FDB070AN06A0-F085 [ONSEMI]

N 沟道 PowerTrench® MOSFET 60 V、80 A、6.1 mΩ;
FDB070AN06A0-F085
型号: FDB070AN06A0-F085
厂家: ONSEMI    ONSEMI
描述:

N 沟道 PowerTrench® MOSFET 60 V、80 A、6.1 mΩ

文件: 总14页 (文件大小:1714K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductor  
Is Now  
To learn more about onsemi™, please visit our website at  
www.onsemi.com  
onsemi andꢀꢀꢀꢀꢀꢀꢀand other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or  
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi  
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without  
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,  
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,  
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/  
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application  
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized  
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for  
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and holdonsemi and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative  
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.  
FDB070AN06A0-F085  
N-Channel PowerTrench® MOSFET  
60V, 80A, 7mΩ  
Features  
Applications  
rDS(ON) =6.1mΩ (Typ.), VGS = 10V, ID = 80A  
Qg(tot) = 51nC (Typ.), VGS = 10V  
Low Miller Charge  
Motor / Body Load Control  
ABS Systems  
Pow ertrain Management  
Low QRR Body Diode  
Injection Systems  
UIS Capability (Single Pulse and Repetitive  
Pulse)  
DC-DC converters and Off-line UPS  
Distributed Pow er Architectures and VRMs  
Primary Sw itch for 12V and 24V systems  
Qualified to AEC Q101  
RoHS Compliant  
Formerly developmental type 82567  
Ordering Information  
Device  
Output Voltage  
TBD  
Marking  
FDB070AN06A0  
Package  
Shipping  
FDB070AN06A0-F085  
TO-263AB  
Tape and Reel  
© 2017 Semiconductor Components Industries, LLC  
August-2017, Rev. 2  
Publication Order Number:  
FDB070AN06A0-F085/D  
Absolute Maximum Ratings TC = 25unless otherwise noted  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
VDSS  
Parameter  
Ratings  
60  
Unit  
V
Drain to Source Voltage  
VGS  
Gate to Source Voltage  
Drain Current  
±20  
V
Continuous(TC < 97, VGS = 10V)  
80  
15  
A
A
ID  
Continuous(TA = 25, VGS = 10V, RJA = 43/W)  
Pulsed  
Figure 4  
190  
A
EAS  
PD  
Single Pulse AvalancheEnergy (1)  
mJ  
Power dissipation  
175  
W
W/℃  
1.17  
Derate above 25℃  
TJ, TSTG  
Operating andStorageTemperature  
-55 to 175  
Thermal Characteristics  
Thermal Resistance Junction to Case TO-220,TO-263  
0.86  
62  
RJC  
RJA  
RJA  
/W  
/W  
/W  
Thermal Resistance Junction to Ambient TO-220,TO-263 (2)  
Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area  
43  
Notes:  
1.  
2.  
Starting TJ = 25 , L = 93 H, IAS = 64A.  
Pulse width = 100s.  
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry.  
All ON Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems  
certification.  
www.onsemi.com  
2
Electrical Characteristics TC = 25unless otherw ise noted  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Units  
Off Characteristics  
BVDSS  
Drain to Source Breakdown Voltage  
60  
V
ID = 250 A, VGS = 0 V  
1
VDS = 50 V  
VGS = 0 V  
IDSS  
Zero Gate Voltage DrainCurrent  
A  
nA  
250  
TC = 150 ℃  
IGSS  
Gate to Source Leakage Current  
VGS = ±20 V  
±100  
On Characteristics  
VGS(TH)  
Gate to Source Threshold Voltage  
2
4
V
VGS = VDS, ID = 250A  
ID = 80A, VGS = 10V  
ID = 80A, VGS = 10V,  
0.0061 0.007  
rDS(ON)  
Drain to Source On Resistance  
  
0.0127 0.015  
TJ = 175℃  
Dynamic Characteristics  
CISS  
COSS  
CRSS  
Qg(TOT)  
Qg(TH)  
Qgs  
Input Capacitance  
3000  
510  
pF  
pF  
pF  
nC  
nC  
nC  
nC  
nC  
VDS = 25V, VGS = 0 V,  
F = 1 MHz  
Output Capacitance  
Reverse Transfer Capacitance  
Total Gate Chargeat 10V  
Threshold Gate Charge  
230  
VGS = 0V to 10V  
VGS = 0V to 2V  
51  
5.4  
17  
66  
7
VDD = 30 V  
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
ID = 80 A  
Ig = 1.0 mA  
Qgs2  
11.6  
16  
Qgd  
Switching Characteristics (VGS = 10 V)  
tON  
Td(ON)  
tr  
Turn-On Time  
Turn-On Delay Time  
Rise Time  
256  
ns  
ns  
ns  
ns  
ns  
ns  
12  
159  
27  
VDD = 30 V, ID = 80 A  
VGS = 10 V, RGS = 5.6 Ω  
Td(OFF)  
tf  
Turn-Off Delay Time  
Fall Time  
35  
tOFF  
Turn-Off Time  
93  
Drain-Source Diode Characteristics  
ISD = 80 A  
1.25  
1.0  
67  
V
V
VSD  
Source to Drain Diode Voltage  
ISD = 40 A  
trr  
Reverse Recovery Time  
ns  
nC  
ISD = 75 A, dISD/dt = 100 A/s  
ISD = 75 A, dISD/dt = 100 A/s  
QRR  
Reverse Recovered Charge  
80  
www.onsemi.com  
3
Typical Characteristics TC = 25unless otherw ise noted  
Figure 1.  
Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2.  
Maximum Continuous Drain Current vs  
Case Temperature  
Figure 3.  
Normalized Maximum Transient Thermal Impedance  
Figure 4.  
Peak Current Capability  
www.onsemi.com  
4
Typical Characteristics TC = 25unless otherw ise noted  
NOTE: Refer to ON Semiconductor Application Notes AN7514 and  
AN7515  
Figure 5.  
Forward Bias Safe Operating Area  
Figure 6.  
Unclamped Inductive Switching  
Capability  
Figure 7.  
Transfer Characteristics  
Figure 8.  
Saturation Characteristics  
Figure 9.  
Drain to Source On Resistance vs Drain  
Current  
Figure 10. Normalized Drain to Source On  
Resistance vs Junction Temperature  
www.onsemi.com  
5
Typical Characteristics TC = 25unless otherw ise noted  
Figure 11. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 12. Normalized Drain to Source Breakdown  
Voltage vs Junction Temperature  
Figure 13. Capacitance vs Drain to Source Voltage  
Figure 14. Gate Charge Waveforms for Constant  
Gate Current  
www.onsemi.com  
6
Test Circuits and Waveforms  
Figure 15. Unclamped Energy Test Circuit  
Figure 17. Gate Charge Test Circuit  
Figure 19. Switching Time Test Circuit  
Figure 16. Unclamped Energy Waveforms  
Figure 18. Gate Charge Waveforms  
Figure 20. Switching Time Waveforms  
www.onsemi.com  
7
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, TJM, and  
the thermal resistance of the heat dissipating path  
determines the maximum allow able device pow er  
dissipation, PDM, in an application. Therefore the  
application’s ambient temperature, TA( ), and  
thermal resistance RθJA(/W) must be review ed to  
ensure that TJM is never exceeded.  
Equation 1 mathematically represents the relationship  
and serves as the basis for establishing the rating of  
the part.  
In using surface mount devices such as the TO-263  
package, the environment in w hich it is applied w ill  
have a significant influence on the part’s current and  
maximum pow er dissipation ratings.  
determination of PDM is complex and influenced by  
many factors:  
Precise  
Figure 21. Thermal Resistance vs Mounting Pad  
Area  
1. Mounting pad area onto w hich the device is  
attached and w hether there is copper on one  
side or both sides of the board.  
2. The number of copper layers and the thickness  
of the board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse  
w idth, the duty cycle and the transient thermal  
response of the part, the board and the  
environment they are in.  
ON Semiconductor provides thermal information to  
assist the designer’s  
preliminary  
application  
evaluation. Figure 21 defines the RJA for the device  
as a function of the top copper (component side)  
area. This is for a horizontally positioned FR-4 board  
w ith 1oz copper after 1000 seconds of steady state  
pow er with no air flow . This graph provides the  
necessary information for calculation of the steady  
state junction temperature or pow er dissipation. Pulse  
applications can be evaluated using the ON  
Semiconductor device Spice thermal model or  
manually utilizing the normalized maximum transient  
thermal impedance curve.  
Thermal resistances corresponding to other copper  
areas can be obtained from Figure 21 or by  
calculation using Equation 2 or 3. Equation 2 is used  
for copper area defined in inches square and equation  
3 is for area in centimeters square. The area, in  
square inches or square centimeters is the top copper  
area including the gate and source pads.  
www.onsemi.com  
8
PSPICE Electrical Model  
.SUBCKT FDB070AN06A0 2 1 3 ; rev March 2003  
Ca 12 8 1.5e-9  
Cb 15 14 1.5e-9  
Cin 6 8 2.9e-9  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
Ebreak 11 7 17 18 62  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
It 8 17 1  
Lgate 1 9 4.8e-9  
Ldrain 2 5 1.0e-9  
Lsource 3 7 3e-9  
RLgate 1 9 48  
RLdrain 2 5 10  
RLsource 3 7 3  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 1.3e-3  
Rgate 9 20 2.7  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
Rsource 8 7 RsourceMOD 3.1e-3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*250),10))}  
.MODEL DbodyMOD D (IS=7.6E-12 N=1.04 RS=2.2e-3 TRS1=2.7e-3 TRS2=2e-7  
+ CJO=1.6e-9 M=0.55 TT=5e-12 XTI=3.9)  
.MODEL DbreakMOD D (RS=8e-1 TRS1=5e-4 TRS2=-8.9e-6)  
.MODEL DplcapMOD D (CJO=1.05e-9 IS=1e-30 N=10 M=0.45)  
.MODEL MmedMOD NMOS (VTO=3.7 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.7)  
.MODEL MstroMOD NMOS (VTO=4.7 KP=100 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MweakMOD NMOS (VTO=3.01 KP=0.03 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=27 RS=0.1)  
.MODEL RbreakMOD RES (TC1=7.1e-4 TC2=-5.5e-7)  
.MODEL RdrainMOD RES (TC1=1.7e-2 TC2=4e-5)  
.MODEL RSLCMOD RES (TC1=3e-3 TC2=1e-5)  
.MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-5.2e-3 TC2=-1.5e-5)  
.MODEL RvtempMOD RES (TC1=-3e-3 TC2=1.3e-6)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-2)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-4)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=0.5)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.5 VOFF=-1.5)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
www.onsemi.com  
9
SABER Electrical Model  
rev March 2003  
template FDB070AN06A0 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=7.6e-12,nl=1.04,rs=2.2e-3,trs1=2.7e-3,trs2=2e-7,cjo=1.6e-9,m=0.55,tt=5e-12,xti=3.9)  
dp..model dbreakmod = (rs=8e-1,trs1=5e-4,trs2=-8.9e-6)  
dp..model dplcapmod = (cjo=1.05e-9,isl=10e-30,nl=10,m=0.45)  
m..model mmedmod = (type=_n,vto=3.7,kp=10,is=1e-30, tox=1)  
m..model mstrongmod = (type=_n,vto=4.7,kp=100,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=3.01,kp=0.03,is=1e-30, tox=1,rs=0.1)  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-2)  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2,voff=-4)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.5,voff=0.5)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.5,voff=-1.5)  
c.ca n12 n8 = 1.5e-9  
c.cb n15 n14 = 1.5e-9  
c.cin n6 n8 = 2.9e-9  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
spe.ebreak n11 n7 n17 n18 = 62  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
i.it n8 n17 = 1  
l.lgate n1 n9 = 4.8e-9  
l.ldrain n2 n5 = 1.0e-9  
l.lsource n3 n7 = 3e-9  
res.rlgate n1 n9 = 48  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 3  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u,  
w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod,  
l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
res.rbreak n17 n18 = 1, tc1=7.1e-4,tc2=-5.5e-7  
res.rdrain n50 n16 = 1.3e-3, tc1=1.7e-2,tc2=4e-5  
res.rgate n9 n20 = 2.7  
res.rslc1 n5 n51 = 1e-6, tc1=3e-3,tc2=1e-5  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 3.1e-3, tc1=1e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-5.2e-3,tc2=-1.5e-5  
res.rvtemp n18 n19 = 1, tc1=-3e-3,tc2=1.3e-6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250))** 10))  
}
}
www.onsemi.com  
10  
PSPICE Thermal Model  
REV 23 March 2003  
FDB070AN06A0T  
CTHERM1 TH 6 3.5e-3  
CTHERM2 6 5 1.7e-2  
CTHERM3 5 4 1.8e-2  
CTHERM4 4 3 1.9e-2  
CTHERM5 3 2 4.7e-2  
CTHERM6 2 TL 7e-2  
RTHERM1 TH 6 2e-2  
RTHERM2 6 5 7e-2  
RTHERM3 5 4 1e-1  
RTHERM4 4 3 1.5e-1  
RTHERM5 3 2 1.6e-1  
RTHERM6 2 TL 1.85e-1  
SABER Thermal Model  
SABER thermal model FDB070AN06A0T  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 =3.5e-3  
ctherm.ctherm2 6 5 =1.7e-2  
ctherm.ctherm3 5 4 =1.8e-2  
ctherm.ctherm4 4 3 =1.9e-2  
ctherm.ctherm5 3 2 =4.7e-2  
ctherm.ctherm6 2 tl =7e-2  
rtherm.rtherm1 th 6 =2e-2  
rtherm.rtherm2 6 5 =7e-2  
rtherm.rtherm3 5 4 =1e-1  
rtherm.rtherm4 4 3 =1.5e-1  
rtherm.rtherm5 3 2 =1.6e-1  
rtherm.rtherm6 2 tl =1.85e-1  
}
www.onsemi.com  
11  
Physical Dimensions  
Figure 22. TO-263 2L (D2PAK), 4.445 x 10.16 x 15.24mm, TAPE REEL  
www.onsemi.com  
12  
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the  
United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A  
listing of ON Semiconductor’s product/patent coverage maybe accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make  
changes without further notice to anyproducts herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitabilityof its products for any  
particular purpose, nor does ON Semiconductor assume any liabilityarising out of the application or use of any product or circuit, and specificallydisclaims anyand all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor  
products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by  
ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and  
actual performance may varyover time. All operating parameters, including “Typicals” must be validated for each customer application bycustomer’s technical experts.  
ON Semiconductor does not convey anylicense under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for  
use as a critical component in life support systems or anyFDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or  
any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,  
damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in anymanner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:  
N. American Technical Support: 800-282-9855 Toll Free  
USA/Canada.  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Fax : 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81-3-5817-1050  
For additional information, please contact your local  
Sales Representative  
www.onsemi.com  
13  

相关型号:

FDB070AN06A0_F085

Power Field-Effect Transistor, 15A I(D), 60V, 0.007ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT PACKAGE-3/2
FAIRCHILD

FDB070AN06_F085

N-Channel PowerTrench® MOSFET 60V, 80A, 7mΩ
FAIRCHILD

FDB075N15A

N-Channel PowerTrench® MOSFET
FAIRCHILD

FDB075N15A

N 沟道,PowerTrench® MOSFET,150V,130A,7.5mΩ
ONSEMI

FDB075N15A-F085

N 沟道PowerTrench® MOSFET 150V,110A,5.5mΩ
ONSEMI

FDB075N15A-F085C

N 沟道PowerTrench® MOSFET 150V,110A,5.5mΩ
ONSEMI

FDB082N15A

N-Channel PowerTrench MOSFET
FAIRCHILD

FDB082N15A

N 沟道,PowerTrench® MOSFET,150V,105A,8.2mΩ
ONSEMI

FDB088N08

N-Channel PowerTrench? MOSFET 75V, 85A, 8.8mΩ
FAIRCHILD

FDB088N08

N 沟道,PowerTrench® MOSFET,75V,85A,8.8mΩ
ONSEMI

FDB1001M

DC-DC Regulated Power Supply Module, 1 Output, 1.4W, Hybrid
TOKO

FDB1001S

DC-DC Regulated Power Supply Module, 1 Output, 1.4W, Hybrid
TOKO