FOD8333R2 [ONSEMI]

输入 LED 驱动、2.5 A 输出电流、带去饱和检测的 IGBT 驱动光电耦合器、隔离故障感测、有源米勒箝位,及自动故障复位;
FOD8333R2
型号: FOD8333R2
厂家: ONSEMI    ONSEMI
描述:

输入 LED 驱动、2.5 A 输出电流、带去饱和检测的 IGBT 驱动光电耦合器、隔离故障感测、有源米勒箝位,及自动故障复位

驱动 双极性晶体管 光电
文件: 总34页 (文件大小:1273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Is Now Part of  
To learn more about ON Semiconductor, please visit our website at  
www.onsemi.com  
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers  
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor  
product management systems do not have the ability to manage part nomenclature that utilizes an underscore  
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain  
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated  
device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please  
email any questions regarding the system integration to Fairchild_questions@onsemi.com.  
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number  
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right  
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON  
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON  
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s  
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA  
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out  
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor  
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
May 2014  
FOD8333  
Input LED Drive, 2.5 A Output Current, IGBT Drive  
Optocoupler with Desaturation Detection, Isolated Fault  
Sensing, Active Miller Clamp, and Automatic Fault Reset  
Features  
Description  
Input LED Drive Facilitates Receiving Digitally  
The FOD8333 is an advanced 2.5 A output current IGBT  
drive optocoupler capable of driving medium-power  
IGBTs with ratings up to 1,200 V and 150 A. It is suited  
for fast-switching driving of power IGBTs and  
MOSFETs in motor-control inverter applications and  
high-performance power systems. The FOD8333 offers  
protection features necessary for preventing fault condi-  
tions that lead to destructive thermal runaway of IGBTs.  
Encoded Signals from PWM Output  
Optically Isolated Fault-Sensing Feedback  
Active Miller Clamp to Shut Off IGBT During High  
dv/dt without Negative Supply Voltage  
High Noise Immunity Characterized by  
Common Mode Rejection – 35 kV/µs Minimum,  
V
= 1500 V  
CM  
PEAK  
®
The device utilizes Fairchild’s proprietary Optoplanar  
2.5 A Peak Output Current Driving Capability for  
coplanar packaging technology and optimized IC design  
to achieve reliable high isolation and high noise immunity,  
characterized by high common-mode rejection and power  
supply rejection specifications. The device is housed in a  
wide-body, 16-pin, small-outline, plastic package.  
Medium Power IGBT  
– P-Channel MOSFETs at Output Stage Enable  
Output Voltage Swing Close to Supply Rail  
(Rail-to-Rail Output)  
– Wide Supply Voltage Range: 15 V to 30 V  
Integrated IGBT Protection  
– Desaturation Detection  
The gate-driver channel consists of an aluminum gallium  
arsenide (AlGaAs) light-emitting diode (LED) optically  
coupled to an integrated high-speed driver circuit with a  
– “Soft” IGBT Turn-Off  
low-R  
MOSFET output stage. The fault-sense  
DS(ON)  
channel consists of an AlGaAs LED optically coupled to  
an integrated high-speed feedback circuit for fault  
sensing.  
– Automatic Fault Reset after Fixed Mute Time,  
Typically 33 µs  
– Under-Voltage Lockout (UVLO) with Hysteresis  
Fast Switching Speed Over Full Operating  
Related Resources  
Temperature Range  
FOD8316—2.5 A Output Current, IGBT Drive  
– 250 ns Maximum Propagation Delay  
– 100 ns Maximum Pulse Width Distortion  
Extended Industrial Temperate Range:  
Optocoupler with Desaturation, Isolated Fault Sensing  
FOD8318—2.5 A Output Current, IGBT Drive  
Optocoupler with Active Miller Clamp, Desaturation  
Detection, and Isolated Fault Sensing  
– –40°C to 100°C  
Safety and Regulatory Approvals  
FOD8332—Input LED Drive, 2.5 A Output Current,  
IGBT Drive Optocoupler with Desaturation Detection,  
Isolated Fault Sensing, and Active Miller Clamp  
– UL1577, 4,243 V  
for 1 Minute  
RMS  
– DIN-EN/IEC60747-5-5:  
1,414 V  
Working Insulation Voltage Rating  
PEAK  
AN-3009—Standard Gate-Driver Optocouplers  
8,000 V  
Transient Isolation Voltage Rating  
PEAK  
8 mm Creepage and Clearance Distances  
Applications  
AC and Brushless DC Motor Drive  
Industrial Inverter  
Uninterruptible Power Supply  
Induction Heating  
Isolated IGBT/Power MOSFET Gate Drive  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
Truth Table  
(1)  
UVLO (V – V )  
V
O
LED  
DESAT Detected?  
FAULT  
DD  
E
X
Active  
Not Active  
X
X
Yes  
X
HIGH  
LOW  
HIGH  
HIGH  
LOW  
LOW  
LOW  
HIGH  
On  
Off  
On  
Not Active  
No  
Note:  
1. FAULT pin is connected to a pull-up resistor.  
Pin Configuration  
GND  
VCC  
1
2
3
4
5
6
7
8
16 VE  
15 VLED2+  
FAULT  
GND  
14 DESAT  
13 VDD  
VLED1–  
VLED1+  
VLED1+  
VLED1–  
12 VSS  
11 VO  
10 VCLAMP  
9
VSS  
Figure 1. Pin Configuration  
Pin Definitions  
Pin #  
Name  
Description  
1
2
GND  
Ground for Fault-Sense Optocoupler  
V
Positive Supply Voltage (3 V to 15 V) for Fault Sense Optocoupler  
Fault-Sense Output  
CC  
3
FAULT  
GND  
4
Ground for Fault-Sense Optocoupler  
LED1 Cathode  
5
V
V
V
V
V
V
V
V
V
LED1-  
LED1+  
LED1+  
LED1-  
SS  
6
LED1 Anode  
7
LED1 Anode  
8
LED1 Cathode  
9
Negative Output Supply Voltage  
Clamp Supply Voltage  
10  
11  
12  
13  
14  
15  
16  
CLAMP  
O
Gate-Drive Output Voltage  
Negative Output Supply Voltage  
Positive Output Supply Voltage  
Desaturation Voltage Input  
LED2 Anode (Do not connect. Leave floating.)  
Output Supply Voltage/IGBT Emitter  
SS  
DD  
DESAT  
V
V
LED2+  
E
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
2
Block Diagram  
16  
15  
14  
13  
1
VE  
GND  
LED2  
2
VCC  
VLED2+  
3
DESAT  
DESAT  
FAULT  
UVLO  
SHIELD  
4
GND  
VDD  
FAULT IC  
5
6
7
12  
11  
10  
9
VLED1-  
VLED1+  
VLED1+  
VLED1-  
VSS  
VO  
VCLAMP  
MILLER  
CLAMP  
8
SHIELD  
VSS  
OUTPUT IC  
Figure 2. Functional Block Diagram  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
3
Safety and Insulation Ratings  
As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for “safe electrical insulation” only within the safety limit  
data. Compliance with the safety ratings must be ensured by means of protective circuits.  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
Installation Classifications per DIN VDE 0110/1.89 Table 1  
Rated Mains Voltage < 150 V  
Rated Mains Voltage < 300 V  
Rated Mains Voltage < 450 V  
Rated Mains Voltage < 600 V  
I–IV  
I–IV  
RMS  
RMS  
RMS  
RMS  
I–IV  
I–IV  
Rated Mains Voltage < 1000 V  
Climatic Classification  
I–III  
RMS  
40/100/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
CTI  
Comparative Tracking Index (DIN IEC 112/VDE 0303 Part 1)  
175  
V
Input-to-Output Test Voltage, Method b, V  
x 1.875 = V  
,
2651  
V
V
PR  
IORM  
PR  
peak  
100% Production Test with t = 1 s, Partial Discharge < 5 pC  
m
Input-to-Output Test Voltage, Method a, V  
x 1.6 = V  
,
2262  
IORM  
PR  
peak  
Type and Sample Test with t = 10 s, Partial Discharge < 5 pC  
m
V
Maximum Working Insulation Voltage  
Highest Allowable Over Voltage  
External Creepage  
1414  
8000  
8.0  
V
V
IORM  
peak  
V
IOTM  
peak  
mm  
mm  
mm  
External Clearance  
8.0  
Insulation Thickness  
0.5  
Safety Limit Values – Maximum Values in Failure;  
Case Temperature  
T
150  
100  
600  
°C  
Case  
Safety Limit Values – Maximum Values in Failure;  
Input Power  
P
mW  
S,INPUT  
Safety Limit Values – Maximum Values in Failure;  
Output Power  
P
mW  
S,OUTPUT  
9
R
Insulation Resistance at T , V = 500 V  
10  
Ω
IO  
S
IO  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
4
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only. T = 25ºC unless otherwise specified.  
A
Symbol  
Parameter  
Storage Temperature  
Value  
Units  
T
-40 to +125  
-40 to +100  
-40 to +125  
260 for 10 s  
ºC  
ºC  
ºC  
ºC  
STG  
T
Operating Temperature  
Junction Temperature  
OPR  
T
J
T
Lead Solder Temperature  
SOL  
(not certified for wave immersion)  
Refer to reflow temperature profile on page 31  
(2)(3)  
PD  
Input Power Dissipation  
45  
mW  
mW  
I
(3)(4)  
PD  
Output Power Dissipation  
600  
O
Gate Drive Channel  
I
Average Input Current  
25  
mA  
A
F(AVG)  
I
Peak Transient Forward Current  
(Pulse Width < 1 µs)  
1.0  
F(PEAK)  
(5)  
I
Peak Output High Current  
3.0  
3.0  
A
A
OH(PEAK)  
(5)  
I
Peak Output Low Current  
OL(PEAK)  
V
Reverse Input Voltage  
5.0  
V
R
(6)  
V – V  
Negative Output Supply Voltage  
Positive Output Supply Voltage  
Gate Drive Output Voltage  
Output Supply Voltage  
-0.5 to 15  
V
E
SS  
V
– VE  
-0.5 to 35 – (V – V  
)
V
DD  
O(PEAK)  
E
SS  
V
– V  
-0.5 to 35  
-0.5 to 35  
V
SS  
V
– V  
V
DD  
SS  
V
Desaturation Voltage  
V to V + 25  
V
DESAT  
E
E
I
Desaturation Current  
60  
mA  
V
DESAT  
V
– V  
Active Miller Clamping Voltage  
-0.5 to 35  
1.7  
CLAMP  
SS  
I
Peaking Clamping Sinking Current  
Input Signal Rise and Fall Time  
A
CLAMP  
t
, t  
500  
ns  
R(IN) F(IN)  
Fault Sense Channel  
V
Positive Input Supply Voltage  
FAULT Output Voltage  
-0.5 to 20  
-0.5 to 20  
16.0  
V
V
CC  
V
FAULT  
FAULT  
I
FAULT Output Current  
mA  
Notes:  
2. No derating required across temperature range.  
3. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected  
to conditions outside these ratings.  
4. Derate linearly above 25°C, free air temperature at a rate of 6.2 mW/°C.  
5. Maximum pulse width = 10 µs.  
6. This negative output supply voltage is optional. It is only needed when negative gate drive is implemented.  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
5
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not  
recommend exceeding them or designing to absolute maximum ratings.  
Symbol  
Parameter  
Min.  
Max.  
Unit  
T
Ambient Operating Temperature  
Input Current (ON)  
-40  
7
+100  
16  
ºC  
mA  
V
A
I
F(ON)  
V
Input Voltage (OFF)  
-3.6  
3
0.8  
15  
F(OFF)  
V
Supply Voltage  
V
CC  
V
– V  
Total Output Supply Voltage  
15  
15  
0
30  
V
DD  
SS  
(7)  
V
– V  
Positive Output Supply Voltage  
Negative Output Supply Voltage  
Input Pulse Width  
30 – (V – V  
)
V
DD  
E
E
SS  
V – V  
15  
V
E
SS  
t
500  
ns  
PW  
Note:  
7. During power up or down, ensure that both the input and output supply voltages reach the proper recommended  
operating voltages to avoid any momentary instability at the output state.  
Isolation Characteristics  
Apply over all recommended conditions; typical value is measured at T = 25ºC.  
A
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
V
Input-Output Isolation T = 25°C, Relative Humidity < 50%,  
4,243  
V
RMS  
ISO  
A
Voltage  
t = 1.0 minute, I 10 µA, 50 Hz  
I-O  
(8)(9)(10)  
(8)  
11  
R
C
Isolation Resistance  
Isolation Capacitance  
V
V
= 500 V  
10  
ISO  
I-O  
(8)  
= 0 V, Frequency = 1.0 MHz  
1
pF  
ISO  
I-O  
Notes:  
8. Device is considered a two-terminal device: pins 1 to 8 are shorted together and pins 9 to 16 are shorted together.  
9. 4,243 V for 1-minute duration is equivalent to 5,091 V for 1-second duration.  
RMS  
RMS  
10. The input-output isolation voltage is a dielectric voltage rating per UL1577. It should not be regarded as an  
input-output continuous voltage rating. For the continuous working voltage rating, refer to equipment-level safety  
specification or DIN EN/IEC 60747-5-5 Safety and Insulation Ratings Table on page 4.  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
6
Electrical Characteristics  
Apply over all recommended conditions; typical value is measured at V = 5 V, V – V = 30 V, V – V = 0 V, and  
CC  
DD  
SS  
E
SS  
T = 25°C; unless otherwise specified.  
A
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units Figure  
Gate Drive Channel  
V
Input Forward Voltage  
I = 10 mA  
1.10  
5
1.45  
-1.5  
1.80  
V
5
F
F
Δ(V /T )  
Temperature Coefficient  
of Forward Voltage  
mV/ºC  
F
A
BV  
Input Reverse  
I
= 10 µA  
V
R
R
Breakdown Voltage  
C
Input Capacitance  
f = 1 MHz, V = 0 V  
60  
pF  
IN  
F
I
Threshold Input Current,  
Low to High  
I
= 0 mA, V > 5 V  
2.5  
7.0  
mA  
30  
31  
FLH  
O
O
V
Threshold Input Voltage,  
High to Low  
I
= 0 mA, V < 5 V  
0.8  
-1.0  
-2.5  
V
A
A
FHL  
O
O
I
High Level Output  
Current  
V
= V – 3 V,  
-2.5  
6, 10,  
32  
OH  
O
DD  
I = 10 mA  
F
V
= V – 6 V,  
O
DD  
(11)  
I = 10 mA  
F
I
Low Level Output  
Current  
V
= V + 3 V, I = 0 mA  
1
3
A
A
7, 11,  
33  
OL  
O
SS  
F
V
= V + 6 V,  
2.5  
O
SS  
(12)  
I = 0 mA  
F
I
Low Level Output  
Current During Fault  
Condition  
V
– V = 14 V  
70  
125  
170  
mA  
34  
OLF  
O
SS  
V
High Level Output  
Voltage  
I = 10 mA,  
V
– 1.0  
V – 0.2  
DD  
V
8, 10,  
35  
OH  
F
DD  
(13)(14)(15)  
I
= –100 mA  
O
V
Low Level Output Voltage I = 0 mA, I = 100 mA  
0.1  
2.5  
0.5  
5.0  
5.0  
V
9, 11,  
36  
OL  
F
O
I
High Level Supply  
Current  
V
= Open, I = 0 mA  
mA  
mA  
mA  
mA  
mA  
mA  
12, 13,  
37  
DDH  
O
O
O
I
Low Level Supply  
Current  
V
= Open, I = 0 mA  
2.5  
12, 13,  
38  
DDL  
O
I
V
Low Level Supply  
E
-0.8  
-0.5  
-0.25  
-0.25  
40  
38  
EL  
Current  
I
V
High Level Supply  
-0.50  
-0.33  
10  
37  
EH  
E
Current  
(15)(16)  
I
Blanking Capacitor  
Charge Current  
V
V
= 2 V  
= 7 V  
-0.13  
14, 39  
39  
CHG  
DESAT  
DESAT  
I
Blanking Capacitor  
Discharge Current  
DSCHG  
V
Under-Voltage Lockout  
Threshold  
I = 10 mA, V > 5 V  
10.8  
9.8  
11.7  
10.7  
1.0  
12.7  
11.7  
V
V
V
40  
UVLO+  
F
O
(14)  
V
I = 10 mA, V < 5 V  
UVLO-  
F
O
UVLO  
Under-Voltage Lockout  
Threshold Hysteresis  
HYS  
(14)  
V
DESAT Threshold  
V
– V > V  
6.0  
6.5  
2.0  
7.2  
V
V
15, 39  
41  
DESAT  
DD  
E
ULVO–  
V
Clamping Threshold  
Voltage  
CLAMP_THRES  
I
Clamp Low Level Sinking  
Current  
V
= V + 2.5 V  
0.35  
1.10  
A
16, 42  
CLAMPL  
O
SS  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
7
Electrical Characteristics (Continued)  
Apply over all recommended conditions; typical value is measured at V = 5 V, V – V = 30 V, V – V = 0 V, and  
CC  
DD  
SS  
E
SS  
T = 25°C; unless otherwise specified.  
A
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units Figure  
Fault Feedback Channel  
I
FAULT High Level Supply  
Current  
I
V
V
= 0 mA,  
F2  
0.0004  
150  
2
µA  
µA  
43  
44  
CCH  
= Open,  
FAULT  
= 15 V  
CC  
I
FAULT Low Level Supply  
Current  
I
V
V
= 16 mA,  
F2  
200  
CCL  
= Open,  
FAULT  
= 15V  
CC  
I
FAULT Logic High Output  
Current  
V
= V = 5.5 V  
0.02  
0.50  
µA  
45  
FAULTH  
FAULT  
CC  
I
FAULT Logic Low Output  
Current  
V
V
= 0.4 V,  
= 5.5 V  
1.1  
mA  
17, 46  
FAULTL  
FAULT  
CC  
Notes:  
11. Maximum pulse width = 10 µs, maximum duty cycle = 0.2%.  
12. Minimum pulse width = 4.99 ms, minimum duty cycle = 99.8%.  
13. V is measured with the DC load current in this testing (maximum pulse width = 1 ms, maximum duty  
OH  
cycle = 20%). When driving capacitive loads, V approaches V as I approaches zero units.  
OH  
DD  
OH  
14. Positive output supply voltage (V – V ) should be at least 15 V to ensure adequate margin in excess of the  
DD  
E
maximum under-voltage lockout threshold, V  
, of 12.7 V.  
UVLO+  
15. When V – V > V  
and the output state V is allowed to go HIGH, the DESAT-detection feature is active and  
O
DD  
E
UVLO  
provides the primary source of IGBT protection. UVLO is needed to ensure DESAT detection is functional.  
16. The blanking time, t  
, is adjustable by an external capacitor (C  
), where t  
= C  
× (V  
/ I  
).  
BLANK  
BLANK  
BLANK  
BLANK  
DESAT CHG  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
8
Switching Characteristics  
Apply over all recommended conditions; typical value is measured at V = 5 V, V – V = 30 V, V – V = 0 V, and  
CC  
DD  
SS  
E
SS  
T = 25°C; unless otherwise specified.  
A
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units Figure  
t
Propagation Delay to Logic  
Low Output  
Rg = 10 Ω, Cg =10 nF,  
f = 10 kHz,  
Duty Cycle = 50%,  
100  
135  
150  
15  
250  
ns  
ns  
ns  
18, 19,  
20, 21,  
47  
PHL  
(18)  
t
Propagation Delay to Logic  
100  
250  
100  
PLH  
I = 10 mA,  
(19)  
F
High Output  
(17)  
V
– V = 30 V  
DD  
SS  
PWD  
Pulse Width Distortion,  
47  
47  
(20)  
| t  
– t  
|
PLH  
PHL  
PDD Skew Propagation Delay Difference  
-150  
150  
ns  
Between Any Two Parts or  
(21)  
Channels, ( t  
– t  
)
PHL  
PLH  
t
Output Rise Time  
(10% to 90%)  
50  
50  
ns  
ns  
µs  
µs  
µs  
µs  
R
t
Output Fall Time  
(90% to 10%)  
F
t
DESAT Sense to DESAT Low Rg = 10 Ω, Cg = 10 nF,  
0.25  
0.45  
2.8  
DESAT(LOW)  
(24)  
Propagation Delay  
V
– V = 30 V  
DD SS  
(C  
= 100pF,  
DESAT  
t
DESAT Sense to 90% V  
0.70  
4.0  
1.5  
45  
22, 48  
DESAT(90%)  
DESAT(10%)  
O
R = 4.7 kΩ, V = 5.5 V)  
(22)  
F
CC  
Delay  
t
DESAT Sense to 10% V  
23, 24,  
25, 48  
O
(22)  
Delay  
t
DESAT Sense to Low Level  
0.5  
26, 48  
DESAT(FAULT)  
(23)  
FAULT Signal Delay  
t
DESAT Input Mute  
20  
33  
4.0  
4.0  
2
µs  
µs  
µs  
µs  
48  
49  
DESAT(MUTE)  
(25)  
t
UVLO Turn-On Delay  
V
= 20 V in 1.0 ms  
UVLO ON  
DD  
Ramp  
(26)  
t
UVLO Turn-Off Delay  
UVLO OFF  
(27)  
t
Time-to-Good Power  
V
= 0 to 30 V in 10 µs  
28, 29,  
49  
GP  
DD  
Ramp  
| CM  
|
Common Mode Transient  
Immunity at Output High  
T = 25˚C, V = 5 V,  
35  
35  
50  
kV/µs  
51, 52  
H
A
CC  
V
= 25 V, V = Ground,  
DD  
SS  
C = 15 pF, R = 4.7 kΩ,  
F
F
(28)  
V
= 1500 V  
CM  
PEAK  
| CM |  
Common Mode Transient  
Immunity at Output Low  
T = 25˚C, V = 5 V,  
A CC  
50  
kV/µs  
50, 53  
L
V
= 25 V, V = Ground,  
DD  
SS  
C = 15 pF, R = 4.7 kΩ,  
F
F
(29)  
V
= 1500 V  
CM  
PEAK  
Notes:  
17. This load condition approximates the gate load of a 1200 V / 150 A IGBT.  
18. Propagation delay t is measured from the 50% level on the falling edge of the input pulse to the 50% level of the  
PHL  
falling edge of the V signal.  
O
19. Propagation delay t  
is measured from the 50% level on the rising edge of the input pulse to the 50% level of the  
PLH  
rising edge of the V signal.  
O
20. PWD is defined as | t  
– t  
| for any given device.  
PHL  
PLH  
21. The difference between t  
and t  
between any two parts under same operating conditions with equal loads.  
PHL  
PLH  
22. The length of time the DESAT threshold must be exceeded before V begins to go LOW. This is supply voltage  
O
dependent.  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
9
23. The time from DESAT threshold is exceeded until the FAULT output goes LOW.  
24. The length of time the DESAT threshold must be exceeded before V begins to go LOW and the FAULT output  
O
begins to go LOW.  
25. The UVLO turn-on delay, t  
, is measured from the V  
threshold level of the rising edge of the output  
UVLO ON  
UVLO+  
supply voltage (V ) to the 5 V level of the rising edge of the V signal.  
DD  
O
26. The UVLO turn-off delay, t  
, is measured from the V  
threshold level of the falling edge of the output  
UVLO OFF  
UVLO–  
supply voltage (V ) to the 5 V level of the falling edge of the V signal.  
DD  
O
27. The time to good power, t , is measured from the V  
threshold level of the rising edge of the output supply  
GP  
UVLO+  
voltage (V ) to the 5 V level of the rising edge of the V signal.  
DD  
O
28. Common-mode transient immunity at output HIGH state is the maximum tolerable negative dVCM/dt on the trailing  
edge of the common-mode pulse, V , to assure the output remains in HIGH state (i.e., V > 15 V or V > 2 V).  
CM  
O
FAULT  
29. Common-mode transient immunity at output LOW state is the maximum positive tolerable dVCM/dt on the leading  
edge of the common-mode pulse, V , to ensure the output remains in LOW state (i.e., V < 1.0 V or  
CM  
O
V
< 0.8 V).  
FAULT  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
10  
Timing Diagrams  
I
F
t
t
F
R
90%  
50%  
10%  
V
O
t
t
PHL  
PLH  
Figure 3. t  
, t  
, t , and t Timing Diagram  
PLH PHL  
R
F
t
DESAT(LOW)  
I
F
6.5V  
50%  
V
DESAT  
t
DESAT(10%)  
t
BLANK  
90%  
V
O
10%  
t
DESAT(90%)  
Automatic Reset  
after Mute Time  
50%  
50%  
FAULT  
t
DESAT(FAULT)  
t
DESAT(MUTE)  
Figure 4. Definitions for DESAT, V and FAULT Timing Waveforms  
O
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
11  
Typical Performance Characteristics  
100.00  
7
6
5
4
3
2
10.00  
1.00  
V
V
= V  
= V  
– 6 V  
OH  
DD  
100°C  
25°C  
1.2  
-40°C  
3 V  
OH  
DD  
0.10  
I
= 10 mA  
LED1+  
V
– V = 30 V  
SS  
DD  
1
-40  
0.01  
0.8  
1.0  
1.4  
1.6  
1.8  
-20  
0
20  
40  
60  
80  
100  
VF – INPUT FORWARD VOLTAGE (V)  
TA – TEMPERATURE (°C)  
Figure 5. Input Forward Current (I )  
Figure 6. High Level Output Current (I  
)
OH  
F
vs. Voltage (V )  
vs.Temperature  
F
7
6
5
4
3
2
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
V
= V + 6 V  
SS  
OL  
V
= V + 3 V  
SS  
OL  
I
V
= 10 mA  
LED1+  
DD  
I
V
= 0 A  
– V = 30 V  
SS  
LED1+  
DD  
– V = 30 V  
SS  
I
= -100 mA  
OH  
1
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
TA – TEMPERATURE (°C)  
TA – TEMPERATURE (°C)  
Figure 7. Low Level Output Current (I  
vs.Temperature  
)
Figure 8. High Level Output Voltage (V  
V
)
OL  
OH – DD  
vs.Temperature  
30.0  
0.20  
0.15  
0.10  
0.05  
0
29.5  
T
A
= -40°C  
29.0  
25°C  
100°C  
28.5  
I
V
I
= 0 A  
SS  
= 100 mA  
LED1+  
– V = 30 V  
OL  
I
= 10 mA  
LED1+  
DD  
V
– V = 30 V  
SS  
DD  
28.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
-40  
-20  
0
20  
40  
60  
80  
100  
IOH – HIGH LEVEL OUTPUT CURRENT (A)  
TA – TEMPERATURE (°C)  
Figure 9. Low Level Output Voltage (V  
vs.Temperature  
)
OL  
Figure 10. High Level Output Voltage (V  
)
OH  
vs. High Level Output Current (I  
)
OH  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
12  
Typical Performance Characteristics (Continued)  
4
3
2
1
0
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
I
V
= 0 A  
– V = 30 V  
SS  
LED1+  
DD  
25°C  
I
DDL  
T
= 100°C  
A
-40°C  
I
DDH  
I
V
V
= 0 A (I  
DDL  
) / 10 mA (I  
)
LED1+  
DD  
O
DDH  
– V = 30 V  
SS  
= Open  
-40  
-20  
0
20  
40  
60  
80  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
TA – TEMPERATURE (°C)  
IOL – LOW LEVEL OUTPUT CURRENT (A)  
Figure 12. Output Supply Current (I  
vs.Temperature  
)
DD  
Figure 11. Low Level Output Voltage (V ) vs.  
OL  
Low Level Output Current (I  
)
OL  
3.0  
2.5  
2.0  
1.5  
-0.15  
-0.20  
-0.25  
-0.30  
I
DDL  
I
DDH  
I
V
V
= 0 A (I  
) / 10 mA (I )  
DDH  
LED1+  
DDL  
I
V
V
= 10 mA  
LED1+  
DD  
– V = 30 V  
DD  
= Open  
SS  
– V = 30 V  
SS  
O
= 2V  
-20  
DESAT  
15  
20  
25  
30  
-40  
0
20  
40  
60  
80  
100  
VDD – OUTPUT SUPPLY VOLTAGE (V)  
TA – TEMPERATURE (°C)  
Figure 13. Output Supply Current (I  
)
DD  
Figure 14. Blanking Capacitor Charge  
vs. Voltage (V  
)
DD  
Current (I  
) vs.Temperature  
CHG  
7.00  
6.75  
6.50  
6.25  
6.00  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
V
V
= 0 mA  
LED1+  
DD  
I
V
= 10 mA  
– V = 30 V  
SS  
– V = 30 V  
LED1+  
DD  
SS  
= V + 2.5V  
SS  
CLAMP  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
TA – TEMPERATURE (C)  
TA – TEMPERATURE (°C)  
Figure 15. DESAT Threshold (V  
vs.Temperature  
)
Figure 16. Clamp Low Level Sinking  
Current (I ) vs.Temperature  
DESAT  
CLAMPL  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
13  
Typical Performance Characteristics (Continued)  
250  
10  
8
V
= 5.5 V  
= 10 mA  
CC  
I
LED2+  
100°C  
25°C  
200  
150  
100  
50  
t
t
PLH  
6
PHL  
4
-40°C  
I
= 10 mA  
LED1+  
f = 10 kHz 50% Duty Cycle  
– V = 30 V  
2
V
DD  
SS  
R
= 10 Ω, C = 10 nF  
g
g
0
0
-40  
-20  
0
20  
40  
60  
80  
100  
0
1
2
3
4
5
30  
50  
V
– FAULT LOGIC LOW OUTPUT VOLTAGE (V)  
TA – TEMPERATURE (°C)  
FAULTL  
Figure 18. Propagation Delay (t )  
Figure 17. FAULT Logic Low Output  
Current (I ) vs. Voltage (V  
P
vs.Temperature  
)
FAULTL  
FAULTL  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
t
t
PLH  
PLH  
t
t
PHL  
PHL  
I
= 10 mA  
LED1+  
f = 10 kHz 50% Duty Cycle  
V
C
I
= 10 mA  
LED1+  
f = 10 kHz 50% Duty Cycle  
– V = 30 V  
DD  
g
SS  
= 10 nF  
R
= 10 Ω, C = 10 nF  
g
g
0
0
15  
20  
25  
0
10  
20  
30  
40  
50  
VDD SUPPLY VOLTAGE (V)  
Rg – LOAD RESISTANCE (Ω)  
Figure 19. Propagation Delay (t )  
Figure 20. Propagation Delay (t )  
P
P
vs. Supply Voltage (V  
)
vs. Load Resistance (R )  
DD  
g
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
250  
200  
150  
100  
50  
t
PLH  
t
PHL  
V
V
– V = 30 V  
SS  
DD  
– V = 15 V  
SS  
DD  
I
= 10 mA  
f = 10 kHz 50% Duty Cycle  
LED1+  
V
– V = 15 V / 30 V  
SS  
= 10 mA  
DD  
V
R
– V = 30 V  
DD  
g
SS  
I
LED1+  
= 10 Ω  
R
= 10 Ω, C = 10 nF  
g
g
0
-40  
-20  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
TA – TEMPERATURE (°C)  
Cg – LOAD CAPACITANCE (nF)  
Figure 21. Propagation Delay (t )  
Figure 22. DESAT Sense to 90% V  
P
O
vs. Load Capacitance (C )  
Delay (t ) vs.Temperature  
DESAT(90%)  
g
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
14  
Typical Performance Characteristics (Continued)  
5
4
3
2
1
0
5
4
3
2
1
0
V
V
– V = 30 V  
SS  
DD  
V
– V = 30 V  
SS  
DD  
– V = 15 V  
SS  
DD  
V
– V = 15 V  
SS  
DD  
V
– V = 15 V / 30 V  
SS  
V
– V = 15 V / 30 V  
SS  
DD  
DD  
I
= 10 mA  
I
= 10 mA  
LED1+  
LED1+  
R
= 10 Ω, C = 10 nF  
C = 10 nF  
g
g
g
-40  
-20  
0
20  
40  
60  
80  
100  
10  
20  
30  
40  
50  
Rg – LOAD RESISTANCE (Ω)  
TA – TEMPERATURE (°C)  
Figure 23. DESAT Sense to 10% V  
Figure 24. DESAT Sense to 10% V  
O
O
Delay (t ) vs.Temperature  
DESAT(10%)  
Delay (t ) vs. Load Resistance (R )  
DESAT(10%) g  
15  
10  
5
0.55  
V
– V = 30 V  
SS  
DD  
V
V
= 5.5 V  
= 3.3 V  
V
– V = 15 V / 30 V  
= 10 mA  
= 10 Ω  
CC  
CC  
DD  
SS  
I
LED1+  
R
g
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
100°C  
100°C  
V
V
– V = 30 V  
DD  
SS  
25°C  
-40°C  
25°C  
– V = 15 V  
SS  
-40°C  
DD  
0
4
6
8
10  
0
10  
20  
30  
40  
50  
R F – FAULT LOAD RESISTANCE (kΩ)  
Cg – LOAD CAPACITANCE (nF)  
Figure 26. DESAT Sense to Low Level Fault Signal  
Figure 25. DESAT Sense to 10% V  
O
Delay (t  
) vs. Fault Load Resistance (R )  
Delay (t ) vs. Load Capacitance (C )  
DESAT(10%)  
DESAT(FAULT)  
F
g
50  
5
V
– V = 15 V / 30 V  
SS  
DD  
V
– V = 30 V  
SS  
= 10 mA  
DD  
I
R
= 10 mA  
LED1+  
g
I
LED1+  
= 10 Ω, C = 10 nF  
g
40  
30  
20  
10  
0
4
3
2
1
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
TA – TEMPERATURE (°C)  
TA – TEMPERATURE (°C)  
Figure 27. DESAT Input Mute (t  
vs.Temperature  
)
DESAT(MUTE)  
Figure 28.Time-to-Good Power (t  
)
GP  
vs.Temperature  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
15  
Typical Performance Characteristics (Continued)  
5
I
T
= 10 mA  
LED1+  
= 25°C  
A
4
3
2
1
0
15  
20  
25  
30  
VDD – OUTPUT SUPPLY VOLTAGE (V)  
Figure 29.Time-to-Good Power (t ) vs. Output Supply Voltage (V  
)
DD  
GP  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
16  
Test Circuits  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VCC  
VLED2+  
DESAT  
VDD  
0.1µF  
0.1µF  
FAULT  
GND  
0.1µF  
+
VLED1–  
VLED1+  
VLED1+  
VLED1–  
V
E
VSS  
30V  
V
O
+
VO  
VCLAMP  
VSS  
10mA  
0A  
Figure 30.Threshold Input Current Low-to-High (I  
) Test Circuit  
FLH  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VLED2+  
DESAT  
VDD  
VCC  
0.1µF  
FAULT  
GND  
0.1µF  
+
VLED1–  
VLED1+  
VLED1+  
VLED1–  
V
VSS  
E
30V  
V
O
+
0.1µF  
VO  
VCLAMP  
VSS  
2V  
0V  
+
Figure 31.Threshold Input Voltage High-to-Low (V  
) Test Circuit  
FHL  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VLED2+  
DESAT  
VDD  
VCC  
0.1µF  
FAULT  
GND  
0.1µF  
+
V
O
0.1µF  
47µF  
+
VLED1–  
VLED1+  
VLED1+  
VLED1–  
V
E
VSS  
30V  
+
VO  
0.1µF 47µF  
10mA  
I
OH  
VCLAMP  
VSS  
Period = 5ms  
PW = 10μs  
+
V
IN  
R
M
Figure 32. High Level Output Current (I ) Test Circuit  
OH  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
17  
Test Circuits (Continued)  
FOD8333  
1
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
2
3
4
5
6
7
8
VCC  
VLED2+  
DESAT  
VDD  
0.1µF  
FAULT  
GND  
0.1µF  
+
VLED1–  
VLED1+  
VLED1+  
VLED1–  
V
E
VSS  
I
OL  
30V  
+
VO  
0.1µF 47µF  
10mA  
V
O
+
VCLAMP  
VSS  
0.1µF  
47µF  
Period = 5ms  
PW = 4.99ms  
+
V
IN  
R
M
Figure 33. Low Level Output Current (I ) Test Circuit  
OL  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VLED2+  
DESAT  
VDD  
100pF  
VCC  
4.7kΩ  
V
CC  
0.1µF  
0.1µF  
+
V
DESAT  
FAULT  
GND  
V
FAULT  
0.1µF  
+
VLED1–  
VLED1+  
VLED1+  
VLED1–  
V
E
VSS  
30V  
I
OLF  
V
O
+
VO  
0.1µF  
10Ω  
VCLAMP  
VSS  
10nF  
10mA  
V
IN  
R
M
Figure 34. Low Level Output Current During Fault Condition (I  
) Test Circuit  
OLF  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VLED2+  
DESAT  
VDD  
VCC  
0.1µF  
FAULT  
GND  
0.1µF  
+
100mA  
VLED1–  
VLED1+  
VLED1+  
VLED1–  
V
VSS  
E
30V  
V
OH  
+
0.1µF  
VO  
VCLAMP  
VSS  
10mA  
Figure 35. High Level Output Voltage (V ) Test Circuit  
OH  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
18  
Test Circuits (Continued)  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VCC  
VLED2+  
DESAT  
VDD  
0.1µF  
0.1µF  
FAULT  
GND  
0.1µF  
+
30V  
VLED1–  
VLED1+  
VLED1+  
VLED1–  
V
E
VSS  
+
V
OL  
VO  
100mA  
VCLAMP  
VSS  
Figure 36. Low Level Output Voltage (V ) Test Circuit  
OL  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VLED2+  
DESAT  
VDD  
I
EH  
VCC  
0.1µF  
0.1µF  
FAULT  
GND  
0.1µF  
I
+
DDH  
VLED1–  
VLED1+  
VLED1+  
VLED1–  
V
E
VSS  
30V  
+
VO  
VCLAMP  
VSS  
10mA  
Figure 37. High Level Supply Current (I  
), V High Level Supply Current (I ) Test Circuit  
DDH  
E
EH  
FOD8333  
1
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
I
EL  
2
VCC  
VLED2+  
0.1µF  
0.1µF  
3
4
5
6
7
8
FAULT  
GND  
DESAT  
VDD  
0.1µF  
I
+
DDL  
VLED1–  
VLED1+  
VLED1+  
VLED1–  
V
E
VSS  
30V  
+
VO  
VCLAMP  
VSS  
Figure 38. Low Level Supply Current (I  
), V Low Level Supply Current (I ) Test Circuit  
E EL  
DDL  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
19  
Test Circuits (Continued)  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
+
8V  
VCC  
VLED2+  
DESAT  
VDD  
0V  
V
CC  
4.7kΩ  
0.1µF  
0.1µF  
+
V
DESAT  
FAULT  
GND  
I
I
CHG  
0.1µF  
DSCHG  
0.1µF  
+
VLED1–  
VLED1+  
VLED1+  
VLED1–  
V
E
VSS  
30V  
+
VO  
VCLAMP  
VSS  
10mA  
Figure 39. DESAT Threshold (V  
), Blanking Capacitor Charge Current (I  
),  
DESAT  
CHG  
Blanking Capacitor Discharge Current (I  
) Test Circuit  
DSCHG  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VLED2+  
DESAT  
VDD  
VCC  
0.1µF  
0.1µF  
FAULT  
GND  
0.1µF  
+
VLED1–  
VLED1+  
VLED1+  
VLED1–  
V
E
VSS  
V
O
+
15V  
VO  
0V  
0V  
10mA  
V
UVLO+  
V
UVLO–  
VCLAMP  
VSS  
Figure 40. Under-Voltage Lockout Threshold (V  
/ V  
), Under-Voltage Lockout Threshold  
UVLO+  
UVLO-  
Hysteresis (UVLO  
) Test Circuit  
HYS  
FOD8333  
1
2
3
4
5
6
7
8
16  
GND  
VCC  
VE  
15  
VLED2+  
0.1µF  
0.1µF  
14  
FAULT  
GND  
DESAT  
VDD  
0.1µF  
13  
12  
11  
10  
9
+
VLED1–  
VLED1+  
VLED1+  
VLED1–  
V
E
VSS  
30V  
+
VO  
50Ω  
VCLAMP  
VSS  
5V  
10mA  
+
V
TCLAMP  
0V  
0A  
Figure 41. Clamping Threshold Voltage (V  
) Test Circuit  
CLAMP_THRES  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
20  
Test Circuits (Continued)  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VCC  
VLED2+  
DESAT  
VDD  
0.1µF  
0.1µF  
FAULT  
GND  
0.1µF  
+
VLED1–  
VLED1+  
VLED1+  
VLED1–  
V
E
VSS  
30V  
+
VO  
I
CLAMPL  
VCLAMP  
VSS  
+
2.5V  
Figure 42. Clamp Low Level Sinking Current (I  
) Test Circuit  
CLAMPL  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VLED2+  
DESAT  
VDD  
I
CCH  
VCC  
15V  
V
FAULT  
+
FAULT  
GND  
0.1µF  
VLED1–  
VLED1+  
VLED1+  
VLED1–  
VSS  
VO  
VCLAMP  
VSS  
Figure 43. FAULT High Level Supply Current (I  
) Test Circuit  
CCH  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VLED2+  
DESAT  
VDD  
16mA  
0.1µF  
I
CCL  
VCC  
15V  
V
FAULT  
+
FAULT  
GND  
0.1µF  
VLED1–  
VLED1+  
VLED1+  
VLED1–  
VSS  
VO  
VCLAMP  
VSS  
Figure 44. FAULT Low Level Supply Current (I  
) Test Circuit  
CCL  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
21  
Test Circuits (Continued)  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VCC  
VLED2+  
DESAT  
VDD  
0.1µF  
I
FAULTH  
+
5.5V  
FAULT  
GND  
+
5.5V  
VLED1–  
VLED1+  
VLED1+  
VLED1–  
VSS  
VO  
VCLAMP  
VSS  
Figure 45. FAULT High Level Output Current (I  
) Test Circuit  
FAULTH  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VLED2+  
DESAT  
VDD  
10mA  
0.1µF  
VCC  
0.1µF  
V
FAULTL  
+
5.5V  
FAULT  
GND  
+
1.1mA  
VLED1–  
VLED1+  
VLED1+  
VLED1–  
VSS  
VO  
VCLAMP  
VSS  
Figure 46. FAULT Low Level Output Voltage (V  
) Test Circuit  
FAULTL  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VLED2+  
DESAT  
VDD  
VCC  
0.1µF  
FAULT  
GND  
0.1µF  
+
VLED1–  
VLED1+  
VLED1+  
VLED1–  
V
E
VSS  
30V  
V
O
+
VO  
0.1µF  
10Ω  
10nF  
VCLAMP  
VSS  
10mA  
f = 10kHz  
DC = 50%  
V
IN  
R
M
Figure 47. Propagation Delay (t  
, t  
), Rise Time(t ), Fall Time (t ),  
PLH PHL R F  
Pulse Width Distortion (PWD) Test Circuit  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
22  
Test Circuits (Continued)  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
V
E
100pF  
V
V
CC  
LED2+  
4.7kΩ  
V
CC  
0.1µF  
0.1µF  
+
V
DESAT  
FAULT  
GND  
DESAT  
V
FAULT  
0.1µF  
V
DD  
+
V
V
E
V
LED1–  
SS  
30V  
V
O
+
V
V
LED1+  
O
0.1µF  
10Ω  
V
V
LED1+  
CLAMP  
10nF  
10mA  
V
IN  
V
V
LED1–  
SS  
R
M
Figure 48. DESAT Sense Delay (t  
), t  
), t  
), DESAT Sense to  
DESAT(90%)  
DESAT(10%)  
DESAT(LOW)  
Low Level FAULT Signal Delay (t  
), DESAT Input Mute (t  
) Test Circuit  
DESAT(FAULT)  
DESAT(MUTE)  
FOD8333  
1
16  
GND  
V
E
2
15  
14  
13  
12  
11  
10  
9
V
V
CC  
LED2+  
0.1µF  
3
FAULT  
DESAT  
0.1µF  
4
GND  
V
DD  
+
5
V
V
E
V
LED1–  
SS  
20V  
V
O
6
0.1µF  
V
V
LED1+  
O
10mA  
t
t = t = 1ms  
r f  
UVLO  
7
V
V
LED1+  
CLAMP  
TGP t = t = 10μs  
r
f
8
V
V
LED1–  
SS  
Figure 49. Under-Voltage Lockout Delay (t  
),Time-to-Good-Power (t ) Test Circuit  
UVLO  
GP  
FOD8333  
1
2
3
4
5
6
7
8
16  
GND  
V
E
15  
14  
13  
12  
11  
10  
9
V
V
CC  
LED2+  
4.7kΩ  
5V  
+
FAULT  
GND  
DESAT  
15pF  
or 1nF  
V
DD  
V
V
0.1µF  
LED1–  
SS  
Scope  
25V  
0.1μF  
+
V
V
LED1+  
O
10Ω  
360Ω  
V
V
LED1+  
CLAMP  
10nF  
V
V
LED1–  
SS  
V
CM  
Figure 50. Common-Mode Low (CML) LED1-Off Test Circuit  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
23  
Test Circuits (Continued)  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VCC  
VLED2+  
DESAT  
VDD  
4.7kΩ  
5V  
+
FAULT  
GND  
15pF  
or 1nF  
VLED1–  
VLED1+  
VLED1+  
VLED1–  
VSS  
0.1µF  
Scope  
25V  
0.1μF  
+
VO  
10Ω  
360Ω  
VCLAMP  
VSS  
10nF  
V
CM  
Figure 51. Common-Mode High (CMH) LED1-On Test Circuit  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VLED2+  
DESAT  
VDD  
VCC  
4.7kΩ  
Scope  
5V  
+
FAULT  
GND  
15pF  
or 1nF  
VLED1–  
VLED1+  
VLED1+  
VLED1–  
VSS  
0.1µF  
25V  
0.1μF  
10Ω  
+
VO  
360Ω  
VCLAMP  
VSS  
10nF  
V
CM  
Figure 52. Common-Mode High (CMH) LED2-Off Test Circuit  
FOD8333  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VE  
VLED2+  
DESAT  
VDD  
VCC  
4.7kΩ  
5V  
Scope  
+
FAULT  
GND  
15pF  
or 1nF  
VLED1–  
VLED1+  
VLED1+  
VLED1–  
VSS  
0.1µF  
25V  
0.1μF  
10Ω  
+
VO  
360Ω  
VCLAMP  
VSS  
10nF  
V
CM  
Figure 53. Common-Mode High (CML) LED2-On Test Circuit  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
24  
Application Information  
FOD8333  
GND1  
VE  
VLED2+  
DESAT  
VDD  
1
16  
15  
14  
13  
12  
11  
10  
0.1µF  
+
0.1µF  
0.1µF  
C
2
3
4
5
6
7
VCC  
BLANK  
R
D
DESAT  
F
FAULT  
GND  
+HVDC  
100Ω  
C
F
+
V
Q1  
Q2  
CE  
VLED–  
VLED+  
VLED+  
VLED–  
VSS  
R
LED  
R
G
VO  
3-Phase  
AC  
VCLAMP  
VSS  
+
+
V
CE  
8
9
–HVDC  
Figure 54. Recommended Application Circuit  
Functional Description  
The functional behavioral of FOD8333 is illustrated by  
the detailed internal schematic shown in Figure 55.  
Figure 55 and the timing diagrams explain the interaction  
and sequence of internal and external signals.  
250μA  
14  
+
DESAT  
V
DESAT  
6, 7  
V
V
LED1+  
16  
V
V
E
Delay  
5, 8  
UVLO Comparator  
LED1–  
13  
+
DD  
V
UVLO  
11  
V
O
50x  
2
Pulse  
Generator  
V
CC  
9
1x  
V
V
SS  
3
FAULT  
1, 4  
10  
V
GND  
LED2+  
+
CLAMP  
2V  
25x  
Figure 55. Detailed Internal Behavioral Schematic  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
25  
Normal  
Operation  
Fault Condition  
Automatic  
Reset  
I
F
Blanking  
Time  
6.5V  
V
DESAT  
V
O
FAULT  
Figure 56. Operating Relationsip Among Desaturation Voltage (DESAT), Fault Output (FAULT),  
and Reset Conditions  
1. LED Input and Operation Explanation  
(LED1) is greater than I  
and the forward voltage V is  
FLH F  
greater than V (MIN). The timing relationship between  
F
FOD8333 is an advanced IGBT gate-drive optocoupler  
capable of driving most 1200 V / 150 A IGBTs and power  
MOSFETs in motor control and inverter applications.  
The following section describes driving IGBT, but is also  
the LED input and gate driver output is illustrated in  
Figure 3. When a fault is detected, the gate driver ouptut  
IC immediately enters “soft” turn-off mode, where the  
output voltage changes slowly from HIGH to LOW state.  
This also disables the gate control input on the gate  
applicable to driving MOSFET. Adjust the V  
supply  
DD  
based on the gate threshold voltages. Critical protection  
features and controls are incorporated to simplify the  
design and improve reliability. The device includes an  
IGBT desaturation detection protection and a FAULT  
status output.  
driver IC side for a minimum mute time, t  
20 µs.  
, of  
DESAT(MUTE)  
The FAULT output, which is open-collector configura-  
tion, is latched to LOW state to report a fault status to the  
microcontroller. It is only reset or pulled back to HIGH  
This highly integrated device consists of two high-  
performances AlGaAs LEDs and two integrated circuits.  
LED1 directly controls the isolated gate driver IC output,  
while the returned optical signal path is transmitted by  
LED2, which reports the fault status through the open-  
collector fault-sense IC output.  
automatically after the fixed mute time, t  
.
DESAT(MUTE)  
The active Miller clamp function avoids the need of  
negative gate driving in most applications and allows the  
use of a simple bootstrap supply for the high-side driver.  
2. Gate Driver Output  
The control LED input and the fault-sense IC output  
can be connected to a standard 3.3 V / 5 V DSP or  
microcontroller. The gate driver output can be connected  
to the gate of the power devices on the high-voltage side.  
A pair of PMOS and NMOS make up the output driver  
stage, which facilitates close to rail-to-rail output swing.  
This feature allows tight control of gate voltage during  
on-state and short-circuit conditions.  
A
typical recommended application is shown in  
The output driver can typically sink 2.5 A and source  
Figure 54. A typical shunt LED drive can be used to  
improve noise immunity. The LED is connected in  
parallel with the bipolar transistor switch, creating a  
current shunt drive. Common-mode transients from the  
load coupling via the package capacitance can be  
2.5 A at room temperature. Due to the low R  
of the  
DS(ON)  
MOSFETs, the power dissipation is lower than bipolar-  
type driver output stages. The absolute maximum rating  
of the output peak current, I  
, is 3 A. Careful  
O(PEAK)  
selection of the gate resistor, R , is required to avoid  
coupled into  
a
low-impedance path, either the  
G
violation of this rating. For charging and discharging, the  
conducting LED or the on resistance of the conducting  
bipolar transistor, increasing its noise immunity.  
R
value is approximated by:  
G
R = V – V – V / I  
OL OL(PEAK)  
(1)  
During normal operation, when no fault is detected,  
G
CC  
EE  
LED1 controls the gate driver output. V is set to HIGH  
O
when the current flowing from the anode to the cathode  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
26  
As shown in Figure 55, the gate driver output is  
influenced by signals from the photodetector circuitry,  
the UVLO comparator, and the DESAT signals. Under  
no-fault condition, normal operation resumes while the  
supply voltage is above the UVLO threshold and the  
output of the photodetector drives the MOSFETs of the  
output stage. The logic circuitry of the output stage  
ensures that the push-pull devices are never turned ON  
simultaneously. When the output of the photodetector is  
capacitance (C  
), FAULT threshold voltage  
BLANK  
(V  
), and DESAT charge current (I  
):  
DESAT  
CHG  
t
= C  
x V / I  
DESAT CHG  
(2)  
BLANK  
BLANK  
With a recommended 100 pF DESAT capacitor, the  
nominal blanking time is:  
100 pF x 6.5 V / 250 µA = 2.6 µs  
4. Soft Turn-Off  
HIGH, output V is pulled to HIGH state by turning on  
the PMOS. When the output of the photodetector is  
O
The soft turn-off feature ensures the safe shutdown of  
the IGBT under fault condition. The gate-driver voltage  
LOW, V is pulled to LOW state by turning on the  
O
V
turns off the IGBT in a controlled slow manner. This  
O
50XNMOS.  
reduces the voltage spike on the collector of the IGBT.  
Without this, the IGBT would see a heavy spike on the  
collector, resulting in a permanent damage to the device  
When V  
supply goes below V  
, which is the  
DD  
UVLO  
designated ULVO threshold at the comparator, V is  
O
when it’s turned off immediately. The V is pulled to  
pulled to LOW state regardless of photodetector output.  
O
LOW slowly in 4 µs.  
When V is HIGH and desaturation is detected, V turns  
O
O
5. Under-Voltage Lockout (UVLO)  
off slowly as it is pulled LOW by the 1XNMOS device.  
The input to the fault-sense circuitry is latched to HIGH  
state and turns on the LED2. The fault-sense signal  
remains in HIGH state until LED1 is switched from LOW  
Under-Voltage detection prevents the application of  
insufficient gate voltage to the IGBT. This could be  
dangerous, as it would drive the IGBT out of saturation  
and into the linear operation where losses are very high  
and the IGBT quickly overheats. This feature ensures  
to HIGH. When V goes below 2 V, the 50XNMOS  
O
device turns on, clamping the IGBT gate firmly to V  
.
SS  
proper operation of the IGBTs. The output voltage, V ,  
remains LOW irregardless of the inputs, as long as the  
3. Desaturation Protection, FAULT Output and  
FAULT RESET  
O
supply voltage, V  
– V , is less than V  
during  
DD  
E
UVLO+  
Desaturation detection protects the IGBT in short circuit  
by monitoring the collector-emitter voltage of the IGBT  
when it’s turned on. When the DESAT pin voltage goes  
above the threshold voltage, a short-circuit condition is  
detected and the driver output stage executes a “soft”  
IGBT turn-off and is eventually driven LOW. This  
sequence is illustrated in Figure 56. The FAULT open-  
collector output is triggered active LOW to report a  
desaturation error. The gate driver output is muted for  
minimum of 20 µs. All input LED signals are ignored  
during the mute period to allow the driver to completely  
soft shutdown the IGBT. The fault mechanism is reset  
power up. When the supply voltage falls below V  
,
UVLO-  
V
goes LOW, as illustrated in Figure 57.  
O
6. Active Miller Clamp Function  
An active Miller clamp feature allows the sinking of the  
Miller current to ground during a high-dV/dt situation.  
Instead of driving the IGBT gate to a negative supply  
voltage to increase the safety margin, the device has a  
dedicated V  
pin to control the Miller current.  
CLAMP  
During turn-off, the gate voltage of the IGBT is monitored  
and the V output is activated when the gate  
CLAMP  
voltage goes below 2 V (relative to V ).  
SS  
automatically after the t  
(see Figure 56).  
DESAT(MUTE)  
The Miller clamp NMOS transistor is then turned on and  
provides a low resistive path for the Miller current, which  
helps prevent a self-turn-on due to the parasitic Miller  
capacitor in power switches. The clamp voltage is V  
2.5 V, typical for a Miller current up to 1100 mA.  
During OFF state of the IGBT, or if V is LOW, the fault  
O
sense circuitry is disabled to prevent false fault signals.  
The DESAT comparator should be disabled for a short  
period (blanking time) before the IGBT turns on to allow  
the collector voltage to fall below the DESAT threshold.  
+
SS  
In this way, the V  
function does not affect the turn-  
CLAMP  
This blanking period protects against false triggering of  
the DESAT while the IGBT is turning on. The blanking  
time is controlled by the internal DESAT charge current,  
the DESAT voltage threshold, and the external DESAT  
off characteristic. It helps to clamp the gate to the low  
level throughout the turn-off time. During turn-on, where  
the input of the driver is activated, the V  
disabled or opened.  
function is  
CLAMP  
capacitor (capacitor between DESAT and V pin). The  
E
nominal blanking time can be calculated using external  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
27  
I
FLH  
I
F
V
V
UVLO+  
UVLO–  
V
DD  
– V  
E
t
GP  
V
O
Figure 57. Time to Good Power  
9. DESAT Pin Protection  
7. Time to Good Power  
During fast power up (e.g. bootstrap power supply), the  
LED is off and the output of the gate driver should be in  
the LOW or OFF state. Sometimes, race conditions exist  
During turn off, especially with inductive load, a large  
instantaneous forward-voltage transient can appear on  
the freewheeling diode of the IGBT. A large negative  
voltage spike on the DESAT pin can result and draw  
substantial current out of the gate driver IC if there is not  
current-limiting resistor. To limit this current, a 100 Ω to  
1 kΩ resistor should be inserted in series with the  
DESAT diode. The added resistance does not change  
the DESAT threshold or the DESAT blanking time.  
that cause the output to follow V until all of the circuits  
DD  
in the output IC stabilize. This condition can result in  
output transitions or transients that are coupled to the  
driven IGBT. These glitches can cause the high- and  
low-side IGBTs to conduct shoot-through current that  
can damage the power semiconductor devices.  
Fairchild has introduced a initial turn-on delay, called  
“time to good power.” This delay, typically 2 µs, is only  
present during the initial power-up of the device. If the  
LED is ON during the initial turn-on activation, low-to-  
high transition at the output of the gate driver only occurs  
The DESAT diode protects the gate driver IC from high  
voltages when the IGBT is turning off, while allowing a  
forward I  
current of 250 µA to be conducted to sense  
CHG  
the IGBT’s saturated collector to emitter voltage when  
the IGBT is turned on. A fast-recovery diode, t below  
rr  
2 µs after the V power is applied.  
75 ns, with sufficient reverse-voltage rating, should be  
used. Fairchild offers many of these ultra-fast diodes/  
DD  
8. Dual Supply Operation – Negative Bias at V  
SS  
rectifiers, such as ES1J-600V, with t at 35 ns.  
rr  
The IGBT’s off-state noise immunity can be enhanced by  
providing a negative gate-to-emitter bias when the IGBT  
is in OFF state. This static off-state bias can be supplied  
by connecting a separate negative voltage source  
If two diodes or more are used, the required maximum  
reverse voltage can be reduced by half or accordingly.  
This modifies the trigger level for a fault condition. The  
sum of the DESAT diode forward-voltage and the IGBT  
between the V (pin 16) and V (pin 9 and pin 12). The  
E
SS  
collector-emitter V  
voltage form the voltage at the  
CE  
primary ground reference is the IGBT’s emitter  
DESAT pin. The trigger level for a fault condition given by:  
V = V – n x V (3)  
CE@FAULT  
connection, V (pin 16). The under-voltage lockout  
E
threshold and desaturation voltage detection are  
DESAT  
F
referenced to the IGBT’s emitter (V ) ground.  
E
where n is the number of the DESAT diodes.  
The negative voltage supply at V appears at the gate  
SS  
10. Pull-Up Resistor on FAULT Pin  
drive output, V , when in LOW state. When the input  
O
drives the output HIGH, the output voltage, V , has the  
O
The FAULT pin is an open-collector output and can be  
connected as wire-OR operation with other types of  
protection (e.g., over-temperature, over-voltage, over-  
current) to alert the microcontroller. Being an open-  
collector output, it requires a pull-up resistor to provide a  
normal high output voltage level. This resistor value  
must be properly considered based on various IC  
interface requirements. The sinking current capability is  
potential of the V  
and V  
.
Proper power supply  
DD  
SS  
bypass capacitors are added to provide paths for the  
instantaneous gate charging and discharging currents.  
The Schottky diode is recommended connected  
between V and V to protect against a reverse voltage  
E
SS  
greater than 0.5 V. The V  
(pin 10) should be  
CLAMP  
connected to V when not in use.  
SS  
given by I  
.
FAULTL  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
28  
11. Increasing the Output Drive Current Using an  
External Booster Stage  
A possible implementation is by a discrete NPN/PNP  
totem-pole configuration. These booster transistors  
should be fast switching and have sufficient current gain  
to deliver the desired peak output current.  
If larger gate drive capability is needed for large IGBT  
modules or parallel operation, an output booster stage  
may be added to driver for optimum performance.  
FOD8333  
VE  
16  
0.1µF  
CBLANK  
DDESAT  
15  
14  
13  
12  
11  
10  
VLED2+  
DESAT  
VDD  
100Ω  
0.1µF  
+
VSS  
RG  
VO  
VCLAMP  
VSS  
9
+
Figure 58. Output Booster Stage for Increased Output Drive Current  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
29  
Ordering Information  
Part Number  
Package  
Packing Method  
FOD8333  
SO 16-Pin  
SO 16-Pin  
Tube (50 units per tube)  
FOD8333R2  
FOD8333V  
FOD8333R2V  
Tape and Reel (750 units per reel)  
Tube (50 units per tube)  
SO 16-Pin, DIN EN/IEC 60747-5-5 Option  
SO 16-Pin, DIN EN/IEC 60747-5-5 Option  
Tape and Reel (750 units per reel)  
All packages are lead free per JEDEC: J-STD-020B standard.  
Marking Information  
1
2
3
V
8333  
8
J
D X YYKK  
6
5
4
7
Definitions  
1
2
3
Fairchild logo  
Device number, e.g., ‘8333’ for FOD8333  
DIN EN/IEC60747-5-5 Option (only appears on component  
ordered with this option) (pending approval)  
4
5
6
7
8
Plant code, e.g., ‘D’  
Alphabetical year code, e.g., ‘E’ for 2014  
Two-digit work week ranging from ‘01’ to ‘53’  
Lot traceability code  
Package assembly code, e.g., ‘J’  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
30  
Reflow Profile  
Max. Ramp-Up Rate = 3 °C/s  
Max. Ramp-Down Rate = 6 °C/s  
T
P
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
t
P
T
L
T
smax  
t
L
Preheat Area  
T
smin  
t
s
60  
40  
20  
0
120  
Time 25 °C to Peak  
240  
360  
Time (seconds)  
Figure 59. Relow Profile  
Profile Freature  
Pb-Free Assembly Profile  
150°C  
Temperature Minimum (T  
)
smin  
Temperature Maximum (T  
)
200°C  
smax  
Time (t ) from (T  
to T )  
smax  
60–120 seconds  
3°C/second maximum  
217°C  
S
smin  
Ramp-up Rate (t to t )  
L
P
Liquidous Temperature (T )  
L
Time (t ) Maintained Above (T )  
60–150 seconds  
260°C +0°C / –5°C  
30 seconds  
L
L
Peak Body Package Temperature  
Time (t ) within 5°C of 260°C  
P
Ramp-Down Rate (T to T )  
6°C/second maximum  
8 minutes maximum  
P
L
Time 25°C to Peak Temperature  
©2014 Fairchild Semiconductor Corporation  
FOD8333 Rev. 1.0.3  
www.fairchildsemi.com  
31  
0.20 C A-B  
1.27 TYP  
16  
0.64 TYP  
9
2X  
10.30  
A
D
16  
9
3.75  
10.30  
7.50  
(2.16)  
1
0.10 C D  
PIN ONE  
8
2X  
0.33 C  
2X 8 TIPS  
1
8
LAND PATTERN  
RECOMMENDATION  
1.27  
INDICATOR  
0.51  
0.31  
(16X)  
B
0.51 TYP  
0.25  
C A-B D  
A
0.10 C  
3.0 MAX  
2.35±0.10  
0.10 C  
16X  
SEATING PLANE  
0.30±0.15  
C
NOTES: UNLESS OTHERWISE SPECIFIED  
(1.42)  
A) DRAWING REFERS TO JEDEC MS-013,  
VARIATION AA.  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS ARE EXCLUSIVE OF  
BURRS, MOLD FLASH AND TIE BAR  
PROTRUSIONS  
(R0.17)  
(R0.17)  
GAUGE  
PLANE  
D) DRAWING CONFORMS TO ASME  
Y14.5M-1994  
E) LAND PATTERN STANDARD:  
SOIC127P1030X275-16N  
0.25  
0.19  
8°  
0°  
F) DRAWING FILE NAME: MKT-M16FREV2  
0.25  
1.27  
0.40  
C
SEATING  
PLANE  
SCALE: 3:1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
© Semiconductor Components Industries, LLC  
www.onsemi.com  

相关型号:

FOD8333R2V

输入 LED 驱动、2.5 A 输出电流、带去饱和检测的 IGBT 驱动光电耦合器、隔离故障感测、有源米勒箝位,及自动故障复位
ONSEMI

FOD8333V

输入 LED 驱动、2.5 A 输出电流、带去饱和检测的 IGBT 驱动光电耦合器、隔离故障感测、有源米勒箝位,及自动故障复位
ONSEMI

FOD8334

IGBT Drive Optocoupler
ONSEMI

FOD8334R2

IGBT Drive Optocoupler
ONSEMI

FOD8334R2V

IGBT Drive Optocoupler
ONSEMI

FOD8334V

IGBT Drive Optocoupler
ONSEMI

FOD8342

3.0 A Output Current, High Speed Gate Drive Optocoupler
ONSEMI

FOD8342R2

3.0 A Output Current, High Speed Gate Drive Optocoupler
ONSEMI

FOD8342R2V

3.0 A Output Current, High Speed Gate Drive Optocoupler
ONSEMI

FOD8342T

3.0 A Output Current, High Speed Gate Drive Optocoupler
ONSEMI

FOD8342TR2

3.0 A Output Current, High Speed Gate Drive Optocoupler
ONSEMI

FOD8342TR2V

3.0 A Output Current, High Speed Gate Drive Optocoupler
ONSEMI