FUSB15201VMNWTWG [ONSEMI]

Integrated Dual Port USB Type-C & PD Source Controller;
FUSB15201VMNWTWG
型号: FUSB15201VMNWTWG
厂家: ONSEMI    ONSEMI
描述:

Integrated Dual Port USB Type-C & PD Source Controller

光电二极管
文件: 总19页 (文件大小:591K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Dual Port USB Type-C & PD  
Controller  
24  
1
QFNW24 4x4, 0.5P  
CASE 484AU  
FUSB15201  
The FUSB15201 is a highly integrated dual port USB TypeC and  
Power Delivery Controller optimized for automotive and industrial  
power sourcing applications. The FUSB15201 enables a complete  
solution for USB power sources through optimized hardware  
peripherals and complete opensource embedded firmware all in a  
compact solution. Maximizing total system power budgets is enabled  
through both hardware and firmware of the FUSB15201.  
onsemi offers a complete opensource embedded firmware solution  
that draws inputs from various hardware peripherals and system level  
USBPD identifiers to provide the most optimal power sharing across  
ports while staying within the total power budget.  
System designers can easily tailor this algorithm to meet the specific  
needs of their end application through an easy to use API for the  
embedded firmware. The FUSB15201 also provides a completely  
USB PD3.1 compliant solution with interoperability with leading  
mobile and computing devices in the market.  
MARKING DIAGRAM  
FUSB  
FUSB15  
201DV  
ALYWG  
G
15201V  
ALYWG  
G
FUSB15201V = Specific Device Code  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
(Note: Microdot may be in either location)  
ORDERING INFORMATION  
Device  
Package Shipping  
Key Features  
FUSB15201VMNWTWG QFNW24 4,000 / Tape  
& Reel  
Small Footprint Dualport USB PD Controller Supporting  
the most Popular Peripherals  
USB PD 3.1 & USB TypeC 2.1  
I C Master/Slave  
FUSB15201DVMNWTWG QFNW24 4,000 / Tape  
& Reel  
2
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Dual USB BC1.2 Provider Emulation  
Fully Programmable and Upgradable Opensource Firmware  
providing API for Customer Specific Device Policy Manager  
Development  
High Voltage Protection on CC and D+/Pins  
Supports Firmware Upgrades via USBC  
10bit ADC for Accurate Monitoring of VBUS, External  
Temperature and Voltages  
External Temperature Monitoring via NTC Resistors  
24Pin QFNW Package (4 mm x 4 mm, 0.5 mm Pitch)  
Grade 2 AECQ100 Qualified  
These are Pbfree Devices  
Typical Applications  
Automotive  
Power Outlets  
Wall Chargers  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
August, 2022 Rev. 4  
FUSB15201/D  
FUSB15201  
Features  
Arm CortexM0+: A 32bit core with flexible clocking  
up to 24 MHz  
Memories: A total of 132 kB of flash is available to store  
program code. 6 kB of SRAM program memory.  
USB TypeC and PD: Integrated USB PD PHY and  
TypeC termination/comparators supporting latest  
USBIF specification.  
Integrated VCONN Switch: Provides the full 1.5 W  
power to interrogate cable eMarkers and power active  
cables.  
GPIOs: Fully programmable I/Os with internal  
terminations. Configurable as input or output (CMOS or  
opendrain).  
Programmable  
VBUS  
discharge:  
Internal  
programmable resistors capable of discharging up to  
100 mF  
Multiple Timers: Four independent 32bit timers are  
available: 2 General Purpose, 1 Watchdog, and 1  
Wakeup / General Purpose  
External NTC: Integrated current sources are used in  
conjunction with the ADC to monitor a variety of NTC  
resistors.  
Low Power Operation Modes: Programmable sleep  
modes allowing device to minimize power usage as  
needed. Automatic USBC detection and wakeup  
functionality from sleep modes.  
BC1.2 Support: Fully programmable USB BC1.2  
interface is capable of presenting as CDP, DCP or SDP.  
High Voltage Protection: Robust USBC connector  
interface with 28 V DC tolerant VBUS and CC. 20 V DC  
D+/for FUSB15201 and 28 V DC D+/for FUSB15201D  
ADC: Multichannel 10bit ADC for accurate  
monitoring of VBUS, external temperature and voltages.  
Automotive Ready: Grade  
2 temperature range  
performance and AECQ100 Qualified. QFN package  
2
I C: Serial communication port capable of acting as a  
with 0.5 mm pitch and wettable flank.  
host or device allowing control of external system  
peripherals by FUSB15201.  
FUSB15201 INTERNAL BLOCK DIAGRAM  
FUSB15201 Dual Port PD Controller  
ARM Cortex M0+  
Interrupts  
2x Timers, WDT, WUT  
Flash  
(132KB)  
RAM  
(6KB)  
Serial Wire Debug  
AHB  
Peripheral Bus  
TypeC Port A  
GPIOs  
I2C  
USB PD PHY  
VCONN FET w/ OCP  
BC1.2 Emulation  
TypeC Port B  
Power Management  
Internal Regulators  
Reset  
USB PD PHY  
VCONN FET w/ OCP  
BC1.2 Emulation  
2x NTC Resistor Monitoring  
Figure 1. FUSB15201 Block Diagram  
www.onsemi.com  
2
FUSB15201  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
VBUS_B  
VBUS_A  
HVCC2_A  
VDD  
HVCC2_B  
VDD  
GND  
HVCC1_B  
HVDP_B  
HVDM_B  
HVCC1_A  
HVDP_A  
HVDM_A  
Figure 2. Pin Diagram  
Table 1. FUNCTION DESCRIPTION  
Pin #  
1
Name  
VBUS_A  
Port  
Description  
Analog  
Analog  
Power  
Analog  
Analog  
Analog  
PA1  
Port A VBUS. Monitoring Discharge (28 V)  
Port A High Voltage Configuration Channel 2 (28 V)  
Power Supply  
2
HVCC2_A  
VDD  
3
4
HVCC1_A  
HVDP_A  
Port A High Voltage Configuration Channel 1 (28 V)  
Port A High Voltage USB 2.0 D+ (FUSB15201: 20 V; FUSB15201D: 28 V)  
Port A High Voltage USB 2.0 D(FUSB15201: 20 V; FUSB15201D: 28 V)  
General Purpose I/O/ Serial Wire Debug Port Clock  
General Purpose I/O/ Serial Wire Debug Port Data  
General Purpose I/O  
5
6
HVDM_A  
GPIO1/SWCK  
GPIO2/SWD  
GPIO3  
7
8
PA2  
9
PA3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
DAP  
GND  
Ground  
Power  
Input  
Ground  
VDDIO  
I/O Power Supply  
RESET_N  
HVDM_B  
HVDP_B  
Reset  
Analog  
Analog  
Analog  
Power  
Analog  
Analog  
PA4  
Port B High Voltage USB 2.0 D(FUSB15201: 20 V; FUSB15201D: 28 V)  
Port B Hight Voltage USB 2.0 D+ (FUSB15201: 20 V; FUSB15201D: 28 V)  
Port B High Voltage Configuration Channel 1 (28 V)  
Power Supply  
HVCC1_B  
VDD  
HVCC2_B  
VBUS_B  
Port B High Voltage Configuration Channel 2 (28 V)  
Port B VBUS. Monitoring Discharge (28 V)  
Port B External NTC sense Pin / General Purpose I/O  
NTC_B/GPIO4  
I2C_INT1/GPIO5  
I2C_SDA1/GPIO6  
I2C_SCL1/GPIO7  
CAP  
2
PA5  
I C Port Interrupt / General Purpose I/O  
2
PA6  
I C Port Data / General Purpose I/O  
2
PA7  
I C Port Clock / General Purpose I/O  
Analog  
PA8  
1.5V capacitor  
NTC_A/GPIO8  
GND  
Port A External NTC sense Pin / General Purpose I/O  
Ground  
Ground  
www.onsemi.com  
3
FUSB15201  
APPLICATIONS DIAGRAM  
The figure below shows a typical dual port automotive  
External NTC resistors monitor temperature at each port and  
is used for overtemperature protection or to dynamically  
change power capabilities.  
source application. The FUSB15201 communicates to the  
2
DCDC controllers via integrated I C host peripheral.  
CSN1_A  
CSP2_A CSN2_A  
CSP1_A  
NVMFS5A140PLZ  
VSW1_A  
VSW2_A  
HSG2_A  
NVTFS4C10N  
HSG1_A  
NVTFS4C10N  
SZ1SMB40  
CAT3G  
SZMM3Z1  
8VT1G  
2 x  
NSVR0240V2  
LSG 1_A  
LSG 2_A  
VCC_A  
NVTFS4C10N  
NVTFS4C10N  
EN  
BST1  
BST2  
HSG1  
V1  
HSG1_A  
LSG 1 LSG 1_A  
VCCD  
VDRV  
VCC  
HSG2  
LSG 2  
HSG2_A  
LSG 2_A  
VCC_A  
NCV81599  
PGND1  
PGND2  
CSP1  
CSN1  
CSP2  
CSN2  
FB  
CS1  
CS2  
COMP  
VSW1  
VSW2  
VBUS_A  
VSW1  
VSW2  
PDRV  
CSP1_A  
CSN1_A  
CSP2_A  
CSN2_A  
SZESD  
INT  
SDA  
SCL  
INT  
7241  
SDA  
SCL  
CLIND  
ADDR  
AGND GND  
VINT  
CC2_A  
DM_ A  
VINT  
DP_ A  
CC1_A  
Optional.  
Use LDO in low IQ applications,  
or use VCC_A or VCC_B from  
NCV81599 instead of LDO.  
4 x  
SZESD  
VI NT  
7272  
FUSB15201  
NCV8730B  
VINT  
VINT  
VINT  
LDO  
INT  
SDA  
NTC  
NTC  
SCL  
CSP2_B CSN2_B  
CSP1_B  
CSN1_B  
GPIO1  
GPIO2  
VSW1  
VSW2  
HSG2_B  
NVTFS4C10N  
HSG1_B  
NVTFS4C10N  
2 x  
LSG 2_B  
LSG 1_B  
NSVR0240V2  
NVTFS4C10N  
VCC_B  
NVTFS4C10N  
CC2_B  
DM_  
DP_  
B
B
EN  
BST1  
BST2  
HSG1  
V1  
HSG1_B  
CC1_B  
LSG 1 LSG 1_B  
VCCD  
VDRV  
VCC  
HSG2  
LSG 2  
HSG2_B  
LSG 2_B  
VCC_B  
4 x  
SZESD  
NCV81599  
PGND1  
PGND2  
CSP1  
CSN1  
CSP2  
CSN2  
FB  
VSW1_B  
VSW2_B  
VSW1  
VSW2  
7272  
CSP1_B  
CSN1_B  
CSP2_B  
CSN2_B  
PDRV  
INT  
INT  
SDA  
SCL  
SDA  
SCL  
CLIND  
ADDR  
VBUS_B  
CS1  
CS2  
COMP  
AGND GND  
SZESD  
7241  
Figure 3. Automotive Application Schematic  
www.onsemi.com  
4
FUSB15201  
ELECTRICAL SPECIFICATIONS  
Table 2. ABSOLUTE MAXIMUM RATINGS (Notes 1, 2, 3)  
Symbol  
Parameter  
Minimum  
0.3  
0.3  
0.3  
0.3  
0.5  
0.5  
0.3  
0.5  
40  
Maximum  
28  
Unit  
V
VBUS  
VBUS Pin Voltage  
V
HVCC1, HVCC2 Connector Pins  
HVDP, HVDM Connector Pins (FUSB15201)  
HVDP, HVDM Connector Pins (FUSB15201D)  
I/O Voltage  
28  
V
CONNECTOR  
V
USB  
20  
V
28  
V
VIO  
VDD  
6.0  
V
Supply Voltage  
6.0  
V
VDDIO  
VCAP  
VDDIO Supply  
6.0  
V
CAP Pin  
2.0  
V
T
J
Junction Temperature  
150  
150  
260  
°C  
°C  
°C  
kV  
V
T
STG  
Storage Temperature  
40  
TL  
Lead Temperature (Soldering, 10 Seconds)  
Human Body Model, ANSI/ESDA/JEDEC JS*001*2012 (Note 3)  
Charged Device Model, JESD22*C101 (Note 3)  
ESD  
2
HBM  
CDM  
ESD  
750  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. All voltage values, except differential voltages, are given with respect to the GND Pin.  
2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
3. Meets JEDEC standards JS0012012 and JESD 22C101.  
Table 3. RECOMMENDED ESD DEVICES  
Function  
Manufacturer  
onsemi  
Part Number  
TypeC Connector Pins ESD  
TBD  
Table 4. THERMAL RATINGS (Note 4)  
Symbol  
Parameter  
JunctiontoAmbient Thermal Resistance  
Min  
Typ  
Max  
Unit  
q
57  
°C/W  
JA  
4. T = 25°C unless otherwise specified with JEDEC 2S2P board with no thermal vias.  
A
Table 5. OPERATING RATINGS  
Symbol  
Parameter  
Min  
3.0  
3.1  
1.7  
0
Typ  
Max  
5.5  
Unit  
V
V
DD  
Supply Voltage Range  
Voltage  
3.3  
V
BUS  
V
22.05  
5.5  
V
BUS  
V
DDIO  
I/O Supply Voltage  
V
V
Communication Channel Pins  
HVDM, HVDP Pins  
5.5  
V
HVCCx  
HVUSB  
V
0
3.6  
V
2
V
IO  
GPIO, I C, RESET  
0
5.5  
V
T
A
Operating Ambient Temperature  
40  
+105  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
5
 
FUSB15201  
Table 6. ELECTRICAL CHARACTERISTICS  
Minimum and maximum values are at V = 2.8 V to 5.5 V, T = 40°C to +105°C unless otherwise noted.  
DD  
A
Typical values are at T = 25°C, V = 3.3 V  
A
DD  
TYPEC AND PD SECTION  
USB PD PHY  
TRANSMITTER  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
3.7  
Units  
μs  
UI  
Unit Interval  
3.03  
3.33  
pBitRate  
Maximum difference between  
the bitrate during the payload  
and last 32 bits of preamble  
0.25  
%
tEndDriveBMC  
tHoldLowBMC  
Time to cease driving the line after  
the end of the last bit of the Frame  
23  
μs  
μs  
μs  
Time to cease driving the line  
after the final hightolow transition  
1
tInterFrameGap Any PD transmission cannot  
be sent out before a dead time  
25  
of at least tInterFrameGap  
from receiving or sending a packet  
tFall  
tRise  
Fall Time  
Rise Time  
300  
300  
1  
ns  
ns  
μs  
tStartDrive  
Time before the start of the first bit  
of the preamble when the  
1
transmitter shall start driving the line  
vSwing  
zDriver  
BMC voltage swing  
1.05  
33  
1.125  
1.2  
75  
V
TX output impedance at 750 kHz  
with an external 220 pF  
or equivalent load  
Ω
RECEIVER  
cReceiver  
Receiver capacitance when driver  
isn’t turned on  
Vrms=0.371; Vdc=0.5 V;  
Freq.=1 MHz  
75  
pF  
tRxFilter  
Rx bandwidth limiting filter  
100  
12  
ns  
μs  
tTransitionWindow Time window for detecting nonidle  
20  
vFRSwapCableTx The Fast Role Swap Request has  
to be below this voltage threshold  
to be detected.  
490  
520  
550  
mV  
zBmcRx  
Receiver Input Impedance  
(cannot be tested but can be  
simulated and guaranteed by design)  
1
MΩ  
TYPEC FRONT END  
R
VBUS Leakage Impedance to  
ground when VBUS is not sourced  
72.4  
kΩ  
VBUSLEAK  
I
SRC 80 μA CC current (Default)  
SRC 180 μA CC current (1.5 A)  
SRC 330 μA CC current (3 A)  
Device pulldown resistance  
Powered Cable Termination  
64  
80  
96  
194  
356  
5.6  
μA  
μA  
μA  
kΩ  
Ω
80_CCX  
I
166  
304  
4.6  
180  
330  
5.1  
180_CCX  
330_CCX  
I
R
DEVICE  
R
800  
126  
1200  
A
zOPEN  
CC resistance for disabled state,  
when Vdd is valid  
kΩ  
R
Rdson for VDD to CC1  
or VDD to CC2  
I
= 0 to 600 mA,  
0.85  
1.8  
Ω
SW_CCx  
SW_CCX  
VCONN_OCP > 80 mA  
www.onsemi.com  
6
 
FUSB15201  
Table 6. ELECTRICAL CHARACTERISTICS (continued)  
Minimum and maximum values are at V = 2.8 V to 5.5 V, T = 40°C to +105°C unless otherwise noted.  
DD  
A
Typical values are at T = 25°C, V = 3.3 V  
A
DD  
Symbol  
TYPEC FRONT END  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
R
Low OCP setting Rdson  
I
= 0 to 80 mA,  
2.7  
5
Ω
SW_CCx_LOW_O  
CP  
SW_CCx  
for VDD to CC1 or VDD to CC2  
VCONN_OCP v 80 mA  
VCONN_OCP = 800 mA  
I
Over Current Protection (OCP)  
limit at which VCONN switch  
shuts off over the entire VCONN  
voltage range  
600  
5.6  
800  
1000  
mA  
SW_CCx  
V
CC1/2 OverVoltage Protection  
6.0  
V
CCx_OVP  
vRdSRCUSB  
vRdSRC1.5  
vRdSRC3.0  
vRaSRCUSB  
vRaSRC1.5  
vRaSRC3.0  
vRdSNKUSB  
vRdSNK1.5  
vRdSNK3.0  
vRaSNK  
Source attach threshold for CC Pin  
at default current  
1.5  
1.5  
1.6  
1.6  
1.65  
1.65  
2.75  
0.25  
0.45  
0.85  
0.7  
V
V
V
V
V
V
V
V
V
V
V
Source attach threshold for CC Pin  
at 1.5 A current  
Source attach threshold for CC Pin  
at 3 A current  
2.45  
0.15  
0.35  
0.75  
0.61  
1.16  
2.04  
0.15  
0.6  
2.6  
Source Ra threshold for CC Pin  
at default current  
0.2  
Source Ra threshold for CC Pin  
at 1.5 A current  
0.4  
Source Ra threshold for CC Pin  
at 3 A current  
0.8  
Attach threshold for CC Pin SNK  
(default current)  
0.66  
1.23  
2.11  
0.2  
Attach threshold for CC Pin SNK  
(1.5 A current)  
1.31  
2.18  
0.25  
0.8  
Attach threshold for CC Pin SNK  
(3 A current)  
Attach threshold for CC Pin SRC  
or SNK  
VSafe0V  
Safe Operating Voltage at 0 V  
VBUS DISCHARGE  
R
Pulldown Resistance applied to  
VBUS when selected  
VBUS = 0.8 V to 21.5 V  
VBUS = 0.8 V to 21.5 V  
VBUS = 0.8 V to 21.5 V  
VBUS = 0.8 V to 21.5 V  
VBUS = 0.8 V to 21.5 V  
VBUS = 0.8 V to 21.5 V  
315  
420  
450  
600  
585  
780  
W
VBUS DISCH 0  
VBUS DISCH 1  
VBUS DISCH 2  
VBUS DISCH 3  
VBUS DISCH 4  
VBUS DISCH 5  
R
R
R
R
R
525  
750  
975  
700  
1000  
2000  
6.00  
1300  
2600  
7.80  
1400  
4.20  
kW  
μA  
CURRENT CONSUMPTION  
I
Current consumption  
when in deep sleep  
VDD = VDDIO = 3.0 to  
5.5 V VBUS = 0 V;  
75  
SLEEPUNATTACH  
ED  
Not TypeC attached,  
DRP Toggling; LSOSC  
enabled; BC1.2 disabled  
I
Sleep Current  
VDD = VDDIO = 3.0 to  
5.5 V VBUS = 0 V;  
700  
μA  
SLEEP  
2
No I C traffic, LSOSC  
running; PD Peripheral  
and ADC enabled. No  
PD traffic.  
www.onsemi.com  
7
FUSB15201  
Table 6. ELECTRICAL CHARACTERISTICS (continued)  
Minimum and maximum values are at V = 2.8 V to 5.5 V, T = 40°C to +105°C unless otherwise noted.  
DD  
A
Typical values are at T = 25°C, V = 3.3 V  
A
DD  
Symbol  
CURRENT CONSUMPTION  
Port with PD traffic  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
I
Active and communicat-  
ing via USB PD trans-  
mitting and receiving  
packets on both ports  
4.0  
mA  
PDACTIVE  
PMU  
V
POR Trip point  
VDD Rising  
VDD Rising  
1.0  
3.0  
2.4  
V
VDD POR  
V
Minimum VDD level  
for enabling device  
VDD_GOOD  
V
VDDIO Detection Threshold used  
in asserting PMU_STS when  
VDDIO is above it.  
VDDIO Rising  
VDD Falling  
1.0  
3.0  
V
V
VDDIO_GOOD  
V
VDD Brown Out Threshold  
2.6  
VDD BRWN  
CLOCKS  
F
Low Speed Clock for Idle,  
114  
120  
24  
126  
kHz  
LS_CLK  
TypeC Attach  
F
Internal clock for Active Core  
and full function  
22.8  
25.2  
MHz  
HS_CLK  
INTERNAL TEMPERATURE PROTECTION  
T
Temperature for internal  
temperature protection  
VDD= 3.0 V to 5.5 V  
VDD= 3.0 V to 5.5 V  
145  
10  
°C  
°C  
SHUT  
T
Temp hysteresis for internal  
temperature protection  
HYS  
EXTERNAL TEMPERATURE MEASUREMENT  
I
I
Current Source on NTCA  
Current Source on NTCB  
55  
55  
60  
60  
65  
65  
μA  
μA  
NTCA  
NTCB  
BC1.2 DETECTION  
R
DCP Emulation Resistance  
VD+/D= 0 V, 1.0 V, ION  
= 2 mA  
80  
180  
Ω
DCP  
R
DP/DM pull down resistance  
DCD Source Current  
VD+/= 0 V 3.6 V  
VDD = 3.0 V to 5.5 V  
VDD = 3.0 V to 5.5 V  
VDD = 3.0 V to 5.5 V  
5mA pulled out of DP  
5mA pulled out of DM  
V(sw) = 0 V to 3.6 V  
16  
7
19.5  
10  
23  
13  
kΩ  
μA  
μA  
V
Dx_DWN  
I
DP_SRC  
I
Sink Current to Dx  
25  
75  
175  
2.85  
36  
Dx_SNK  
V
DIV  
Divider Mode Output Voltage  
Divider Mode resistance on DP  
Divider Mode resistance on DM  
2.65  
24  
2.75  
30  
R
DIVP  
DIVM  
kΩ  
kΩ  
kΩ  
R
24  
30  
36  
R
Resistor weak pulldown  
on D+ and D−  
300  
700  
1100  
DAT_LKG  
V
Source Voltage  
VDD = 3.0 V to 5.5 V  
0.5  
4.4  
288  
0.9  
0.6  
4.55  
320  
1.0  
0.7  
4.7  
352  
1.1  
V
V
Dx_SRC  
V
D+/DOverVoltage Protection  
PullUp Moisture Detection Resistor  
Dx OVP  
PU MOS  
SRC MOS  
R
kΩ  
V
V
Voltage Source for Moisture Detec-  
tion  
SERIAL WIRE DEBUG INTERFACE  
F
Serial Wire Debug  
Input Clock Frequency  
Core frequency = 24 MHz  
10  
MHz  
SWDCLK  
www.onsemi.com  
8
FUSB15201  
Table 6. ELECTRICAL CHARACTERISTICS (continued)  
Minimum and maximum values are at V = 2.8 V to 5.5 V, T = 40°C to +105°C unless otherwise noted.  
DD  
A
Typical values are at T = 25°C, V = 3.3 V  
A
DD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
SERIAL WIRE DEBUG INTERFACE  
T
Serial Wire Debug  
Data Setup timing  
0.25*(1/SWCLK)  
ns  
SWDI_SET  
T
Serial Wire Debug Data Hold Timing  
0.25*(1/SWCLK)  
0.7 x VDDIO  
ns  
V
SWDI_HOLD  
V
Serial Wire Debug  
Input voltage threshold  
VDDIO = 1.7 V to 5.5 V  
VDDIO = 1.7 V to 5.5 V  
VDDIO = 1.7 V to 5.5 V  
IHSWD  
V
0.3 x VDDIO  
+10  
ILSWD  
V
Serial Wire Debug  
Input Voltage Hysteresis  
300  
mV  
HYSSWD  
I
Serial Wire Debug Input Leakage  
VDDIO = 1.7 V to 5.5 V,  
Input Voltage 0 V to 5.5 V  
10  
μA  
LKGSWD  
V
Serial Wire Debug  
VDDIO = 1.7 V to 5.5 V,  
Iout = 2 mA  
VDDIO0.5 V  
V
V
OHSWD  
Output Voltage High  
V
Serial Wire Debug  
Output Voltage Low  
VDDIO = 1.7 V to 5.5 V,  
Iout = +4 mA  
0.4 V  
OLSWD  
RESET  
RESET_N_VIL1  
Low level input voltage  
VDD = 2.8 V to 5.5 V  
VDD = 2.8 V to 5.5 V  
0.3 x VDD  
V
V
RESET_N_VIH1 High Level Input Voltage  
0.7 x VDD  
120  
RESET_N_RPU  
Internal PullUp Resistor to VDD  
100  
kW  
μA  
RESET_N_ILKG Input Leakage  
GPIO  
VI  
High Level Input Voltage  
Low level input voltage  
Output High Voltage  
VDDIO = 1.7 V to 5.5 V  
VDDIO = 1.7 V to 5.5 V  
0.7 x VDDIO  
VDDIO0.5  
V
V
V
HGPIO  
ILGPIO  
V
0.3 x VDDIO  
0.4  
V
VDDIO = 1.7 V to 5.5 V,  
Iout = 2 mA  
OHGPIO  
V
Output Low Voltage  
VDDIO = 1.7 V to 5.5 V,  
Iout = +4 mA  
V
OLGPIO  
V
Output High Voltage  
for PA4 and PA8  
VDD = 2.8 V to 5.5 V,  
VDD – 0.5  
V
V
OHNTC  
Iout = 2 mA  
V
Output Low Voltage  
for PA4 and PA8  
VDD = 2.8 V to 5.5 V,  
Iout = +4 mA  
0.4  
OLNTC  
V
Input Hysteresis  
VDDIO = 1.7 V to 5.5 V,  
3.6 V Typ  
300  
mV  
mA  
mA  
HYSGPIO  
I
Input Leakage  
VDDIO = 1.7 V to 5.5 V,  
Input Voltage 0 V to 5.5 V  
5  
5  
5
5
INGPIO  
I
Off Input Leakage  
VDDIO = 0 V,  
VDD = 0 V to 5.5 V  
Input Voltage 0 V to 5.5 V  
OFFGPIO  
R
R
PullDown resistance  
Pullup resistance  
Pin Capacitance  
PORT_PDx = 1  
PORT_PUx = 1  
100  
100  
5
kW  
kW  
pF  
PDGPIO  
PUGPIO  
C
GPIO  
2
I C I/O  
I
VDD current when SDA or SCL  
is HIGH  
VDD = 2.8 V to 5.5,  
VIN = 1.8 V  
10  
10  
1.2  
10  
10  
μA  
μA  
V
CCTI2C  
I
Input Current of SDA and SCL Pins  
VDD = 2.8 V to 5.5,  
VI = 0 to 5.5 V  
I2C  
V
HighLevel Input Voltage  
VDD = 2.8 V to 5.5 V  
IHI2C  
www.onsemi.com  
9
FUSB15201  
Table 6. ELECTRICAL CHARACTERISTICS (continued)  
Minimum and maximum values are at V = 2.8 V to 5.5 V, T = 40°C to +105°C unless otherwise noted.  
DD  
A
Typical values are at T = 25°C, V = 3.3 V  
A
DD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
2
I C I/O  
V
LowLevel Input Voltage  
VDD = 2.8 V to 5.5 V  
VDD = 2.8 V to 5.5 V  
0.4  
0.3  
V
V
ILI2C  
V
LowLevel Output Voltage at 3mA  
Sink Current (OpenDrain)  
0
0
OL1I2C  
OL2I2C  
HYSI2C  
V
LowLevel Output Voltage at 2mA  
Sink Current (OpenDrain)  
VDD = 2.8 V to 5.5 V  
0.3  
V
V
Hysteresis of Schmitt Trigger Inputs VDD = 2.8 V to 5.5 V  
0.1  
20  
0.2  
V
I
LowLevel Output Current  
(OpenDrain)  
VDD = 2.8 V to 5.5 V,  
V_OL = 0.4 V  
(Note 5)  
mA  
OLSDA  
V
INT_N Output Low Voltage  
VDD = 2.8 V to 5.5 V,  
I_OL = 4 mA  
0.4  
50  
V
OL_INT  
C
Capacitance for Each I/O Pin  
VDD = 2.8 V to 5.5 V  
5
pF  
ns  
II2C  
t
SP  
Pulse Width of Spikes that Must Be  
Suppressed by the Input Filter  
0
V
HighLevel Input Voltage  
LowLevel Input Voltage  
VDD = 2.8 V to 5.5 V  
VDD = 2.8 V to 5.5 V  
1.2  
V
V
IH_INT  
V
0.4  
IL_INT  
FLASH  
NEND  
Sector Endurance  
Data Retention  
20,000  
Erase/  
write  
cycles  
T
DR  
T = 25°C  
T = 105°C  
T = 125°C  
100  
20  
years  
years  
years  
10  
5. (20 mA guaranteed over 40°C to 85°C)  
www.onsemi.com  
10  
 
FUSB15201  
Arm CortexM0+ Processor  
source interrupts for peripheral devices. A powerful nested,  
preemptive and priority based interrupt handling system  
assures timely and flexible response to external events.  
Low power features on FUSB15201 include the WIC,  
adjustable clock rates, and different software controlled  
power modes to maximize opportunities to save power in  
the final application.  
The FUSB15201 integrates an Arm CortexM0+  
processor with Nested Vector Interrupt Controller (NVIC),  
Wakeup Interrupt Controller (WIC), and Debug Access  
Port (DAP). The processor uses the Thumb instruction set  
and is optimized for high performance with reduced code  
size and low power operation. The Arm CortexM0+  
efficiently handles multiple parallel peripherals and has  
integrated sleep modes. Test and debug capability is  
enhanced with the Arm Serial Wire Debug Port.  
Power Management Unit  
The Power Management Unit (PMU) provides  
appropriate power to all the blocks in the FUSB15201.  
The FUSB15201 power management unit prevents  
system brownouts in case VDD voltage dips below  
the specified minimum voltage required for reliable  
operation. Firmware monitors the power supply and safely  
shuts down the system as needed.  
The Arm implementation in the FUSB15201 includes  
a 132 kB Flash RAM and 6 kB of SRAM.  
The MCU, Memory and DAP are interconnected using  
the AMBA (Advanced Microcontroller Bus Architecture)  
AHBLite interface and peripherals are connected to  
the AHB via APB interface (Advanced Peripheral Bus).  
In addition to the base Arm CortexM0+ processor  
interrupts, the FUSB15201 implements multiple external  
(2.8V5.5V)  
(1.7V5.5V)  
VDD  
VDDIO  
VDDIO Detect  
VDDIO_GOOD  
1.5V  
Regulator  
(VCORE)  
VDD/  
CAP  
BRWN  
V1P5  
VDD_GOOD  
Detect  
VDD POR  
LDO POR  
V1P5_POR  
POR  
UVLO  
UVLO  
Figure 4. FUSB15201 PMU  
Reset Sources  
The FUSB15201 has various sources of reset including:  
Watchdog Timer Reset – The watchdog timer reset  
is caused by the watchdog timeout and is used to prevent  
errant software from locking up the device. The watchdog  
reset resets the entire chip including core, debug port,  
peripherals, and watchdog. The watchdog timer  
is disabled upon power up and must be enabled  
by software. The watchdog is not paused when the  
debugger halts the processor.  
External Pin Reset – The external reset is under user  
control with the external RESET_N Pin. External pin  
reset resets the entire chip including core, debug port,  
peripherals, wakeup timer, and watchdog.  
Internal PowerOn Reset (VDD_POR)  
– The  
VDD_POR reset asserts when the regulated supply is  
below threshold levels for proper operation. The  
VDD_POR resets the entire chip including core, debug  
port, peripherals, wakeup timer, and watchdog.  
Software Issued Reset – The software reset can be called  
by writing to a given register in the Cortex address space.  
It is typically called on exit from a processor exception.  
Software reset resets the entire chip including core,  
peripherals, wakeup timer, and watchdog.  
www.onsemi.com  
11  
FUSB15201  
Power and Sleep Behavior  
Serial Wire Debug Interface (SWD)  
The FUSB15201 has been optimized to conserve power  
by utilizing peripheral interrupts and hardware autonomy.  
The device can be configured via firmware to enter low  
power states, disable unneeded peripherals and scale clock  
frequencies based on different application needs.  
The TypeC block is designed to function at the lowest  
power states and will automatically wake when a TypeC  
attach is detected. This minimizes total power consumption  
when no device is attached.  
The Arm M0+ implementation includes a Debug Access  
Port (DAP). The debug mode implementation includes  
4 hardware breakpoints and 2 hardware watch points.  
The Debug Access Port interface implementation is  
the Arm Serial Wire Debug Port (SWDAP) connected  
to Pins SWCLK and SWDIO. The Serial Wire Debug Port  
Interface uses a single bidirectional data connection. Each  
operation consists of three phases: Packet request,  
Acknowledge response, and Data transfer phase. Use any  
Serial Wire Debug (SWD) compliant hardware debugger  
interface to interact with the internals of the FUSB15201.  
Clock Sources  
FUSB15201’s implements a dual oscillator architecture  
to minimize power consumption.  
A 24 MHz internal RC oscillator to enable full  
functionality.  
A 120 kHz internal RC oscillator that can be used for very  
low power sleep modes.  
TIMERS  
32bit General Purpose Timers (TIM0/1)  
There are two 32bit downcounters that generate  
interrupts and status when the counter reaches 0. The timing  
resolution depends on the programmable clock source and  
prescale ratios.  
32bit Wakeup Timer (WUT)  
The main purpose of the wakeup timer is to facilitate  
scheduled exit from low power modes. It can also be used  
for general purpose event timing.  
32bit Watchdog Timer (WDT)  
The watchdog timer applies a reset to the system in the  
event of a software failure, providing a way to recover  
from software crashes. The watchdog timer is disabled  
by default and must be enabled through software.  
The watchdog is protected with a lock mechanism  
to prevent rogue software from disabling the watchdog  
functionality. A special value has to be written to the lock  
register to access watchdog control. The watchdog timer is  
clocked from the same oscillator as the core, which can be  
LS_CLK or HS_CLK.  
www.onsemi.com  
12  
FUSB15201  
USB TypeC & PD Peripheral Overview  
The USB TypeC and PD peripheral is a fully compliant  
USB TypeC and PD solution.  
This peripheral consists of an analog front end and a  
digital state machine. Firmware implements the higher level  
protocol and policy layers whereas the analog and digital  
components can perform lower level PD protocol and PHY  
layer functions.  
The TypeC block includes all terminations and  
comparators required for Source/Sink/DRP operation: plug  
orientation detection, power capability advertisement  
and power role detection. If no VDD is applied, the CC Pins  
are high impedance.  
VCONN Switch  
VDD  
TypeC Terminations  
CC1  
CC2  
vdd  
CC State Machine &  
Comparators  
LV REG  
USB PD PHY  
Timers  
ADC  
BMC  
Rcvr  
ARM  
M0+  
BMC  
DRIVER  
CRC32Tx  
BMC  
4B5B  
SRAM  
6KB  
Encode  
TypeC  
USB PD  
CDR  
BMC  
4B5B  
Decode  
Flash  
132KB  
CRC32Rx  
Figure 5. USB TypeC and PD  
VCONN Switch  
VBUS Discharge  
Some applications require that a VCONN voltage be  
sourced in order to provide additional capabilities, such as  
greater than 3 A VBUS sourcing or support for fullfeatured  
TypeC cables.  
The FUSB15201 can provide 1.5 W or more depending on  
VDD level.  
The FUSB15201 is able to discharge VBUS via selectable  
pulldown resistors.  
Typical source applications will rely on the DCDC  
converter to transition between VBUS voltages.  
If the application requires the FUSB15201 to discharge  
VBUS, the firmware may select the proper resistance  
of the discharge. Selection of discharge resistance needs to  
take into account any capacitive load on VBUS as not to  
violate VsrcSlewNeg in the USB PD spec (30 mV/ms).  
Source applications, where the FUSB15201 internal  
discharge is utilized, will have to isolate any large bulk  
capacitances in order to prevent extreme internal  
temperature rises. Typical isolated source capacitances  
are around 4.7 mF.  
USB PD PHY State Machine Logic  
The FUSB15201 PD module includes the following  
digital functions to enable USB PD messaging:  
Serialization and deserialization  
Clock and data recovery (CDR)  
4B5B coding  
BMC coding  
The FUSB15201 is capable of discharging up to 100 mF  
from VBUS in the entire operating range.  
Packet CRC generation and checking  
Coding and detection of Power Delivery KCodes  
Automatic GoodCRC packet response  
www.onsemi.com  
13  
FUSB15201  
Connector Moisture Detection  
INTERNAL PROTECTION  
If moisture or pollutants are present in the connector  
and the device provides VBUS, there could be a resistive  
short between VBUS and other connector Pins.  
The FUSB15201 provides a method to detect if there is  
moisture or other pollutants in the connector.  
The FUSB15201 integrates multiple system level  
protections to enable robust designs.  
VCONN OverCurrent Protection  
Each port’s VCONN Switch provides overcurrent  
detection and protection for the switch that is enabled based  
on the TypeC orientation and can be software configured  
based on application needs. The level of OCP can be  
controlled via a register setting.  
Moisture detection can be turned on or off as not  
to conflict with cable attach detection.  
VSRC_MOS  
In case of an overcurrent event the switch will be opened.  
RPU_MOS  
CC, DP, DM OverVoltage Protection  
Overvoltage protection on connector Pins protects  
the internal circuitry damage from high voltages.  
Interrupts can be used to inform the software that an OVP  
event has occurred and take appropriate actions.  
To ADC  
HVDP  
OVP  
Figure 6. Moisture Detection  
Internal Over Temperature Protection  
Internal over temperature protection is always on. Two  
potential sources of elevated internal temperature are:  
High Current through VCONN Switch  
High current through VBUS discharge  
Port Control and GPIOs  
The FUSB15201 includes a number of Pins that can be  
configured to be used as standard GPIO or for use with  
2
a dedicated peripheral such as I C. A subset of these Pins  
In either case, if the over temperature is triggered  
(T > Tshut), both ports’ VCONN switches and VBUS  
discharge circuitry will be disabled.  
can also be connected as an input to the ADC. Internal  
pullup/down resistors are programmable. Pullup resistors  
are always connected to VDDIO.  
VDDIO  
RPU  
PORT_PUx  
Analog  
Peripheral  
GPIO  
MUX  
PAx  
PORT_PDx  
PORT_CFGx  
RPD  
GND  
Figure 7. Typical Port Configuration  
www.onsemi.com  
14  
FUSB15201  
External Temperature Measurements  
When the PORT is configured as GPIOs it will have  
the following capabilities:  
Bidirectional capability  
Push pull or open drain configuration  
Individually configurable interrupt lines  
Rising or Falling edge interrupt  
High or Low level interrupt  
There are two Pins that can be configured to monitor  
external NTC resistors that can be located near where high  
temperature devices are located. A parallel resistor is  
recommended for measurement linearity.  
These NTC measurements are useful for reporting Source  
temperatures to a Sink device via FUSB15201 provided PD  
Status messages. Other uses include protection due  
to excessive thermals and dynamic power capabilities  
reduction.  
Firmware implementation of the external temperature  
measurements make NTC selection flexible.  
The pullup current sources INTCA and INTCB provide  
a bias to the external NTC resistor networks. If desired, this  
current source may be turnedoff.  
The port mapping and power domain is shown in the table  
below:  
Table 7. PIN PORT CONFIGURATION  
AND POWER DOMAIN  
Power  
Domain  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDD  
Pin #  
Name  
GPIO1  
SWCK  
GPIO2  
SWD  
Port  
7
PA1  
INTCA  
8
PA2  
ADC_CH3  
NTC_A/GPIO8  
MUX  
GPIO  
R_PAR  
9
GPIO3  
GPIO4  
NTC_B  
I2C_INT  
GPIO5  
I2C_SDA  
GPIO6  
I2C_SCL  
GPIO7  
GPIO8  
NTC_A  
PA2  
PA4  
R_NTC  
19  
PORT_CONFIG  
VDD  
INTCB  
20  
21  
22  
24  
PA5  
PA6  
PA7  
PA8  
VDD  
ADC_CH7  
VDDIO  
VDD  
NTC_B/GPIO4  
MUX  
GPIO  
R_PAR  
R_NTC  
VDDIO  
VDD  
PORT_CONFIG  
VDDIO  
VDD  
VDD  
Figure 8. External NTC Diagram  
www.onsemi.com  
15  
FUSB15201  
BC1.2 Support  
I2C  
The FUSB15201 is capable of emulating and detecting  
BC1.2 and Divider Mode.  
The following modes are supported:  
The FUSB15201’s serial interface is compatible with  
2
Standard, Fast, and Fast Mode Plus I C bus specifications.  
2
The I C peripheral can be configured for either host or  
device modes.  
SDP  
CDP  
DCP  
Bus Timing  
As shown in figure below, for data bits, SDA must be  
stable while SCL is HIGH. SDA may only transition when  
SCL is LOW. Data is clocked in on the rising edge of SCL.  
Typically, data transitions shortly at or after the falling edge  
of SCL to allow ample time for the data to set up before the  
next SCL rising edge.  
2.4 A Divider Mode (Provider only)  
The analog circuitry is firmware configurable for the  
function required by the application and follows the final  
BC1.2 specification.  
V
IL =  
0.3 V  
DD  
V
IH =  
0.7 V  
DD  
Figure 9. I2C Bus Timing Definition  
Each bus transaction begins and ends with SDA and SCL  
HIGH. A transaction begins with a START condition, which  
is defined as SDA transitioning from 1 to 0 with SCL HIGH.  
During a read from the FUSB15201, the host issues  
a Repeated Start after sending a data command and before  
resending the device address. The Repeated Start is a 1to0  
transition on SDA while SCL is HIGH.  
A transaction ends with a STOP condition, which is  
defined as SDA transitioning from 0 to 1 with SCL HIGH.  
1
2
Bus timing referenced from I Cbus specification Rev. 6 – 4 April 2014  
www.onsemi.com  
16  
FUSB15201  
ADC  
voltages, two NTC temperature channels, two D+/DBC1.2  
The FUSB15201 allows for up to 12 signals to be  
measured and converted using the internal 10bit ADC.  
For most applications, this will consist of two VBUS  
and, optionally, two CC1/2 ports. The table below shows  
the typical FUSB15201 configuration along with the  
expected settings for the ADC module.  
Table 8. ADC CONFIGURATION  
ADC Channel  
Pin Measurement  
Resolution  
10 mV  
20 mV  
40 mV  
4 mV  
Range  
Full Scale Voltage  
1.024 V  
2.048 V  
4.096 V  
4.096 V  
4.096 V  
1.28 V  
0
VBUS_A  
0 V to 10.23 V  
0 V to 20.46 V  
0 V to 40.92 V  
0 V to 4.096 V  
0 V to 4.096 V  
0°C to 160°C  
0 V to 4.096 V  
0 V to 4.096 V  
0 V to 10.23 V  
0 V to 20.46 V  
0 V to 40.92 V  
0 V to 4.096 V  
0 V to 4.096 V  
0°C to 160°C  
0 V to 4.096 V  
0 V to 4.096 V  
1
2
3
4
5
6
DP_A  
DM_A  
4 mV  
NTC1 Temperature  
HVCC1_A  
HVCC2_A  
VBUS_B  
1°C  
4 mV  
4.096 V  
4.096 V  
1.024 V  
2.048 V  
4.096 V  
4.096 V  
4.096 V  
1.28 V  
4 mV  
10 mV  
20 mV  
40 mV  
4 mV  
7
8
DP_B  
DM_B  
4 mV  
9
NTC2 Temperature  
HVCC1_B  
1°C  
10  
11  
4 mV  
4.096 V  
4.096 V  
HVCC2_B  
4 mV  
Development Tools  
FUSB15201 is supported by a full suite of comprehensive  
Specifications References  
Universal Serial Bus Power Delivery specification  
revision 3.1 Version 1.3, dated January 2022  
Universal Serial Bus Type C Cable and Connection  
Specification release 2.1, dated May 2021  
tools including:  
An easytouse development board  
Software Development Kit (SDK) including:  
USB PD protocol stacks, shared capacity algorithms,  
sample code, libraries, and documentation  
USB Battery Charging Specification, revision 1.2,  
dated December 7, 2010  
2
I Cbus specification Rev. 6 – 4 April 2014  
Arm, Cortex, and the Arm logo are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere.  
onsemi is licensed by the Philips Corporation to carry the I2C bus protocol.  
www.onsemi.com  
17  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
QFNW24 4x4, 0.5P  
CASE 484AU  
ISSUE O  
DATE 07 AUG 2020  
GENERIC  
MARKING DIAGRAM*  
XXXX = Specific Device Code  
= Assembly Location  
WL = Wafer Lot  
= Year  
WW = Work Week  
*This information is generic. Please refer to  
A
XXXXXX  
XXXXXX  
AWLYWW  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
Y
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON24253H  
QFNW24 4x4, 0.5P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FUSB155

Radial Leaded PTC FUSB Series
DBLECTRO

FUSB155F

Radial Leaded PPTC FUSB Series
RFE

FUSB160

Radial Leaded PTC FUSB Series
DBLECTRO

FUSB160F

Radial Leaded PPTC FUSB Series
RFE

FUSB185

Radial Leaded PTC FUSB Series
DBLECTRO

FUSB185F

Radial Leaded PPTC FUSB Series
RFE

FUSB250

Radial Leaded PTC FUSB Series
DBLECTRO

FUSB2500

USB2.0 High-Speed OTG Transceiver with ULPI Interface
FAIRCHILD

FUSB2500GFX

USB2.0 High-Speed OTG Transceiver with ULPI Interface
FAIRCHILD

FUSB250F

Radial Leaded PPTC FUSB Series
RFE

FUSB252

Type-C CC with High Speed Digital Port Protection Switch
ONSEMI

FUSB252UMX

Type-C CC with High Speed Digital Port Protection Switch
ONSEMI