FDSS2407 [ONSEMI]

N 沟道逻辑电平门极双 MOSFET 60V,3.3A,132mΩ;
FDSS2407
型号: FDSS2407
厂家: ONSEMI    ONSEMI
描述:

N 沟道逻辑电平门极双 MOSFET 60V,3.3A,132mΩ

文件: 总14页 (文件大小:777K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductor  
Is Now  
To learn more about onsemi™, please visit our website at  
www.onsemi.com  
onsemi andꢀꢀꢀꢀꢀꢀꢀand other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or  
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi  
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without  
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,  
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,  
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/  
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application  
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized  
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for  
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and holdonsemi and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative  
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.  
FDSS2407  
N-Channel Dual MOSFET  
General Description  
62V, 3.3A, 132mΩ  
This dual N-Channel MOSFET provides added functions as  
compared to a conventional Power MOSFET. These are: 1.  
A drain to source voltage feedback signal and 2. A gate  
drive disable control function that previously required  
external discrete circuitry. Including these functions within  
the MOSFET saves printed circuit board space. The drain to  
source voltage feedback function provides a 5V level output  
whenever the drain to source voltage is above 62V. This can  
monitor the time an inductive load takes to dissipate its  
stored energy. Multiple feedback signals can be wired  
“OR’d” together to a single input of the monitoring circuit.  
The gate disable function allows the device to be turned off  
independent of the drive signal on the gate. This function  
permits a second control circuit the ability to deactivate the  
load if necessary. It can also be wired “OR’d” allowing  
multiple devices to be controlled by a single open collector /  
drain control transistor.  
Features  
„ 62V, 132m, 5V Logic Level Gate Dual MOSFET in SO-8  
„ 5V Logic Level feedback signal of the drain to source  
voltage. Multiple devices can be wired “OR’d” to a single  
monitoring circuit input.  
„ Gate Drive Disable Input. Multiple devices controllable by  
a single disable transistor.  
„ Qualified to AEC Q101  
Applications  
„ Automotive Injector Driver  
„ Solenoid Driver  
Internal Diagram  
1
2
3
Source 1  
8
7
Drain 1  
Branding Dash  
5
Gate Disable  
Gate 1  
1
2
3
4
SO-8  
6
5
Source 2  
Drain 2  
Pin 5 - Drain Feedback Output  
Pin 7 - Gate Drive Disable Input  
4
Drain FBK  
Gate 2  
Publication Order Number:  
FDSS2407/D  
©2004 Semiconductor Components Industries, LLC.  
October-2017,Rev 1  
MOSFET Maximum Ratings T =25°C unless otherwise noted  
A
Symbol  
Parameter  
Ratings  
62  
Units  
V
V
V
V
Drain to Source Voltage  
Gate to Source Voltage  
DSS  
GS  
20  
Drain Current  
o
o
3.3  
3.0  
A
A
Continuous (T = 25 C, V = 10V, R  
= 55 C/W)  
A
GS  
θJA  
I
D
o
o
Continuous (T = 25 C, V = 5V, R  
= 55 C/W)  
A
GS  
θJA  
Pulsed  
Figure 4  
140  
A
E
P
Single Pulse Avalanche Energy ( Note 1)  
Power dissipation  
mJ  
W
AS  
2.27  
D
o
o
Derate above 25 C  
18  
mW/ C  
o
T , T  
Operating and Storage Temperature  
-55 to 150  
C
J
STG  
Thermal Characteristics  
2
2
o
R
R
R
Pad Area = 0.50 in (323 mm ) (Note 2)  
55  
C/W  
C/W  
C/W  
θJA  
θJA  
θJA  
2
2
o
o
Pad Area = 0.027 in (17.4 mm ) (Note 3)  
180  
200  
2
2
Pad Area = 0.006 in (3.87 mm ) (Note 4)  
Package Marking and Ordering Information  
Device Marking  
Device  
FDSS2407  
Package  
SO-8  
Reel Size  
330 mm  
Tape Width  
12 mm  
Quantity  
2500  
2407  
Electrical Characteristics T = 25°C unless otherwise noted  
A
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
B
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
I
= 5mA, V = 0V  
62  
-
-
-
-
V
VDSS  
D
GS  
V
V
= 15V, V =0V  
1
DS  
GS  
I
µA  
nA  
= 15V, V =0V,  
DSS  
GSS  
DS  
GS  
-
-
-
-
250  
100  
o
T =150 C  
A
I
V
= 20V  
GS  
On Characteristics  
V
Gate to Source Threshold Voltage  
V
= V , I = 250µA  
1
-
-
3
V
GS(TH)  
GS  
DS  
D
I
I
= 3.3A, V = 10V  
0.099  
0.115  
0.110  
0.132  
D
D
GS  
r
Drain to Source On Resistance  
DS(ON)  
= 3.0A, V = 5V  
-
GS  
Dynamic Characteristics  
C
C
C
R
Input Capacitance  
-
-
-
-
-
-
-
-
-
300  
140  
16  
-
pF  
pF  
pF  
nC  
nC  
nC  
nC  
nC  
ISS  
OSS  
RSS  
G
V
= 15V, V = 0V,  
GS  
DS  
Output Capacitance  
-
f = 75kHz  
Reverse Transfer Capacitance  
Gate Resistance  
-
8500  
3.3  
-
4.3  
0.5  
-
Q
Q
Q
Q
Q
Total Gate Charge at 5V  
Threshold Gate Charge  
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
V
V
= 0V to 5V  
= 0V to 1V  
g(TOT)  
g(TH)  
gs  
GS  
GS  
0.4  
V
= 30V  
= 3.3A  
DD  
I
1.2  
D
I = 1.0mA  
g
0.8  
-
gs2  
2.0  
-
gd  
www.onsemi.com  
2
Switching Characteristics (V = 10V)  
GS  
t
t
t
t
t
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
2700  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
630  
1200  
8700  
3500  
-
-
d(ON)  
-
V
V
= 30V, I = 3.3A  
r
DD  
GS  
D
= 10V, R = 47Ω  
Turn-Off Delay Time  
Fall Time  
-
-
GS  
d(OFF)  
f
Turn-Off Time  
18500  
OFF  
Drain-Source Diode Characteristics  
I
I
I
I
= 3.3A  
= 1.7A  
-
-
-
-
-
-
-
-
1.25  
1.0  
45  
V
V
SD  
SD  
SD  
SD  
V
Source to Drain Diode Voltage  
SD  
t
Reverse Recovery Time  
= 3.3A, dI /dt = 100A/µs  
= 3.3A, dISD/dt = 100A/µs  
ns  
nC  
rr  
SD  
Q
Reverse Recovered Charge  
60  
RR  
Drain Feedback Characteristics  
V
V
Feedback to Source Voltage  
Feedback to Source Voltage  
V
V
= 35V, R  
= 62V, R  
=51KΩ  
=51KΩ  
-
1
1.5  
-
V
V
FBK(Low)  
FBK(High)  
DS  
DS  
FBK-SOURCE  
FBK-SOURCE  
3.5  
4.4  
Gate Drive Disable Characteristics  
Gate Drive Disable Input Voltage, Gate  
o
V
V
V
= 5V, I = 3.0A, T =25 C  
3
-
-
-
-
V
V
DIS(High)  
Enabled  
GS  
D
J
Gate Drive Disable Input Voltage, Gate  
= V = 10V, I 250µA,  
DS D  
GS  
V
0.4  
o
DIS(Low)  
Disabled  
T =150 C  
J
Notes:  
1. Starting T = 25°C, L = 42mH, I = 2.6A, V = 62V, V = 10V.  
J
AS  
DD  
GS  
o
2
2
2. 55 C/W measured using FR-4 board with 0.50 in (323 mm ) copper pad at 1 second.  
3. 180 C/W measured using FR-4 board with 0.027 in (17.4 mm ) copper pad at 1000 seconds.  
4. 200 C/W measured using FR-4 board with 0.006 in (3.87 mm ) copper pad at 1000 seconds.  
o
2
2
o
2
2
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a  
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/  
All ON Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.  
www.onsemi.com  
3
Typical Characteristics T = 25°C unless otherwise noted  
A
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
4
3
2
1
0
V
= 10V  
= 5V  
GS  
V
GS  
o
R
= 55 C/W  
θJA  
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
o
T
, AMBIENT TEMPERATURE ( C)  
o
A
T
, AMBIENT TEMPERATURE ( C)  
A
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Ambient Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
1
0.2  
0.1  
0.05  
0.02  
0.01  
o
R
= 55 C/W  
θJA  
P
DM  
0.1  
t
1
t
2
SINGLE PULSE  
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
x Z  
x R  
+ T  
θJA A  
J
DM  
θJA  
0.01  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. Normalized Maximum Transient Thermal Impedance  
200  
o
T
= 25 C  
A
o
R
= 55 C/W  
θJA  
FOR TEMPERATURES  
o
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100  
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
150 - T  
A
I = I  
25  
125  
V
= 5V  
GS  
10  
3
V
= 10V  
GS  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
10  
Figure 4. Peak Current Capability  
www.onsemi.com  
4
Typical Characteristics (Continued) T = 25°C unless otherwise noted  
A
100  
10  
1
10  
o
STARTING T = 25 C  
J
100µs  
1ms  
o
STARTING T = 150 C  
J
10ms  
OPERATION IN THIS  
AREA MAY BE  
LIMITED BY r  
DS(ON)  
If R = 0  
SINGLE PULSE  
t
= (L)(I )/(1.3*RATED BV  
- V  
)
AV  
AS  
DSS  
DD  
T
= MAX RATED  
J
T
If R 0  
o
o
= 25 C  
A
R
= 55 C/W  
t
= (L/R)ln[(I *R)/(1.3*RATED BV  
- V ) +1]  
DSS DD  
θJA  
AV  
AS  
1
0.01  
0.1  
0.1  
1
10  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
t
, TIME IN AVALANCHE (ms)  
V
AV  
DS  
NOTE: Refer to ON Semiconductor Application Notes AN7514  
Figure 5. Forward Bias Safe Operating Area  
and AN7515  
Figure 6. Unclamped Inductive Switching  
Capability  
15  
15  
PULSE DURATION = 80µs  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
T
= 25 C  
DUTY CYCLE = 0.5% MAX  
= 15V  
J
V
= 5V  
V
GS  
o
DD  
T
= 25 C  
A
10  
5
10  
5
V
= 3.5V  
GS  
V
= 10V  
GS  
V
= 3V  
GS  
o
T
= 150 C  
J
o
T
= -55 C  
J
0
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
V
, GATE TO SOURCE VOLTAGE (V)  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
GS  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
240  
210  
180  
150  
120  
90  
2.0  
PULSE DURATION = 80µs  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
DUTY CYCLE = 0.5% MAX  
I
= 3.3A  
D
1.5  
1.0  
0.5  
I
= 1A  
D
V
= 10V, I = 3.3A  
D
GS  
2
4
6
8
10  
-80  
-40  
0
40  
80  
120  
o
160  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
T , JUNCTION TEMPERATURE ( C)  
J
Figure 9. Drain to Source On Resistance vs Gate  
Voltage and Drain Current  
Figure 10. Normalized Drain to Source On  
Resistance vs Junction Temperature  
www.onsemi.com  
5
Typical Characteristics (Continued) T = 25°C unless otherwise noted  
A
1.2  
1.0  
0.8  
0.6  
1.2  
1.1  
1.0  
0.9  
V
= V , I = 250µA  
I = 5mA  
D
GS  
DS  
D
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 11. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 12. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
6
1000  
FBK voltage measured across  
a 51Kload resistor.  
5
C
= C + C  
GS GD  
ISS  
4
o
C
C + C  
DS GD  
OSS  
T
= 150 C  
J
3
2
1
0
100  
o
T
= 25 C  
J
o
C
= C  
GD  
T
= -55 C  
RSS  
J
V
= 0V, f = 75kHz  
GS  
10  
0.1  
1
10  
20  
20  
30  
40  
50  
60  
70  
V
, DRAIN TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
DS  
Figure 13. Feedback Voltage vs Drain to Source  
Voltage  
Figure 14. Capacitance vs Drain to Source  
Voltage  
500  
10  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= V  
GS DS  
o
T
= 150 C  
J
I
= 250µA  
D
V
= 5V, I = 3A  
D
GS  
400  
300  
200  
100  
0
8
6
4
2
0
o
T
= 25 C  
J
o
T
= 150 C  
J
o
T
= -55 C  
J
o
T
= 25 C  
J
o
T
= -55 C  
J
1
2
3
4
5
0
1
2
3
4
5
V
, GATE DISABLE VOLTAGE (V)  
V
DIS  
, GATE DISABLE VOLTAGE (V)  
DIS  
Figure 15. Drain to Source On Resistance vs  
Figure 16. Gate to Source Voltage vs Gate  
Disable Voltage  
Gate Disable Voltage  
www.onsemi.com  
6
Typical Characteristics (Continued) T = 25°C unless otherwise noted  
A
10  
V
= 30V  
DD  
8
6
4
2
0
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= 3.3A  
= 1A  
D
D
0
2
4
6
8
Q , GATE CHARGE (nC)  
g
Figure 17. Gate Charge Waveforms for Constant Gate Currents  
Test Circuits and Waveforms  
V
BV  
DSS  
DS  
t
P
V
DS  
L
I
AS  
V
DD  
VARY t TO OBTAIN  
P
+
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
Figure 18. Unclamped Energy Test Circuit  
Figure 19. Unclamped Energy Waveforms  
V
DS  
R
L
V
Q
DD  
g(TOT)  
V
DS  
V
GS  
V
= 5V  
GS  
V
GS  
+
-
Q
gs2  
V
DD  
DUT  
V
= 1V  
GS  
I
g(REF)  
0
Q
g(TH)  
Q
Q
gs  
gd  
I
g(REF)  
0
Figure 20. Gate Charge Test Circuit  
Figure 21. Gate Charge Waveforms  
www.onsemi.com  
7
Test Circuits and Waveforms (Continued)  
V
DS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
t
t
f
L
r
V
DS  
90%  
90%  
+
-
V
GS  
V
DD  
10%  
10%  
0
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
Figure 22. Switching Time Test Circuit  
Figure 23. Switching Time Waveforms  
V
DS  
+
LM324  
-
NC  
V
DISABLE  
DUT  
Figure 24. Gate to Source Voltage vs Gate Disable Voltage  
www.onsemi.com  
8
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, T , and the  
maximum transient thermal impedance curve.  
JM  
thermal resistance of the heat dissipating path determines  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 25 or by calculation using  
Equation 2. The area, in square inches is the top copper  
area including the gate and source pads.  
the maximum allowable device power dissipation, P , in an  
DM  
application.  
Therefore the application’s ambient  
o
o
temperature, T ( C), and thermal resistance R  
must be reviewed to ensure that T  
( C/W)  
A
θJA  
is never exceeded.  
JM  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
15  
R
= 79.9 + -------------------------------  
0.14 + Area  
(EQ. 2)  
θJA  
(T  
T )  
JM  
A
(EQ. 1)  
P
= ------------------------------  
DM  
RθJA  
The transient thermal impedance (Z ) is also effected by  
θJA  
varied top copper board area. Figure 26 shows the effect of  
copper pad area on single pulse transient thermal  
impedance. Each trace represents a copper pad area in  
square inches corresponding to the descending list in the  
graph. Spice and SABER thermal models are provided for  
each of the listed pad areas.  
In using surface mount devices such as the SO8 package,  
the environment in which it is applied will have a significant  
influence on the part’s current and maximum power  
dissipation ratings. Precise determination of P  
and influenced by many factors:  
is complex  
DM  
Copper pad area has no perceivable effect on transient  
thermal impedance for pulse widths less than 100ms. For  
pulse widths less than 100ms the transient thermal  
impedance is determined by the die and package.  
Therefore, CTHERM1 through CTHERM5 and RTHERM1  
through RTHERM5 remain constant for each of the thermal  
models. A listing of the model component values is available  
in Table 1.  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
200  
5. Air flow and board orientation.  
R
= 79.9 + 15/(0.14+Area)  
θJA  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
150  
ON Semiconductor provides thermal information to  
assist  
evaluation. Figure 25  
defines the R for the device as a function of the top  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
the  
designer’s  
preliminary  
application  
100  
50  
θJA  
0.001  
0.01  
0.1  
1
10  
2
AREA, TOP COPPER AREA (in )  
Figure 25. Thermal Resistance vs Mounting  
applications  
can  
be  
evaluated  
using  
the  
ON  
Pad Area  
Semiconductor device Spice thermal model or manually  
utilizing the normalized  
160  
COPPER BOARD AREA - DESCENDING ORDER  
2
0.020 in  
2
0.140 in  
2
0.257 in  
0.380 in  
0.493 in  
120  
80  
40  
0
2
2
-1  
0
1
2
3
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
Figure 26. Thermal Impedance vs Mounting Pad Area  
www.onsemi.com  
9
PSPICE Electrical Model  
.SUBCKT FDSS2407 2 1 3 101 102  
Ca 12 8 1e-10  
;
rev July 2004  
Cb 15 14 4e-10  
Cin 6 8 2.8e-10  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
CGATE 9 20 5e-9  
DDISABLE 20 101 DDISABLEMOD  
DFBK1 104 103 DFBK1MOD  
DFBK2 7 104 DFBK2MOD  
DFBK3 104 102 DFBK3MOD  
RFBK1 5 103 RFBK1MOD 13e3  
RFBK2 104 7 RFBK2MOD 2.15e3  
Ebreak 11 7 17 18 67.4  
Eds 14 8 5 8 1  
LDRAIN  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
RFBK1  
RSLC1  
51  
DBREAK  
11  
+
RSLC2  
103  
5
51  
ESLC  
DFBK1  
-
+
17  
18  
50  
DBODY  
104  
-
EBREAK  
INJ FBK  
102  
RDRAIN  
6
8
ESG  
DFBK3  
DFBK2  
-
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
EVTHRES  
+
16  
CGATE  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
It 8 17 1  
Lgate 1 9 1.8e-9  
Ldrain 2 5 1.0e-9  
Lsource 3 7 0.6e-9  
RLgate 1 9 18  
RLdrain 2 5 10  
RLsource 3 7 6  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 3.5e-2  
Rgate 9 20 RgateMOD 8.63e3  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RGATE  
9
GATE  
1
6
+
-
18  
22  
RFBK2  
7
MMED  
20  
MSTRO  
8
RLGATE  
LSOURCE  
CIN  
GATE  
SOURCE  
3
DISABLE  
101  
RSOURCE  
RLSOURCE  
DDISABLE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
Rsource 8 7 RsourceMOD 5.3e-2  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
RVTHRES  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*20),3.5))}  
.MODEL DbodyMOD D (IS=1.1E-12 N=1.05 IKF=4e-1 RS=4.2e-2 TRS1=3e-4 TRS2=1.3e-6  
+ CJO=3.3e-10 TT=3e-8 M=0.38, XTI=3.5)  
.MODEL DbreakMOD D (RS=1 TRS1=1e-3 TRS2=-9e-6)  
.MODEL DplcapMOD D (CJO=1.97e-10 IS=1e-30 N=10 M=0.84)  
.MODEL DDISABLEMOD D (RS=30 IS=1e-15 BV=4.7 TBV1=-3e-4 TBV2=-3e-6 XTI=0)  
.MODEL DFBK1MOD D (IS=1e-15 BV=23.8 IKF=2 TBV1=-6e-4 TBV2=6e-6)  
.MODEL DFBK2MOD D (RS=1 IS=1e-30 BV=5.6 N=3.3 NBV=1)  
.MODEL DFBK3MOD D (RS=1 IS=1e-15 BV=4.2 NBV=2.5)  
.MODEL MmedMOD NMOS (VTO=1.7 KP=1.08 IS=1e-30 N=10 TOX=1 L=1u W=1u RG= 8.56e3)  
.MODEL MstroMOD NMOS (VTO=2 KP=14 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MweakMOD NMOS (VTO=1.5 kp=0.04 IS=1e-30 N=10 TOX=1 L=1u W=1u RG= 8.56e4 RS=0.1)  
.MODEL RbreakMOD RES (TC1=1.05e-3 TC2=-9e-7)  
.MODEL RdrainMOD RES (TC1=9e-3 TC2=2.7e-5)  
.MODEL RSLCMOD RES (TC1=2e-3 TC2=6e-6)  
.MODEL RsourceMOD RES (TC1=3e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-1.1e-3 TC2=-3.3e-6)  
.MODEL RvtempMOD RES (TC1=-1.6e-3 TC2=1e-7)  
.MODEL RFBK1MOD RES (TC1=-1.4e-3 TC2=1e-6)  
.MODEL RFBK2MOD RES (TC1=-1.4e-3 TC2=1e-6)  
.MODEL RgateMOD RES (TC1=-1.4e-3 TC2=1e-5)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4.0 VOFF=-3.0)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.0 VOFF=-4.0)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.0 VOFF=-0.5)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-1.0)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
www.onsemi.com  
10  
SABER Electrical Model  
REV July 2004  
template FDSS2407 n2,n1,n3,n101,n102  
electrical n2,n1,n3,n101,n102  
{
var i iscl  
dp..model dbodymod = (isl=1.1e-12,nl=1.05,ikf=4e-1,rs=4.2e-2,trs1=3e-4,trs2=1.3e-6,cjo=3.3e-10,tt=3e-8,m=0.38,xti=3.5)  
dp..model dbreakmod = (rs=1,trs1=1e-3,trs2=-9e-6)  
dp..model ddisablemod = (rs=30, isl=1e-15,bv=4.7,tbv1=-3e-4,tbv2=-3e-6,xti=0)  
dp..model dfbk1mod = (isl=1e-15,bv=23.8,ikf=2,tbv1=-6e-4,tbv2=6e-6)  
dp..model dfbk2mod = (rs=1,isl=1e-30,bv=5.6,nl=3.3,nbv=1)  
dp..model dfbk3mod = (rs=1,isl=1e-15,bv=4.2,nbv=2.5)  
dp..model dplcapmod = (cjo=1.97e-10,isl=10e-30,nl=10,m=0.84)  
m..model mmedmod = (type=_n,vto=1.7,kp=1.08,is=1e-30,tox=1)  
m..model mstrongmod = (type=_n,vto=2,kp=14,is=1e-30,tox=1)  
m..model mweakmod = (type=_n,vto=1.5,kp=0.04,is=1e-30, tox=1,rs=0.1)  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4.0,voff=-3.0)  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.0,voff=-4.0)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.0,voff=-0.5)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-1.0)  
c.ca n12 n8 = 1e-10  
c.cb n15 n14 = 4e-10  
c.cin n6 n8 = 2.8e-10  
c.cgate n9 n20 = 5e-9  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RFBK1  
DBODY  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
dp.ddisable n20 n101 = model=ddisablemod  
dp.dfbk1 n104 n103 = model=dfbk1mod  
dp.dfbk2 n7 n104 = model=dfbk2mod  
dp.dfbk3 n104 n102 = model=dfbk3mod  
spe.ebreak n11 n7 n17 n18 = 67.4  
spe.eds n14 n8 n5 n8 = 1  
RSLC1  
51  
RSLC2  
103  
104  
ISCL  
DFBK1  
DBREAK  
11  
50  
-
INJ FBK  
102  
RDRAIN  
6
8
ESG  
DFBK3  
DFBK2  
EVTHRES  
+
16  
21  
CGATE  
RGATE  
+
-
19  
8
MWEAK  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
LGATE  
EVTEMP  
GATE  
1
+
6
-
RFBK2  
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
-
spe.evtemp n20 n6 n18 n22 = 1  
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
GATE  
i.it n8 n17 = 1  
7
DISABLE  
l.lgate n1 n9 = 1.8e-9  
l.ldrain n2 n5 = 1.0e-9  
l.lsource n3 n7 = 0.6e-9  
res.rlgate n1 n9 = 18  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 6  
res.rbreak n17 n18 = 1, tc1=1.05e-3,tc2=-9e-7  
res.rdrain n50 n16 = 3.5e-2,tc1=9e-3,tc2=2.7e-5  
res.rgate n9 n20 = 8.63e3,tc1=-1.4e-3,tc2=1e-5  
res.rfbk1 n5 n103 = 13e3,tc1=-1.4e-3,tc2=1e-6  
res.rfbk2 n104 n7 = 2.15e3,tc1=-1.4e-3,tc2=1e-6  
res.rslc1 n5 n51 = 1e-6,tc1=2e-3,tc2=6e-6  
res.rslc2 n5 n50 = 1e3  
101  
RSOURCE  
RLSOURCE  
DDISABLE  
S1A  
S2A  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
res.rsource n8 n7 = 5.3e-2,tc1=3e-3,tc2=1e-6  
res.rvthres n22 n8 = 1,tc1=-1.1e-3,tc2=-3.3e-6  
res.rvtemp n18 n19 = 1,tc1=-1.6e-3,tc2=1e-7  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/20))** 3.5))  
}
}
www.onsemi.com  
11  
SPICE Thermal Model  
JUNCTION  
th  
REV July 2004  
FDSS2407T  
Copper Area =0.5 in2  
CTHERM1 Junction c2 1.2e-4  
CTHERM2 c2 c3 2e-3  
CTHERM3 c3 c4 2e-2  
CTHERM4 c4 c5 3.0e-2  
CTHERM5 c5 c6 4e-2  
CTHERM6 c6 c7 7e-2  
CTHERM7 c7 c8 2e-1  
CTHERM8 c8 Ambient 2.8  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
RTHERM7  
RTHERM8  
CTHERM1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM7  
CTHERM8  
8
7
RTHERM1 Junction c2 1.4  
RTHERM2 c2 c3 2.0  
RTHERM3 c3 c4 2.8  
RTHERM4 c4 c5 9.0  
RTHERM5 c5 c6 18.0  
RTHERM6 c6 c7 26.0  
RTHERM7 c7 c8 28.0  
RTHERM8 c8 Ambient 29.0  
6
5
SABER Thermal Model  
Copper Area = 0.5 in2  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th c2 =1.2e-4  
ctherm.ctherm2 c2 c3 =2e-3  
ctherm.ctherm3 c3 c4 =2e-2  
ctherm.ctherm4 c4 c5 =3.0e-2  
ctherm.ctherm5 c5 c6 =4e-2  
ctherm.ctherm6 c6 c7 =7e-2  
ctherm.ctherm7 c7 c8 =2e-1  
ctherm.ctherm8 c8 tl =2.8  
4
3
2
rtherm.rtherm1 th c2 =1.4  
rtherm.rtherm2 c2 c3 =2.0  
rtherm.rtherm3 c3 c4 =2.8  
rtherm.rtherm4 c4 c5 =9.0  
rtherm.rtherm5 c5 c6 =18.0  
rtherm.rtherm6 c6 c7 =26.0  
rtherm.rtherm7 c7 c8 =28.0  
rtherm.rtherm8 c8 tl =29.0  
}
tl  
AMBIENT  
www.onsemi.com  
12  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
© Semiconductor Components Industries, LLC  
www.onsemi.com  

相关型号:

FDSS2407_NL

暂无描述
FAIRCHILD

FDT-21-GREASE-S1

Wall Mount Ultrasonic FlowMeter For Clean Liquids
FAIRCHILD

FDT-21-GREASE-S1H

Wall Mount Ultrasonic FlowMeter For Clean Liquids
FAIRCHILD

FDT-21-HM

Wall Mount Ultrasonic FlowMeter For Clean Liquids
FAIRCHILD

FDT-21-HS

Wall Mount Ultrasonic FlowMeter For Clean Liquids
FAIRCHILD

FDT-21-L1

Wall Mount Ultrasonic FlowMeter For Clean Liquids
FAIRCHILD

FDT-21-M1

Wall Mount Ultrasonic FlowMeter For Clean Liquids
FAIRCHILD

FDT-21-M1H

Wall Mount Ultrasonic FlowMeter For Clean Liquids
FAIRCHILD

FDT-21-S1

Wall Mount Ultrasonic FlowMeter For Clean Liquids
FAIRCHILD

FDT-21-S1H

Wall Mount Ultrasonic FlowMeter For Clean Liquids
FAIRCHILD

FDT-21W

Wall Mount Ultrasonic FlowMeter For Clean Liquids
FAIRCHILD

FDT-500A

FREQUENCY DOUBLERS
MERRIMAC