FDP3682 [ONSEMI]

N 沟道,PowerTrench® MOSFET,100V,32A,36mΩ;
FDP3682
型号: FDP3682
厂家: ONSEMI    ONSEMI
描述:

N 沟道,PowerTrench® MOSFET,100V,32A,36mΩ

文件: 总16页 (文件大小:453K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
MOSFET – N-Channel,  
POWERTRENCHꢀ  
D
100 V, 32 A, 36 mW  
G
G
D
S
FDB3682, FDP3682  
S
D2PAK3  
(TO263, 3LEAD)  
TO2203LD  
CASE 340AT  
Features  
CASE 418AJ  
R  
Q  
= 32 mW (Typ.) @ V = 10 V, I = 32 A  
GS D  
DS(on)  
G(tot)  
= 18.5 nC (Typ.) @ V = 10 V  
GS  
Low Miller Charge  
MARKING DIAGRAM  
Low Q Body Diode  
UIS Capability (Single Pulse and Repetitive Pulse)  
These Devices are PbFree and are RoHS Compliant  
rr  
XXXXXXXG  
AYWW  
Applications  
Consumer Appliances  
Synchronous Rectification  
Battery Protection Circuit  
Motor Drives and Uninterruptible Power Supplies  
Micro Solar Inverter  
XXXXXX = Specific Device Code  
(FDB3862 or FDP3862)  
A
= Assembly Location  
= Year  
Y
WW  
G
= Work Week  
= PbFree Package  
MOSFET MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
A
FDB3682 /  
FDP3682  
Symbol  
Parameter  
Drain to Source Voltage  
Gate to Source Voltage  
Unit  
V
V
DSS  
100  
SCHEMATIC  
V
GS  
20  
V
D
I
D
Drain  
Current  
Continuous  
C
32  
A
(T = 25°C, V = 10 V)  
GS  
G
Continuous  
C
23  
6
A
A
(T = 100°C, V = 10 V)  
GS  
S
Continuous (T  
= 25°C,  
= 43°C/W)  
amb  
V
GS  
= 10 V, R  
q
JA  
Pulsed  
Figure 4  
55  
A
mJ  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 13 of  
this data sheet.  
E
Single Pulse Avalanche Energy (Note 1)  
Power Dissipation  
AS  
P
95  
W
D
Derate above 25°C  
0.63  
mW/°C  
°C  
T , T  
Operating and Storage Temperature  
–55 to 175  
J
STG  
Stresses exceeding those listed in the Maximum Ratings table may damage the  
device. If any of these limits are exceeded, device functionality should not be  
assumed, damage may occur and reliability may be affected.  
1. Starting T = 25°C, L = 0.27 mH, I = 20 A.  
J
AS  
© Semiconductor Components Industries, LLC, 2002  
1
Publication Order Number:  
March, 2022 Rev. 3  
FDP3682/D  
 
FDB3682, FDP3682  
THERMAL CHARACTERISTICS  
Symbol  
Parameter  
Ratings  
1.58  
62  
Unit  
°C/W  
°C/W  
°C/W  
R
q
JC  
R
q
JA  
R
q
JA  
Thermal Resistance, Junction to Case TO220, TO263, Max.  
Thermal Resistance, Junction to Ambient TO220, TO263 (Note 2), Max.  
2
Thermal Resistance, Junction to Ambient TO263, 1 in copper pad area, Max.  
43  
2. Pulse Width = 100 s  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
OFF CHARACTERISTICS  
B
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
I
= 250 mA, V = 0 V  
100  
V
VDSS  
D
GS  
I
V
V
V
= 80 V, V = 0 V  
1
mA  
DSS  
DS  
DS  
GS  
GS  
= 80 V, V = 0 V, T = 150_C  
250  
100  
GS  
C
I
Gate to Source Leakage Current  
=
20 V  
nA  
GSS  
ON CHARACTERISTICS  
V
GS(TH)  
R
DS(ON)  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
V
= V , I = 250 mA  
2
4
V
GS  
DS  
D
I
D
I
D
I
D
= 32 A, V = 10 V  
0.032  
0.040  
0.080  
0.036  
0.060  
0.090  
W
GS  
= 16 V, V = 6 V  
GS  
= 32 A, V = 10 V, T = 175 °C  
GS  
C
DYNAMIC CHARACTERISTICS  
C
Input Capacitance  
V
= 25 V, V = 0 V, f = 1 MHz  
1250  
190  
45  
pF  
pF  
pF  
nC  
ISS  
DS  
GS  
C
Output Capacitance  
OSS  
RSS  
C
Reverse Transfer Capacitance  
Total Gate Charge at 10 V  
Q
V
GS  
V
DD  
= 0 V to 10 V,  
18.5  
28  
g(TOT)  
= 50 V, I = 32 A, I = 1.0 mA  
D
g
Q
Threshold Gate Charge  
V
GS  
V
DD  
= 0 V to 2 V,  
2.4  
3.6  
nC  
g(TH)  
= 50 V, I = 32 A, I = 1.0 mA  
D
g
Q
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
V
DD  
= 50 V, I = 32 A, I = 1.0 mA  
6.5  
4.1  
4.6  
nC  
nC  
nC  
gs  
D
g
Q
gs2  
Q
gd  
RESISTIVE SWITCHING CHARACTERISTICS (V = 10 V)  
GS  
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
V
DD  
V
GS  
= 50 V, I = 32 A,  
83  
87  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
D
= 10 V, R = 16 W  
GS  
t
9
d(ON)  
t
r
46  
26  
32  
t
Turn-Off Delay Time  
Fall Time  
d(OFF)  
t
f
t
Turn-Off Time  
OFF  
DRAINSOURCE DIODE CHARACTERISTICS  
V
Source to Drain Diode Voltage  
I
I
I
I
= 32 A  
= 16 A  
1.25  
1.0  
55  
V
V
SD  
SD  
SD  
SD  
SD  
t
Reverse Recovery Time  
= 32 A, dl /dt = 100 A/ms  
ns  
nC  
rr  
SD  
Q
Reverse Recovered Charge  
= 32 A, dl /dt = 100 A/ms  
90  
RR  
SD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
2
 
FDB3682, FDP3682  
TYPICAL CHARACTERISTICS  
(T = 25°C unless otherwise noted)  
C
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
35  
30  
25  
20  
15  
10  
5
V
= 10 V  
GS  
0
0
25  
50  
75  
100 125  
150  
175  
25  
50  
75  
100  
125  
150  
175  
T , CASE TEMPERATURE (°C)  
C
T , CASE TEMPERATURE (°C)  
C
Figure 1. Normalized Power Dissipation vs.  
Case Temperature  
Figure 2. Maximum Continuous Drain Current vs.  
Case Temperature  
2
DUTY CYCLE DESCENDING ORDER  
0.5  
1
0.2  
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
SINGLE PULSE  
1
2
PEAK T = P  
x Z  
x R  
+ T  
qJC C  
J
DM  
qJC  
0.01  
104  
103  
102  
101  
100  
101  
105  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. Normalized Maximum Transient Thermal Impedance  
400  
o
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
T
= 25 C  
C
FOR TEMPERATURES  
ABOVE 25 C DERATE PEAK  
o
CURRENT AS FOLLOWS:  
175 T  
C
I = I  
25  
V
= 10V  
GS  
150  
100  
30  
105  
104  
103  
102  
101  
100  
101  
t, PULSE WIDTH (s)  
Figure 4. Peak Current Capability  
www.onsemi.com  
3
FDB3682, FDP3682  
TYPICAL CHARACTERISTICS  
(T = 25°C unless otherwise noted) (continued)  
C
100  
200  
100  
10 ms  
If R = 0  
t
AV  
= (L)(I )/(1.3*RATED BV  
V  
)
AS  
DSS  
DD  
If R 0  
100 ms  
1 ms  
10 ms  
t
= (L/R)ln[(I *R)/(1.3*RATED BV  
V ) +1]  
AV  
AS  
DSS DD  
10  
o
STARTING T = 25 C  
J
10  
OPERATION IN THIS  
AREA MAY BE  
LIMITED BY r  
DS(ON)  
1
o
SINGLE PULSE  
STARTING T = 150 C  
DC  
J
T
= MAX RATED  
J
o
T
= 25 C  
C
1
0.1  
200  
0.001  
0.01  
0.1  
1
1
10  
100  
10  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
t , TIME IN AVALANCHE (ms)  
AV  
NOTE: Refer to onsemi Application Notes AN7514 and AN7515  
Figure 5. Forward Bias Safe Operating Area  
Figure 6. Unclamped Inductive Switching Capability  
80  
80  
PULSE DURATION = 80 ms  
V
= 20 V  
GS  
DUTY CYCLE = 0.5% MAX  
DD  
V
= 10 V  
= 6 V  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
GS  
V
= 15 V  
60  
40  
20  
0
60  
40  
20  
0
o
T
= 25 C  
C
V
GS  
o
T
= 175 C  
J
o
T
= 25 C  
J
o
V
= 5 V  
T
= 55 C  
GS  
J
0
1
2
3
4
3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
, GATE TO SOURCE VOLTAGE (V)  
V
GS  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
60  
50  
40  
30  
20  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
PULSE DURATION = 80 ms  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
DUTY CYCLE = 0.5% MAX  
V
= 6 V  
GS  
V
= 10 V  
GS  
V
= 10V, I = 32A  
D
GS  
0
5
10  
15  
20  
25  
30  
35  
80 40  
0
40  
80  
120 160 200  
I , DRAIN CURRENT (A)  
D
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Drain to Source On Resistance  
vs. Drain Current  
Figure 10. Normalized Drain to Source  
On Resistance vs. Junction Temperature  
www.onsemi.com  
4
FDB3682, FDP3682  
TYPICAL CHARACTERISTICS  
(T = 25°C unless otherwise noted) (continued)  
J
1.2  
1.2  
1.0  
0.8  
0.6  
0.4  
V
= V , I = 250 mA  
DS D  
GS  
I
= 250 mA  
D
1.1  
1.0  
0.9  
80 40  
0
40  
80  
120 160 200  
80 40  
0
40  
80  
120 160 200  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. Normalized Gate Threshold Voltage  
vs. Junction Temperature  
Figure 12. Normalized Drain to Source Breakdown  
Voltage vs. Junction Temperature  
10  
2000  
1000  
V
= 50 V  
DD  
C
= C + C  
GS GD  
8
6
4
2
0
ISS  
C
C
C
+ C  
@
OSS  
DS GD  
= C  
RSS  
GD  
100  
20  
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= 32 A  
= 16 A  
D
D
V
= 0 V, f = 1 MHz  
GS  
0
5
10  
15  
20  
0.1  
1
10  
100  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
Q , GATE CHARGE (nC)  
g
Figure 13. Capacitance vs. Drain to Source  
Voltage  
Figure 14. Gate Charge Waveforms for Constant  
Gate Currents  
www.onsemi.com  
5
FDB3682, FDP3682  
TEST CIRCUITS AND WAVEFORMS  
VDS  
BVDSS  
tP  
VDS  
L
IAS  
VDD  
VARY t TO OBTAIN  
P
+
VDD  
REQUIRED PEAK I  
RG  
AS  
VGS  
DUT  
t P  
IAS  
0.01 W  
0 V  
0
tAV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
VDS  
VDD  
Qg(TOT)  
VDS  
L
VGS = 10 V  
VGS  
+
VDD  
VGS  
DUT  
VGS = 2 V  
Qgs2  
Qgs  
0
Ig(REF)  
Qg(TH)  
Qgd  
Ig(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
tON  
td(ON)  
tOFF  
td(OFF)  
VDS  
t
t
f
r
RL  
VDS  
90%  
90%  
+
VGS  
VDD  
10%  
10%  
0
90%  
50%  
DUT  
RGS  
VGS  
50%  
PULSE WIDTH  
10%  
0
VGS  
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
www.onsemi.com  
6
FDB3682, FDP3682  
THERMAL RESISTANCE VS. MOUNTING PAD AREA  
The maximum rated junction temperature, T , and the  
junction temperature or power dissipation. Pulse  
JM  
thermal resistance of the heat dissipating path determines  
applications can be evaluated using the onsemi device Spice  
thermal model or manually utilizing the normalized  
maximum transient thermal impedance curve.  
the maximum allowable device power dissipation, P , in  
DM  
an application. Therefore the application’s ambient  
temperature, T (°C), and thermal resistance R  
(°C/W)  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2 or 3. Equation 2 is used for copper area defined  
in inches square and equation 3 is for area in centimeter  
square. The area, in square inches or square centimeters is  
the top copper area including the gate and source pads.  
A
qJA  
must be reviewed to ensure that T is never exceeded.  
JM  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
(TJM * TA)  
PDM  
+
(eq. 1)  
RqJA  
19.84  
In using surface mount devices such as the TO263  
package, the environment in which it is applied will have a  
significant influence on the part’s current and maximum  
RqJA + 26.51 )  
(eq. 2)  
0.262 ) Area  
2
Area in in .  
128  
power dissipation ratings. Precise determination of P  
complex and influenced by many factors:  
is  
DM  
RqJA + 26.51 )  
(eq. 3)  
1.69 ) Area  
2
1. Mounting pad area onto which the device is  
Area in cm .  
attached and whether there is copper on one side  
or both sides of the board.  
2. The number of copper layers and the thickness of  
the board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
80  
60  
40  
R
= 26.51+ 19.84/(0.262+Area) EQ.2  
QJA  
R
= 26.51+ 128/(1.69+Area) EQ.3  
QJA  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width,  
the duty cycle and the transient thermal response of  
the part, the board and the environment they are in.  
onsemi provides thermal information to assist the  
designer’s preliminary application evaluation. Figure 21  
20  
defines the R for the device as a function of the top copper  
qJA  
0.1  
1
10  
(component side) area. This is for a horizontally positioned  
FR4 board with 1 oz copper after 1000 seconds of steady  
state power with no air flow. This graph provides the  
necessary information for calculation of the steady state  
(0.645)  
(6.45)  
(64.5)  
2
2
AREA, TOP COPPER AREA in (cm )  
Figure 21. Thermal Resistance vs. Mounting Pad Area  
www.onsemi.com  
7
 
FDB3682, FDP3682  
PSPICE ELECTRICAL MODEL  
.SUBCKT FDB3682 2 1 3 ; rev May 2002  
Ca 12 8 4e10  
Cb 15 14 5.5e10  
Cin 6 8 1.22e9  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
Ebreak 11 7 17 18 108  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
It 8 17 1  
Lgate 1 9 5.96e9  
Ldrain 2 5 1.0e9  
Lsource 3 7 3.19e9  
RLgate 1 9 59.6  
RLdrain 2 5 10  
RLsource 3 7 31.9  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 10.5e3  
Rgate 9 20 1.86  
RSLC1 5 51 RSLCMOD 1.0e6  
RSLC2 5 50 1.0e3  
Rsource 8 7 RsourceMOD 11.9e3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e6*70),2.5))}  
.MODEL DbodyMOD D (IS=2.4E12 RS=4.4e3 TRS1=2.0e3 TRS2=4.5e7  
+ CJO=9e10 M=0.57 TT=2.9e8 XTI=4.0)  
.MODEL DbreakMOD D (RS=0.6 TRS1=1.4e3 TRS2=5.0e5)  
.MODEL DplcapMOD D (CJO=2.7e10 IS=1.0e30 N=10 M=0.56)  
.MODEL MstroMOD NMOS (VTO=4.16 KP=32 IS=1e30 N=10 TOX=1 L=1u W=1u)  
.MODEL MmedMOD NMOS (VTO=3.48 KP=2.7 IS=1e30 N=10 TOX=1 L=1u W=1u RG=1.86)  
.MODEL MweakMOD NMOS (VTO=2.97 KP=0.04 IS=1e30 N=10 TOX=1 L=1u W=1u RG=18.6 RS=0.1)  
www.onsemi.com  
8
FDB3682, FDP3682  
.MODEL RbreakMOD RES (TC1=1.05e3 TC2=1.1e8)  
.MODEL RdrainMOD RES (TC1=1.6e2 TC2=4e5)  
.MODEL RSLCMOD RES (TC1=3.0e3 TC2=2.9e6)  
.MODEL RsourceMOD RES (TC1=1e3 TC2=1e6)  
.MODEL RvthresMOD RES (TC1=4.1e3 TC2=1.4e5)  
.MODEL RvtempMOD RES (TC1=3.5e3 TC2=1.3e6)  
.MODEL S1AMOD VSWITCH (RON=1e5 ROFF=0.1 VON=5.0 VOFF=2.0)  
.MODEL S1BMOD VSWITCH (RON=1e5 ROFF=0.1 VON=2.0 VOFF=5.0)  
.MODEL S2AMOD VSWITCH (RON=1e5 ROFF=0.1 VON=0.4 VOFF=0.3)  
.MODEL S2BMOD VSWITCH (RON=1e5 ROFF=0.1 VON=0.3 VOFF=0.4)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE SubCircuit for the Power MOSFET  
Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written  
by William J. Hepp and C. Frank Wheatley.  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
DBODY  
RSLC1  
DBREAK  
11  
51  
+
RSLC2  
5
51  
ESLC  
+
50  
17  
18  
RDRAIN  
6
8
EBREAK  
MWEAK  
ESG  
EVTHRES  
+
16  
21  
+
19  
8
LGATE  
EVTEMP  
RGATE  
GATE  
1
+
6
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
6
8
VBAT  
5
8
EGS  
EDS  
+
8
22  
RVTHRES  
Figure 22.  
www.onsemi.com  
9
FDB3682, FDP3682  
SABER ELECTRICAL MODEL  
REV May 2002  
template FDB3682 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=2.4e12,rs=4.4e3,trs1=2.0e3,trs2=4.5e7,cjo=9e10,m=0.57,tt=2.9e8,xti=4.0)  
dp..model dbreakmod = (rs=0.6,trs1=1.4e3,trs2=5e5)  
dp..model dplcapmod = (cjo=2.7e10,isl=10e30,nl=10,m=0.56)  
m..model mstrongmod = (type=_n,vto=4.16,kp=32,is=1e30, tox=1)  
m..model mmedmod = (type=_n,vto=3.48,kp=2.7,is=1e30, tox=1)  
m..model mweakmod = (type=_n,vto=2.97,kp=0.04,is=1e30, tox=1,rs=0.1)  
sw_vcsp..model s1amod = (ron=1e5,roff=0.1,von=5,voff=2)  
sw_vcsp..model s1bmod = (ron=1e5,roff=0.1,von=2,voff=5)  
sw_vcsp..model s2amod = (ron=1e5,roff=0.1,von=0.4,voff=0.3)  
sw_vcsp..model s2bmod = (ron=1e5,roff=0.1,von=0.3,voff=0.4)  
c.ca n12 n8 = 4e10  
c.cb n15 n14 = 5.5e10  
c.cin n6 n8 = 1.22e9  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
spe.ebreak n11 n7 n17 n18 = 108  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
i.it n8 n17 = 1  
l.lgate n1 n9 = 5.96e9  
l.ldrain n2 n5 = 1.0e9  
l.lsource n3 n7 = 3.19e9  
res.rlgate n1 n9 = 59.6  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 31.9  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
res.rbreak n17 n18 = 1, tc1=1.05e3,tc2=1.1e8  
res.rdrain n50 n16 = 10.5e3, tc1=1.6e2,tc2=4e5  
res.rgate n9 n20 = 1.86  
res.rslc1 n5 n51 = 1.0e6, tc1=3.0e3,tc2=2.9e6  
res.rslc2 n5 n50 = 1.0e3  
res.rsource n8 n7 = 11.9e3, tc1=1e3,tc2=1e6  
res.rvthres n22 n8 = 1, tc1=4.1e3,tc2=1.4e5  
res.rvtemp n18 n19 = 1, tc1=3.5e3,tc2=1.3e6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
www.onsemi.com  
10  
FDB3682, FDP3682  
v.vbat n22 n19 = dc=1  
equations {  
i (n51>n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/70))** 2.5))  
}
}
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
ISCL  
DBREAK  
50  
RDRAIN  
6
8
11  
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
6
+
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
8
22  
RVTHRES  
Figure 23.  
www.onsemi.com  
11  
FDB3682, FDP3682  
JUNCTION  
th  
SPICE THERMAL MODEL  
REV 20 May 2002  
FDB3682_JC TH TL  
RTHERM1  
CTHERM1  
CTHERM1 TH 6 1.6e3  
CTHERM2 6 5 4.5e3  
CTHERM3 5 4 5.0e3  
CTHERM4 4 3 8.0e3  
CTHERM5 3 2 8.2e3  
CTHERM6 2 TL 4.7e2  
6
5
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
RTHERM1 TH 6 3.3e2  
RTHERM2 6 5 7.9e2  
RTHERM3 5 4 9.5e2  
RTHERM4 4 3 1.4e1  
RTHERM5 3 2 2.9e1  
RTHERM6 2 TL 6.7e1  
4
3
2
SABER THERMAL MODEL  
SABER thermal model FDB3682  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 =1.6e3  
ctherm.ctherm2 6 5 =4.5e3  
ctherm.ctherm3 5 4 =5.0e3  
ctherm.ctherm4 4 3 =8.0e3  
ctherm.ctherm5 3 2 =8.2e3  
ctherm.ctherm6 2 tl =4.7e2  
rtherm.rtherm1 th 6 =3.3e2  
rtherm.rtherm2 6 5 =7.9e2  
rtherm.rtherm3 5 4 =9.5e2  
rtherm.rtherm4 4 3 =1.4e1  
rtherm.rtherm5 3 2 =2.9e1  
rtherm.rtherm6 2 tl =6.7e1  
}
tl  
CASE  
Figure 24.  
www.onsemi.com  
12  
FDB3682, FDP3682  
PACKAGE MARKING AND ORDERING INFORMATION  
Device  
Device Marking  
Package Type  
Shipping  
FDB3682  
FDP3682  
FDB3682  
FDP3682  
D2PAK3 (TO263) (PbFree)  
TO2203LD (PbFree)  
800 / Tape & Reel  
800 / Tube  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United  
States and/or other countries.  
www.onsemi.com  
13  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO2203LD  
CASE 340AT  
ISSUE A  
DATE 03 OCT 2017  
Scale 1:1  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13818G  
TO2203LD  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
D2PAK3 (TO263, 3LEAD)  
CASE 418AJ  
ISSUE F  
DATE 11 MAR 2021  
SCALE 1:1  
XXXXXX = Specific Device Code  
A
= Assembly Location  
WL  
Y
= Wafer Lot  
= Year  
GENERIC MARKING DIAGRAMS*  
WW  
W
M
G
AKA  
= Work Week  
= Week Code (SSG)  
= Month Code (SSG)  
= PbFree Package  
= Polarity Indicator  
XX  
AYWW  
XXXXXXXXG  
AKA  
XXXXXXXXG  
AYWW  
XXXXXX  
XXYMW  
XXXXXXXXX  
AWLYWWG  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present. Some products  
may not follow the Generic Marking.  
IC  
Standard  
Rectifier  
SSG  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
98AON56370E  
D2PAK3 (TO263, 3LEAD)  
PAGE 1 OF 1  
DESCRIPTION:  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FDP3682_NL

Power Field-Effect Transistor, 6A I(D), 100V, 0.036ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220AB, 3 PIN
FAIRCHILD

FDP39N20

200V N-Channel MOSFET
FAIRCHILD

FDP39N20

功率 MOSFET,N 沟道,UniFETTM,200 V,39 A,66 mΩ,TO-220
ONSEMI

FDP39N20_07

200V N-Channel MOSFET
FAIRCHILD

FDP3N50NZ

Power Field-Effect Transistor, 3A I(D), 500V, 2.5ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, ROHS COMPLIANT, TO-220, 3 PIN
FAIRCHILD

FDP4020

P-Channel 2.5V Specified Enhancement Mode Field Effect Transistor
FAIRCHILD

FDP4020P

P-Channel 2.5V Specified Enhancement Mode Field Effect Transistor
FAIRCHILD

FDP4020PS62Z

Power Field-Effect Transistor, 16A I(D), 20V, 0.08ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220, 3 PIN
FAIRCHILD

FDP4020P_00

P-Channel 2.5V Specified Enhancement Mode Field Effect Transistor
FAIRCHILD

FDP4030L

N-Channel Logic Level Enhancement Mode Field Effect Transistor
FAIRCHILD

FDP4030LJ69Z

Power Field-Effect Transistor, 20A I(D), 30V, 0.035ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220, 3 PIN
FAIRCHILD

FDP40G

IDC DIP & TRANSITION PLUGS .100 [2.54] CENTERLINE
ADAM-TECH