FXLA108BQX [ONSEMI]

双电源 8 位电压转换器;
FXLA108BQX
型号: FXLA108BQX
厂家: ONSEMI    ONSEMI
描述:

双电源 8 位电压转换器

接口集成电路 锁存器 转换器
文件: 总17页 (文件大小:170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Low-Voltage Dual-Supply  
8-Bit Voltage Translator  
with Configurable Voltage  
Supplies and Signal Levels,  
3-State Outputs, and Auto  
Direction Sensing  
WQFN20 4.5x2.5, 0.5P  
CASE 510CD  
MARKING DIAGRAM  
$Y&Z&2&K  
FXLA108  
FXLA108  
Description  
The FXLA108 is a configurable dual−voltage supply translator for  
both uni−directional and bi−directional voltage translation between  
two logic levels. The device allows translation between voltages as  
$Y  
&Z  
&2  
&K  
= Logo  
= Assembly Plant Code  
= 2−Digit Date Code  
= 2−Digits Lot Run Traceability Code  
high as 3.6 V to as low as 1.1 V. The A port tracks the V  
level and  
CCA  
FXLA108 = Specific Device Code  
the B port tracks the V  
level. This allows for bi−directional voltage  
CCB  
translation over a variety of voltage levels: 1.2 V, 1.5 V, 1.8 V, 2.5 V,  
and 3.3 V.  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 15 of  
this data sheet.  
The device remains in three−state as long as either V = 0 V,  
CC  
allowing either V to be powered up first. Internal power−down  
CC  
control circuits place the device in 3−state if either V is removed.  
CC  
The /OE input, when HIGH, disables both the A and B ports by  
placing them in a 3−state condition. The /OE input is supplied by  
V
CCA  
.
The FXLA108 supports bi−directional translation without the need  
for a direction control pin. The two ports of the device have  
auto−direction sense capability. Either port may sense an input signal  
and transfer it as an output signal to the other port.  
Features  
Bi−Directional Interface Between Two Levels: from 1.1 V to 3.6 V  
Fully Configurable: Inputs and Outputs Track V  
CC  
Non−Preferential Power−Up; Either V May Be Powered Up First  
CC  
Outputs Switch to 3−State if Either V is at GND  
CC  
Power−Off Protection  
Bus−Hold on Data Inputs Eliminates the Need for Pull−Up Resistors;  
Do Not Use Pull−Up Resistors on A or B Ports  
Control Input (/OE) Referenced to V  
Voltage  
CCA  
Packaged in 20−Terminal DQFN (2.5 mm x 4.5 mm)  
Direction Control Not Necessary  
100 Mbps Throughput when Translating Between 1.8 V and 2.5 V  
ESD Protection Exceeds:  
8 kV HBM (per JESD22−A114 &Mil Std 883e 3015.7)  
2 kV CDM (per ESD STM 5.3)  
This is a Pb−Free Device  
Applications  
Laptops, Notebooks  
Routers, Switches  
© Semiconductor Components Industries, LLC, 2009  
1
Publication Order Number:  
July, 2022 − Rev. 2  
FXLA108/D  
FXLA108  
PIN CONFIGURATION  
VCCA VCCB  
1
20  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
2
3
4
5
6
7
8
9
19 B0  
18 B1  
17 B2  
16 B3  
15 B4  
14 B5  
13 B6  
12 B7  
D
A
P
10  
11  
GND /OE  
Figure 1. Pin Configuration (Top Through View)  
PIN DEFINITIONS  
Pin No.  
1
Name  
Description  
A−Side Power Supply  
V
CCA  
2
A
A
A
A
A
A
A
A
A−Side Inputs or 3−State Outputs  
A−Side Inputs or 3−State Outputs  
A−Side Inputs or 3−State Outputs  
A−Side Inputs or 3−State Outputs  
A−Side Inputs or 3−State Outputs  
A−Side Inputs or 3−State Outputs  
A−Side Inputs or 3−State Outputs  
A−Side Inputs or 3−State Outputs  
Ground  
0
1
2
3
4
5
6
7
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DAP  
GND  
/OE  
Output Enable Input  
B
7
B
6
B
5
B
4
B
3
B
2
B
1
B
0
B−Side Inputs or 3−State Outputs  
B−Side Inputs or 3−State Outputs  
B−Side Inputs or 3−State Outputs  
B−Side Inputs or 3−State Outputs  
B−Side Inputs or 3−State Outputs  
B−Side Inputs or 3−State Outputs  
B−Side Inputs or 3−State Outputs  
B−Side Inputs or 3−State Outputs  
B−Side Power Supply  
V
CCB  
NC  
No Connect  
www.onsemi.com  
2
FXLA108  
FUNCTIONAL DIAGRAM  
VccA  
VccB  
OE  
A0 − A7  
B0 − B7  
Figure 2. Functional Diagram  
FUNCTION TABLE  
Control  
/OE  
Outputs  
LOW Logic Level  
HIGH Logic Level  
Normal Operation  
3−State  
www.onsemi.com  
3
FXLA108  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Conditions  
Min  
−0.5  
−0.5  
−0.5  
−0.5  
−0.5  
−0.5  
−0.5  
Max  
4.6  
4.6  
4.6  
4.6  
4.6  
Unit  
V
CC  
Supply Voltage  
V
V
CCA  
V
CCB  
V
I
DC Input Voltage  
I/O Ports A and B  
Control Input (/OE)  
Output 3−State  
V
V
V
O
Output Voltage (Note 2)  
Output Active (A )  
V
V
+ 0.5  
n
CCA  
CCB  
Output Active (B )  
+ 0.5  
n
I
IK  
DC Input Diode Current  
DC Output Diode Current  
V < 0 V  
I
−50  
mA  
mA  
I
V
< 0 V  
−50  
+50  
+50  
100  
+150  
35  
OK  
O
O
V
> V  
CC  
I
/I  
DC Output Source/Sink Current  
−50  
mA  
mA  
°C  
OH OL  
I
DC V or Ground Current (Per Supply Pin)  
CC  
CC  
T
STG  
Storage Temperature Range  
Power Dissipation  
−65  
P
D
mW  
kV  
ESD  
Human Body Model, JESD22−A114  
Charged Device Model, JESD22−C101  
8
2
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. I absolute maximum ratings must be observed.  
O
2. All unused inputs and input/outputs must be held at V  
or GND.  
CCi  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Conditions  
Operating V or V  
CCA  
Min  
1.1  
0
Max  
3.6  
Unit  
V
V
CC  
Power Supply  
Input Voltage  
CCB  
V
IN  
Ports A and B  
Control Input (/OE)  
3.6  
V
0
V
CCA  
V
T
Operating Temperature, Free Air  
Minimum Input Edge Rate  
40  
+85  
°C  
A
dt/dV  
V
CCA/B  
= 1.1 to 3.6 V  
10  
50  
23  
ns/V  
°C/W  
°C/W  
Q
JA  
Thermal Resistance: Junction−to−Ambient  
Thermal Resistance: Junction−to−Case  
Q
JC  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
4
 
FXLA108  
POWER−UP/POWER−DOWN SEQUENCE  
FXL translators offer an advantage in that either V may  
be powered up first. This benefit derives from the chip  
The recommended power−down sequence is:  
1. Drive /OE input HIGH to disable the device.  
CC  
design. When either V  
is at 0 V, outputs are in a  
2. Remove power from either V  
.
CC  
CC  
high−impedance state. The control input (/OE) is designed  
to track the V supply. A pull−up resistor tying /OE to  
3. Remove power from other V  
CC.  
CCA  
Pull−Up/Pull−Down Resistors  
V
CCA  
should be used to ensure that bus contention,  
Do not use pull−up or pull−down resistors. This device has  
bus−hold circuits: pull−up or pull−down resistors are not  
recommended because they interfere with the output state.  
The current through these resistors may exceed the hold  
excessive currents, or oscillations do not occur during  
power−up or power−down. The size of the pull−up resistor  
is based upon the current−sinking capability of the device  
driving the /OE pin.  
drive, I  
and/or I  
bus−hold currents. The  
I(HOLD)  
I(OD)  
The recommended power−up sequence is:  
bus−hold feature eliminates the need for extra resistors.  
1. Apply power to the first V  
.
CC  
2. Apply power to the second V  
.
CC  
3. Drive the /OE input LOW to enable the device.  
www.onsemi.com  
5
FXLA108  
DC CHARACTERISTICS (T = −40 to 85°C)  
A
Symbol  
Parameter  
Conditions  
V
(V)  
V
(V)  
Min  
2.00  
Typ  
Max  
Unit  
CCA  
CCB  
V
IHA  
High−Level Input Voltage  
Data Inputs A Control  
2.70 to 3.60 1.10 to 3.60  
2.30 to 2.70  
V
n
Pin /OE  
1.60  
1.65 to 2.30  
0.65 x V  
CCA  
CCA  
CCA  
1.40 to 1.65  
0.65 x V  
1.10 to 1.40  
0.9 x V  
V
Data Inputs B  
1.10 to 3.60 2.70 to 3.60  
2.30 to 2.70  
2.00  
1.60  
V
V
V
IHB  
n
1.65 to 2.30 0.65 x V  
1.40 to 1.65 0.65 x V  
CCB  
CCB  
CCB  
1.10 to 1.40 0.9 x V  
V
V
Low−Level Input Voltage  
Data Inputs A Control  
2.70 to 3.60 1.10 to 3.60  
0.8  
ILA  
n
Pin /OE  
2.30 to 2.70  
0.7  
1.65 to 2.30  
0.35 x V  
0.35 x V  
CCA  
CCA  
CCA  
1.40 to 1.65  
1.10 to 1.40  
0.1 x V  
0.8  
Data Inputs B  
1.10 to 3.60 2.70 to 3.60  
2.30 to 2.70  
ILB  
n
0.7  
1.65 to 2.30  
0.35 x V  
CCB  
CCB  
CCB  
1.40 to 1.65  
0.35 x V  
1.10 to 1.40  
0.1 x V  
V
V
High−Level Output Voltage  
(Note 3)  
I
I
I
I
= −4 mA  
= −4 mA  
= 4 mA  
1.10 to 3.60 1.10 to 3.60  
1.10 to 3.60 1.10 to 3.60  
1.10 to 3.60 1.10 to 3.60  
1.10 to 3.60 1.10 to 3.60  
V
CCA  
V
CCB  
− 0.4  
− 0.4  
V
V
OHA  
OH  
OH  
OL  
OL  
OHB  
V
V
Low−Level Output Voltage  
(Note 3)  
0.4  
0.4  
OLA  
= 4 mA  
OLB  
I
Bus−Hold Input Minimum  
Drive Current  
V
V
V
V
V
V
V
V
V
V
= 0.80 V  
= 2.00 V  
= 0.7 V  
3.00  
3.00  
2.30  
2.30  
1.65  
1.65  
1.40  
1.40  
1.10  
1.10  
3.60  
2.70  
1.95  
1.60  
1.40  
3.00  
3.00  
2.30  
2.30  
1.65  
1.65  
1.40  
1.40  
1.10  
1.10  
3.60  
2.70  
1.95  
1.60  
1.40  
75.0  
mA  
I(HOLD)  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
−75.0  
45.0  
= 1.60 V  
= 0.57 V  
= 1.07 V  
= 0.49 V  
= 0.91 V  
= 0.11 V  
= 0.99 V  
−45.0  
25.0  
−25.0  
11.0  
−11.0  
4.0  
−4.0  
I
Bus−Hold Input Overdrive  
High Current (Note 4)  
Data Inputs A , B  
n
450.00  
300.00  
200.00  
120.00  
80.00  
mA  
I(ODH)  
n
www.onsemi.com  
6
FXLA108  
DC CHARACTERISTICS (T = −40 to 85°C) (continued)  
A
Symbol  
Parameter  
Conditions  
Data Inputs A , B  
n
V
(V)  
V
(V)  
Min  
Typ  
Max  
Unit  
CCA  
CCB  
I
Bus−Hold Input Overdrive  
Low Current (Note 5)  
3.60  
2.70  
1.95  
1.60  
1.40  
3.60  
2.70  
1.95  
1.60  
1.40  
3.60  
−450.00  
−300.00  
−200.00  
−120.00  
−80.00  
mA  
I(ODL)  
n
I
I
Input Leakage Current  
Control Inputs /OE,  
V = V or GND  
1.10 to 3.60  
1.0  
mA  
mA  
I
CCA  
I
Power−Off Leakage  
Current  
A V = 0 V to 3.6 V  
0
3.6  
0
2.0  
2.0  
5.0  
OFF  
n
O
B V = 0 V to 3.6 V  
3.60  
3.6  
n
O
I
3−State Output Leakage  
A , B V = 0 V or 3.6 V,  
3.60  
mA  
OZ  
n
n
O
/OE = V  
IH  
A V = 0 V or 3.6 V,  
/OE = GND  
3.60  
0
5.0  
5.0  
n
O
B V = 0 V or 3.6 V,  
0
3.60  
n
O
/OE = GND  
I
Quiescent Supply Current  
(Note 6, 7)  
V = V or GND; I = 0, 1.10 to 3.60 1.10 to 3.60  
10.0  
10.0  
−10.0  
mA  
mA  
mA  
CCA/B  
I
CCI  
O
/OE = GND  
I
V = V or GND; I = 0, 1.10 to 3.60 1.10 to 3.60  
CCZ  
I
CCI  
O
/OE = V  
IH  
I
I
Quiescent Supply Current  
V = V  
or GND; I = 0  
0
1.10 to 3.60  
CCA  
I
CCB  
O
B−to−A Direction,  
/OE = GND  
V = V  
or GND; I = 0 1.10 to 3.60  
0
0
10.0  
I
CCA  
O
A−to−B Direction  
V = V or GND; I = 0, 1.10 to 3.60  
−10.0  
mA  
CCB  
I
CCA  
O
A−to−B Direction,  
/OE = GND  
V = V  
or GND; I = 0  
0
1.10 to 3.60  
10.0  
I
CCB  
O
B−to−A Direction  
3. This is the output voltage for static conditions. Dynamic drive specifications are given in the Dynamic Output Electrical Characteristics table.  
4. An external drive must source at least the specified current to switch LOW−to−HIGH.  
5. An external drive must source at least the specified current to switch HIGH−to−LOW.  
6. V  
is the V associated with the input side.  
CCI  
CC  
7. Reflects current per supply, V  
or V  
.
CCA  
CCB  
www.onsemi.com  
7
 
FXLA108  
DYNAMIC OUTPUT ELECTRICAL CHARACTERISTICS  
V
CCA  
= 3.0 V  
V
CCA  
= 2.3 V  
V
CCA  
= 1.65 V  
V
CCA  
= 1.4 V  
V
CCA  
= 1.1 V  
to 3.6 V  
to 2.7 V  
to 1.95 V  
to 1.6 V  
to 1.3 V  
Typ Max  
Typ Max  
Typ  
Max  
Typ  
Max  
Typ  
Symbol  
A PORT (A )  
Parameter  
Unit  
n
OUTPUT LOAD: C = 15 pF, R 1 MW (C = 4 pF), T = −40 to 855C  
L
L
I/O  
A
t
Output Rise Time A Port  
(Note 9)  
3.0  
3.5  
3.5  
4.0  
4.0  
5.0  
5.0  
7.5  
7.5  
ns  
ns  
rise  
t
Output Fall Time A Port  
(Note 10)  
3.0  
fall  
I
Dynamic Output Current High −11.4  
(Note 9)  
−7.5  
+7.5  
−4.7  
+4.7  
−3.2  
+3.2  
−1.7  
+1.7  
mA  
mA  
OHD  
I
Dynamic Output Current Low  
(Note 10)  
+11.4  
OLD  
B PORT (B )  
n
OUTPUT LOAD: C = 15 pF, R 1 MW (C = 5 pF), T = −40 to 855C  
L
L
I/O  
A
t
Output Rise Time B Port  
(Note 9)  
3.0  
3.5  
3.5  
4.0  
4.0  
5.0  
5.0  
7.5  
7.5  
ns  
ns  
rise  
t
Output Fall Time B Port  
(Note 10)  
3.0  
fall  
I
Dynamic Output Current High −12.0  
(Note 9)  
−7.9  
+7.9  
−5.0  
+5.0  
−3.4  
+3.4  
−1.8  
+1.8  
mA  
mA  
OHD  
I
Dynamic Output Current Low  
(Note 10)  
+12.0  
OLD  
8. Dynamic output characteristics are guaranteed, but not tested.  
9. See Figure 7.  
10.See Figure 8.  
www.onsemi.com  
8
 
FXLA108  
AC CHARACTERISTICS  
V
CCB  
= 3.0 V  
V
CCB  
= 2.3 V  
V
CCB  
= 1.65 V  
V
CCB  
= 1.4 V  
V
CCB  
= 1.1 V  
to 3.6 V  
to 2.7 V  
to 1.95 V  
to 1.6 V  
to 1.3 V  
Typ  
Max  
Typ  
Max  
Typ  
Max  
Typ  
Max  
Typ  
Symbol  
Parameter  
Unit  
V
= 3.0 V to 3.6 V, T = −40 to 855C  
CCA  
A
t
, t  
A to B  
0.2  
0.2  
4.0  
4.0  
1.7  
0.5  
0.3  
0.2  
4.2  
4.1  
1.7  
0.5  
0.5  
0.3  
5.4  
5.0  
1.7  
0.5  
0.6  
0.5  
6.8  
6.0  
1.7  
1.0  
6.9  
4.5  
1.7  
1.0  
ns  
ns  
ms  
ns  
PLH PHL  
B to A  
t
, t  
/OE to A, /OE to B  
PZL PZH  
t
A Port, B Port (Note 11)  
SKEW  
V
= 2.3 V to 2.7 V, T = −40 to 855C  
CCA  
A
t
, t  
A to B  
0.2  
0.3  
4.1  
4.2  
1.7  
0.5  
0.4  
0.4  
4.5  
4.5  
1.7  
0.5  
0.5  
0.5  
5.6  
5.5  
1.7  
0.5  
0.8  
0.5  
6.9  
6.5  
1.7  
1.0  
7.0  
4.8  
1.7  
1.0  
ns  
ns  
ms  
ns  
PLH PHL  
B to A  
t
, t  
/OE to A, /OE to B  
A Port, B Port (Note 11)  
PZL PZH  
t
SKEW  
V
= 1.65 V to 1.95 V, T = −40 to 855C  
CCA  
A
t
, t  
A to B  
0.3  
0.5  
5.0  
5.4  
1.7  
0.5  
0.5  
0.5  
5.5  
5.6  
1.7  
0.5  
0.8  
0.8  
6.7  
6.7  
1.7  
0.5  
0.9  
1.0  
7.5  
7.0  
1.7  
1.0  
7.5  
5.4  
1.7  
1.0  
ns  
ns  
ms  
ns  
PLH PHL  
B to A  
t
, t  
/OE to A, /OE to B  
A Port, B Port (Note 11)  
PZL PZH  
t
SKEW  
V
= 1.4 V to 1.6 V, T = −40 to 855C  
CCA  
A
t
, t  
A to B  
0.5  
0.6  
6.0  
6.8  
1.7  
1.0  
0.5  
0.8  
6.5  
6.9  
1.7  
1.0  
1.0  
0.9  
7.0  
7.5  
1.7  
1.0  
1.0  
1.0  
8.5  
8.5  
1.7  
1.0  
7.9  
6.1  
1.7  
1.0  
ns  
ns  
ms  
ns  
PLH PHL  
B to A  
t
, t  
/OE to A, /OE to B  
A Port, B Port (Note 12)  
PZL PZH  
t
SKEW  
V
CCA  
= 1.1 V to 1.3 V, T = −40 to 855C  
A
Typ  
4.6  
6.8  
1.7  
1.0  
Typ  
4.8  
7.0  
1.7  
1.0  
Typ  
5.4  
7.4  
1.7  
1.0  
Typ  
6.2  
7.8  
1.7  
1.0  
Typ  
9.2  
9.1  
1.7  
1.0  
t
, t  
A to B  
ns  
ns  
ms  
ns  
PLH PHL  
B to A  
t
, t  
/OE to A, /OE to B  
A Port, B Port (Note 12)  
PZL PZH  
t
SKEW  
11. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (A or B ) and switching  
n
n
with the same polarity (LOW−to−HIGH or HIGH−to−LOW) (see Figure 10).  
Skew is guaranteed, but not tested.  
12.Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (A or B ) and switching  
n
n
with the same polarity (LOW−to−HIGH or HIGH−to−LOW) (see Figure 10).  
Skew is guaranteed, but not tested.  
www.onsemi.com  
9
 
FXLA108  
MAXIMUM DATA RATE (T = −40 to 85°C)  
A
V
CCB  
= 3.0 V  
V
CCB  
= 2.3 V  
V
CCB  
= 1.65 V  
V
CCB  
= 1.4 V  
V
CCB  
= 1.1 V  
to 3.6 V  
to 2.7 V  
to 1.95 V  
to 1.6 V  
to 1.3 V  
Min  
140  
120  
100  
80  
Min  
120  
120  
100  
80  
Min  
100  
100  
80  
Min  
80  
Typ  
40  
V
Unit  
Mbps  
Mbps  
Mbps  
Mbps  
CCA  
V
CCA  
V
CCA  
V
CCA  
V
CCA  
= 3.00 V to 3.60 V  
= 2.30 V to 2.70 V  
= 1.65 V to 1.95 V  
= 1.40 V to 1.60 V  
80  
40  
60  
40  
60  
60  
40  
Typ  
40  
Typ  
40  
Typ  
40  
Typ  
40  
Typ  
40  
V
CCA  
= 1.10 V to 1.30 V  
Mbps  
13.Maximum data rate is guaranteed, but not tested.  
14.Maximum data rate is specified in megabits per second (see Figure 9). It is equivalent to two times the F−toggle frequency, specified in  
megahertz. For example, 100 Mbps is equivalent to 50 MHz.  
CAPACITANCE  
Symbol  
Parameter  
Conditions  
= GND  
T = +255C Typical  
Unit  
pF  
A
C
IN  
Input Capacitance Control Pin (/OE)  
V
V
= V  
= V  
3
CCA  
CCB  
C
Input/Output Capacitance  
A
n
B
n
= 3.3 V, /OE = V  
CCA  
4
pF  
I/O  
CCA  
CCB  
5
C
pd  
Power Dissipation Capacitance  
V
CCA  
= V  
= 3.3 V, V = 0 V or V , f = 10 MHz  
25  
pF  
CCB  
I
CC  
www.onsemi.com  
10  
FXLA108  
I/O ARCHITECTURE BENEFIT  
The FXLA108 I/O architecture benefits the end user,  
beyond level translation, in the following three ways:  
only the bus hold drives the channel. The bus hold can be  
over ridden in the event of a direction change. The strong  
driver allows the FXLA108 to quickly charge and discharge  
capacitive transmission lines during dynamic mode. Static  
Auto Direction without an external direction pin.  
Drive Capacitive Loads. Automatically shifts to a higher  
current drive mode only during “Dynamic Mode” or HL /  
LH transitions.  
mode conserves power, where I is typically < 5 mA.  
CC  
Bus Hold Minimum Drive Current  
Specifies the minimum amount of current the bus hold  
driver can source/sink. The bus hold minimum drive current  
Lower Power Consumption. Automatically shifts to  
low−power mode during “Static Mode” (no transitions),  
lowering power consumption.  
(II  
) is V  
dependent and guaranteed in the DC  
HOLD  
CC  
Electrical tables. The intent is to maintain a valid output state  
in a static mode, but that can be overridden when an input  
data transition occurs.  
The FXLA108 does not require a direction pin. Instead,  
the I/O architecture detects input transitions on both side and  
automatically transfers the data to the corresponding output.  
For example, for a given channel, if both A and B side are  
at a static LOW, the direction has been established as A B,  
and a LH transition occurs on the B port; the FXLA108  
internal I/O architecture automatically changes direction  
from A B to B A.  
During HL / LH transitions, or “Dynamic Mode,” a strong  
output driver drives the output channel in parallel with a  
weak output driver. After a typical delay of approximately  
10 ns – 50 ns, the strong driver is turned off, leaving the weak  
driver enabled for holding the logic state of the channel. This  
weak driver is called the “bus hold.” “Static Mode” is when  
Bus Hold Input Overdrive Drive Current  
Specifies the minimum amount of current required (by an  
external device) to overdrive the bus hold in the event of a  
direction change. The bus hold overdrive (II , II ) is  
ODH ODL  
V
CC  
dependent and guaranteed in the DC Electrical tables.  
Dynamic Output Current  
The strength of the output driver during LH / HL  
transitions is referenced on page 8, Dynamic Output  
Electrical Characteristics, I  
, and I  
.
OHD  
OLD  
www.onsemi.com  
11  
FXLA108  
TEST DIAGRAMS  
VCC  
DUT  
C1  
R1  
Figure 3. Test Circuit  
Table 1. AC TEST CONDITIONS  
Test  
Input Signal  
Data Pulses  
0 V  
Output Enable Control  
0 V  
t
, t  
PLH PHL  
t
HIGH to LOW Switch  
HIGH to LOW Switch  
PZL  
t
V
CCI  
PZH  
Table 2. AC LOAD  
V
CCo  
C1  
R1  
1.2 V 0.1 V  
1.5 V 0.1 V  
1.8 V 0.15 V  
2.5 V 0.2 V  
3.3 V 0.3 V  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
1 MW  
1 MW  
1 MW  
1 MW  
1 MW  
VCCI  
DATA  
IN  
Vmi  
GND  
tpxx  
tpxx  
VCCO  
DATA  
OUT  
Vmo  
NOTES:  
15.Input t = t = 2.0 ns, 10% to 90%.  
R
F
16.Input t = t = 2.5 ns, 10% to 90%, at V = 3.0 V to 3.6 V only.  
R
F
I
Figure 4. Waveform for Inverting and Non−Inverting Functions  
www.onsemi.com  
12  
FXLA108  
VCCA  
GND  
OUTPUT  
CONTROL  
VmI  
t PZL  
DATA  
OUT  
VY  
VOL  
NOTES:  
17.Input t = t = 2.0 ns, 10% to 90%.  
R
F
18.Input t = t = 2.5 ns, 10% to 90%, at V = 3.0 V to 3.6 V only.  
R
F
I
Figure 5. 3−State Output Low Enable Time for Low Voltage Logic  
VCCA  
OUTPUT  
VmI  
CONTROL  
GND  
tPZH  
VOH  
VX  
DATA  
OUT  
NOTES:  
19.Input t = t = 2.0 ns, 10% to 90%.  
R
F
20.Input t = t = 2.5 ns, 10% to 90%, at V = 3.0 V to 3.6 V only.  
R
F
I
Figure 6. 3−State Output High Enable Time for Low Voltage Logic  
Table 3. TEST MEASURE POINTS  
Symbol  
V
DD  
V
MI  
(Note 21)  
V
/ 2  
/ 2  
CCI  
V
MO  
V
CCO  
V
0.9 x V  
0.1 x V  
X
CCO  
CCO  
V
Y
21.V  
= V  
for control pin /OE or V = (V  
/ 2).  
CCI  
CCA  
MI  
CCA  
www.onsemi.com  
13  
 
FXLA108  
t rise  
VOH  
80% x VCCO  
VOUT  
20% x VCCO  
VOL  
Time  
DVOUT  
Dt  
(20% * 80%) @ VCCO  
ǒ
Ǔ
ǒ
Ǔ
IOHD [ CL ) CIńO  
 
+ CL ) CIńO   
tRISE  
Figure 7. Active Output Rise Time and Dynamic Output Current High  
VOH  
t fall  
80% x VCCO  
VOUT  
20% x VCCO  
VOL  
Time  
DVOUT  
(80% * 20%) @ VCCO  
ǒ
Ǔ
ǒ
Ǔ
IOLD [ CL ) CIńO  
 
+ CL ) CIńO   
tFALL  
Dt  
Figure 8. Active Output Fall Time and Dynamic Output Current Low  
tW  
VCCI  
DATA  
VCCI / 2  
VCCI / 2  
IN  
GND  
Maximum Data Rate, f = 1 / t  
W
Figure 9. Maximum Data Rate  
VCCO  
DATA  
OUTPUT  
Vmo  
Vmo  
GND  
t skew  
t skew  
VCCO  
GND  
DATA  
OUTPUT  
Vmo  
Vmo  
NOTE:  
22.t  
= (t  
– t  
pHLmin  
) or (t  
– t  
pLHmin  
)
SKEW  
pHLmax  
pLHmax  
Figure 10. Output Skew Time  
www.onsemi.com  
14  
FXLA108  
ORDERING INFORMATION  
Part Number  
FXLA108BQX  
Operating Temperature Range  
−40 to 85°C  
Package  
Shipping  
WQFN20 4.5x2.5, 0.5P  
20−Terminal DQFN 2.5mm x 4.5mm Package  
(Pb−Free)  
3000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
15  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
WQFN20 4.5x2.5, 0.5P  
CASE 510CD  
ISSUE O  
DATE 31 AUG 2016  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13645G  
WQFN20 4.5X2.5, 0.5P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FXLA108_12

Low-Voltage Dual-Supply 8-Bit Voltage Translator with Configurable Voltage Supplies and Signal Levels, 3-State Outputs, and Auto Direction Sensing
FAIRCHILD

FXLA2203

Dual-Mode, Dual-SIM-Card Level Translator
FAIRCHILD

FXLA2203UMX

RF and Baseband Circuit, 3.40 X 2.50 MM, 0.40 MM, PLASTIC, UMLP-24
FAIRCHILD

FXLA2203UMX

双模、双 SIM 卡电平转换器
ONSEMI

FXLA2204UMX

Interface Circuit, UMLP-24
FAIRCHILD

FXLA2204UMX

双模式双 SIM 卡电平转换器
ONSEMI

FXLC95000CL

Xtrinsic FXLC95000CL Intelligent, Motion-Sensing Platform
FREESCALE

FXLC95000CLR1

Xtrinsic FXLC95000CL Intelligent, Motion-Sensing Platform
FREESCALE
ETC
ETC
ETC
ETC