FOD8012AR2 [ONSEMI]

高 CMR,双向,逻辑门极光耦合器;
FOD8012AR2
型号: FOD8012AR2
厂家: ONSEMI    ONSEMI
描述:

高 CMR,双向,逻辑门极光耦合器

光电
文件: 总11页 (文件大小:193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Logic Gate Optocoupler,  
High CMR, Bi-Directional  
FOD8012A  
Description  
SOIC8  
CASE 751DZ  
The FOD8012A is a half duplex, bi−directional, high−speed logic  
gate Optocoupler, which supports isolated communications allowing  
digital signals to communicate between systems without conducting  
ground loops or hazardous voltages. It utilizes onsemi’s patented  
MARKING DIAGRAM  
1
®
coplanar packaging technology, OPTOPLANAR , and optimized IC  
design to achieve minimum 20 kV/ms Common Mode Noise Rejection  
(CMR) rating.  
2
5
ON  
X
8012A  
This high−speed logic gate optocoupler is highly integrated with 2  
optically coupled channels arranged in bi−directional configuration,  
and housed in a compact 8−pin small outline package. Each  
optocoupler channel consists of a high−speed AlGaAs LED driven by  
a CMOS buffer IC coupled to a CMOS detector IC. The detector IC  
comprises of an integrated photodiode, a high−speed trans−impedance  
amplifier and a voltage comparator with an output driver. The CMOS  
technology coupled to the high efficiency of the LED achieves low  
power consumption as well as very high speed (60 ns propagation  
delay, 15 ns pulse width distortion).  
YY S1  
4
3
1.  
2.  
3.  
4.  
ON = onsemi Logo  
8012A= Device Number  
X
YY  
= One−Digit Year Code, e.g. ‘8’  
= Two Digit Work Week Ranging  
from ‘01’ to ‘53’  
Features  
5.  
S1  
= Assembly Package Code  
Half Duplex, Bi−Directional  
20 kV/ms Minimum Common Mode Rejection  
High Speed:  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 9 of  
this data sheet.  
15 Mbit/s Date Rate (NRZ)  
60 ns Maximum Propagation Delay  
15 ns Maximum Pulse Width Distortion  
30 ns Maximum Propagation Delay Skew  
3.3 V and 5 V CMOS Compatibility  
Extended Industrial Temperate Range, −40 to +110°C Temperature  
Range  
Safety and Regulatory Approvals:  
UL1577, 3750 VAC  
for 1 min.  
RMS  
DIN EN/IEC60747−5−5 (approval pending)  
Applications  
Industrial Fieldbus Communications  
DeviceNet, CAN, RS485  
Microprocessor System Interface  
2
SPI, I C  
Programmable Logic Control  
Isolated Data Acquisition System  
Voltage Level Translator  
Related Resources  
FOD8001/D, High Noise Immunity, 3.3 V/5 V Logic Gate  
Optocoupler Datasheet  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
January, 2022 − Rev. 2  
FOD8012A/D  
FOD8012A  
TRUTH TABLE  
V
LED  
OFF  
ON  
V
O
IN  
High  
Low  
High  
Low  
NOTE: When not communicating, V must be in static high logic condition.  
IN  
Functional Schematic  
1
8
7
VDD1  
VDD2  
VOA  
VINA  
2
VINB  
VOB  
3
4
6
5
GND1  
GND2  
0.1μF bypass capacitor required from VDD to GND  
Figure 1. Functional Schematic  
PIN DEFINITIONS  
Pin Name  
Pin Number  
Description  
V
1
2
Supply Voltage to Channel−A detector IC and Channel−B buffer IC  
Output Voltage from Channel−A detector IC  
DD1  
V
OA  
3
4
5
Input Voltage to Channel−B buffer IC  
V
INB  
GND  
GND  
Ground for Channel−A detector IC and Channel−B buffer IC  
Ground for Channel−A buffer IC and Channel−B detector IC  
1
2
6
7
8
Output Voltage from Channel−B detector IC  
V
OB  
Input Voltage to Channel−A buffer IC  
V
INA  
Supply Voltage to Channel−A buffer IC and Channel−B detector IC  
V
DD2  
www.onsemi.com  
2
FOD8012A  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified)  
A
Symbol  
Parameter  
Value  
Units  
°C  
T
STG  
Storage Temperature  
Operating Temperature  
Junction Temperature  
−40 to +125  
−40 to +110  
−40 to +130  
260 for 10 s  
0 to 6.0  
T
OPR  
°C  
T
J
°C  
T
SOL  
Lead Solder Temperature (Refer to Reflow Temperature Profile)  
Supply Voltage  
°C  
V
, V  
DD2  
V
DD1  
V , V  
Input Voltage  
−0.5 to V + 0.5  
V
IA  
IB  
DD  
I , I  
Input DC Current  
−10 to +10  
mA  
V
IA IB  
V
, V  
Output Voltage  
−0.5 to V + 0.5  
OA  
OB  
DD  
I
, I  
Average Output Current  
10  
60  
60  
mA  
mW  
mW  
OA OB  
PD  
Input Power Dissipation (Note 1)  
Output Power Dissipation (Note 1)  
I
PD  
O
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. No derating required.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Ambient Operating Temperature  
Supply Voltages (3.3 V Operation) (Note 2)  
Supply Voltages (5.0 V Operation) (Note 2)  
Logic High Input Voltage  
Min.  
−40  
3.0  
4.5  
2.0  
0
Max.  
+110  
3.6  
Unit  
°C  
T
A
V
, V  
DD2  
V
DD1  
5.5  
V
IH  
V
DD  
V
V
V
IL  
Logic Low Input Voltage  
0.8  
1.0  
t , t  
Input Signal Rise and Fall Time  
ms  
r
f
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
2. 0.1 mF bypass capacitor must be connected between Pin 1 and 4, and 5 and 8. The capacitors should be kept close to the supply pins.  
ISOLATION CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at T = 25°C)  
A
Symbol  
Characteristics  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Input−Output Isolation Voltage  
3750  
VacRMS  
V
ISO  
f = 60 Hz, t = 1.0 min., II−O 10 mA (Notes 3, 4)  
VI−O = 500 V (Note 3)  
11  
W
Isolation Resistance  
Isolation Capacitance  
10  
R
C
ISO  
ISO  
VI−O = 0 V, f = 1.0 MHz (Note 3)  
0.2  
pF  
3. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.  
4. 3,750 VAC for 1 minute duration is equivalent to 4,500 VAC for 1 second duration.  
RMS  
RMS  
ELECTRICAL CHARACTERISTICS (T = −40°C to +110°C, 3.0 V V 5.5 V, unless otherwise specified.  
A
DD  
Apply over all recommended conditions, typical value is measured at V  
= V = +3.3 V, T = 25°C)  
DD2 A  
DD1  
Symbol  
, I  
Parameter  
Logic Low Supply Current  
Logic High Supply Current  
Input Current  
Conditions  
Min.  
Typ.  
5.8  
Max.  
8.0  
Units  
mA  
mA  
mA  
I
V , V = 0 V  
IA IB  
DD1L DD2L  
I
, I  
V , V = V  
DD  
2.5  
4.0  
DD1H DD2H  
IA  
IB  
I , I  
IA IB  
−10  
3.2  
3.0  
4.9  
4.7  
+10  
V
OH  
Logic High Output Voltage  
3.3  
3.1  
5.0  
4.8  
0
V
I
O
I
O
I
O
I
O
I
O
I
O
= −20 mA, V = V , V = 3.3 V  
I IH DD  
= −4 mA, V = V , V = 3.3 V  
I
IH  
DD  
= −20 mA, V = V , V = 5 V  
I
IH  
DD  
= −4 mA, V = V , V = 5 V  
I
IH  
DD  
V
OL  
Logic Low Output Voltage  
0.1  
0.6  
V
= 20 mA, V = V , V = 3.3 V or 5 V  
I
IL  
DD  
= 4 mA, V = V , V = 3.3 V or 5 V  
0.26  
I
IL  
DD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
3
 
FOD8012A  
SWITCHING CHARACTERISTICS (T = −40°C to +110°C, 3.0 V V 5.5 V, unless otherwise specified.  
A
DD  
Apply over all recommended conditions, typical value is measured at V  
= V = +3.3 V, T = 25°C)  
DD2 A  
DD1  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
15  
Unit  
Mbit/s  
ns  
Data Rate  
t
t
Propagation Delay Time to Logic Low Output  
Propagation Delay Time to Logic High Output  
PW = 66.7 ns, C = 15 pF  
37  
40  
3
60  
PHL  
L
PW = 66.7 ns, C = 15 pF  
60  
ns  
PLH  
L
PWD  
Pulse Width Distortion, | t  
Channel−Channel Skew  
Part−Part Skew  
– t  
PLH  
|
PW = 66.7 ns, C = 15 pF  
15  
ns  
PHL  
L
(Note 5)  
t
PW = 66.7 ns, C = 15 pF  
12  
25  
30  
ns  
ns  
PSK(CC)  
L
(Note 6)  
t
PW = 66.7 ns, C = 15 pF  
PSK(PP)  
L
(Note 7)  
t
Output Rise Time (10% to 90%)  
Output Fall Time (90% to 10%)  
PW = 66.7 ns, C = 15 pF  
6.5  
6.5  
40  
ns  
ns  
R
L
t
PW = 66.7 ns, C = 15 pF  
L
F
|CM |  
Common Mode Transient Immunity at Output  
High  
V = V  
, V > 0.8 V ,  
O DD1  
20  
20  
kV/ms  
H
I
DD1  
V
CM  
= 1000 V (Note 8)  
|CM |  
Common Mode Transient Immunity at Output  
Low  
V = 0 V, V < 0.8 V,  
40  
kV/ms  
L
I
O
V
CM  
= 1000 V (Note 8)  
5. PWD is equal to the magnitude of the worst case difference in t  
and/or t  
that will be seen for one channel switching, while holding  
PHL  
PLH  
the other channel output at a low or high state, or while both channels are in synchronous data transmission mode.  
6. t is equal to the magnitude of the worst case difference in t and/or t that will be seen between the two channels within a single  
PSK(CC)  
PHL  
PLH  
device.  
7. t  
is equal to the magnitude of the worst case difference in t  
and/or t  
that will be seen between any two units from the same  
PSK(PP)  
PHL  
PLH  
manufacturing date code that are operated at same case temperature, at same operating conditions, with equal loads.  
8. Common mode transient immunity at output high is the maximum tolerable positive dVcm/dt on the leading edge of the common mode  
impulse signal, Vcm, to assure that the output will remain high. Common mode transient immunity at output low is the maximum tolerable  
negative dVcm/dt on the trailing edge of the common pulse signal, Vcm, to assure that the output will remain low.  
www.onsemi.com  
4
 
FOD8012A  
TYPICAL PERFORMANCE CURVES  
4.0  
3.0  
2.0  
2.0  
1.8  
V
= V  
= 3.3V  
DD1  
DD1  
1.6  
1.4  
1.0  
0
1.2  
1.0  
0
1
2
3
4
5
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VI – INPUT VOLTAGE (V)  
VDD – SUPPLY VOLTAGE (V)  
Figure 2. Typical Output Voltage vs. Input Voltage  
(Channel A & B)  
Figure 3. Typical Input Voltage Switching Threshold  
vs. Input Supply Voltage (Channel A & B)  
54  
2
Frequency = 7.5MHz  
Frequency = 7.5MHz  
Duty Cycle = 50%  
Duty Cycle = 50%  
V
= V  
= 3.3V  
V
= V = 3.3V  
1
DD1  
DD2  
DD1  
DD2  
50  
46  
0
−1  
−2  
−3  
42  
38  
t
PLH  
t
PHL  
−4  
−5  
−6  
34  
30  
−40 −20  
0
20  
40  
60  
80  
100 110  
−40 −20  
0
20  
40  
60  
80  
100 110  
TA – AMBIENT TEMPERATURE (°C)  
TA – AMBIENT TEMPERATURE (°C)  
Figure 4. Typical Propagation Delay vs. Ambient  
Temperature (Channel A & B)  
Figure 5. Typical tPHL − tPLH vs. Ambient Temperature  
(Channel A & B)  
7.0  
9.0  
Frequency = 7.5MHz  
Frequency = 7.5MHz  
Duty Cycle = 50%  
Duty Cycle = 50%  
V
= V  
= 3.3V  
V
= V = 3.3V  
8.5  
8.0  
DD1  
DD2  
DD1  
DD2  
6.5  
6.0  
5.5  
7.5  
7.0  
6.5  
t
R
t
F
5.0  
4.5  
4.0  
6.0  
5.5  
5.0  
−40 −20  
0
20  
40  
60  
80  
100 110  
−40 −20  
0
20  
40  
60  
80  
100 110  
TA – AMBIENT TEMPERATURE (°C)  
TA – AMBIENT TEMPERATURE (°C)  
Figure 6. Typical Rise Time vs. Ambient  
Temperature (Channel A & B)  
Figure 7. Typical Fall Time vs. Ambient  
Temperature (Channel A & B)  
www.onsemi.com  
5
FOD8012A  
TYPICAL PERFORMANCE CURVES (Continued)  
45  
43  
41  
0
Frequency = 7.5MHz  
Duty Cycle = 50%  
Frequency = 7.5MHz  
Duty Cycle = 50%  
V
= V = 3.3V  
V
= V = 3.3V  
DD1  
DD2  
DD1  
DD2  
−1  
t
PLH  
−2  
−3  
t
PHL  
39  
37  
−4  
−5  
35  
15  
20  
25  
30  
35  
40  
45  
50  
55  
15  
20  
25  
30  
35  
40  
45  
50  
55  
CL OUTPUT LOAD CAPACITANCE (pF)  
CL OUTPUT LOAD CAPACITANCE (pF)  
Figure 8. Typical Propagation Delay vs. Output  
Load Capacitance (Channel A & B)  
Figure 9. Typical tPHL − tPLH vs. Output  
Load Capacitance (Channel A & B)  
12  
16  
14  
Frequency = 7.5MHz  
Duty Cycle = 50%  
Frequency = 7.5MHz  
Duty Cycle = 50%  
V
= V = 3.3V  
V
= V  
= 3.3V  
DD1  
DD2  
DD1  
DD2  
10  
8
12  
10  
t
t
F
R
6
8
6
4
4
2
15  
20  
25  
30  
35  
40  
45  
50  
55  
15  
20  
25  
30  
35  
40  
45  
50  
55  
CL OUTPUT LOAD CAPACITANCE (pF)  
CL OUTPUT LOAD CAPACITANCE (pF)  
Figure 10. Typical Rise Time vs. Output  
Load Capacitance (Channel A & B)  
Figure 11. Typical Fall Time vs. Output  
Load Capacitance (Channel A & B)  
www.onsemi.com  
6
FOD8012A  
TYPICAL PERFORMANCE CURVES (Continued)  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
7.5  
V
V
= V  
DD2  
= 5.5V, T  
Switching  
V
V
V
= V = 5.5V, T = 25°C  
DD2 A  
= 25°C  
DD1  
A
DD1  
INB  
INA  
T
= 25°C  
and V  
= 0V @ I  
, V  
Switching  
A
INA  
INB  
DD1 INA  
= 0V @ I  
, V  
Switching  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
Pin 2 and 6 Floating  
DD2 INB  
Pin 2 and 6 Floating  
T
= −40°C  
A
T
= 25°C  
A
T
= 110°C  
A
T
= −40°C  
A
T
= 110°C  
A
0
2,000  
4,000  
6,000  
8,000  
10,000 12,000 14,000  
0
2,000  
4,000  
6,000  
8,000  
10,000 12,000 14,000  
F – FREQUENCY (kHz)  
F – FREQUENCY (kHz)  
Figure 12. Typical IDD1 DD2  
/I  
Supply Current vs.  
Figure 13. Typical IDD1 DD2  
/I  
Supply Current vs.  
Frequency  
Frequency  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
V
V
V
= V = 5.5V, T = 25°C  
DD2 A  
DD1  
INA  
INB  
= 0V @ I  
, V  
Switching  
DD1 INB  
= 0V @ I  
, V  
Switching  
DD2 INA  
Pin 2 and 6 Floating  
T
A
= 25°C  
T
= −40°C  
A
T
A
= 110°C  
0
2,000  
4,000  
6,000  
8,000  
10,000 12,000 14,000  
F – FREQUENCY (kHz)  
Figure 14. Typical IDD1/IDD2 Supply Current vs.  
Frequency  
www.onsemi.com  
7
FOD8012A  
TEST CIRCUITS  
1
2
8
7
V
OA  
V
DD2  
0.1 mF  
0.1 mF  
C
L
0V~3.3V  
V
OB  
3
4
6
5
V
DD1  
t
t
PLH  
PHL  
3.3V  
Input  
50%  
V
IN  
V
50%  
90%  
10%  
OH  
Output  
V
V
OUT  
OL  
t
t
R
F
Figure 15. Test Circuit for Propagation Delay Time and Rise Time, Fall Time  
1
2
8
7
V
A
OA  
0.1 mF  
V
DD2  
B
0.1 mF  
C
L
3
4
6
5
V
DD1  
+
Vcm  
Pulse Gen  
V
CM  
GND  
V
OH  
CM  
H
Switching Pos. (A), V = 3.3V  
IN  
0.8 x V  
DD  
0.8V  
Switching Pos. (B), V = 0V  
V
OL  
IN  
CM  
L
Figure 16. Test Circuit for Instantaneous Common Mode Rejection Voltage  
www.onsemi.com  
8
FOD8012A  
ORDERING INFORMATION  
Option  
No Suffix  
R2  
Order Entry Identifier  
FOD8012A  
Package  
Packing Method  
Tube (50 Units per Tube)  
Tape and Reel (2,500 Units per Reel)  
SOIC8 (Pb−Free)*  
SOIC8 (Pb−Free)*  
FOD8012AR2  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*All packages are lead free per JEDEC: J−STD−020B standard.  
REFLOW PROFILE  
Max. Ramp−up Rate = 3°C/s  
Max. Ramp−down Rate = 6°C/s  
260  
T
P
245  
240  
t
P
T
L
220  
200  
180  
160  
140  
120  
100  
80  
Tsmax  
t
L
Tsmin  
t
s
60  
40  
20  
0
120  
240  
360  
Time 25°C to Peak  
Time (s)  
Profile Freature  
Pb−Free Assembly Profile  
150°C  
Temperature Min. (Tsmin)  
Temperature Max. (Tsmax)  
200°C  
Time (t ) from (Tsmin to Tsmax)  
60 − 120 s  
S
Ramp−up Rate (t to t )  
3°C/s max.  
217°C  
L
P
Liquidous Temperature (T )  
L
Time (t ) Maintained Above (T )  
60 − 150 s  
L
L
Peak Body Package Temperature  
245°C + 0°C / −5°C  
30 s  
Time (t ) within 5°C of 245°C  
P
Ramp−down Rate (T to T )  
6°C/s max.  
8 minutes max.  
P
L
Time 25°C to Peak Temperature  
OPTOPLANAR is a registered trademark of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States  
and/or other countries.  
www.onsemi.com  
9
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC8  
CASE 751DZ  
ISSUE O  
DATE 30 SEP 2016  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13733G  
SOIC8  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FOD8012R2

Analog Circuit, 1 Func, CMOS, PDSO8, LEAD FREE, SOP-8
FAIRCHILD

FOD814

4-Pin High Operating Temperature Phototransistor Optocouplers
FAIRCHILD

FOD814

4-Pin DIP Phototransistor Optocouplers
ONSEMI

FOD814300

4-Pin High Operating Temperature Phototransistor Optocouplers
FAIRCHILD

FOD814300

4 引脚 DIP 光电晶体管光耦合器
ONSEMI

FOD814300W

4-Pin High Operating Temperature Phototransistor Optocouplers
FAIRCHILD

FOD814300W

4 引脚 DIP 光电晶体管光耦合器
ONSEMI

FOD8143S

4-Pin High Operating Temperature Phototransistor Optocouplers
FAIRCHILD

FOD8143S

4 引脚 DIP 光电晶体管光耦合器
ONSEMI

FOD8143SD

4-Pin High Operating Temperature Phototransistor Optocouplers
FAIRCHILD

FOD8143SD

4 引脚 DIP 光电晶体管光耦合器
ONSEMI

FOD814A

4-Pin Phototransistor Optocouplers
FAIRCHILD