FSA3200UMX-F106 [ONSEMI]

两端口,高速 USB2.0 开关,带 Mobile High-Definition Link;
FSA3200UMX-F106
型号: FSA3200UMX-F106
厂家: ONSEMI    ONSEMI
描述:

两端口,高速 USB2.0 开关,带 Mobile High-Definition Link

开关
文件: 总14页 (文件大小:688K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductor  
Is Now  
To learn more about onsemi™, please visit our website at  
www.onsemi.com  
onsemi andꢀꢀꢀꢀꢀꢀꢀand other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or  
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi  
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without  
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,  
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,  
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/  
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application  
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized  
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for  
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and holdonsemi and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative  
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.  
FSA3200 —Two-Port, High-Speed USB2.0 Switch with  
Mobile High-Definition Link (MHL™)  
Features  
Description  
.
Low On Capacitance: 2.7 pF / 3.1 pF MHL / USB  
(Typical)  
The FSA3200 is a bi-directional, low -pow er, tw o-port,  
high-speed, USB2.0 and video data sw itch. Configured  
as a double-pole, double-throw (DPDT) sw itch for data  
and a single-pole, double-throw (SPDT) sw itch for ID; it  
is optimized for sw itching betw een high- or full-speed  
USB and Mobile Digital Video sources (MDV), including  
supporting the MHL™ Rev. 2.0 specification.  
.
.
.
.
.
.
Low Pow er Consumption: 30μA Maximum  
Supports MHL Rev. 2.0  
MHL Data Rate: 4.68 Gbps  
VBUS Pow ers Device w ith No VCC  
Packaged in 16-Lead UMLP (1.8 x 2.6 mm)  
The FSA3200 contains special circuitry on the sw itch  
I/O pins, for applications w here the VCC supply is  
pow ered off (VCC=0), that allow s the device to w ithstand  
an over-voltage condition. This sw itch is designed to  
minimize current consumption even w hen the control  
voltage applied to the control pins is low er than the  
supply voltage (VCC). This feature is especially valuable  
to mobile applications, such as cell phones, allow ing  
direct interface w ith the general-purpose I/Os of the  
baseband processor. Other applications include  
sw itching and connector sharing in portable cell phones,  
digital cameras, and notebook computers.  
Over-Voltage Tolerance (OVT) on all USB Ports  
Up to 5.25 V w ithout External Components  
Applications  
.
Cell Phones and Digital Cameras  
Ordering Information  
Part Number Top Mark Operating Temperature Range  
Package  
16-Lead, Ultrathin Molded Leadless Package  
(UMLP), 1.8 x 2.6 mm  
FSA3200UMX  
GB  
-40 to +85°C  
Figure 1. Analog Symbol  
All trademarks are the property of their respective owners.  
© 2010 Semiconductor Components Industries, LLC.  
November-2017, Rev. 2  
Publication Order Number:  
FSA3200/D  
Switch Power Operation  
In normal operation, the FSA3200 is pow ered from the  
VCC pin, w hich typically is derived from a regulated  
pow er management device. In special circumstances,  
such as production test or system firmw are upgrade, the  
device can be pow ered from the VBUS pin. In this mode  
of operation, a valid VBUS voltage is present (per USB2.0  
specification) and VCC=0 V, typically due to a no-battery  
condition. With the SELn pins strapped LOW (via  
external resistor), the FSA3200 closes the USB path,  
enabling the initial programming of the system directly  
f rom the USB connector. Once the system has normal  
operating supply pow er w ith VCC present, the VBUS  
supply is not utilized and normal sw itch operation  
commences. Optionally, the Pow er Select Override  
(PSO) pin can be set HIGH to force the device to be  
pow ered from VBUS  
.
The VBUS / VCC detection capability is not intended to be  
an accurate determination of the voltages present,  
rather a state condition detection to determine w hich  
supply should be used. These state determinations rely  
on the voltage conditions as described in the Electrical  
Characterization tables below .  
VBUS  
VCC  
PSO  
Switch  
Power  
Selection  
Switch  
Power  
Source  
Charge Pump  
& Regulator  
Switch  
Power  
Figure 2. Simplified Logic of Switch Power Selection Circuit  
Table 1. Switch Power Selection Truth Table  
VCC  
0
VBUS  
PSO(1)  
Switch Power Source  
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
No sw itch pow er, sw itch paths high-Z  
0
VBUS  
1
VCC  
1
VCC  
0
No sw itch pow er, sw itch paths high-Z  
0
VBUS  
(2)  
1
VCC  
1
VBUS  
Note s:  
1. Control inputs should never be left floating or unconnected. If the PSO function is used, a w eakpull-up resistor  
(3 MΩ) should be used to minimize static current draw . If the PSO function is not used, tie directly to GND.  
2. PSO control is overridden w ith no VBUS and the pow er selection is sw itched to VCC  
.
Table 2. Data Switch Select Truth Table  
SEL1(3)  
SEL2(3)  
Function  
0
0
1
1
0
1
0
1
D+/D- connected to USB+/USB-, IDCO connected to IDUSB  
D+/D- connected to USB+/USB-, IDCOM connected to IDMDV  
D+/D- connected to MDV +/MDV-, IDCOM connected to IDUSB  
D+/D- connected to MDV +/MDV-, IDCOM connected to IDMDV  
Note:  
3. Control inputs should never be left floating or unconnected. To guarantee default sw itch closure to the USB  
position, the SEL pins should be tied to GND w ith a w eakpull- dow n resistor (3 MΩ) to minimize static current draw .  
www.onsemi.com  
2
 
 
 
Pin Configuration  
16  
15  
14  
13  
GND  
1
2
3
12  
11  
IDUSB  
MDV+  
MDV-  
SEL2  
D+  
D-  
10  
9
4
PSO  
5
6
7
8
Figure 3. Pin Assignments (Top-Through View)  
Pin Definitions  
Pin#  
Name  
Description  
1
2
GND  
D+  
Ground  
Data Sw itch Output (Positive)  
Data Sw itch Output (Negative)  
Pow er Select Override  
Data Sw itch Select  
3
D-  
4
PSO  
SEL1  
USB-  
USB+  
GND  
SEL2  
MDV -  
MDV+  
IDUSB  
IDMDV  
IDCOM  
VBUS  
VCC  
5
6
USB Differential Data (Negative)  
USB Differential Data (Positive)  
Ground  
7
8
9
ID Sw itch Select  
10  
11  
12  
13  
14  
15  
16  
MDV Differential Data (Negative)  
MDV Differential Data (Positive)  
ID Sw itch MUX Output for USB  
ID Sw itch MUX Output for MDV  
ID Sw itch Common  
Device Pow er w hen VCC Not Available  
(4)  
Device Pow er from System  
Note:  
4. Device automatically sw itches f rom V BUS w hen valid VCC minimum voltage is present.  
www.onsemi.com  
3
 
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
VCC, VBUS  
VCNTRL  
Parameter  
Min.  
-0.5  
Max.  
5.5  
Unit  
V
Supply Voltage  
DC Input Voltage (SELn, PSO)(5)  
DC Sw itch I/O Voltage(5)  
-0.5  
VCC  
5.25  
V
(6)  
VSW  
-0.50  
-50  
V
DC Input Diode Current  
I
IK  
mA  
mA  
°C  
DC Output Current  
IOUT  
TSTG  
MSL  
100  
+150  
1
Storage Temperature  
-65  
Moisture Sensitivity Level (JEDEC J-STD-020A)  
Human Body Model, JEDEC: JESD22-A114  
IEC 61000-4-2, Level 4, for D+/D- and VCC Pins (7)  
IEC 61000-4-2, Level 4, for D+/D- and VCC Pins (7)  
Charged Device Model, JESD22-C101  
All Pins  
Contact  
Air  
3.5  
8.0  
ESD  
kV  
15.0  
2.0  
Note s:  
5. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.  
6. VSW refers to analog data sw itch paths (USB, MDV , and ID).  
7. Testing performed in a system environment using TVS diodes.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor  
does not recommend exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
VBUS  
Parameter  
Supply Voltage Running f rom V BUS Voltage  
Supply Voltage Running from VCC  
Min.  
4.20  
2.7  
Max.  
5.25  
4.5  
Unit  
V
VCC  
V
tRAMP(VBUS) Pow er Supply Slew Rate from VBUS  
tRAMP(VCC) Pow er Supply Slew Rate from VCC  
100  
100  
1000  
1000  
336  
µs/V  
µs/V  
C°/W  
V
ΘJA  
Thermal Resistance  
VCNTRL  
VSW(USB)  
VSW(MDV)  
TA  
Control Input Voltage (SELn, PSO)(8)  
Sw itch I/O Voltage (USB and ID Sw itch Paths)  
Sw itch I/O Voltage (MDV Sw itch Path)  
Operating Temperature  
0
4.5  
-0.5  
1.65  
-40  
3.6  
V
3.45  
+85  
V
°C  
Note :  
8. The control inputs must be held HIGH or LOW; they must not float.  
www.onsemi.com  
4
 
 
 
 
DC Electrical Characteristics  
All typical value are at TA=25°C unless otherw ise specified.  
TA=- 40ºC to +85ºC  
Min. Typ. Max.  
-1.2  
Symbol  
Parameter  
Condition  
VCC (V)  
Unit  
VIK  
VIH  
Clamp Diode Voltage  
I =-18 mA  
2.7  
V
V
IN  
Control Input Voltage High  
SELn, PSO  
2.7 to 4.3 1.25  
2.7 to 4.3  
VIL  
Control Input Voltage Low  
Control Input Leakage  
SELn, PSO  
0.6  
1
V
VSW=0 V to 3.6 V,  
VCNTRL=0 V to 1.98 V  
I
IN  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
0
-1  
-1  
µA  
Off-State Leakage for Open  
MDV Data Paths  
VSW=1.65 V MDV  
3.45 V  
IOZ(MDV)  
IOZ(USB)  
IOZ(ID)  
1
1
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Off-State Leakage for Open  
USB Data Paths  
VSW=0 V USB 3.6 V  
VSW=0 V ID 3.6 V  
-1  
Off-State Leakage for Open ID  
Data Path  
-0.5  
-1  
0.5  
1
On-State Leakage for Closed  
MDV Data Paths(9)  
V
SW=1.65 V MDV  
3.45 V  
ICL(MDV)  
ICL(USB)  
ICL(ID)  
On-State Leakage for Closed  
USB Data Paths(9)  
-1  
1
V
V
SW=0 V USB 3.6 V  
SW=0 V ID 3.6 V  
On-State Leakage for  
Closed(9) ID Data Path  
-0.5  
-1  
0.5  
1
Pow er-Off Leakage Current  
(All I/O Ports)  
IOFF  
VSW=0 V or 3.6 V, Figure 5  
HS Sw itch On Resistance  
(USB to D Path)  
VSW=0.4 V, ION=-8 mA  
Figure 4  
RON(USB)  
RON(MDV)  
RON(ID)  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
4.3  
4.3  
3.9  
5
6.5  
HS Sw itch On Resistance  
(MDV to D Path)  
VSW=VCC-1050mV,  
ION=-8mA , Figure 4  
LS Sw itch On Resistance  
(ID Path)  
VSW=3V, ION=-8mA  
Figure 4  
12  
Difference in RON Betw een  
MDV Positive-Negative  
VSW=VCC-1050 mV,  
ION=-8 mA, Figure 4,  
RON(MDV)  
RON(USB)  
RON(ID)  
0.03  
0.18  
0.4  
1
Difference in RON Betw een  
USB Positive-Negative  
VSW=0.4 V, ION=-8 mA  
Figure 4  
Difference in RON Betw een ID VSW=3 V, ION=-8 mA  
Sw itch Paths  
Figure 4  
VSW=1.65 V to 3.45 V,  
ION=-8 mA , Figure 4  
RONF(MDV) Flatness for RON MDV Path  
VBUS=5.25 V, VCNTRL=0 V or  
1.98 V, IOUT=0  
IVBUS  
ICC  
Note :  
VBUS Quiescent Current  
VCC Quiescent Current  
100  
30  
µA  
VBUS=0 V, VCNTRL=0 V or  
1.98 V, IOUT=0  
µA  
9. For this test, the data sw itch is closed w ith the respective sw itch pin floating.  
www.onsemi.com  
5
 
AC Electrical Characteristics  
All typical value are for VCC=3.3 V and TA=25°C unless otherw ise specified.  
TA=- 40ºC to +85ºC  
Min. Typ. Max.  
Symbol  
Parameter  
Condition  
VCC (V)  
Unit  
RL=50 Ω, CL=5 pF,  
VSW(USB)=0.8 V,  
VSW(MDV)=3.3 V,  
Figure 6, Figure 7  
Turn-On Time,  
SELn to Output  
tON  
2.7 to 3.6  
445  
600  
300  
ns  
RL=50 Ω, CL=5 pF,  
VSW(USB)=0.8 V, VSW(MDV)=3.3V, 2.7 to 3.6  
Figure 6, Figure 7  
Turn-Off Time,  
SELn to Output  
tOFF  
125  
ns  
ns  
ns  
CL=5 pF, RL=50 ,  
2.7 to 3.6  
tPD  
Propagation Delay(10)  
Break-Before-Make(10)  
0.25  
Figure 6, Figure 8  
RL=50 Ω, CL=5 pF,  
VID=VMDV=3.3 V, VUSB=0.8 V,  
tBBM  
2.7 to 3.6  
2.0  
13  
Figure 10  
VS=1 Vpk-pk, RL=50 Ω,  
f=240 MHz, Figure 12  
OIRR(MDV)  
OIRR(USB)  
XtalkMDV  
2.7 to 3.6  
2.7 to 3.6  
2.7 to 3.6  
-45  
-38  
-44  
dB  
dB  
dB  
Off Isolation(10)  
VS=400m Vpk-pk, RL=50Ω,  
f=240MHz, Figure 12  
VS=1 Vpk-pk, RL=50 Ω,  
f=240 MHz, Figure 13  
Non-Adjacent Channel(10)  
Crosstalk  
VS=400 mV pk-pk, RL=50 Ω,  
f=240 MHz, Figure 13  
XtalkUSB  
2.7 to 3.6  
-39  
dB  
VIN=1 Vpk-pk, MDV Path,  
RL=50 Ω, CL=0 pF,  
2.34  
Figure 11, Figure 16  
GHz  
MHz  
Differential -3 db  
Bandw idth(10)  
VIN=400 mVpk-pk, USB Path,  
RL=50 Ω, CL=0 pF,  
Figure 11, Figure 17  
BW  
2.7 to 3.6  
1.59  
100  
ID Path, RL=50 Ω, CL=0 pF,  
Figure 11  
Note :  
10. Guaranteed by characterization.  
www.onsemi.com  
6
 
USB High-Speed AC Electrical Characteristics  
Typical values are at TA= -40ºC to +85ºC.  
Symbol  
Parameter  
Condition  
VCC (V)  
3.0 to 3.6  
3.0 to 3.6  
Typ. Unit  
Skew of Opposite Transitions of the Same  
Output(11)  
tSK(P)  
CL=5 pF, RL=50 Ω, Figure 9  
3
ps  
ps  
RL=50 Ω, CL=5 pf,  
tR=tF=500 ps (10-90%) at  
480 Mbps, PN7  
tJ  
Total Jitter(11)  
15  
Note:  
11. Guaranteed by characterization.  
MDV AC Electrical Characteristics  
Typical values are at TA= -40ºC to +85ºC.  
Symbol  
Parameter  
Condition  
VCC (V) Typ. Unit  
Skew of Opposite Transitions of the Same  
Output(12)  
tSK(P)  
RPU=50 to VCC, CL=0 pF  
3.0 to 3.6  
3.0 to 3.6  
3
ps  
ps  
Total Jitter(12)  
15  
f=2.25 Gbps, PN7,  
RPU=50 to VCC, CL=0 pF  
tJ  
Note:  
12. Guaranteed by characterization.  
Capacitance  
Typical values are at TA= -40ºC to +85ºC.  
Symbol  
Parameter  
Condition  
Typ. Unit  
C
Control Pin Input Capacitance(13)  
VCC=0 V, f= 1 MHz  
1.5  
3.1  
IN  
CON(USB) USB Path On Capacitance(13)  
COFF(USB) USB Path Off Capacitance(13)  
CON(MDV) MDV Path On Capacitance(13)  
COFF(MDV) MDV Path Off Capacitance(13)  
VCC=3.3 V, f=240 MHz, Figure 15  
VCC=3.3 V, f=240 MHz, Figure 14  
VCC=3.3 V, f=240 MHz, Figure 15  
VCC=3.3 V, f=240 MHz, Figure 14  
1.6  
2.7  
1.1  
pF  
Note:  
13. Guaranteed by characterization.  
www.onsemi.com  
7
 
 
 
Test Diagrams  
Note:  
14. HSD refers to the high-speed data USB or MDV paths.  
VON  
IDn(OFF)  
NC  
A
HSD  
n
Dn  
V
SW  
V
SW  
Select  
GND  
ION  
GND  
GND  
V
Sel= 0 orVcc  
Select  
**Each switch port is tested separately  
V
Sel= 0 orVC  
R
= VO / ION  
O
Figure 4. On Resistance  
Figure 5. Off Leakage  
tRISE= 2.5ns  
tF ALL = 2.5ns  
V
CC  
90%  
90%  
V
GND  
Input–V , V  
SEL1  
SEL  
V
CNTRL-HI  
CNTRL-HI  
10%  
10%  
90%  
GND  
V
OH  
90%  
Output- V  
OUT  
VO L  
tON  
tOFF  
Figure 6. AC Test Circuit Load  
Figure 7. Turn-On / Turn-Off Waveforms  
tRISE  
tFALL  
= 500ps  
= 500ps  
+400mV  
-400mV  
400mV  
90%  
0V  
90%  
50%  
50%  
Input  
0V  
10%  
10%  
tPLH  
tPHL  
VOH  
Output  
50%  
50%  
Output  
VOL  
tPHL  
tPLH  
Figure 8. Propagation Delay (tRtF – 500 ps)  
Figure 9. Intra-Pair Skew Test tSK(P)  
www.onsemi.com  
8
 
 
 
 
 
 
Test Diagrams (Continued)  
tRISE = 2.5ns  
Vcc  
HSD  
n
90%  
Vcc/2  
Dn  
C
Input -  
V
V
Sel  
SW1  
10%  
0V  
VOUT  
GND  
L
R
V
L
SW2  
VOUT  
GND  
0.9*Vout  
GND  
0.9*Vout  
R
S
tBBM  
V
Sel  
RL , R and CL are function of application  
GND  
S
environment (see AC Tables for specific values)  
CL includes test fixture and stray capacitance  
Figure 10. Break -Before -Make Interval Timing  
Network Analyzer  
Network  
Analyzer  
Network Analyzer  
FSA3200  
R
S
R
S
V
S
V
V
IN  
IN  
V
OUT  
V
GND  
S
R
R
T
T
GND  
OUT  
GND  
V
GND  
R
Sel  
S
V
V
OUT  
GND  
R
T
GND  
V
IN  
R
T
V
S
GND  
RS and RT are functions of the application  
environment (see AC Tables for specific values).  
Off isolation = 20 Log (VOUT / VIN  
GND  
VS, RS and RT are function of application  
environment (see AC/DC Tables for values)  
)
Figure 11. Insertion Loss  
Figure 12. Channel Off Isolation  
Network Analyzer  
NC  
R
S
V
IN  
V
GND  
S
GND  
V
Sel  
GND  
R
T
GND  
V
OUT  
GND  
R
T
RS and RT are functions of the application environment  
(see AC Tables for specific values).  
GND  
Crosstalk = 20 Log (VOUT / VIN)  
Figure 13. Non-Adjacent Channel-to-Channel Crosstalk  
HSD  
HSD  
n
Capacitance  
n
S
Meter  
S
V
Capacitance  
Meter  
V
= 0 or V  
cc  
Sel  
= 0 or V  
cc  
Sel  
HSD  
HSD  
n
n
Figure 14. Channel Off Capacitance  
Figure 15. Channel On Capacitance  
www.onsemi.com  
9
 
 
 
 
 
 
Insertion Loss  
One of the key factors for using the FSA3200 in mobile  
digital video applications is the small amount of insertion  
loss experienced by the received signal as it passes  
through the sw itch. This results in minimal degradation  
of the received eye. One of the w ays to measure the  
quality of the high data rate channels is using balanced  
ports and 4-port differential S-parameter analysis,  
particularly SDD21.  
Bandw idth is measured using the S-parameter SDD21  
methodology. Figure 16 show s the bandw idth (GHz) for  
the MDV path and Figure 17 the bandw idth curve for the  
USB path.  
Figure 16. MDV Path SDD21 Insertion Loss Curve  
Figure 17. USB Path SDD21 Insertion Loss Curve  
www.onsemi.com  
10  
 
 
 
Typical Applications  
Figure 18 show s the FSA3200 utilizing the VBUS  
connection from the micro-USB connector. The 3M  
resistor is used to ensure, for manufacturing test via the  
micro-USB connector, that the FSA3200 configures for  
connectivity through the FSA9280A accessory sw itch.  
Figure 19 show s the configuration for the FSA3200 “self  
pow ered” by the battery only.  
VBAT  
To USB Battery Charging Block  
FSA9280A  
Baseband or  
Application  
Processor  
D+  
D-  
100 ohm  
VBUS  
UART_Tx  
UART_Rx  
ID  
12  
16  
15  
USB_D+  
USB_D-  
Spkr_R  
Spkr_L  
7
6
D+  
D-  
2
3
FSA3200  
ID  
GND  
14  
13  
CBUS  
MHL+  
MHL-  
11  
10  
microUSB  
Connector  
5
9
HDMI to MHL  
Bridge  
MHL_SEL  
3M  
GND  
Figure 18. Typical FSA3200 Application Using VBUS  
VBAT  
To USB Battery Charging Block  
FSA9280A  
Baseband or  
Application  
Processor  
D+  
D-  
GND  
UART_Tx  
UART_Rx  
VBUS  
15  
ID  
12  
16  
USB_D+  
USB_D-  
Spkr_R  
Spkr_L  
7
6
D+  
2
D-  
3
FSA3200  
ID  
GND  
14  
13  
CBUS  
MHL+  
MHL-  
11  
10  
microUSB  
Connector  
5
9
HDMI to MHL  
Bridge  
MHL_SEL  
3M  
GND  
Figure 19. Typical FSA3200 “Self-Powered” Application Using VBAT  
www.onsemi.com  
11  
 
 
Physical Dimensions  
2.10  
0.563(15X)  
0.10 C  
1.80  
A
B
0.663  
0.40  
2X  
1
2.60  
2.90  
PIN#1 IDENT  
0.10 C  
TOP VIEW  
0.225  
(16X)  
2X  
RECOMMENDED  
LAND PATTERN  
0.55 MAX.  
0.152  
0.10 C  
0.08 C  
TERMINAL SHAPE VARIANTS  
SEATING  
PLANE  
C
0.05  
0.00  
0.40  
0.60  
SIDE VIEW  
0.30  
0.50  
0.15  
0.25  
0.15  
0.25  
0.10  
15X  
15X  
0.45  
0.10  
0.35  
PIN 1  
NON-PIN 1  
5
Supplier 1  
9
0.40  
0.30  
0.50  
0.15  
0.25  
0.15  
15X  
0.25  
0.30  
0.50  
15X  
1
PIN 1  
NON-PIN 1  
PIN#1 IDENT  
Supplier 2  
13  
16  
0.25  
0.15  
0.55  
0.45  
0.10 C A B  
0.05 C  
BOTTOM VIEW  
R0.20  
PACKAGE  
EDGE  
NOTES:  
A. PACKAGE DOES NOT FULLY CONFORM TO  
JEDEC STANDARD.  
LEAD  
OPTION 2  
SCALE : 2X  
LEAD  
OPTION 1  
SCALE : 2X  
B. DIMENSIONS ARE IN MILLIMETERS.  
C. DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M, 1994.  
D. LAND PATTERN RECOMMENDATION IS  
BASED ON FSC DESIGN ONLY.  
E. DRAWING FILENAME: MKT-UMLP16Arev4.  
F. TERMINAL SHAPE MAY VARY ACCORDING  
TO PACKAGE SUPPLIER, SEE TERMINAL  
SHAPE VARIANTS.  
Figure 20. 16-Lead, Ultrathin Molded Leadless Package (UMLP)  
Package drawings are providedas a service to customers consideringON Semiconductor components.Drawings may change in  
any manner without notice. Please notethe revision and/or dateon the drawing andcontact an ON Semiconductor representative to  
verify or obtain the most recent revision.Package specifications do notexpand the terms of ON Semiconductor’s worldwideterms  
and conditions, specifically the warranty therein,which covers ON Semiconductor products.  
www.onsemi.com  
12  
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the  
United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A  
listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make  
changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor  
products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by  
ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do var y in different applications and  
actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts.  
ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for  
use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or  
any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,  
damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Eur ope, Middle East and Afr ica Technical Support:  
N. Amer ican Technical Support: 800-282-9855 Toll Free  
USA/Canada.  
ON Semiconductor Website: www.onsemi.com  
Or der Literature: http://www.onsemi.com/orderlit  
Fax : 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81-3-5817-1050  
For additional information, please contact your local  
Sales Representative  
www.onsemi.com  
13  

相关型号:

FSA321

USB2.0 Hi-Speed (480Mbps) and Audio Switches with Negative Signal Capability and Built-in Termination on Unselected Audio Paths
FAIRCHILD

FSA321UMX

USB2.0 Hi-Speed (480Mbps) and Audio Switches with Negative Signal Capability and Built-in Termination on Unselected Audio Paths
FAIRCHILD

FSA321UMX

多媒体和 USB 2.0 高速和音频开关,带负信号能力,以及无选择音频路径上的内置端接
ONSEMI

FSA321_12

USB2.0 Hi-Speed (480Mbps) and Audio Switches with Negative Signal Capability and Built-in Termination on Unselected Audio Paths
FAIRCHILD

FSA3230

High-Speed USB2.0 / Mobile High- Definition Link (MHL™) with Negative Swing Audio
FAIRCHILD

FSA3230UMX

High-Speed USB2.0 / Mobile High- Definition Link (MHL™) with Negative Swing Audio
FAIRCHILD

FSA3259

Dual SP3T Analog Switch
FAIRCHILD

FSA3259BQX

Dual SP3T Analog Switch
FAIRCHILD

FSA32G-100

SATA II standard interface
AXIOMTEK

FSA3341

High-Speed 4:1 USB2.0 / MHL™ Switch
FAIRCHILD

FSA3357

Low Voltage SP3T Analog Switch (3:1 Multiplexer/Demultiplexer)
FAIRCHILD

FSA3357K8X

Low Voltage SP3T Analog Switch (3:1 Multiplexer/Demultiplexer)
FAIRCHILD