FAN5909UCX [ONSEMI]

Multi-Mode Buck Converter;
FAN5909UCX
型号: FAN5909UCX
厂家: ONSEMI    ONSEMI
描述:

Multi-Mode Buck Converter

开关
文件: 总15页 (文件大小:665K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FAN5909  
Multi-Mode Buck Converter  
with LDO Assist for GSM /  
EDGE, 3 G/3.5 G and 4 G PAs  
Description  
The FAN5909 is a high−efficiency, low−noise, synchronous,  
step−down, DC−DC converter optimized for powering Radio  
Frequency (RF) Power Amplifiers (PAs) in handsets and other mobile  
applications. Load currents up to 2.5 A are allowed, which enables  
GSM / EDGE, 3 G/3.5 G, and 4G platforms under very poor VSWR  
conditions.  
www.onsemi.com  
1
The output voltage may be dynamically adjusted from 0.40 V to  
WLCSP  
16 BUMP  
CASE 567SD  
3.60 V, proportional to an analog input voltage V  
ranging from  
CON  
0.16 V to 1.44 V, optimizing power−added efficiency. Fast transition  
times of less than 6 ms are achieved, allowing excellent inter−slot  
settling.  
An integrated LDO is automatically enabled under heavy load  
conditions or when the battery voltage and voltage drop across the  
DC−DC PMOS device are within a set range of the desired output  
voltage. This LDO−assist feature supports heavy load currents under  
the most stringent battery and V  
conditions while maintaining  
SWR  
high efficiency, low dropout, and superior spectral performance.  
The FAN5909 DC−DC operates in PWM Mode with a  
2.9 MHz switching frequency and supports a single, small  
form−factor inductor ranging from 1.0 mH to 2.2 mH. In  
addition, PFM operation is allowed at low load currents for  
output voltages below 1.5 V to maximize efficiency. PFM  
operation can be disabled by setting MODE pin to LOW.  
When output regulation is not required, the FAN5909 may  
Input Under−Voltage Lockout / Thermal Shutdown  
1.615 mm x 1.615 mm, 16−Bump, 0.4 mm Pitch  
WLCSP  
2.9 MHz PWM Mode  
6 ms Output Voltage Step Response for early Tx  
Power−Loop Settling with 14 mF Load Capacitance  
Sleep Mode for ~50 mA Standby Current Consumption  
be placed in Sleep Mode by setting V  
below 100 mV  
CON  
nominally. This ensures a very low I (<50 mA) while  
Forced PWM Mode  
Q
enabling a fast return to output regulation.  
Up to 95% Efficient Synchronous Operation in High  
Power Conditions  
FAN5909 is available in a low profile, small form factor,  
16 bump, Wafer−Level Chip−Scale Package (WLCSP) that  
is 1.615 mm x 1.615 mm. Only three external components  
are required: two 0402 capacitors and one 2016 inductor.  
2.9 MHz PWM−Only Mode  
Auto PFM/PWM Mode  
2.9 MHz PWM Operation at High Power and PFM  
Operation at Low Power and Low Output Voltage  
for Maximum Low Current Efficiency  
Features  
2
Solution Size < 9.52 mm  
2.7 V to 5.5 V Input Voltage Range  
Applications  
Dynamic Supply Bias for Polar or Linear GSM / EDGE  
PAs and 3 G/3.5 G and 4 G PAs  
V  
Range from 0.40 V to 3.60 V (or V )  
IN  
OUT  
Single, Small Form−Factor Inductor  
29 mW Integrated LDO  
100% Duty Cycle for Low−Dropout Operation  
Dynamic Supply Bias for GSM / EDGE Quad Band  
Amplifiers for Mobile Handsets and Data Cards  
ORDERING INFORMATION  
Part Number  
Output Voltage  
Temperature Range  
Package  
Packing  
FAN5909UCX  
0.4 V to PVIN  
−40°C to +85°C  
1.615 mm x 1.615 mm, 16−Bump 0.4 mm Pitch,  
Wafer−Level Chip−Scale Package (WLCSP)  
Tape and Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
© Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
November, 2017 − Rev. 2  
FAN5909/D  
FAN5909  
Block Diagrams  
0.4V to3.6V  
up to2.5A for  
VBAT >3.7V  
Up to3A in  
Bypass Mode  
PVIN  
PVIN  
FB  
VOUT  
VOUT  
m
10 F  
220pF  
m
H
1.0  
VOUT  
AVIN  
V
IN  
SW  
.7V to  
5.5V  
2
FAN5909  
SW  
BPEN  
PGND  
4.7mF  
6.8pF  
4.7μF  
4. 7μF  
PGND  
PGND  
MODE  
EN  
From  
External  
DAC  
AGND  
VCON  
Figure 1. Typical Application  
1. The three 4.7 mF capacitors include the FAN5909 output capacitor and PA bypass capacitors.  
2. Regulator requires only one 4.7 mF; the V  
bus should not exceed 14 mF capacitance over DC bias and temperature.  
OUT  
PVIN  
VOUT  
LDO  
FB  
Assist  
AVIN  
Positive  
Current Limit  
AGND  
PFM/PWM  
Controller  
VCON  
SW  
3MHz  
Oscillator  
BPEN  
MODE  
EN  
to PWM  
Controller  
Negative  
Current Limit  
PGND  
Figure 2. Simplified Block Diagram  
www.onsemi.com  
2
 
FAN5909  
Pin Configuration  
PGND  
A1  
SW  
A2  
PVIN VOUT  
VOUT PVIN  
SW  
A2  
PGND  
A1  
A3  
A4  
A4  
A3  
B1  
B2  
B3  
B4  
B4  
B3  
B2  
B1  
AGND  
C1  
EN  
C2  
BPEN PGND  
PGND BPEN  
EN  
C2  
AGND  
C1  
C3  
C4  
C4  
C3  
AVIN VCON MODE  
D1 D2 D3  
FB  
D4  
FB  
D4  
MODE VCON AVIN  
D3 D2 D1  
Figure 3. Bumps Face Down – Top−Through View  
Figure 4. Bumps Face Up  
PIN DEFINITIONS  
Pin #  
Name  
AGND  
VOUT  
Description  
Analog ground, reference ground for the IC. Follow PCB routing notes for connecting this pin.  
C1  
A4, B4  
Output voltage sense pin. Connect to V to establish feedback path for regulation point. Connect  
OUT  
together on PCB.  
D4  
C2  
D2  
D1  
C3  
D3  
FB  
Feedback pin. Connect to positive (+) pad of C  
on V  
OUT OUT.  
EN  
Enables switching when HIGH; Shutdown Mode when LOW. This pin should not be left floating.  
Analog control pin. Shield signal routing against noise.  
VCON  
AVIN  
BPEN  
MODE  
Analog supply voltage input. Connect to PVIN.  
Force Bypass Mode when HIGH; Auto Bypass Mode when LOW. This pin should not be left floating.  
When MODE is HIGH, the DC−DC permits PFM operation under low load currents and PWM operation  
under heavy load currents. When MODE pin is set LOW, the DC−DC operates in forced PWM opera-  
tion. This pin should not be left floating.  
A3, B3  
A2, B2  
PVIN  
SW  
Supply voltage input to the internal MOSFET switches. Connect to input power source.  
Switching node of the internal MOSFET switches. Connect to output inductor.  
A1, B1,C4  
PGND  
Power ground of the internal MOSFET switches. Follow routing notes for connections between PGND  
and AGND.  
www.onsemi.com  
3
FAN5909  
Table 1. ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Min  
−0.3  
−0.3  
−40  
−65  
Max  
Unit  
V
Voltage on AVIN, PVIN  
Voltage on Any Other Pin  
Junction Temperature  
Storage Temperature  
6.0  
V
IN  
AV + 0.3  
IN  
T
+125  
+150  
+260  
°C  
°C  
°C  
kV  
J
T
STG  
T
Lead Soldering Temperature (10 Seconds)  
Electrostatic Discharge Protection Level  
L
ESD  
Human Body Model, JESD22−A114  
Charged Device Model, JESD22−C101  
2.0  
1.0  
LU  
Latch Up  
JESD 78D  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
Table 2. RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
2.7  
Typ  
Max  
Unit  
V
V
IN  
Supply Voltage Range  
Output Voltage Range  
5.5  
V
0.35  
<V  
IN  
V
OUT  
OUT_BYPASS  
I
Output Current in Bypass Mode (100% Duty Cycle)  
Output Current  
4.5  
A
I
3.0  
A
OUT  
L
Inductor  
1
mH  
mF  
mF  
°C  
°C  
C
Input Capacitor (Note 3)  
10  
4.7  
IN  
C
Output Capacitor (Note 4)  
OUT  
T
A
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
−40  
−40  
+85  
T
J
+125  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
3. The input capacitor must be large enough to limit the input voltage drop during GSM bursts, bypass transitions, and large output voltage  
transitions.  
4. Regulator requires only one 4.7 mF; the V  
bus should not exceed 14 mF capacitance over DC bias and temperature.  
OUT  
Table 3. DISSIPATION RATINGS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
q
Junction−to−Ambient Thermal Resistance (Note 5)  
40  
°C/W  
JA  
5. Junction−to−ambient thermal resistance is a function of application and board layout. This data is measured with four−layer 2s2p boards  
with vias in accordance to JESD51− JEDEC standard. Special attention must be paid not to exceed junction temperature T at a given  
J(MAX)  
ambient temperature T .  
A
www.onsemi.com  
4
 
FAN5909  
Table 4. ELECTRICAL CHARACTERISTICS, ALL MODES Recommended operating conditions, unless otherwise noted, circuit  
per Figure 1, V = 2.7 V to 5.5 V, T = −40°C to +85°C. Typical values are given V = 3.8 V at T = 25°C. L = 1 mH, Toko DFE201610C,  
IN  
A
IN  
A
C
= 10 mF 0402 TDK C1005X5R0J106MT, C  
= 3 x 4.7 mF 0402 TDK C1005X5R0J475KT.  
IN  
OUT  
Symbol  
POWER SUPPLIES  
Parameter  
Condition  
Min  
2.7  
Typ  
Max  
Unit  
V
IN  
Input Voltage Range  
I
2.5 A  
5.5  
3.0  
V
mA  
V
OUT  
I
Shutdown Supply Current  
EN = 0 V, MODE = 0  
Rising  
0.5  
2.45  
250  
SD  
V
UVLO  
Under Voltage Lockout Threshold  
V
2.20  
2.60  
IN  
Hysteresis  
mV  
LOGIC CONTROL  
V
Logic Threshold Voltage;  
EN, BPEN, MODE  
Input HIGH Threshold  
Input LOW Threshold  
1.2  
1.6  
V
V
IH  
V
0.4  
IL  
CTRL  
I
Logic Control Input Bias Current;  
EN, BPEN, MODE  
V
IN  
or GND  
0.01  
1.00  
mA  
ANALOG CONTROL  
V
V
V
V
V
V
Forced Bypass Enter (Note 6)  
Forced Bypass Enter (Note 6)  
Forced Bypass Exit  
V
V
Voltage that Forces Bypass;  
= 4.0 V – 4.75 V  
V
V
CON_LDO_EN1  
CON  
CON  
CON  
CON  
IN  
V
V
V
Voltage that Forces Bypass;  
V /2.5  
IN  
CON_LDO_EN2  
CON  
IN  
V  
OUT  
V
V
CON  
Voltage that Exits Forced By-  
1.4  
V
CON_LDO_EX  
pass; V = 2.70 V – 4.75 V  
IN  
V
V
Sleep Enter  
Sleep Exit  
V
CON  
Voltage Forcing Low I Sleep  
70  
mV  
con_SL_en  
con  
Q
Mode  
V
CON  
V
CON  
Voltage that Exits SLEEP Mode  
< 70 mV  
125  
80  
mV  
con_SL_ex  
con  
I
Q
DC−DC Quiescent Current in Sleep Mode  
Gain in Control Range 0.16 V to 1.44 V  
50  
mA  
Gain  
2.5  
V
V
OUT  
Accuracy  
Ideal = 2.5 x V  
CON  
−50  
+50  
mV  
OUT_ACC  
LDO  
R
LDO FET Resistance  
LDO Dropout (Note 7)  
29  
mW  
FET  
ΔV  
I
= 2.0 A  
100  
mV  
OUT_LDO  
OUT  
OVER TEMPERATURE PROTECTION  
T
OTP  
Over−Temperature Protection  
Rising Temperature  
Hysteresis  
+150  
+20  
°C  
°C  
OSCILLATOR  
f
Average Oscillator Frequency  
2.6  
2.9  
3.2  
MHz  
SW  
DC−DC  
R
PMOS On Resistance  
V
V
= V = 3.7 V  
80  
60  
mW  
DSON  
IN  
GS  
NMOS On Resistance  
= V = 3.7 V  
GS  
IN  
I
I
P−Channel Current Limit (Note 8)  
N−Channel Current Limit (Note 8)  
Maximum Transient Discharge Current  
LDO Current Limit  
1.50  
1.50  
1.90  
1.90  
3.7  
2.30  
2.30  
4.5  
A
A
A
A
LIMp  
LIMn  
I
Discharge  
I
4.5  
LIMLDO  
6. Input voltages nominally exceeding the lesser of VIN/2.5 or 1.6 V force 100% duty cycle.  
7. Dropout depends on LDO and DC−DC PFET R and inductor DCR.  
DSON  
8. The current limit is the peak (maximum) current.  
9. Guaranteed by design. Maximum values are based on simulation results with 50% COUT derating; not tested in production. Voltage tran-  
sient only. Assumes C = 3 x 4.7 mF (1x4.7 mF for regulator and 2x4.7 mF for PA decoupling capacitors).  
OUT  
10.Protects part under short−circuit conditions  
www.onsemi.com  
5
 
FAN5909  
Table 4. ELECTRICAL CHARACTERISTICS, ALL MODES Recommended operating conditions, unless otherwise noted, circuit  
per Figure 1, V = 2.7 V to 5.5 V, T = −40°C to +85°C. Typical values are given V = 3.8 V at T = 25°C. L = 1 mH, Toko DFE201610C,  
IN  
A
IN  
A
C
= 10 mF 0402 TDK C1005X5R0J106MT, C  
= 3 x 4.7 mF 0402 TDK C1005X5R0J475KT.  
IN  
OUT  
Symbol  
DC−DC  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Minimum Output Voltage  
Maximum Output Voltage  
V
V
= 0.16 V  
0.35  
3.55  
0.40  
3.60  
0.45  
3.65  
V
V
OUT_MIN  
OUT_MAX  
CON  
V
= 1.44 V, V = 3.9 V  
IN  
CON  
DC−DC EFFICIENCY  
Power Efficiency, Low−Power Auto Mode,  
η
Power  
V
OUT  
V
OUT  
V
OUT  
= 3.1 V, I  
= 1.8 V, I  
= 0.5 V, I  
= 250 mA  
95  
90  
65  
%
LOAD  
LOAD  
LOAD  
V
IN  
= 3.7 V  
= 250 mA  
= 10 mA  
OUTPUT REGULATION  
V
V
V
OUT  
V
OUT  
V
OUT  
Line Regulation  
Load Regulation  
Ripple  
3.1 V 3.7  
5
25  
11  
mV  
mV  
mV  
OUT_RLine  
IN  
20 mA I  
800 mA  
OUT_RLoad  
OUT  
V
PFM Mode, V = 3.7 V,  
IN  
OUT_Ripple  
I
< 100 mA  
OUT  
PWM Mode, V = 3.7 V  
4
IN  
TIMING  
t
Startup Time (Note 9)  
V
C
= 3.7 V, V from 0 V to 3.1 V,  
OUT  
50  
60  
ms  
ms  
SS  
IN  
= 3 x 4.7 mF, 10 V, X5R  
OUT  
t
V
Step Response Rise Time (Note 9)  
From V  
2.7 V (0.7 V – 3.4 V), R  
C
to 95% V  
, DV ≤  
OUT  
LOAD  
6.0  
7.3  
DC−DC_TR  
CON  
CON  
CON  
OUT  
= 5 W,  
= 14 mF  
OUT  
t
V
Step Response Fall Time (Note 9)  
From V  
to 5% V , DV  
OUT OUT  
6.8  
7.6  
ms  
DC−DC_TF  
CON  
2.7 V (3.4 V – 0.7 V), R  
= 200 W,  
LOAD  
C
= 14 mF  
OUT  
t
Maximum Allowed Time for Consecutive  
Current Limit (Note 10)  
V
OUT  
< 1 V  
1500  
4800  
ms  
ms  
DC−DC_CL  
t
Consecutive Current Limit Recovery Time  
(Note 10)  
DCDC_CLR  
6. Input voltages nominally exceeding the lesser of VIN/2.5 or 1.6 V force 100% duty cycle.  
7. Dropout depends on LDO and DC−DC PFET R and inductor DCR.  
DSON  
8. The current limit is the peak (maximum) current.  
9. Guaranteed by design. Maximum values are based on simulation results with 50% COUT derating; not tested in production. Voltage tran-  
sient only. Assumes C = 3 x 4.7 mF (1x4.7 mF for regulator and 2x4.7 mF for PA decoupling capacitors).  
OUT  
10.Protects part under short−circuit conditions  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
6
 
FAN5909  
Typical Characteristics  
Unless otherwise noted, V = EN = 3.7 V, L = 1.0 mH, C = 10 mF, C  
= 3 x 4.7 mF, and T = +25°C.  
A
IN  
IN  
OUT  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
VOUT = 1.6V  
VOUT = 2.0V  
VOUT = 2.5V  
VOUT = 3.0V  
VOUT = 3.5V  
VOUT = 0.5V  
VOUT = 1.0V  
VOUT = 1.5V  
VOUT = 2.0V  
VOUT = 2.5V  
VOUT = 3.0V  
0
20  
40  
60  
80  
100  
120  
140  
160  
0ꢀꢀꢀꢁ100ꢀꢀꢀ200ꢀꢀꢀ300ꢀꢀꢀ400ꢀꢀꢀ500ꢀꢀꢀ600ꢀꢀꢀ700ꢀꢀꢀ800  
Load Current (mA)  
Load Current (mA)  
Figure 5. Efficiency vs. Load Current and Output  
Voltage, VIN = 3.8 V , IOUT = 10 mA to 150 mA  
Figure 6. Efficiency vs. Load Current and Output  
Voltage, VIN = 3.8 V  
100  
100  
95  
90  
80  
70  
60  
50  
40  
30  
20  
90  
85  
VOUT = 1.6V  
VOUT = 2.0V  
80  
VOUT = 2.0V  
VOUT = 2.5V  
VOUT = 3.0V  
VOUT = 3.5V  
VOUT = 2.5V  
VOUT = 3.0V  
75  
VOUT = 3.5V  
70  
0
200  
400  
600  
800  
1000  
900  
1200  
1500  
1800  
2100  
2400  
2700  
Load Current (mA)  
Load Current (mA)  
Figure 7. Efficiency vs. Load Current and Output  
Voltage, VIN = 3.8 V, IOUT = 100 mA to 1 A  
Figure 8. Efficiency vs. Load Current and Output  
Voltage, VIN = 3.8 V, IOUT = 1 A to 2.5 A  
3.6  
3.4  
3.2  
3
4.5  
4
3.5  
3
2.5  
2
2.8  
2.6  
1.5  
1
0.5  
0
2.4  
2.5ꢀꢀꢀꢀ3ꢀꢀꢀꢀ3.5ꢀꢀꢀꢀ4ꢀꢀꢀꢀ4.5ꢀꢀꢀꢀ5ꢀꢀꢀꢀ5.5  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
VCON (V)  
Input Voltage (V)  
Figure 9. Output Voltage vs. Supply Voltage,  
OUT = 3.4 V, IOUT = 1.5 A, VIN = 4.3 V to Dropout  
Figure 10. Output Voltage vs. VCON Voltage,  
VIN = 4.2 V, RLOAD = 6.8 W, 0.1 V < VCON < 1.6 V  
V
www.onsemi.com  
7
FAN5909  
Typical Characteristics  
Unless otherwise noted, V = EN = 3.7 V, L = 1.0 mH, C = 10 mF, C  
= 3 x 4.7 mF, and T = +25°C.  
A
IN  
IN  
OUT  
850  
800  
750  
700  
650  
600  
550  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
-40°C  
+25°C  
+85°C  
2.5ꢀꢀꢀ3ꢀꢀꢀ3.5ꢀꢀꢀ4ꢀꢀꢀ4.5ꢀꢀꢀ5ꢀꢀꢀ5.5ꢀꢀꢀ6  
3ꢀꢀꢀꢀꢁ3.5ꢀꢀꢀꢀꢁ4ꢀꢀꢀꢀꢁ4.5ꢀꢀꢀꢀꢁ5ꢀꢀꢀꢀꢁ5.5  
Input Voltage (V)  
Input Voltage (V)  
Figure 11. Center−Switching Frequency vs. Supply  
Voltage, VOUT = 2.5 V, IOUT = 700 mA  
Figure 12. Quiescent Current (PFM) vs. Supply  
Voltage, VOUT = 1 V, 2.7 V < VIN < 5.5 V (No Load)  
20  
18  
16  
14  
12  
10  
8
VOUT  
2V/DIV  
2V/DIV  
VCON  
-40°C  
6
+25°C  
+85°C  
4
IOUT  
2
0
500mA/DIV  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Input Voltage (V)  
20ms/DIV  
Figure 13. Quiescent Current (PWM) vs. Supply  
Voltage, VOUT = 2.5 V, 2.7 V < VIN < 5.5 V (No Load)  
Figure 14. VCON Transient (3 G/4 G), VOUT = 0 V to  
3 V, RLOAD = 6.8 W, VIN = 3.8 V, 100 ns Edge  
VOUT  
VOUT  
2V/DIV  
1V/DIV  
2V/DIV  
2V/DIV  
VCON  
VCON  
IOUT  
IOUT  
1A/DIV  
500mA/DIV  
20ms/DIV  
20ms/DIV  
Figure 15. VCON Transient (PFM to PWM), VOUT  
=
Figure 16. VCON Transient (PWM), VOUT = 1.4 V to  
1.4 V to 3.4 V, RLOAD = 6.8 W, VIN = 3.8 V, 100 ns Edge  
3.4 V, RLOAD = 1.9 W, VIN = 4.2 V, 100 ns Edge  
www.onsemi.com  
8
FAN5909  
Typical Characteristics  
Unless otherwise noted, V = EN = 3.7 V, L = 1.0 mH, C = 10 mF, C  
= 3 x 4.7 mF, and T = +25°C.  
IN  
IN  
OUT  
A
VOUT  
VOUT  
10mV/DIV  
50mA/DIV  
20mV/ DIV  
IOUT  
IOUT  
200mA/DIV  
20ms/DIV  
100ms/DIV  
Figure 17. Load Transient in PFM Mode, VIN = 3.6 V,  
Figure 18. Load Transient in PWM Mode, VIN = 3.8 V,  
VOUT = 1 V, IOUT = 0 mA to 60 mA, 1 ms Edge  
VOUT = 2.5 V, IOUT = 0 mA to 300 mA, 10 ms Edge  
VOUT  
VOUT  
50mV/DIV  
100mV/DIV  
IOUT  
IOUT  
500mA/DIV  
500mA/DIV  
100ms/DIV  
100ms/DIV  
Figure 20. Load Transient in PWM Mode, VIN = 4.2 V,  
Figure 19. Load Transient in PWM Mode, VIN = 3.8 V,  
OUT = 3.0 V, IOUT = 0 mA to 700 mA, 10 ms Edge  
V
OUT = 3.0 V, IOUT = 0 mA to 1.2 A, 10 ms Edge  
V
VOUT  
VOUT  
50mV/DIV  
50mV/DIV  
VIN  
VIN  
1V/DIV  
1V/DIV  
100ms/DIV  
100ms/DIV  
Figure 22. Line Transient, VIN = 3.6 V to 4.2 V,  
OUT = 2.5 V, 6.8 W Load, 10 ms Edge  
Figure 21. Line Transient, VIN = 3.6 V to 4.2 V,  
OUT = 1.0 V, 6.8 W Load, 10 ms Edge  
V
V
www.onsemi.com  
9
FAN5909  
Typical Characteristics  
Unless otherwise noted, V = EN = 3.7 V, L = 1.0 mH, C = 10 mF, C  
= 3 x 4.7 mF, and T = +25°C.  
IN  
IN  
OUT  
A
SW  
SW  
2V/DIV  
2V/DIV  
2V/DIV  
1V/DIV  
VOUT  
VOUT  
EN  
2V/DIV  
2V/DIV  
EN  
20ms/DIV  
20ms/DIV  
Figure 23. Startup in PFM Mode, VIN = 3.8 V,  
OUT = 1.0 V, No Load, EN = Low to High  
Figure 24. Startup in PWM Mode, VIN = 4.2 V,  
OUT = 3.4 V, No Load, EN = Low to High  
V
V
www.onsemi.com  
10  
FAN5909  
Operating Description  
In all cases, it is recommended that sharp V  
CON  
The FAN5909 is a high−efficiency, synchronous,  
step−down converter (DC−DC) with LDO−assist function.  
The DC−DC converter operates with current−mode  
control and supports a wide range of load currents.  
High−current applications up to a 2.5 A DC output, such as  
mandated by GSM/EDGE applications, are allowed.  
Performance degradation due to spurs is removed by  
spreading the ripple energy through clock dither. A  
regulated Bypass Mode continues to regulate the output to  
transitions be applied, letting the transition controller  
optimize the output voltage slew rate.  
DVOUT Positive Step  
After a V  
positive step, the FAN5909 enters  
CON  
Current−Limit Mode, where V  
ramps with a constant  
OUT  
slew rate dictated by the output capacitor and the current  
limit.  
DVOUT Negative Step  
the desired voltage as V approaches V  
. The LDO  
OUT  
IN  
After a V  
negative step, the FAN5909 enters Current  
CON  
offers a dropout voltage of approximately 100 mV under a  
2 A load current.  
Limit Mode where V  
is reduced with a constant slew  
OUT  
rate dictated by the output capacitor and the current limit.  
The output voltage V  
input control voltage, V  
is regulated to 2.5 times the  
, set by an external DAC. The  
OUT  
VOUT Transition to or from Forced Bypass  
CON  
FAN5909 operates in either PWM or PFM Mode, depending  
on the output voltage and load current.  
The DC−DC is forced into 100% duty cycle for V  
CON  
nominally greater than 1.6 V. This allows the output to be  
connected to the supply through both the low−resistance  
DC−DC and the LDO PFETs.  
In Pulse Width Modulation (PWM) Mode, regulation  
begins with on−state. A P−channel transistor is turned on  
and the inductor current is ramped up until the off−state  
begins. In the off−state, the P−channel is switched off and an  
N−channel transistor is turned on. The inductor current  
decreases to maintain an average value equal to the DC load  
current. The inductor current is continuously monitored. A  
current sense flags when the P−channel transistor current  
exceeds the current limit and the switcher is turned back to  
off−state to decrease the inductor current and prevent  
magnetic saturation. The current sense flags when the  
N−channel transistor current exceeds the current limit and  
redirects discharging current through the inductor back to  
the battery.  
VOUT Transition at Startup  
At startup, after the EN rising edge is detected, the system  
requires 25 ms for all internal voltage references and  
amplifiers to start before enabling the DC−DC converter  
function.  
MODE Pin  
The MODE pin enable Forced PWM Mode or Auto  
PFM / PWM Mode. When the MODE pin is toggled HIGH  
(logic 1), the FAN5909 operates in PFM for V  
< 1.5 V  
OUT  
under light−load conditions and PWM for heavy−load  
conditions. If the MODE pin is set LOW (logic = 0), it  
operates in Forced PWM Mode.  
In Pulse Frequency Modulation (PFM) Mode, the  
FAN5909 operates in a constant on−time mode at low load  
currents. During on−state, the P−channel is turned on for a  
specified time before switching to off−state. In off−state, the  
N−channel switch is enabled until inductor current  
decreases to 0A. The switcher enters three−state until a new  
regulation cycle starts.  
PFM operation is allowed only in Low−Power Mode  
(MODE=1) for output voltages nominally less than 1.5 V. At  
low load currents, PFM achieves higher efficiency than  
PWM. The trade−off for efficiency improvement, however,  
is larger output ripple. Some applications, such as audio,  
may not tolerate the higher ripple, especially at high output  
voltages.  
Auto PFM / PWM Mode (MODE = 1)  
Auto PFM/PWM Mode is appropriate for 3 G/3.5 G and  
4 G applications.  
Forced PWM Mode (MODE = 0)  
Forced PWM Mode is appropriate for applications that  
demand minimal ripple over the entire output voltage range.  
DC−DC – LDO−Assist  
The LDO−assist function maintains output regulation  
when V approaches V  
, enables fast transition times  
OUT  
IN  
under heavy loads, and minimizes PCB space by enabling a  
smaller inductor to be employed by using the LDO to  
provide a portion of the necessary load current.  
Dynamic Output Voltage Transitions  
FAN5909 has a complex voltage transition controller that  
realizes 6 ms transition times with a large output capacitor  
and output voltage ranges.  
The LDO−assist function limits the maximum current that  
the DC−DC may supply by shunting current away from the  
DC−DC under heavy loads and high duty cycles. In addition,  
the LDO−assist enables a seamless transition into 100%  
duty cycle, ensuring both low output ripple and constant  
output regulation. Since the LDO−assist function limits the  
maximum current supplied by the DC−DC, PCB area is  
minimized by enabling a lower current capable, and thus  
smaller form factor, inductor to be used.  
The transition controller manages five transitions:  
DV  
DV  
DV  
DV  
positive step  
OUT  
OUT  
OUT  
OUT  
negative step  
transition to or from 100% duty cycle  
transition at startup  
www.onsemi.com  
11  
FAN5909  
DC−DC – Sleep Mode  
The Sleep Mode minimizing current while enabling rapid  
return to regulation. Sleep Mode is entered when V is  
CON  
held below 70 mV for at least 40 ms. In this mode, current  
consumption is reduced to under 50 mA. Sleep Mode is  
exited after ~12 ms when V  
is set above 125 mV.  
CON  
Application Information  
Figure 26 illustrates the FAN5909 in a GSM / EDGE /  
WCDMA transmitter configuration, driving multiple GSM  
/ EDGE and 3 G/3.5 G and 4 G PAs. Figure 27 presents a  
timing diagram designed to meet GSM specifications.  
DC Output Voltage  
The output voltage is determined by V  
external DAC or voltage reference:  
Figure 25. Output Voltage vs. Control Voltage  
provided by an  
CON  
The FAN5909 is designed to support voltage transients of  
6 ms when configured for GSM/EDGE applications  
(MODE=0) and driving a load capacitance of approximately  
14 mF. Figure 28 shows a timing diagram for WCDMA  
applications.  
VOUT + 2.5   VCON  
The FAN5909 provides regulated V  
(eq. 1)  
only if V  
CON  
OUT  
falls within the typical range from 0.16 V to 1.44 V. This  
allows V to be adjusted between 0.4 V and 3.6 V. If  
OUT  
V
CON  
is less than 0.16 V, V  
is clamped to 0.40 V. In  
OUT  
Auto PFM/PWM Mode, the FAN5909 automatically  
switches between PFM and PWM. In Forced PWM Mode  
(MODE = 0), the FAN5909 automatically switches into  
PWM Mode.  
470nF  
0201  
m
4.7  
F
0402  
RFOUT  
VRAMP  
0.4V to3.5V  
up to2.5A for  
VBAT > 3.7V.  
Up to3A in  
GSM/EGSM  
850/900MHz  
PA  
PA  
LB_IN  
Bypass Mode  
FAN5909  
FB  
PCS/DCS  
1800/1900MHz  
PVIN  
HB_IN  
m
10  
F
220pF  
0201  
GSM/EDGE  
PAM  
0402  
LDO  
Assist  
V
IN  
AVIN  
VOUT  
2.7V to5.5V  
2.9MHz  
Switcher  
0.4V to3.4V  
Up to  
1mH  
800mA  
V
OUT  
BPEN  
SW  
470nF  
0201  
PFM/PWM  
Controller  
m
F
0402  
4.7  
m
F
GPIO  
GPIO  
GPIO  
4.7  
0402  
6.8pF  
0201  
MODE  
EN  
PGND  
AGND  
PA  
UMTS BAND1, , 9  
470nF  
0201  
Baseband  
Processor  
DAC  
Reference  
VCON  
Bandgap  
PA  
UMTS BAND1, , 9  
470nF  
0201  
μF capacitor can be replaced by a  
*One 4.7  
μF decoupling capacitor at the GSM PAs  
4.7  
.
PA  
μF capacitors are optional  
**220pF and6.8  
UMTS BAND1, , 9  
.
470nF  
0201  
PA  
UMTS BAND1, , 9  
Figure 26. Typical Application Diagram with GSM/EDGE/WCDMA Transmitters  
www.onsemi.com  
12  
 
FAN5909  
μs  
50  
_
DCDC EN  
MODE  
DC DC  
VCON  
3.4V  
2.5 x VCON  
7.3μs  
0.7V to 3.4V  
0.7V  
DCDC VOUT  
VRAMP  
PA  
PA_TX_EN  
RF Packet  
ANTENNA  
Figure 27. Timing Diagram for GSM/EDGE Transmitters  
50μs  
_
DCDC EN  
MODE  
DCDC  
VCON  
3.4V  
2.5 x VCON  
7.3  
μs  
0.7V  
DC−DC VOUT  
_
_
PA TX EN  
PA  
Continuous RF  
ANTENNA  
Figure 28. Timing Diagram for WCDMA Transmitters  
Inductor Selection  
A 6.8 pF capacitor may be added in parallel with C  
reduce the capacitor’s parasitic inductance.  
to  
OUT  
The FAN5909 operates at 2.9 MHz switching frequency,  
allowing 1.0 mH or 1.5 mH inductors to be used in designs.  
For applications requiring the smallest possible PCB area,  
use a 1.0 mH 2012 inductor or a 1.0 mH 2016 inductor for  
optimum efficiency performance.  
Table 6. RECOMMENDED CAPACITOR VALUES  
Capacitor  
Description  
C
10 mF, 20%, X5R, 6.3 V, 0402  
IN  
(1005 metric) TDK C1005X5R0J106M  
Table 5. RECOMMENDED INDUCTORS  
C
4.7 mF, 20%, X5R, 6.3 V, 0402  
(1005 metric) TDK C1005X5R0J475K  
OUT  
Inductor  
Description  
L
1.0 mH 20%, 2.1 A, 2012 Case Size  
Cyntec: PSK20121T−1R0MS−63  
PCB Layout and Component Placement  
1.0 mH 20%, 2.2 A, 2016 Case Size  
Toko: DFE201610R−H−1R0M  
The key point in the placement is the power ground  
(PGND) connection shared between the FAN5909,  
CIN, and COUT. This minimizes the parasitic  
inductance of the switching loop paths.  
Capacitor Selection  
The minimum required output capacitor C  
should be  
OUT  
Place the inductor away from the feedback pins to  
prevent unpredictable loop behavior.  
one (1) 4.7 mF, 6.3 V, X5R with an ESR of 10 mW or lower  
and an ESL of 0.3 nH or lower in parallel after inductor L1.  
Larger case sizes result in increased loop parasitic  
inductance and higher noise. One 4.7 mF capacitor should be  
used as a decoupling capacitor at the GSM/EDGE PA V  
pin and another 4.7 mF capacitor should be placed at V pin  
Ensure the traces are wide enough to handle the  
maximum current value, especially in Bypass Mode.  
Ensure the vias are able to handle the current density.  
Use filled vias if available.  
CC  
CC  
of the 3 G/4 G PA.  
www.onsemi.com  
13  
FAN5909  
PACKAGE DIMENSIONS  
WLCSP16 1.615x1.615x0.586  
CASE 567SD  
ISSUE O  
PRODUCT SPECIFIC DIMENSIONS  
D
E
X
Y
Unit  
1.615 0.030  
1.615 0.030  
0.2075  
0.2075  
mm  
www.onsemi.com  
14  
FAN5909  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
FAN5909/D  

相关型号:

FAN5910UCX

Multi-Mode Buck Converter with LDO Assist for GSM / EDGE, 3G/3.5G and 4G PAs
ONSEMI

FAN602MX

离线准谐振 PWM 控制器
ONSEMI

FAN604

Quasi-Resonant PWM Controller
ONSEMI

FAN604HMX

Offline Quasi-Resonant PWM Controller
ONSEMI

FAN604MX

Quasi-Resonant PWM Controller
ONSEMI

FAN6080HMX

Offline Quasi-Resonant PWM Controller
ONSEMI

FAN6100HM

Secondary-Side Constant Voltage and Constant Curren Controller Compatible
ONSEMI

FAN6100HMMPX

Secondary-Side Constant Voltage and Constant Curren Controller Compatible
ONSEMI

FAN6100M

Secondary-Side Constant Voltage and Constant Current Controller Compatible
ONSEMI

FAN6100MMPX

Secondary-Side Constant Voltage and Constant Current Controller Compatible
ONSEMI

FAN6100Q

Secondary-Side Constant Voltage and Constant Current Controller Compatible
ONSEMI