nch-open drain  
CMOS  
1
2
Nch-open drain  
Nch-open drain  
No  
Note 1: The control of the presence or absence of the programmable pull-up resistors for port 0 and the switching  
between low-and high-impedance pull-up connection is exercised in nibble (4-bit) units (P00 to 03 or  
P04 to 07).  
User Option Table  
Mask  
Version *1  
{
Flash  
Version  
{
Option Name  
Option Type  
Option Selected in Units of  
1 bit  
Option Selection  
CMOS  
Port output form  
P00 to P07  
Nch-open drain  
CMOS  
P10 to P17  
P20 to P21  
-
{
{
{
{
{
{
1 bit  
Nch-open drain  
CMOS  
1 bit  
Nch-open drain  
00000h  
Program start  
address  
×
-
-
*2  
01E00h  
Low-voltage  
detection reset  
function  
Detect function  
{
Enable:Use  
Disable:Not Used  
7-level  
Detect level  
{
{
{
{
-
-
Power-on reset  
function  
Power-On reset level  
8-level  
*1: Mask option selection – No change possible after mask is completed.  
*2: Program start address of the mask version is 00000h.  
No.A1400-9/27  
LC872G08A/06A/04A  
Recommended Unused Pin Connections  
Recommended Unused Pin Connections  
Port Name  
Board  
Software  
P00 to P07  
Open  
Open  
Open  
Open  
Output low  
Output low  
P10 to P17  
P20 to P21  
P70  
Output low  
Output low  
CF1/XT1  
CF2/XT2  
Pulled low with a 100kΩ resistor or less  
Pulled low with a 100kΩ resistor or less  
General-purpose input port  
General-purpose input port  
Notes on CF1/XT1 and CF2/XT2 pins  
When using as general-purpose input ports  
Since the CF1/XT1 and CF2/XT2 pins are configured as CF oscillator pins at system reset time, it is necessary to  
add a current limiting resistor of 1kΩ or greater to the CF2/XT2 pin in series when using them as general-purpose  
input pins.  
Differences between flash and mask ROM version  
System Reset Time State  
Set high via the internal Rf resistor  
Set high  
After System Reset is Released  
CF oscillation state  
CF1/XT1  
CF2/XT2  
CF1/XT1  
CF2/XT2  
Flash ROM version  
LC87F2G08A  
CF oscillation state  
CF oscillation state  
CF oscillation state  
Set low via the internal Rf resistor  
Set low  
Mask ROM version  
LC872G08A/06A/04A  
Power Pin Treatment Recommendations (V 1, V 1)  
DD SS  
Connect bypass capacitors that meet the following conditions between the V 1 and V 1 pins:  
DD SS  
Connect among the V 1 and V 1 pins and bypass capacitors C1 and C2 with the shortest possible heavy lead  
DD SS  
wires, making sure that the impedances between the both pins and the bypass capacitors are as equal as possible  
(L1=L1’, L2=L2’).  
Connect a large-capacity capacitor C1 and a small-capacity capacitor C2 in parallel.  
The capacitance of C2 should be approximately 0.1μF.  
L2  
L1  
V
1
SS  
C2  
C1  
V
1
DD  
L1’  
L2’  
No.A1400-10/27  
LC872G08A/06A/04A  
Absolute Maximum Ratings at Ta = 25°C, V 1 =0V  
SS  
Specification  
typ max  
Parameter  
Symbol  
Pin/Remarks  
Conditions  
V
[V]  
min  
-0.3  
unit  
V
DD  
Maximum supply  
voltage  
V
max  
V 1  
DD  
DD  
+6.5  
+0.3  
+0.3  
Input voltage  
V
V
CF1, CF2  
-0.3  
-0.3  
V
V
I
DD  
Input/output  
voltage  
Ports 0, 1, 2,  
P70  
IO  
DD  
Peak output  
current  
IOPH  
IOMH  
Ports 0, 1, 2  
CMOS output select  
Per 1 applicable pin  
CMOS output select  
Per 1 applicable pin  
-10  
Mean output  
current  
Ports 0, 1, 2  
-7.5  
(Note 1-1)  
Total output  
current  
ΣIOAH(1)  
ΣIOAH(2)  
P10 to P14  
Total of all applicable pins  
Total of all applicable pins  
-20  
-20  
-25  
Ports 0, 2  
P15 to P17  
Ports 0, 1, 2  
ΣIOAH(3)  
Total of all applicable pins  
Per 1 applicable pin  
Peak output  
current  
IOPL(1)  
P02 to P07  
Ports 1, 2  
P00, P01  
20  
mA  
IOPL(2)  
IOPL(3)  
IOML(1)  
Per 1 applicable pin  
Per 1 applicable pin  
Per 1 applicable pin  
30  
10  
P70  
Mean output  
current  
P02 to P07  
Ports 1, 2  
P00, P01  
15  
(Note 1-1)  
IOML(2)  
IOML(3)  
ΣIOAL(1)  
ΣIOAL(2)  
Per 1 applicable pin  
20  
7.5  
50  
P70  
Per 1 applicable pin  
Total output  
current  
P10 to P14  
Total of all applicable pins  
Total of all applicable pins  
Port 0, 2,  
60  
P15 to P17  
Ports 0, 1, 2  
ΣIOAL(3)  
ΣIOAL(4)  
Pd max(1)  
Total of all applicable pins  
Total of all applicable pins  
70  
P70  
7.5  
Power  
MFP24S(300mil)  
Ta=-40 to +85°C  
Package only  
129  
229  
111  
334  
+85  
Dissipation  
Pd max(2)  
Ta=-40 to +85°C  
Package with thermal  
resistance board  
(Note 1-2)  
mW  
Pd max(3)  
Pd max(4)  
SSOP24(225mil)  
Ta=-40 to +85°C  
Package only  
Ta=-40 to +85°C  
Package with thermal  
resistance board  
(Note 1-2)  
Operating ambient  
temperature  
Topr  
Tstg  
-40  
-55  
°C  
Storage ambient  
temperature  
+125  
Note 1-1: The mean output current is a mean value measured over 100ms.  
Note 1-2: SEMI standards thermal resistance board (size: 76.1×114.3×1.6tmm, glass epoxy) is used.  
No.A1400-11/27  
LC872G08A/06A/04A  
Allowable Operating Conditions at Ta = -40°C to +85°C, V 1 = 0V  
SS  
Specification  
typ max  
Parameter  
Symbol  
Pin/Remarks  
1
DD  
Conditions  
V
[V]  
min  
2.7  
unit  
DD  
Operating  
V
V
V
(1)  
V
0.245μs tCYC 200μs  
0.294μs tCYC 200μs  
0.735μs tCYC 200μs  
5.5  
5.5  
5.5  
DD  
supply voltage  
(2)  
2.2  
1.8  
DD  
(3)  
DD  
Memory  
VHD  
V
1
RAM and register contents sustained  
in HOLD mode.  
DD  
sustaining  
supply voltage  
High level  
1.6  
V
(1)  
Ports 1, 2,  
P70 port input/  
interrupt side  
Ports 0  
IH  
input voltage  
1.8 to 5.5 0.3V +0.7  
DD  
V
DD  
V
V
(2)  
(3)  
1.8 to 5.5 0.3V +0.7  
DD  
V
V
V
IH  
DD  
DD  
DD  
V
Port 70 watchdog  
timer side  
IH  
1.8 to 5.5  
0.9V  
DD  
V
V
(4)  
CF1,  
RES  
1.8 to 5.5  
4.0 to 5.5  
0.75V  
IH  
DD  
Low level  
(1)  
Ports 1, 2,  
P70 port input/  
interrupt side  
Ports 0  
V
0.1V +0.4  
DD  
IL  
SS  
SS  
input voltage  
1.8 to 4.0  
V
0.2V  
DD  
V
(2)  
4.0 to 5.5  
1.8 to 4.0  
V
V
0.15V +0.4  
DD  
IL  
SS  
0.2V  
DD  
SS  
V
V
(3)  
(4)  
Port 70 watchdog  
timer side  
IL  
1.8 to 5.5  
V
V
0.8V -1.0  
DD  
SS  
CF1,  
RES  
1.8 to 5.5  
2.7 to 5.5  
2.2 to 5.5  
1.8 to 5.5  
2.7 to 5.5  
0.25V  
DD  
IL  
SS  
Instruction  
cycle time  
tCYC  
0.245  
0.294  
0.735  
0.1  
200  
200  
200  
12  
(Note 2-1)  
μs  
External  
FEXCF  
CF1  
CF2 pin open  
system clock  
frequency  
System clock frequency division  
ratio=1/1  
1.8 to 5.5  
3.0 to 5.5  
2.0 to 5.5  
0.1  
0.2  
0.2  
4
24.4  
8
External system clock duty=50 5%  
CF2 pin open  
MHz  
System clock frequency division  
ratio=1/2  
External system clock duty=50 5%  
12MHz ceramic oscillation.  
See Fig. 1.  
Oscillation  
frequency  
range  
FmCF(1)  
FmCF(2)  
FmCF(3)  
CF1, CF2  
CF1, CF2  
CF1, CF2  
2.7 to 5.5  
2.2 to 5.5  
12  
10MHz ceramic oscillation.  
See Fig. 1.  
10  
4
(Note 2-2)  
4MHz ceramic oscillation.  
CF oscillation normal amplifier size selected.  
(CFLAMP=0) See Fig. 1.  
4MHz ceramic oscillation.  
CF oscillation low amplifier size  
selected. (CFLAMP=1)  
See Fig. 1.  
1.8 to 5.5  
2.2 to 5.5  
2.7 to 5.5  
MHz  
4
FmMRC  
Frequency variable RC oscillation.  
1/2 frequency division ratio.  
(RCCTD=0) (Note 2-3)  
Internal medium-speed RC oscillation  
7.44  
8.0  
8.56  
FmRC  
FmSRC  
FsX’tal  
1.8 to 5.5  
1.8 to 5.5  
0.5  
50  
1.0  
2.0  
Internal low-speed RC oscillation  
100  
200  
kHz  
XT1, XT2  
32.768kHz crystal oscillation  
See Fig. 1.  
1.8 to 5.5  
32.768  
Note 2-1: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at  
a division ratio of 1/2.  
Note 2-2: See Tables 1 and 2 for the oscillation constants.  
Note 2-3: When switching the system clock, allow an oscillation stabilization time of 100μs or longer after the  
multifrequency RC oscillator circuit transmits from the "oscillation stopped" to "oscillation enabled" state.  
No.A1400-12/27  
LC872G08A/06A/04A  
Electrical Characteristics at Ta = -40°C to +85°C, V 1 = 0V  
SS  
Specification  
typ max  
Parameter  
Symbol  
Pin/Remarks  
Conditions  
V
[V]  
min  
unit  
DD  
High level input  
current  
I
(1)  
Ports 0, 1, 2,  
Output disabled  
Pull-up resistor off  
=V  
IH  
P70,  
RES  
V
1.8 to 5.5  
1.8 to 5.5  
1.8 to 5.5  
1
IN DD  
(Including output Tr's off leakage  
current)  
I
I
(2)  
IH  
CF1  
V
=V  
15  
IN DD  
μA  
Low level input  
current  
(1)  
Ports 0, 1, 2,  
Output disabled  
IL  
P70,  
Pull-up resistor off  
RES  
V
=V  
-1  
IN SS  
(Including output Tr's off leakage  
current)  
I
(2)  
CF1  
V
I
=V  
1.8 to 5.5  
4.5 to 5.5  
2.7 to 5.5  
1.8 to 5.5  
4.5 to 5.5  
2.7 to 5.5  
1.8 to 5.5  
2.7 to 5.5  
1.8 to 5.5  
4.5 to 5.5  
2.7 to 5.5  
1.8 to 5.5  
-15  
-1  
IL  
IN SS  
High level output  
voltage  
V
V
V
V
V
V
V
V
V
V
V
(1)  
Ports 0, 1, 2  
Ports 0, 1, 2  
=-1mA  
V
OH  
OH  
OH  
OH  
DD  
(2)  
(3)  
I
I
I
I
I
I
I
I
I
I
=-0.35mA  
V
V
-0.4  
OH  
DD  
=-0.15mA  
-0.4  
OH  
DD  
Low level output  
voltage  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
=10mA  
=1.4mA  
=0.8mA  
=1.4mA  
=0.8mA  
=25mA  
=4mA  
1.5  
0.4  
0.4  
0.4  
0.4  
1.5  
0.4  
0.4  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
V
P70  
P00, P01  
=2mA  
Pull-up resistance  
Rpu(1)  
Rpu(2)  
Rpu(3)  
Ports 0, 1, 2  
P70  
V
=0.9V  
OH  
DD  
4.5 to 5.5  
1.8 to 4.5  
15  
18  
35  
80  
When Port 0 selected  
50  
230  
low-impedance pull-up.  
kΩ  
Port 0  
V
=0.9V  
OH  
DD  
When Port 0 selected  
1.8 to 5.5  
100  
210  
400  
high-impedance pull-up.  
Hysteresis voltage  
Pin capacitance  
VHYS(1)  
VHYS(2)  
CP  
Ports 1, 2, P70,  
RES  
2.7 to 5.5  
1.8 to 2.7  
0.1V  
DD  
V
0.07V  
DD  
All pins  
For pins other than that under test:  
V
=V  
IN SS  
1.8 to 5.5  
10  
pF  
f=1MHz  
Ta=25°C  
No.A1400-13/27  
LC872G08A/06A/04A  
Serial I/O Characteristics at Ta = -40°C to +85°C, V 1 = 0V  
SS  
1. SIO0 Serial I/O Characteristics (Note 4-1-1)  
Specification  
Pin/  
Parameter  
Symbol  
Conditions  
See Fig. 5.  
Remarks  
V
[V]  
min  
typ  
max  
unit  
DD  
Frequency  
tSCK(1)  
SCK0(P12)  
2
1
Low level  
tSCKL(1)  
tSCKH(1)  
1.8 to 5.5  
pulse width  
High level  
pulse width  
Frequency  
tCYC  
1
tSCK(2)  
SCK0(P12)  
CMOS output selected  
See Fig. 5.  
4/3  
Low level  
pulse width  
tSCKL(2)  
1/2  
1/2  
1.8 to 5.5  
1.8 to 5.5  
tSCK  
High level  
tSCKH(2)  
tsDI(1)  
pulse width  
Data setup time  
SB0(P11),  
SI0(P11)  
Must be specified with  
respect to rising edge of  
SIOCLK.  
0.05  
0.05  
Data hold time  
thDI(1)  
See Fig. 5.  
Output delay  
time  
tdD0(1)  
SO0(P10),  
SB0(P11)  
Continuous data  
transmission/reception mode  
(Note 4-1-2)  
(1/3)tCYC  
+0.08  
μs  
tdD0(2)  
tdD0(3)  
Synchronous 8-bit mode  
(Note 4-1-2)  
1tCYC  
+0.08  
1.8 to 5.5  
(Note 4-1-2)  
(1/3)tCYC  
+0.08  
Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.  
Note 4-1-2: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of  
output state change in open drain output mode. See Fig. 5.  
2. SIO1 Serial I/O Characteristics (Note 4-2-1)  
Specification  
Pin/  
Parameter  
Frequency  
Symbol  
tSCK(3)  
Conditions  
Remarks  
V
[V]  
min  
typ  
max  
unit  
DD  
SCK1(P15)  
See Fig. 5.  
2
1
1
2
Low level  
tSCKL(3)  
tSCKH(3)  
tSCK(4)  
tSCKL(4)  
tSCKH(4)  
tsDI(2)  
1.8 to 5.5  
1.8 to 5.5  
1.8 to 5.5  
pulse width  
High level  
pulse width  
Frequency  
tCYC  
SCK1(P15)  
CMOS output selected  
See Fig. 5.  
Low level  
pulse width  
High level  
1/2  
1/2  
tSCK  
pulse width  
Data setup time  
SB1(P14),  
SI1(P14)  
Must be specified with respect  
to rising edge of SIOCLK.  
See Fig. 5.  
0.05  
0.05  
Data hold time  
thDI(2)  
tdD0(4)  
μs  
Output delay time  
SO1(P13),  
SB1(P14)  
Must be specified with respect  
to falling edge of SIOCLK.  
Must be specified as the time  
to the beginning of output state  
change in open drain output  
mode.  
(1/3)tCYC  
+0.08  
1.8 to 5.5  
See Fig. 5.  
Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.  
No.A1400-14/27  
LC872G08A/06A/04A  
Pulse Input Conditions at Ta = -40°C to +85°C, V 1 = 0V  
SS  
Specification  
typ max  
Parameter  
Symbol  
Pin/Remarks  
Conditions  
V
[V]  
min  
unit  
tCYC  
μs  
DD  
High/low level  
pulse width  
tPIH(1)  
tPIL(1)  
INT0(P70),  
Interrupt source flag can be set.  
Event inputs for timer 0 or 1 are  
enabled.  
INT1(P17),  
1.8 to 5.5  
1
2
INT2(P16),  
INT4(P20, P21)  
INT3(P15) when noise  
filter time constant is  
1/1  
tPIH(2)  
tPIL(2)  
Interrupt source flag can be set.  
Event inputs for timer 0 are  
enabled.  
1.8 to 5.5  
1.8 to 5.5  
tPIH(3)  
tPIL(3)  
INT3(P15) when noise  
filter time constant is  
1/32  
Interrupt source flag can be set.  
Event inputs for timer 0 are  
nabled.  
64  
tPIH(4)  
tPIL(4)  
INT3(P15) when noise  
filter time constant is  
1/128  
Interrupt source flag can be set.  
Event inputs for timer 0 are  
enabled.  
1.8 to 5.5  
1.8 to 5.5  
256  
200  
RES  
tPIL(5)  
Resetting is enabled.  
No.A1400-15/27  
LC872G08A/06A/04A  
AD Converter Characteristics at V 1 = 0V  
SS  
<12bits AD Converter Mode/Ta = -40°C to +85°C >  
Specification  
typ max  
12  
Parameter  
Symbol  
Pin/Remarks  
Conditions  
V
[V]  
min  
unit  
bit  
DD  
Resolution  
N
AN0(P00) to  
AN6(P06),  
AN8(P70)  
2.4 to 5.5  
3.0 to 5.5  
2.4 to 3.6  
4.0 to 5.5  
3.0 to 5.5  
Absolute  
accuracy  
ET  
(Note 6-1)  
(Note 6-1)  
16  
20  
LSB  
Conversion time  
TCAD  
See Conversion time calculation  
32  
64  
115  
115  
formulas. (Note 6-2)  
μs  
See Conversion time calculation  
2.4 to 3.6  
2.4 to 5.5  
410  
425  
formulas. (Note 6-2)  
Analog input  
voltage range  
Analog port  
input current  
VAIN  
V
V
V
SS  
DD  
IAINH  
IAINL  
VAIN=V  
DD  
2.4 to 5.5  
2.4 to 5.5  
1
μA  
VAIN=V  
SS  
-1  
<8bits AD Converter Mode/Ta = -40°C to +85°C >  
Specification  
typ max  
Parameter  
Symbol  
Pin/Remarks  
Conditions  
V
[V]  
min  
unit  
bit  
DD  
Resolution  
N
AN0(P00) to  
AN6(P06)  
AN8(P70)  
2.4 to 5.5  
2.4 to 5.5  
8
Absolute  
ET  
(Note 6-1)  
1.5  
LSB  
accuracy  
Conversion time  
TCAD  
See Conversion time calculation  
4.0 to 5.5  
3.0 to 5.5  
20  
40  
90  
90  
formulas. (Note 6-2)  
μs  
See Conversion time calculation  
2.4 to 3.6  
2.4 to 5.5  
250  
265  
formulas. (Note 6-2)  
Analog input  
voltage range  
Analog port  
input current  
VAIN  
V
V
V
SS  
DD  
IAINH  
IAINL  
VAIN=V  
DD  
2.4 to 5.5  
2.4 to 5.5  
1
μA  
VAIN=V  
SS  
-1  
Conversion time calculation formulas:  
12bits AD Converter Mode: TCAD(Conversion time) = ((52/(AD division ratio))+2)×(1/3)×tCYC  
8bits AD Converter Mode: TCAD(Conversion time) = ((32/(AD division ratio))+2)×(1/3)×tCYC  
AD conversion time  
(TCAD)  
External  
oscillation  
(FmCF)  
Operating supply  
voltage range  
AD division  
ratio  
System division ratio  
(SYSDIV)  
Cycle time  
(tCYC)  
(V  
)
(ADDIV)  
12bit AD  
8bit AD  
DD  
4.0V to 5.5V  
3.0V to 5.5V  
4.0V to 5.5V  
3.0V to 5.5V  
3.0V to 5.5V  
2.4V to 3.6V  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
250ns  
250ns  
300ns  
300ns  
750ns  
750ns  
1/8  
1/16  
1/8  
34.8μs  
69.5μs  
41.8μs  
83.4μs  
104.5μs  
416.5μs  
21.5μs  
42.8μs  
25.8μs  
51.4μs  
64.5μs  
256.5μs  
CF-12MHz  
CF-10MHz  
CF-4MHz  
1/16  
1/8  
1/32  
Note 6-1: The quantization error (±1/2LSB) must be excluded from the absolute accuracy. The absolute accuracy must  
be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog  
input channel.  
Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the  
time the conversion results register(s) are loaded with a complete digital conversion value corresponding to  
the analog input value.  
The conversion time is 2 times the normal-time conversion time when:  
The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.  
The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit  
conversion mode.  
No.A1400-16/27  
LC872G08A/06A/04A  
Power-on Reset (POR) Characteristics at Ta = -40°C to +85°C, V 1 = 0V  
SS  
Specification  
Parameter  
Symbol  
Pin/Remarks  
Conditions  
Option selected  
voltage  
min  
1.55  
typ max  
unit  
POR release  
voltage  
PORRL  
Select from option.  
1.67V  
1.97V  
2.07V  
2.37V  
2.57V  
2.87V  
3.86V  
4.35V  
1.67  
1.97  
2.07  
2.37  
2.57  
2.87  
3.86  
4.35  
1.79  
2.09  
2.19  
2.49  
2.69  
2.99  
3.99  
4.49  
(Note 7-1)  
1.85  
1.95  
2.25  
2.45  
2.75  
3.73  
4.21  
V
Detection voltage  
unknown state  
Power supply rise  
time  
POUKS  
PORIS  
See Fig. 7.  
0.7  
0.95  
100  
(Note 7-2)  
Power supply rise  
time from 0V to 1.6V.  
ms  
Note7-1: The POR release level can be selected out of 8 levels only when the LVD reset function is disabled.  
Note7-2: POR is in an unknown state before transistors start operation.  
Low Voltage Detection Reset (LVD) Characteristics at Ta = -40°C to +85°C, V 1=0V  
SS  
Specification  
Parameter  
Symbol  
Pin/Remarks  
Conditions  
Option selected  
voltage  
min  
1.81  
typ  
1.91  
max  
2.01  
unit  
LVD reset voltage  
(Note 8-2)  
LVDET  
Select from option.  
(Note 8-1)  
1.91V  
2.01V  
2.31V  
2.51V  
2.81V  
3.79V  
4.28V  
1.91V  
2.01V  
2.31V  
2.51V  
2.81V  
3.79V  
4.28V  
1.91  
2.21  
2.41  
2.71  
3.69  
4.18  
2.01  
2.31  
2.51  
2.81  
3.79  
4.28  
55  
2.11  
2.41  
2.61  
2.91  
3.89  
4.38  
(Note 8-3)  
See Fig. 8.  
V
LVD hysteresys  
width  
LVHYS  
55  
55  
mV  
55  
60  
65  
65  
Detection voltage  
unknown state  
LVUKS  
TLVDW  
See Fig. 8.  
(Note 8-4)  
0.7  
0.95  
V
Low voltage  
LVDET-0.5V  
See Fig. 9.  
detection  
0.2  
ms  
minimum width  
(Reply sensitivity)  
Note8-1: The LVD reset level can be selected out of 7 levels only when the LVD reset function is enabled.  
Note8-2: LVD reset voltage specification values do not include hysteresis voltage.  
Note8-3: LVD reset voltage may exceed its specification values when port output state changes and/or when a large  
current flows through port.  
Note8-4: LVD is in an unknown state before transistors start operation.  
No.A1400-17/27  
LC872G08A/06A/04A  
Consumption Current Characteristics at Ta = -40°C to +85°C, V 1 = 0V  
SS  
Specification  
typ max  
Pin/  
Parameter  
Symbol  
Conditions  
Remarks  
V
[V]  
min  
unit  
DD  
Normal mode  
consumption  
current  
IDDOP(1)  
V
1
FmCF=12MHz ceramic oscillation mode  
System clock set to 12MHz side  
Internal low speed and medium speed RC  
oscillation stopped.  
DD  
2.7 to 5.5  
2.7 to 3.6  
3.0 to 5.5  
3.0 to 3.6  
2.2 to 5.5  
2.2 to 3.6  
1.8 to 5.5  
1.8 to 3.6  
6.2  
3.5  
6.6  
3.8  
5.3  
3.0  
2.5  
1.3  
10.5  
5.8  
(Note 9-1)  
(Note 9-2)  
Frequency variable RC oscillation stopped.  
1/1 frequency division ratio  
IDDOP(2)  
IDDOP(3)  
IDDOP(4)  
IDDOP(5)  
CF1=24MHz external clock  
System clock set to CF1 side  
11.2  
6.3  
Internal low speed and medium speed RC  
oscillation stopped.  
Frequency variable RC oscillation stopped.  
1/2 frequency division ratio  
FmCF=10MHz ceramic oscillation mode  
System clock set to 10MHz side  
Internal low speed and medium speed RC  
oscillation stopped.  
9.5  
Frequency variable RC oscillation stopped.  
1/1 frequency division ratio  
5.3  
FmCF=4MHz ceramic oscillation mode  
System clock set to 4MHz side  
Internal low speed and medium speed RC  
oscillation stopped.  
5.5  
mA  
Frequency variable RC oscillation stopped.  
1/1 frequency division ratio  
2.7  
CF oscillation low amplifier size selected.  
(CFLAMP=1)  
2.2 to 5.5  
2.2 to 3.6  
0.9  
0.5  
2.2  
1.0  
FmCF=4MHz ceramic oscillation mode  
System clock set to 4MHz side  
Internal low speed and medium speed RC  
oscillation stopped.  
Frequency variable RC oscillation stopped.  
1/4 frequency division ratio  
IDDOP(6)  
IDDOP(7)  
IDDOP(8)  
IDDOP(9)  
FsX’tal=32.768kHz crystal oscillation mode  
Internal low speed RC oscillation stopped.  
System clock set to internal medium speed  
RC oscillation.  
1.8 to 5.5  
1.8 to 3.6  
0.5  
0.3  
1.3  
0.6  
Frequency variable RC oscillation stopped.  
1/2 frequency division ratio  
FsX’tal=32.768kHz crystal oscillation mode  
Internal low speed and medium speed RC  
oscillation stopped.  
2.7 to 5.5  
2.7 to 3.6  
1.8 to 5.5  
1.8 to 3.6  
4.2  
2.6  
55  
8.8  
5.0  
System clock set to 8MHz with  
frequency variable RC oscillation  
1/1 frequency division ratio  
External FsX’tal and FmCF oscillation stopped.  
System clock set to internal low speed RC  
197  
108  
oscillation.  
Internal medium speed RC oscillation sopped.  
Frequency variable RC oscillation stopped.  
1/1 frequency division ratio  
33  
μA  
External FsX’tal and FmCF oscillation stopped.  
5.0  
3.3  
2.5  
55  
33  
23  
153  
90  
System clock set to internal low speed RC  
oscillation.  
Internal medium speed RC oscillation stopped.  
Frequency variable RC oscillation stopped.  
1/1 frequency division ratio  
Ta=-10 to +50°C  
64  
Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal  
pull-up resistors.  
Note9-2: The consumption current values do not include operational current of LVD function if not specified.  
Continued on next page.  
No.A1400-18/27  
LC872G08A/06A/04A  
Continued from preceding page.  
Specification  
typ max  
Pin/  
Parameter  
Symbol  
Conditions  
Remarks  
V
[V]  
min  
unit  
DD  
Normal mode  
consumption  
current  
IDDOP(10)  
V
1
FsX’tal=32.768kHz crystal oscillation mode  
System clock set to 32.768kHz side  
Internal low speed and medium speed RC  
oscillation stopped.  
DD  
1.8 to 5.5  
1.8 to 3.6  
33  
12  
101  
41  
(Note 9-1)  
(Note 9-2)  
Frequency variable RC oscillation stopped.  
1/2 frequency division ratio  
μA  
IDDOP(11)  
IDDHALT(1)  
IDDHALT(2)  
IDDHALT(3)  
IDDHALT(4)  
IDDHALT(5)  
FsX’tal=32.768kHz crystal oscillation mode  
System clock set to 32.768kHz side  
Internal low speed and medium speed RC  
oscillation stopped.  
5.0  
3.3  
33  
12  
68  
27  
Frequency variable RC oscillation stopped.  
1/2 frequency division ratio  
2.5  
6.1  
2.5  
15  
Ta=-10 to +50°C  
HALT mode  
consumption  
current  
HALT mode  
FmCF=12MHz ceramic oscillation mode  
System clock set to 12MHz side  
Internal low speed and medium speed RC  
oscillation stopped.  
2.7 to 5.5  
4.4  
(Note 9-1)  
(Note 9-2)  
2.7 to 3.6  
3.0 to 5.5  
3.0 to 3.6  
2.2 to 5.5  
2.2 to 3.6  
1.8 to 5.5  
1.8 to 3.6  
1.3  
2.8  
1.6  
2.2  
1.1  
1.3  
0.6  
2.1  
4.8  
2.6  
3.9  
1.9  
3.1  
1.2  
Frequency variable RC oscillation stopped.  
1/1 frequency division ratio  
HALT mode  
CF1=24MHz external clock  
System clock set to CF1 side  
Internal low speed and medium speed RC  
oscillation stopped.  
Frequency variable RC oscillation stopped.  
1/2 frequency division ratio  
HALT mode  
FmCF=10MHz ceramic oscillation mode  
System clock set to 10MHz side  
Internal low speed and medium speed RC  
oscillation stopped.  
Frequency variable RC oscillation stopped.  
1/1 frequency division ratio  
HALT mode  
mA  
FmCF=4MHz ceramic oscillation mode  
System clock set to 4MHz side  
Internal low speed and medium speed RC  
oscillation stopped.  
Frequency variable RC oscillation stopped.  
1/1 frequency division ratio  
HALT mode  
CF oscillation low amplifier size selected.  
(CFLAMP=1)  
2.2 to 5.5  
2.2 to 3.6  
0.6  
0.3  
1.6  
0.6  
FmCF=4MHz ceramic oscillation mode  
System clock set to 4MHz side  
Internal low speed and medium speed RC  
oscillation stopped.  
Frequency variable RC oscillation stopped.  
1/4 frequency division ratio  
IDDHALT(6)  
HALT mode  
FsX’tal=32.768kHz crystal oscillation mode  
Internal low speed RC oscillation stopped.  
System clock set to internal medium speed  
RC oscillation  
1.8 to 5.5  
1.8 to 3.6  
0.3  
0.2  
0.9  
0.4  
Frequency variable RC oscillation stopped.  
1/2 frequency division ratio  
Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal  
pull-up resistors.  
Note9-2: The consumption current values do not include operational current of LVD function if not specified.  
Continued on next page.  
No.A1400-19/27  
LC872G08A/06A/04A  
Continued from preceding page.  
Specification  
typ max  
Pin/  
Parameter  
Symbol  
Conditions  
remarks  
V
[V]  
min  
unit  
mA  
DD  
HALT mode  
consumption  
current  
IDDHALT(7)  
V
1
HALT mode  
DD  
FsX’tal=32.768kHz crystal oscillation mode  
Internal low speed and medium speed RC  
oscillation stopped.  
2.7 to 5.5  
1.6  
3.5  
(Note 9-1)  
(Note 9-2)  
System clock set to 8MHz with  
frequency variable RC oscillation  
1/1 frequency division ratio  
HALT mode  
2.7 to 3.6  
1.8 to 5.5  
1.1  
19  
2.0  
88  
IDDHALT(8)  
External FsX’tal and FmCF oscillation stopped.  
System clock set to internal low speed RC  
oscillation.  
Internal medium speed RC oscillation stopped.  
1.8 to 3.6  
11  
46  
Frequency variable RC oscillation stopped.  
1/1 frequency division ratio  
HALT mode  
IDDHALT(9)  
5.0  
3.3  
2.5  
19  
11  
55  
32  
22  
External FsX’tal and FmCF oscillation stopped.  
System clock set to internal low speed RC  
oscillation.  
Internal medium speed RC oscillation stopped.  
Frequency variable RC oscillation stopped.  
1/1 frequency division ratio  
Ta=-10 to +50°C  
7.7  
IDDHALT(10)  
HALT mode  
FsX’tal=32.768kHz crystal oscillation mode  
System clock set to 32.768kHz side  
Internal low speed and medium speed RC  
oscillation stopped.  
1.8 to 5.5  
27  
100  
1.8 to 3.6  
5.0  
8.5  
27  
38  
65  
Frequency variable RC oscillation stopped.  
1/2 frequency division ratio  
HALT mode  
IDDHALT(11)  
FsX’tal=32.768kHz crystal oscillation mode  
System clock set to 32.768kHz side  
Internal low speed and medium speed RC  
oscillation stopped.  
μA  
3.3  
2.5  
8.5  
3.8  
23  
11  
Frequency variable RC oscillation stopped.  
1/2 frequency division ratio  
Ta=-10 to +50°C  
HOLD mode  
consumption  
current  
IDDHOLD(1)  
IDDHOLD(2)  
HOLD mode  
1.8 to 5.5  
1.8 to 3.6  
5.0  
0.02  
0.01  
0.02  
0.01  
0.009  
3.0  
20  
9.0  
1.7  
0.8  
0.6  
23  
CF1=V  
DD  
or open (External clock mode)  
HOLD mode  
CF1=V  
(Note 9-1)  
(Note 9-2)  
or open (External clock mode)  
DD  
3.3  
Ta=-10 to +50°C  
2.5  
IDDHOLD(3)  
IDDHOLD(4)  
HOLD mode  
1.8 to 5.5  
CF1=V  
DD  
LVD option selected  
or open (External clock mode)  
1.8 to 3.6  
2.3  
12  
HOLD mode  
5.0  
3.3  
3.0  
2.3  
5.7  
3.9  
CF1=V  
DD  
or open (External clock mode)  
Ta=-10 to +50°C  
2.5  
2.0  
3.3  
LVD option selected  
Timer HOLD  
mode  
IDDHOLD(5)  
IDDHOLD(6)  
Timer HOLD mode  
1.8 to 5.5  
1.8 to 3.6  
5.0  
22  
7.5  
22  
95  
35  
60  
21  
10  
FsX’tal=32.768 kHz crystal oscillation mode  
consumption  
current  
Timer HOLD mode  
FsX’tal=32.768kHz crystal oscillation mode  
Ta=-10 to +50°C  
3.3  
7.5  
2.9  
(Note 9-1)  
(Note 9-2)  
2.5  
Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal  
pull-up resistors.  
Note9-2: The consumption current values do not include operational current of LVD function if not specified.  
No.A1400-20/27  
LC872G08A/06A/04A  
UART (Full Duplex) Operating Conditions at Ta = -40°C to +85°C, V 1 = 0V  
SS  
Specification  
Parameter  
Symbol  
Pin/Remarks  
Conditions  
V
[V]  
min  
16/3  
typ max  
unit  
DD  
Transfer rate  
UBR  
UTX(P20)  
URX(P21)  
1.8 to 5.5  
8192/3  
tCYC  
Data length:  
Stop bits:  
Parity bits:  
7/8/9 bits (LSB first)  
1 bit (2-bit in continuous data transmission)  
None  
Example of Continuous 8-bit Data Transmission Mode Processing (First Transmit Data=55H)  
Start bit  
Stop bit  
End of  
transmission  
Start of  
transmission  
Transmit data (LSB first)  
UBR  
Example of Continuous 8-bit Data Reception Mode Processing (First Receive Data=55H)  
Start bit  
Stop bit  
End of  
reception  
Start of  
Receive data (LSB first)  
reception  
UBR  
No.A1400-21/27  
LC872G08A/06A/04A  
Characteristics of a Sample Main System Clock Oscillation Circuit  
Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a  
SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values  
with which the oscillator vendor confirmed normal and stable oscillation.  
Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator  
CF oscillation normal amplifier size selected (CFLAMP=0)  
„MURATA  
Operating  
Voltage  
Range  
[V]  
Oscillation  
Circuit Constant  
Nominal  
Stabilization Time  
Type  
Oscillator Name  
Remarks  
Frequency  
C1  
C2  
Rf  
Rd  
typ  
max  
[ms]  
[pF]  
[pF]  
[Ω]  
[Ω]  
[ms]  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
680  
1.0k  
680  
2.7 to 5.5  
2.9 to 5.5  
2.2 to 5.5  
2.3 to 5.5  
2.4 to 5.5  
2.7 to 5.5  
2.2 to 5.5  
2.2 to 5.5  
2.2 to 5.5  
2.5 to 5.5  
2.2 to 5.5  
2.2 to 5.5  
2.2 to 5.5  
2.2 to 5.5  
1.8 to 5.5  
2.0 to 5.5  
1.9 to 5.5  
2.0 to 5.5  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.2  
0.2  
0.2  
0.2  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
0.6  
0.6  
12MHz  
10MHz  
SMD  
SMD  
LEAD  
SMD  
LEAD  
SMD  
LEAD  
SMD  
LEAD  
CSTCE12M0G52-R0  
CSTCE10M0G52-R0  
CSTLS10M0G53-B0  
CSTCE8M00G52-R0  
CSTLS8M00G53-B0  
CSTCR6M00G53-R0  
CSTLS6M00G53-B0  
CSTCR4M00G53-R0  
CSTLS4M00G53-B0  
(10)  
(10)  
(15)  
(10)  
(15)  
(15)  
(15)  
(15)  
(15)  
(10)  
(10)  
(15)  
(10)  
(15)  
(15)  
(15)  
(15)  
(15)  
1.0k  
680  
1.0k  
1.0k  
1.5k  
1.0k  
1.5k  
1.5k  
2.2k  
1.5k  
2.2k  
1.5k  
3.3k  
1.5k  
3.3k  
8MHz  
6MHz  
4MHz  
Internal C1,C2  
CF oscillation low amplifier size selected (CFLAMP=1)  
„MURATA  
Operating  
Voltage  
Range  
[V]  
Oscillation  
Stabilization Time  
Circuit Constant  
Nominal  
Type  
Oscillator Name  
Remarks  
Frequency  
C1  
C2  
Rf  
Rd  
typ  
max  
[ms]  
[pF]  
[pF]  
[Ω]  
[Ω]  
[ms]  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
1.0k  
2.2k  
1.0k  
2.2k  
1.0k  
2.2k  
1.0k  
2.2k  
2.2 to 5.5  
2.3 to 5.5  
2.2 to 5.5  
2.2 to 5.5  
2.2 to 5.5  
2.3 to 5.5  
2.2 to 5.5  
2.2 to 5.5  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
CSTCR4M00G53-R0  
CSTCR4M00G53095-R0  
CSTLS4M00G53-B0  
(15)  
(15)  
(15)  
(15)  
(15)  
(15)  
(15)  
(15)  
SMD  
4MHz  
Internal C1,C2  
LEAD  
CSTLS4M00G53095-B0  
The oscillation stabilizing time is a period until the oscillation becomes stable after V  
minimum operating voltage. (See Fig. 3)  
becomes higher than  
DD  
Time till the oscillation gets stabilized after the CPU reset state is released  
Till the oscillation gets stabilized after the instruction for starting the main clock oscillation circuit is executed  
Till the oscillation gets stabilized after the HOLD mode is reset.  
Till the oscillation gets stabilized after the X'tal HOLD mode is reset with CFSTOP (OCR register, bit 0) set to 0  
No.A1400-22/27  
LC872G08A/06A/04A  
Characteristics of a Sample Subsystem Clock Oscillator Circuit  
Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a SANYO-  
designated oscillation characteristics evaluation board and external components with circuit constant values with which  
the oscillator vendor confirmed normal and stable oscillation.  
Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator  
„EPSON TOYOCOM  
Operating  
Voltage  
Range  
[V]  
Oscillation  
Circuit Constant  
Nominal  
Oscillator  
Name  
Stabilization Time  
Type  
Remarks  
Frequency  
C1  
C2  
Rf  
Rd  
typ  
[s]  
max  
[s]  
[pF]  
[pF]  
[Ω]  
[Ω]  
Applicable  
CL value =  
7.0pF  
32.768kHz  
SMD  
MC-306  
9
9
Open  
330k  
1.8 to 5.5  
1.4  
4.0  
The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the  
instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the  
oscillation to get stabilized after the HOLD mode is reset (see Figure 3).  
(Notes on the implementation of the oscillator circuit)  
Oscillation is influenced by the circuit pattern layout of printed circuit board. Place the oscillation-related  
components as close to the CPU chip and to each other as possible with the shortest possible pattern length.  
Keep the signal lines whose state changes suddenly or in which large current flows as far away from the oscillator  
circuit as possible and make sure that they do not cross one another.  
Be sure to insert a current limiting resistor (Rd) so that the oscillation amplitude never exceeds the input voltage  
level that is specified as the absolute maximum rating.  
The oscillator circuit constants shown above are sample characteristic values that are measured using the SANYO-  
designated oscillation evaluation board. Since the accuracy of the oscillation frequency and other characteristics vary  
according to the board on which the IC is installed, it is recommended that the user consult the resonator vendor for  
oscillation evaluation of the IC on a user's production board when using the IC for applications that require high  
oscillation accuracy. For further information, contact your resonator vendor or SANYO Semiconductor sales  
representative serving your locality.  
It must be noted, when replacing the flash ROM version of a microcontroller with a mask ROM version, that their  
operating voltage ranges may differ even when the oscillation constant of the external oscillator is the same.  
CF2/XT2  
CF1/XT1  
Rf  
Rd  
C1  
C2  
CF/X’tal  
Figure 1 CF and XT Oscillator Circuit  
0.5V  
DD  
Figure 2 AC Timing Measurement Point  
No.A1400-23/27  
LC872G08A/06A/04A  
V
DD  
Operating V  
lower limit  
Power supply  
DD  
0V  
Reset time  
RES  
Internal Medium speed  
RC oscillation  
tmsCF/tmsXtal  
CF1, CF2  
Instruction execution (Note2)  
Instruction execution  
Operating  
mode  
Unpredictable  
Reset  
Reset Time and Oscillation Stabilization Time  
HOLD reset signal  
absent  
HOLD reset  
signal  
HOLD reset signal valid  
Internal Medium speed  
RC oscillation or  
Low speed RC oscillation  
tmsCF  
CF1, CF2  
(Note1)  
tmsX’tal  
CF1, CF2  
(Note2)  
State  
HOLD  
HALT  
HOLD Reset Signal and Oscillation Stabilization Time  
Note1: Mainclock oscillation circuit is selected.  
Note2: Subclock oscillation circuit is selected.  
Figure 3 Oscillation Stabilization Times  
No.A1400-24/27  
LC872G08A/06A/04A  
V
DD  
Note:  
External circuits for reset may vary  
R
RES  
depending on the usage of POR and LVD.  
Please refer to the user’s manual for more  
information.  
RES  
C
RES  
Figure 4 Reset Circuit  
SIOCLK:  
DATAIN:  
DATAOUT:  
DI0  
DI1  
DI2  
DI3  
DI4  
DI5  
DI6  
DI7  
DO0  
DO1  
DO2  
DO3  
DO4  
DO5  
DO6  
DO7  
tSCK  
tSCKL  
tSCKH  
thDI  
SIOCLK:  
DATAIN:  
tsDI  
tdDO  
DATAOUT:  
Figure 5 Serial I/O Output Waveforms  
tPIL  
tPIH  
Figure 6 Pulse Input Timing Signal Waveform  
No.A1400-25/27  
LC872G08A/06A/04A  
POR release voltage  
(PORRL)  
(a)  
(b)  
V
DD  
Reset period  
Reset period  
100μs or longer  
Unknown-state  
(POUKS)  
RES  
Figure 7 Waveform observed when only POR is used (LVD not used)  
(RESET pin: Pull-up resistor R only)  
RES  
The POR function generates a reset only when power is turned on starting at the V level.  
SS  
No stable reset will be generated if power is turned on again when the power level does not go down to the V level  
SS  
as shown in (a). If such a case is anticipated, use the LVD function together with the POR function or implement an  
external reset circuit.  
A reset is generated only when the power level goes down to the V level as shown in (b) and power is turned on  
SS  
again after this condition continues for 100μs or longer.  
LVD hysteresis width  
LVD release voltage  
(LVHYS)  
(LVDET+LVHYS)  
V
DD  
LVD reset voltage  
(LVDET)  
Reset period  
Reset period  
Reset period  
Unknown-state  
(LVUKS)  
RES  
Figure 8 Waveform observed when both POR and LVD functions are used  
(RESET pin: Pull-up resistor R only)  
RES  
Resets are generated both when power is turned on and when the power level lowers.  
A hysteresis width (LVHYS) is provided to prevent the repetitions of reset release and entry cycles near the detection  
level.  
No.A1400-26/27  
LC872G08A/06A/04A  
V
DD  
LVD release voltage  
LVD reset voltage  
LVDET-0.5V  
TLVDW  
V
SS  
Figure 9 Low voltage detection minimum width  
(Example of momentary power loss/Voltage variation waveform)  
SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using  
products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition  
ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd.  
products described or contained herein.  
SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all  
semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or  
malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise  
to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt  
safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not  
limited to protective circuits and error prevention circuits for safe design, redundant design, and structural  
design.  
In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are  
controlled under any of applicable local export control laws and regulations, such products may require the  
export license from the authorities concerned in accordance with the above law.  
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or  
mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise,  
without the prior written consent of SANYO Semiconductor Co.,Ltd.  
Any and all information described or contained herein are subject to change without notice due to  
product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the  
SANYO Semiconductor Co.,Ltd. product that you intend to use.  
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed  
for volume production.  
Upon using the technical information or products described herein, neither warranty nor license shall be granted  
with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third  
party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's  
intellectual property rights which has resulted from the use of the technical information and products mentioned  
above.  
This catalog provides information as of December, 2009. Specifications and information herein are subject  
to change without notice.  
No.A1400-27/27  
PS  

相关型号:

LC872G04A(SSOP24)

IC,MICROCONTROLLER,8-BIT,CMOS,SSOP,24PIN,PLASTIC
ONSEMI

LC872G06A

8-bit 1-chip Microcontroller
SANYO

LC872G06A(MFP24S)

IC,MICROCONTROLLER,8-BIT,CMOS,SOP,24PIN,PLASTIC
ONSEMI

LC872G06A(SSOP24)

IC,MICROCONTROLLER,8-BIT,CMOS,SSOP,24PIN,PLASTIC
ONSEMI

LC872G08A

8-bit 1-chip Microcontroller
SANYO

LC872G08A(MFP24S)

IC,MICROCONTROLLER,8-BIT,CMOS,SOP,24PIN,PLASTIC
ONSEMI

LC872G08A(SSOP24)

IC,MICROCONTROLLER,8-BIT,CMOS,SSOP,24PIN,PLASTIC
ONSEMI

LC872G08A_10

8K/6K/4K-byte ROM and 256-byte RAM integrated 8-bit 1-chip Microcontroller
SANYO

LC872H04A

CMOS IC 8K/6K/4K-byte ROM and 256-byte RAM integrated 8-bit 1-chip Microcontroller
SANYO

LC872H06A

CMOS IC 8K/6K/4K-byte ROM and 256-byte RAM integrated 8-bit 1-chip Microcontroller
SANYO

LC872H08A

CMOS IC 8K/6K/4K-byte ROM and 256-byte RAM integrated 8-bit 1-chip Microcontroller
SANYO

LC874096A

8-bit 1-chip Microcontroller
SANYO