LC05551XA [ONSEMI]

Battery Protection IC, OTP Function, 1‐Cell Lithium‐Ion Battery;
LC05551XA
型号: LC05551XA
厂家: ONSEMI    ONSEMI
描述:

Battery Protection IC, OTP Function, 1‐Cell Lithium‐Ion Battery

电池
文件: 总16页 (文件大小:235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LC05551XA  
Battery Protection IC,  
OTP Function,  
1‐Cell Lithium‐Ion Battery  
Overview  
LC05551XA is a protection IC for 1 cell lithium-ion or  
lithium-polymer battery with built-in OTP. It provides highly accurate  
adjustable over-charge, over-discharge, over-current protection with  
adjustable detection delay by OTP. Current is detected by high  
precision external chip resistor. Which realizes accurate current  
detection over temperature. LC05551XA can control external FETs.  
www.onsemi.com  
WLCSP8  
0.81 x 1.51 x 0.40  
CASE 567UN  
Function  
Highly Accurate Detection Voltage/Current at T = 25°C,  
A
V
= 3.8 V  
CC  
PART MARKING  
Over-charge Detection Voltage: 4.1 V to 4.55 V (5 mV steps)  
Over-charge Release Hysteresis: 0 V, 0.1 V, 0.15 V, 0.2 V  
Over-discharge Detection Voltage: 2.0 V to 3.3 V (50 mV step)  
Over-discharge Release Hysteresis: 0 V to 0.075 V (25 mV step)  
Over-discharge Release Hysteresis2: 0 V, 0.2 V, 0.3 V, 0.4 V  
Discharge Over-current Detection Voltage1:  
3 mV to 30 mV (0.3 mV step)  
510x  
ALYW  
510x= Specific Device Code  
x = 1 or 2  
A
L
Y
W
= Assembly Location  
= Wafer Lot  
= Year  
Discharge Over-current Detection Voltage2:  
3 mV to 30 mV (0.6 mV step)  
= Work Week  
Short Current Detection Voltage: 20 mV to 70 mV (5 mV step)  
Charge Over-current Detection Voltage:  
−30 mV to −3 mV (−0.6 mV step)  
Over-charge Detection Delay Time: 1024 ms  
Over-discharge Detection Delay Time: 32 ms, 64 ms, 128 ms, 256 ms  
Discharge Over-current Detection Delay Time1:  
4 ms, 8 ms, 16 ms, 32 ms, 512 ms, 1024 ms, 2048 ms, 3482 ms  
Discharge Over-current Detection Delay Time2:  
4 ms, 8 ms, 16 ms, 32 ms  
ORDERING INFORMATION  
Device  
Package  
Shipping  
LC05551Z01XA  
WLCSP8  
(Pb−Free)  
5000 /  
Tape & Reel  
LC05551Z02XA  
WLCSP8  
(Pb−Free)  
5000 /  
Tape & Reel  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Short-current Detection Delay Time: 250 ms, 450 ms  
Charge Over-current Detection Delay Time:  
4 ms, 8 ms, 16 ms, 128 ms  
0 V Battery Charging: “Permission”  
Auto Wake-up Function: “Permission”  
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS  
Compliant  
Typical Applications  
Smart Phone  
Tablet  
Wearable Device  
© Semiconductor Components Industries, LLC, 2018  
1
Publication Order Number:  
March, 2018 − Rev. 0  
LC05551XA/D  
LC05551XA  
SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
VCC  
VCS  
Conditions  
Ratings  
−0.3 to 12.0  
−0.3 to 7  
Unit  
V
Supply Voltage  
Between PAC+ and VCC : R1 = 1 KW  
CS Terminal Input Voltage  
Short Delay TEST Terminal  
Reset terminal  
V
SDT  
−0.3 to 7  
V
RST  
−0.3 to 7  
V
VM Terminal Input Voltage  
CO Terminal Voltage  
VVM  
VCO  
VDO  
VCC − 24.0 to VCC + 0.3  
VCC − 24.0 to VCC + 0.3  
−0.3 to 7  
V
V
DO Terminal Voltage  
V
Storage Temperature  
T
−55 to +125  
−40 to +85  
°C  
°C  
W
stg  
Operating Ambient Temperature  
Allowable Power Dissipation  
T
opr  
P
Glass epoxy two-layer board.  
0.6  
d
Board size 42 mm × 30 mm × 1.6 mm  
Junction Temperature  
T
j
125  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
EXAMPLE OF APPLICATION CIRCUIT  
Battery+  
PAC+  
R1  
C1  
Controller IC  
VCC  
Over current  
CO&DO:  
OFF  
detection  
RST  
SDT  
OTP  
RST  
SDT  
VM  
VSS  
DO  
CO  
CS  
R2  
R3  
PAC−  
Battery−  
Sense Resistor  
(1mW/2mW)  
External FETs  
Figure 1. Example of Application Circuit  
Components  
Min  
0.68  
0.1  
Recommended Value  
Max  
1.2  
2
Unit  
kW  
Description  
R1  
R2  
C1  
R3  
1
1
Battery+ is filtered to VCC by R1 and C1  
Protection from reverse connection of charger  
Battery+ is filtered to VCC by R1 and C1  
Sense resistor for over-current detection  
kW  
0.01  
1
0.1  
1.0  
20  
mF  
mW  
www.onsemi.com  
2
LC05551XA  
ELECTRICAL CHARACTERISTICS (R1 = 1 kW, R2 = 1 kW, VCC = 3.8 V (Note 1))  
TEST  
Circuit  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
DETECTION VOLTAGE  
Over−charge detection volt-  
age  
Vov  
Vovr1  
Vovr2  
Vuv  
R1 = 1 kW  
Ta = 25°C  
Ta = 20 to 60°C  
Ta = 25°C  
Vov_set − 15  
Vov_set − 20  
Vovr_set − 30  
Vovr_set − 55  
Vov_set − 20  
Vov_set − 25  
Vuv_set − 35  
Vuv_set − 55  
Vuvr1_set − 35  
Vuvr1_set − 55  
Vuvr2_set − 100  
Vuvr2_set − 110  
Vdoc1 − 0.9  
Vdoc1 − 1.0  
Vdoc2 − 1.8  
Vdoc2 − 2.0  
Vshrt_set − 5  
Vshrt_set − 6  
VCC - 1.1  
Vov_set  
Vov_set  
Vov_set + 15  
Vov_set + 20  
Vovr_set + 30  
Vovr_set + 40  
Vov_set + 15  
Vov_set + 20  
Vuv_set + 35  
Vuv_set + 55  
Vuv_set + 50  
Vuv_set + 80  
Vuvr2_set + 100  
Vuvr2_set + 110  
Vdoc1 + 0.9  
Vdoc1 + 1.0  
Vdoc2 + 1.8  
Vdoc2 + 2.0  
Vshrt_set + 5  
Vshrt_set + 6  
VCC – 0.2  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
V
B
B
I
Over−charge release voltage  
R1 = 1 kW, VM < Vcocr  
Vovr_set  
Vovr_set  
Vov_set  
& CS = 0  
Ta = 20 to 60°C  
Ta = 25°C  
R1 = 1 kW, VM > Vcocr  
& CS = 0  
Ta = 20 to 60°C  
Ta = 25°C  
Vov_set  
Over−discharge detection  
voltage  
R1 = 1 kW  
Vuv_set  
B
B
D
F
F
F
A
F
A
Ta = 20 to 60°C  
Ta = 25°C  
Vuv_set  
Over−discharge release volt-  
age1  
Vuvr1  
Vuvr2  
Vdoc1  
Vdoc2  
Vshrt  
Vdocr  
Vcoc  
R1 = 1 kW  
Vuv_set  
VM = 0 V  
Ta = 20 to 60°C  
Ta = 25°C  
Vuv_set  
Over−discharge release volt-  
age2  
R1 = 1 kW  
Vuvr2_set  
Vuvr2_set  
Vdoc1_set  
Vdoc1_set  
Vdoc2_set  
Vdoc2_set  
Vshrt_set  
Vshrt_set  
VCC − 0.65  
VCC − 0.65  
Vcoc_set  
Vcoc_set  
0.2  
VM = Open  
Ta = 20 to 60°C  
Ta = 25°C  
Discharge over−current de-  
tection voltage (primary pro-  
tection)  
R2 = 1 kW  
R2 = 1 kW  
R2 = 1 kW  
Ta = 20 to 60°C  
Ta = 25°C  
Discharge over−current de-  
tection voltage2 (secondary  
protection)  
Ta = 20 to 60°C  
Ta = 25°C  
Discharge over−current  
detection voltage (Short cir-  
cuit)  
Ta = 20 to 60°C  
Ta = 25°C  
Dicharge over−current(short)  
release voltage  
R2 = 1 kW  
CS = 0 V  
Ta = 20 to 60°C  
Ta = 25°C  
VCC − 1.2  
VCC − 0.1  
Charge over−current  
Charge over−current  
R2 = 1 kW  
Vcoc_set − 1.8  
Vcoc_set − 2.0  
0.08  
Vcoc_set + 1.8  
Vcoc_set + 2.0  
0.32  
mV  
V
Ta = 20 to 60°C  
Ta = 25°C  
Vcocr  
R2 = 1 kW  
CS = 0 V  
Ta = 20 to 60°C  
0.05  
0.2  
0.35  
RESET TERMINAL  
High−level input voltage  
Low−level input voltage  
VIH  
VIL  
IIH  
25°C  
25°C  
25°C  
0.9*VCC  
V
V
K
K
L
0.1*VCC  
0.1  
High−level input leakage  
current  
RST = 3.8 V  
37  
mA  
Low−level input leakage cur-  
rent  
IIL  
RST = 0 V  
25°C  
mA  
L
Factory−reset pulse width  
Tw_res  
25°C  
25°C  
33.6  
11.2  
48  
16  
62.4  
20.8  
ms  
ms  
K
K
Factory−reset release pulse  
width  
Twr_res  
INPUT VOLTAGE  
0 V battery charge permission  
charger voltage  
Vchg  
VCC - VM  
Vcc = VSS = 0 V  
25°C  
1.4  
V
A
CURRENT CONSUMPTION  
Operating current  
Icc  
At normal state  
25°C  
3
6
mA  
mA  
J
J
VCC = 3.8 V  
Stand−by current  
Istb  
At Stand−by state  
25°C  
VCC = 2.0 V  
0.95  
Auto wake−up = enable  
RESISTANCE  
Internal resistance (VCC−VM)  
Rvmu  
Rvmd  
Rcoh  
VCC = 2.0 V  
VM = 0 V  
25°C  
25°C  
25°C  
150  
5
300  
10  
600  
20  
kW  
kW  
kW  
E
E
H
Internal resistance (VSS-VM)  
VCC = 3.8 V  
VM = 0.1 V  
CO output resistance (High)  
VCC = 3.8 V  
6
12  
24  
CO = 3.3 V  
CS = 0 V  
www.onsemi.com  
3
LC05551XA  
ELECTRICAL CHARACTERISTICS (R1 = 1 kW, R2 = 1 kW, VCC = 3.8 V (Note 1))  
TEST  
Circuit  
Parameter  
Symbol  
Conditions  
Min  
0.35  
0.8  
Typ  
0.7  
1.6  
0.3  
Max  
1.4  
3.2  
0.6  
Unit  
kW  
RESISTANCE  
CO output resistance (Low)  
Rcol  
VCC = 4.5 V  
25°C  
25°C  
25°C  
H
G
G
CO = 0.5 V  
CS = 0 V  
DO output resistance (High)  
DO output resistance (Low)  
Rdoh  
Rdol  
VCC = 3.8 V  
kW  
DO = 3.3 V  
CS = 0 V  
VCC = 2.0 V  
0.1  
kW  
CS = 0 V  
DO = 0.5 V  
DETECTION AND RELEASE DELAY TIME  
Over−charge detection delay  
time  
Tov  
VCC = 3 V to Vov_max  
25°C  
Ta = 20 to 60°C  
25°C  
0.7  
0.6  
1.0  
1.0  
1.3  
1.4  
sec  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
B
B
B
B
F
F
A
F
F
F
VM = CS = 0 V  
Over−charge release delay  
time  
Tovr  
VCC = Vov_max to 3 V  
VM = CS = 0 V  
12.8  
16  
19.2  
Ta = 20 to 60°C  
25°C  
11.2  
16  
20.8  
Over−discharge detection  
delay time  
Tuv  
VCC = 3 V to Vuv_min  
VM = CS = 0 V  
Tuv_set x 0.8  
Tuv_set x 0.65  
0.84  
Tuv_set  
Tuv_set  
1.05  
Tuv_set x 1.2  
Tuv_set x 1.35  
1.26  
Ta = 20 to 60°C  
25°C  
Over−discharge release de-  
lay time  
Tuvr  
VCC = Vuv_min  
to 3 V VM = CS = 0 V  
Ta = 20 to 60°C  
25°C  
0.68  
1.05  
1.42  
Discharge over−current  
detection delay time 1  
Tdoc1  
Tdoc2  
Tdocr  
Tshrt  
Tcoc  
Tcocr  
CS = 0 V to Vdoc1MAX  
VM = 0 V  
Tdoc1_set x 0.8  
Tdoc1_set x 0.7  
Tdoc2_set x 0.8  
Tdoc2_set x 0.7  
3.2  
Tdoc1_set  
Tdoc1_set  
Tdoc2_set  
Tdoc2_set  
4
Tdoc1_set x 1.2  
Tdoc1*_set x 1.3  
Tdoc2_set x 1.2  
Tdoc2_set x 1.3  
4.8  
Ta = 20 to 60°C  
25°C  
Discharge over−current  
detection delay time 2  
VM = 0 V to Vdoc2MAX  
VM = 0 V  
Ta = 20 to 60°C  
25°C  
Discharge over−current  
release delay time  
VM = 3.8 V to 2.9 V  
CS = 0 V  
Ta = 20 to 60°C  
25°C  
2.8  
4
5.2  
Short−current  
detection delay time  
CS = 0 V to VshrtMAX  
VM = 0  
Tshrt_set x 0.7  
Tshrt_set x 0.6  
Tcoc_set x 0.8  
Tcoc_set x 0.7  
3.2  
Tshrt_set  
Tshrt_set  
Tcoc_set  
Tcoc_set  
4
Tshrt_set x 1.3  
Tshrt_set x 1.4  
Tcoc_set x 1.2  
Tcoc_set x 1.3  
4.8  
Ta = 20 to 60°C  
25°C  
Charge over−current  
detection delay time  
CS = 0 V to VcocMIN  
VM = 0  
ms  
ms  
Ta = 20 to 60°C  
25°C  
Charge over−current  
release delay time  
VM = 0 V to VcocrMAX  
CS = 0 V  
Ta = 20 to 60°C  
2.8  
4
5.2  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
1. The specification in high temperature and low temperature are guaranteed by design.  
www.onsemi.com  
4
 
LC05551XA  
TEST CIRCUITS  
R1  
R2  
R1  
R2  
VCC  
VM  
VCC  
DO  
CO  
DO  
CO  
VM  
V
V
RST  
CS  
RST  
CS  
V
VSS  
VSS  
SDT  
SDT  
A
B
R1  
R1  
VCC  
VCC  
R2  
DO  
CO  
DO  
CO  
VM  
VM  
RST  
CS  
RST  
CS  
VSS  
VSS  
SDT  
SDT  
C
D
R1  
R1  
R2  
VCC  
VCC  
R2  
DO  
CO  
DO  
CO  
VM  
VM  
RST  
CS  
RST  
CS  
A
V
V
VSS  
VSS  
SDT  
SDT  
E
F
R1  
R1  
VCC  
VCC  
VM  
R2  
A
DO  
R2  
DO  
CO  
VM  
RST  
CS  
RST  
CS  
CO  
A
VSS  
VSS  
SDT  
SDT  
G
H
R1  
R1  
R2  
VCC  
VM  
VCC  
R2  
DO  
DO  
CO  
A
VM  
V
RST  
CS  
RST  
CS  
CO  
VSS  
VSS  
SDT  
SDT  
I
J
R1  
R1  
VCC  
VCC  
R2  
R2  
DO  
CO  
DO  
CO  
VM  
VM  
A
RST  
CS  
RST  
CS  
V
VSS  
VSS  
SDT  
SDT  
K
L
Figure 2. Test Circuits  
www.onsemi.com  
5
LC05551XA  
Table 1. ADJUSTABLE PARAMETERS  
Parameter  
Vov  
Unit  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
Range  
Voltage  
4100 ~ 4600  
Vov − Vovr_Hy  
2100 ~ 3300  
Vuv + Vuvr2_Hy  
3 to 30  
5 mV step  
Vovr  
Vovr_Hy: 0, 100, 150, 200 (4 steps)  
50 mV step  
Vuv  
Vuvr2  
Vdoc1  
Vdoc2  
Vshrt  
Vcoc  
Vuvr2_Hy: 0, 200, 300, 400 (4 steps)  
0.3 mV step  
3 to 30  
0.6 mV step  
20 to 70  
5 mV step  
−30 to −3  
0.6 mV step  
Parameter  
Tuv  
Unit  
ms  
ms  
ms  
ms  
Delay  
32, 64, 128, 256  
Tdoc1  
Tdoc2  
Tshrt  
4, 8, 16, 32, 512, 1024, 2048, 3482  
4, 8, 16, 32  
250, 450  
Tcoc  
ms  
4, 8, 16, 128  
Table 2. SELECTION GUIDE  
Vov  
(mV)  
Vovr1  
(mV)  
Vovr2  
(mV)  
Vuv  
(mV)  
Vuvr1  
(mV)  
Vuvr2  
(mV)  
Vdoc1  
(mV)  
Vdoc2  
(mV)  
Vshrt  
(mV)  
Vcoc  
(mV)  
Tov  
(ms)  
Tuv  
(ms)  
Tdoc1  
(ms)  
Tdoc2  
(ms)  
Tshrt  
(ms)  
Tcoc  
(ms)  
Device  
LC05551Z01XA  
LC05551Z02XA  
4475  
4445  
4325  
4295  
4475  
4445  
2500  
2350  
2500  
2350  
2900  
2550  
7.5  
6.9  
10.0  
10.1  
25.0  
25.0  
−10.0  
−7.8  
1024  
1024  
64  
64  
3482  
3482  
16  
16  
250  
250  
16  
16  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.60  
0.24  
0.1  
0
−40 −20  
0
20  
40  
60  
80  
100 120 140 160  
Ambient Temperature, T (5C)  
A
Figure 3. Pd max−TA Graph  
www.onsemi.com  
6
LC05551XA  
Table 3. PIN FUNCTION  
Pin No.  
A1  
Symbol  
VSS  
VCC  
CS  
Pin Function  
VSS terminal  
VCC terminal  
A2  
A3  
Overcurrent detection input terminal  
Input pin for function test − Open or VSS  
Discharge FET control terminal  
A4  
SDT  
DO  
B1  
B2  
CO  
Charge FET control terminal  
B3  
VM  
Charger negative voltage input terminal  
B4  
RST  
Control pin for external charge FET and discharge FET  
BLOCK DIAGRAM  
VCC  
A2  
SDT  
A4  
OSC  
Power  
Control  
Level  
Shifter  
Control Circuit  
Rvmu  
Rvmd  
B3 VM  
Over−discharge  
Detector  
Short current  
Detector  
1.2V  
Discharge  
Over−current  
Detector1  
Over−charge  
Detector  
Disharge  
Over−current  
Detector2  
Comp for  
Vdocr  
Charge  
Over−current  
Detector  
Constant Voltage  
Detector  
Comp for  
Vcocr  
OTP  
A1  
A3  
CS  
B1  
B2  
B4  
RST  
VSS  
DO  
CO  
Figure 4. Block Diagram  
www.onsemi.com  
7
LC05551XA  
DESCRIPTION OF OPERATION  
The battery voltage is detected between VCC pin and VSS  
pin and the battery current is detected between VSS pin and  
CS pin.  
“discharge over-current detection delay time (Tdoc1)”.  
DO is low level output. Discharge is prohibited.  
Discharge Over-current Detection 2  
CS terminal is higher than or equal to “discharge  
over-current detection voltage2 (Vdoc2)” for longer than  
“discharge over-current detection delay time 2 (Tdoc2)”.  
DO is low level output. Discharge is prohibited.  
(1) Normal State  
“VCC voltage” is between “over-discharge detection  
voltage (Vuv)”, “over-charge detection voltage (Vov)”, and  
“CS voltage” is between “charge over-current detection  
voltage (Vcoc)”, “discharge over-current detection  
voltage (Vdoc)”, and “VM voltage” is lower than  
“dicharge over-current (short) release voltage (Vdocr)”.  
This is the normal state. Both CO and DO are high  
level output. Charge and discharge is allowed.  
Discharge Over-current Detection (Short Circuit)  
CS terminal is higher than or equal to “discharge over-  
current detection voltage (Short circuit) (Vshrt)” for  
longer than “short-current detection delay time (Tshrt)”.  
DO is low level output. Discharge is prohibited.  
During discharging over-current state, VM pin is pulled  
down to Vss by internal resistor (Rvmd).  
(2) Over-charging State  
Release from Discharging Over-current State  
“CS voltage” goes lower than “discharge over-current  
detection voltage (Vdoc1)” and VM voltage goes lower  
than “discharge over-current (short) release voltage  
(Vdocr)” for longer than “discharge over-current  
release delay time (Tdocr)”.  
“VCC voltage” is higher than or equal to “over-charge  
detection voltage (Vov)” for longer than “over-charge  
detection delay time (Tov)”.  
This is the over-charging state, CO is low level output.  
Charge is prohibited.  
Release from Over-charging State 1  
“VM voltage” is lower than “charge over-current (short)  
release voltage (Vcocr)”. Then “VCC voltage” is lower  
than “over-charge release voltage1 (Vovr1)” for longer  
than “over-charging release delay time (Tovr)”.  
(5) Charging Over-current State  
“CS voltage” goes lower than or equal to “charge  
over-current detection voltage (Vcoc) for longer than  
“charge over-current detection delay time (Tcoc)”.  
This is the charging over-current state, CO is low level  
output. Charge is prohibited.  
Release from charging over-current state  
“CS voltage” goes lower than “charge over−current  
detection voltage (Vcoc)” and “VM voltage” goes  
lower than “charge over-current release voltage  
(Vcocr)” for longer than “discharge over-current release  
delay time (Tcocr)”.  
Release from Over-charging State 2  
“VM voltage” is higher than “charge over-current  
(short) release voltage (Vcocr)”. Then “VCC voltage”  
is lower than “over-charge release voltage2 (Vovr2) for  
longer than “over-charge release delay time (Tovr)”.  
(3) Over-discharging State  
“VCC voltage” is lower than “over-discharge detection  
voltage (Vuv)” for longer than “over-discharge delay  
time (Tuv)”.  
(6) 0 V Battery Charging  
This is the over-discharging state, DO is low level  
output. Discharge is prohibited.  
During over-discharging state, VM pin is pulled up to  
Vcc by internal resistor (Rvmu) and circuits are shut  
down. The low power consumption is kept.  
When the Battery voltage is lower than or equal to  
“0 V battery charge permission voltage (Vchg)”, charge  
is allowed if charger voltage is higher than or equal  
“0 V battery charge permission voltage (Vchg)”. CO is  
fixed by the “VCC voltage”.  
Release from Over-discharging State 1  
(7) Reset State  
Charger is connected, then “VCC voltage” goes higher  
than “over-discharge release voltage1 (Vuvr1)” for  
longer than “over-charge release delay time (Tuvr)”.  
Release from Over-discharging State  
RST voltage is higher than or equal to high level input  
voltage (VIH) for longer than the delay time of  
factory−reset pulse (Tw_res).  
This is the reset state, both CO and DO are low level  
output. Charge and discharge are prohibited.  
(with Auto Wake-up Feature) 2  
“VCC voltage” is higher than “over-discharge release  
voltage2 (Vuvr1)” without charger for longer than  
“over-charge release delay time (Tovr)”.  
Release from Reset State  
RST voltage is lower than or equal to low level input  
voltage (VIL) for longer than the delay time of factory  
reset release pulse (Tw_res).  
(4) Discharging Over-current State  
Under reset state, any protection doesn’t work. Under  
both charging over current state and discharging over  
current state, reset function doesn’t work.  
Discharge Over-current Detection 1  
CS terminal is higher than or equal to “discharge  
over-current detection voltage (Vdoc1)” for longer than  
www.onsemi.com  
8
LC05551XA  
TIMING CHARTS  
Over Charge Voltage and Charge Over Current  
Charger  
Load  
Charger  
Load  
Charger  
Load  
connection connection connection  
connection  
connection  
connection  
VCC  
Vov  
Vovr  
t
CS  
Vshrt  
Vdoc2  
Vdoc1  
VSS  
Vcoc  
t
VM  
VCC  
Vcocr  
VSS  
t
CO  
VCC  
Tovr  
Tcocr  
Tcoc  
Tov  
Tovr  
Tov  
VM  
t
t
Icharge  
0
Idischarge  
Figure 5. Over Charge Voltage and Charge Over Current  
www.onsemi.com  
9
LC05551XA  
Over Discharge Detection and Release (with/without Charger)  
Load  
connection  
Charger  
connection  
Load  
connection  
VCC  
Vuvr2  
Vuvr1  
Vuv  
t
CS  
Vshrt  
Vdoc2  
Vdoc1  
VSS  
Vcoc  
t
VM  
VCC  
VSS  
t
DO  
VCC  
Tuvr  
Tuv  
Tuvr  
Tuv  
VSS  
t
t
Icharge  
0
Idischarge  
Figure 6. Over Discharge Detection and Release (with/without Charger)  
www.onsemi.com  
10  
LC05551XA  
Discharge Over Current and Short Current Detection and Release  
Load  
connection  
Charger  
connection  
Load  
Charger  
Short  
circuit connection  
Charger  
connection connection  
VCC  
t
CS  
Vshrt  
Vdoc2  
Vdoc1  
VSS  
Vcoc  
t
VM  
VCC  
VSS  
t
DO  
VCC  
Tdoc1  
Tdoc2  
Tshrt  
Tdocr  
Tdocr  
Tdocr  
VSS  
t
t
Icharge  
0
Idischarge  
Figure 7. Discharge Over Current and Short Current Detection and Release  
www.onsemi.com  
11  
LC05551XA  
Reset State  
RST  
VCC  
VIH  
VIL  
t
VSS  
Tw_res  
Twr_res  
DO  
VCC  
t
VSS  
CO  
VCC  
VM  
t
www.onsemi.com  
12  
LC05551XA  
CHARACTERISTICS OF LC05551Z01XA (TYPICAL DATA)  
(1) Current Consumption and Protection Detection Voltage  
Figure 8. ICC vs. Temperature  
Figure 9. VOV vs. Temperature  
Figure 10. VUV vs. Temperature  
Figure 12. VDOC2 vs. Temperature  
Figure 14. VCOC vs. Temperature  
Figure 11. VDOC1 vs. Temperature  
Figure 13. VSHRT vs. Temperature  
www.onsemi.com  
13  
LC05551XA  
CHARACTERISTICS OF LC05551Z04XA (TYPICAL DATA)  
(2) Protection Detection Delay Time  
Figure 15. TOV vs. Temperature  
Figure 16. TUV vs. Temperature  
Figure 17. TDOC1 vs. Temperature  
Figure 18. TDOC2 vs. Temperature  
Figure 19. TSHRT vs. Temperature  
Figure 20. TCOC vs. Temperature  
www.onsemi.com  
14  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
WLCSP8 0.81x1.51x0.40  
CASE 567UN  
ISSUE O  
SCALE 4:1  
DATE 02 JUN 2017  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DATUM C, THE SEATING PLANE, IS DEFINED BY  
THE SPHERICAL CROWNS OF THE CONTACT  
BALLS.  
BACKSIDE  
COATING  
A3  
B
D
A
E
PIN A1  
REFERENCE  
4. COPLANARITY APPLIES TO THE SPHERICAL  
CROWNS OF THE SOLDER BALLS.  
5. DIMENSION b IS MEASURED AT THE MAXIMUM  
CONTACT BALL DIAMETER PARALLEL TO DATUM C.  
DETAIL A  
TOP VIEW  
MILLIMETERS  
DIM  
A
A1  
A3  
b
D
E
MIN  
−−−  
0.05  
NOM  
−−−  
0.08  
0.025 REF  
0.16  
0.81  
1.51  
0.50 BSC  
0.40 BSC  
MAX  
0.40  
0.11  
DETAIL A  
A
0.05  
0.05  
C
0.11  
0.76  
1.46  
0.21  
0.86  
1.56  
C
A1  
SIDE VIEW  
e
e2  
SEATING  
PLANE  
C
GENERIC  
MARKING DIAGRAM*  
e2  
e
XXXX  
ALYW  
B
A
A
L
Y
W
= Assembly Location  
= Wafer Lot  
= Year  
1
2
3
4
8X  
b
M
0.05  
C A B  
BOTTOM VIEW  
= Work Week  
RECOMMENDED  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present. Some products  
may not follow the Generic Marking.  
SOLDERING FOOTPRINT*  
0.40  
PITCH  
0.50  
PITCH  
A1  
8X  
0.16  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON64831G  
WLCSP8 0.81X1.51X0.40  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

LC05551Z01XA

Battery Protection IC, OTP Function, 1‐Cell Lithium‐Ion Battery
ONSEMI

LC05551Z02XA

Battery Protection IC, OTP Function, 1‐Cell Lithium‐Ion Battery
ONSEMI

LC056

5.6inch QVGA
ETC

LC05732A02RATBG

Battery Protection IC, Integrated Power MOSFET, 1-Cell Lithium-Ion Battery
ONSEMI

LC05732A03RATBG

Battery Protection IC, Integrated Power MOSFET, 1-Cell Lithium-Ion Battery
ONSEMI

LC05732ARA

Battery Protection IC, Integrated Power MOSFET, 1-Cell Lithium-Ion Battery
ONSEMI

LC05FBR-PUR

Cables for sensors with M12 round connection
CYNERGY3

LC05FBR-PVC

Cables for sensors with M12 round connection
CYNERGY3

LC05FBS-PUR

Cables for sensors with M12 round connection
CYNERGY3

LC05FBS-PVC

Cables for sensors with M12 round connection
CYNERGY3

LC0603M223MANAB

Data Line Filter, 1 Function(s), 25V, 0.1A, EIA STD PACKAGE SIZE 0603, 4 PIN
APITECH

LC0603M223MANAT

Data Line Filter, 1 Function(s), 25V, 0.1A, EIA STD PACKAGE SIZE 0603, 4 PIN
APITECH