FAN53880UC002X [ONSEMI]

一个降压,一个升压和四个 LDO PMIC;
FAN53880UC002X
型号: FAN53880UC002X
厂家: ONSEMI    ONSEMI
描述:

一个降压,一个升压和四个 LDO PMIC

集成电源管理电路
文件: 总66页 (文件大小:3602K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductor  
Is Now  
To learn more about onsemi™, please visit our website at  
www.onsemi.com  
onsemi andꢀꢀꢀꢀꢀꢀꢀand other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or  
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi  
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without  
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,  
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,  
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/  
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application  
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized  
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for  
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and holdonsemi and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative  
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.  
FAN53880  
One Buck, One Boost and  
Four LDO PMIC  
General Description  
The FAN53880 is a low quiescent current PMIC for mobile power  
applications. The PMIC contains one buck, one boost, and four low  
noise LDOs.  
www.onsemi.com  
The buck and boost converters can operate within a wide supply  
range of 2.5 V to 5.5 V. At moderate and light loads, Pulse Frequency  
Modulation (PFM) reduces current consumption while maintaining  
excellent transient response during load swings. At higher loads, the  
converters automatically switch to Pulse Width Modulation (PWM)  
control.  
WLCSP25  
CASE 567QT  
The FAN53880 is available in a 25bump, 0.4 mm pitch,  
WaferLevel ChipScale Package (WLCSP).  
Features  
MARKING DIAGRAM  
Programmable StartUp/Down Sequencing  
Programmable Output Voltages  
SoftStart (SS) Inrush Current Limiting  
Fault Protection with Interrupt Reporting  
UVLO, OCP, OVP, UVP and OTP  
12KK  
XYZ  
1
Low Current Standby and Shutdown Modes  
12  
KK  
X
Y
Z
= Alphanumeric Device Marking  
= Lot Run Code  
= Alphabetical Year Code  
= 2weeks Date Code  
= Assembly Plant Code  
Buck Converter:  
Input Voltage Range: 2.5 V to 5.5 V  
Digitally Programmable Voltage Range: 0.6 V to 3.3 V  
1200 mA Output Current Capability  
95% Efficiency  
Boost Converter:  
Input Voltage Range: 2.5 V to 5.5 V  
Digitally Programmable Voltage Range: 3.0 V to 5.7 V  
1000 mA Output Current Capability  
95% Efficiency  
Four LDOs:  
Input Voltage Range: 1.9 V to 5.5 V  
Digitally Programmable Voltage Range: 0.8 V to 3.3 V  
300 mA Output Current Capability  
Applications  
Smartphones and Tablets  
Compact Camera Modules  
USB OnTheGo  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
May, 2019 Rev. 2  
FAN53880/D  
FAN53880  
Application Diagram  
PVIN  
AVIN  
SW1  
L1  
CPVIN  
CBUCK  
PGND1  
FB1  
CAVIN  
CVIN12  
CVIN3  
LDO1  
AGND  
VIN12  
CLDO1  
CLDO3  
LDO2  
CLDO2  
LDO3  
LDO4  
VIN3  
VIN4  
FAN53880  
CVIN4  
CLDO4  
VBST  
SW2  
SW2  
CBST  
L2  
PGND2  
CBSTIN  
HWEN  
SCL  
BSTEN  
N/C  
SDA  
N/C  
INTB  
DGND  
Figure 1. Application Diagram  
PART NUMBERING  
Table 1. ORDERING INFORMATION  
Buck  
LDO1,2  
LDO3,4  
Boost  
I2C  
Address  
Temperature  
Range  
Packing  
Method  
Device  
Marking  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
Part Number  
Package  
FAN53880UC001X*  
1.1 V  
2.8 V  
1.8 V  
5.0 V  
7’h35  
40°C to 85°C 25Bump Tape and  
LT  
WLCSP  
Reel  
FAN53880UC002X  
1.1 V  
2.8 V  
1.8 V  
5.0 V  
7’h35  
40°C to 85°C 25Bump Tape and  
LW  
WLCSP  
Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specification Brochure, BRD8011/D.  
*Not recommended for new designs.  
www.onsemi.com  
2
FAN53880  
PRODUCT PIN ASSIGNMENTS  
Pin Configuration  
SW1  
PVIN  
VBST  
SW2  
SW2  
SW2  
SW2  
VBST  
PVIN  
SW1  
A5  
A5  
A1  
A2  
A3  
A4  
A4  
A3  
A2  
A1  
INTB  
PGND1  
FB1  
BSTEN  
PGND2  
PGND2  
BSTEN  
FB1  
PGND1  
INTB  
B5  
B5  
B1  
B2  
B3  
B4  
B4  
B3  
B2  
B1  
N/C  
HWEN  
DGND  
SDA  
SCL  
SCL  
SDA  
DGND  
HWEN  
N/C  
C5  
C5  
C1  
C2  
C3  
C4  
C4  
C3  
C2  
C1  
VIN4  
VIN4  
AVIN  
VIN12  
VIN12  
N/C  
AVIN  
VIN3  
N/C  
VIN3  
D1  
D5  
D5  
D1  
D2  
D3  
D4  
D4  
D3  
D2  
LDO3  
AGND  
LDO2  
LDO1  
LDO1  
LDO2  
AGND  
LDO3  
LDO4  
LDO4  
E5  
E5  
E1  
E2  
E3  
E4  
E4  
E3  
E2  
E1  
Figure 2. Pin Configuration  
Pin Descriptions  
Table 2. PIN DEFINITION  
Pin  
A1  
A2  
Pin Name  
SW1  
Description  
Switching node of the buck converter. Tie one lead of the inductor to this pin.  
Input power for the buck and boost converter. Bypass this pin with C close to the device pin.  
PVIN  
PVIN  
The voltage must be kept within 25 mV of AV  
.
IN  
A3  
A4, A5  
B1  
VBST  
SW2  
Boost output node. Locate C  
close to this pin  
BST  
Switching node for the boost converter.  
Power ground connection for the buck converter. Connect directly to ground plane.  
Feedback pin for the buck converter. Connect to C and keep trace away from noisy circuitry.  
PGND1  
FB1  
B2  
BUCK  
B3  
BSTEN  
Enables the boost and critical circuits associated with the boost operation when asserted high. The BSTEN  
pin has an internal 2.8 MW pulldown and should always be connected to a logic high or low.  
Note: HWEN does not need to be high for Boost operation when BSTEN is high.  
B4  
B5  
C1  
C2  
INTB  
PGND2  
N/C  
I2C interrupt pin is active low indicating that an interrupt event has occurred.  
Power ground connection for the Boost converter. Connect directly to ground plane.  
This pin is a noconnect within the device. It is recommended to tie this pin to ground, but is not necessary.  
HWEN  
HWEN pin is used to enable basic circuits necessary for controlling the power converter outputs. The HWEN  
pin has an internal 5 MW pulldown and should always be connected to a logic high or low.  
C3  
C4  
C5  
D1  
D2  
D3  
DGND  
SDA  
Digital/Analog ground connection. Tie to inner layer power plane through via.  
I2C Data pin. Node should be tied high through a pull up resistor.  
I2C Clock pin. Node should be tied high through a pull up resistor.  
SCL  
VIN4  
VIN3  
AVIN  
Input power pin for LDO4. Place C  
Input power pin for LDO3. Place C  
as close to this pin as possible.  
as close to this pin as possible.  
VIN4  
VIN3  
Analog power pin. Route trace from battery side of the boost inductor (L2) to the AV pin. Connect the  
IN  
C
capacitor as close as possible to the pin. To create a low pass filter, a series resistor may be added  
AVIN  
between the inductor and C  
. The voltage must be kept within 25 mV of PV to ensure system stability.  
AVIN  
IN  
D4  
D5  
E1  
E2  
E3  
E4  
E5  
N/C  
This pin is a noconnect within the device. It is recommended to tie this pin to ground, but is not necessary.  
This is the input power pin for LDO1 and LDO2. Place C as close to this pin as possible.  
VIN12  
LDO4  
LDO3  
AGND  
LDO2  
LDO1  
VIN12  
This is the output pin for LDO4. Place C  
This is the output pin for LDO3. Place C  
as close to this pin as possible.  
as close to this pin as possible.  
LDO4  
LDO3  
Analog ground is the analog circuitry ground. Tie this pin to the analog ground plane.  
This is the output pin for LDO2. Place C  
This is the output pin for LDO1. Place C  
as close to this pin as possible.  
as close to this pin as possible.  
LDO2  
LDO1  
www.onsemi.com  
3
FAN53880  
PRODUCT BLOCK DIAGRAM  
Block Diagram  
PVIN  
Buck Control  
Core Analog  
Block  
AVIN  
SW1  
N/C  
PGND1  
AGND  
FB1  
VIN12  
LDO1  
LDO2  
LDO1  
Control  
LDO2  
Control  
LDO3  
LDO4  
VIN3  
VIN4  
LDO3  
Control  
LDO4  
Control  
VBST  
SW2  
SW2  
Boost Control  
Boost Enable  
BSTEN  
N/C  
PGND2  
HWEN  
Thermal Protection  
Digital Control  
I2C  
SCL  
SDA  
INTB  
DGND  
Figure 3. Block Diagram  
www.onsemi.com  
4
FAN53880  
Table 3. ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Conditions  
Min  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
Typ  
Max  
Units  
V
V
IN  
Input Voltage  
AV , PV , V  
, V  
IN3  
and V  
IN4  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
IN  
IN  
IN12  
V
SW1  
V
SW2  
Voltage on SW1 Pin  
Voltage on SW2 Pin  
SDA and SCL Pins  
INTB Pins  
V
V
V
CTRL  
V
V
INTB  
AV  
V
IN  
other Pins  
(Note 1)  
V
ESD  
Electrostatic Discharge Protection  
Level  
Human Body Model  
Charged Device Model  
2.0  
kV  
V
500  
T
Junction Temperature  
Storage Temp  
40  
40  
+150  
+150  
°C  
°C  
J
T
STG  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Lesser of 6 V or AV + 0.3 V.  
IN  
Table 4. THERMAL PROPERTIES  
Symbol  
Parameter  
Typical  
Unit  
q
JunctiontoAmbient Thermal Resistance  
58  
°C/W  
JA  
NOTE: Junctiontoambient thermal resistance is a function of application and board layout. This data is measured with twolayer 2s2p  
boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature T at a  
J(max)  
given ambient temperature T .  
A
Table 5. RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Conditions  
Min  
2.5  
2.5  
1.9  
1.9  
Typ  
Max  
5.5  
Units  
AP  
Supply Voltage Range  
AV , PV  
IN  
V
V
VIN  
IN  
V
IN12  
V
V
V
5.5  
IN12  
IN3  
V
IN3  
5.5  
V
V
IN4  
5.5  
V
IN4  
P
Power Dissipation  
PD = (125°C 85°C) / 58°C/W = 0.69 W  
0.69  
85  
W
D
T
A
Operating Ambient Temperature  
Junction Temperature  
40  
40  
°C  
°C  
T
125  
J
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
5
 
FAN53880  
Table 6. ELECTRICAL CHARACTERISTICS  
Minimum and maximum values are at AV = PV = 2.5 V to 5.5 V & PV > V  
+ 350 mV and PV < V  
250 mV, V  
= 2.5 V  
= 3.0 V  
IN  
IN  
IN  
BUCK  
IN  
BST  
IN12  
to 5.5 V & V > V  
+ 300 mV, V , V  
= 1.95 V to 5.5 V & V , V  
> V  
+ 150 mV, V  
= 0.6 V to 3.3 V, V  
IN  
LDO1/2  
IN3  
IN4  
IN3  
IN4  
LDO3/4  
BUCK  
BST  
to 5.7 V, V  
, V  
LDO2  
, V  
LDO3  
and V  
= 0.8 V to 3.3 V, T = 40°C to +85°C, unless otherwise noted. Typical values are at T = 25°C,  
LDO1  
LDO4  
A
A
AV , PV , V  
= 3.8 V, V , V  
= 1.95 V, V  
= 1.1 V, V  
= 5.0 V, V  
and V  
= 2.8 V, V  
and V  
= 1.8 V.  
IN  
IN  
IN12  
IN3  
IN4  
BUCK  
BST  
LDO1  
LDO2  
LDO3  
LDO4  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
POWER SUPPLIES UVLO  
V
V
UnderVoltage Lockout  
Threshold  
Rising AV or V  
IN12  
2.30  
2.15  
1.80  
1.70  
2.35  
2.25  
1.85  
1.75  
2.45  
2.30  
1.95  
1.80  
V
V
V
V
VIN UVLO_RISE  
VIN UVLO_FALL  
IN  
Falling AV or V  
IN  
IN12  
V
Rising V and V  
IN3 IN4  
VIN3/4 UVLO_RISE  
VIN3/4 UVLO_FALL  
V
Falling V and V  
IN3 IN4  
BUCK EC  
POWER SUPPLIES  
IQ  
PFM Quiescent Current  
Total current on PV and AV when AV  
IN  
36  
mA  
BK_PFM  
IN  
IN  
= PV = VHWEN, BUCK_EN bit = 1, PFM  
IN  
Mode, Non Switching, No Load, all other  
converters disabled.  
R
Output Discharge Resistance  
80  
100  
120  
W
BK_DIS  
PFM e PWM THRESHOLDS  
I
I
where part transitions into  
value where part transi-  
OUT  
50  
mA  
mA  
BK_PFM  
OUT  
PFM  
I
I
120  
BK_PWM  
tions into PWM  
BUCK V  
ACCURACY  
OUT  
VO  
PFM Output Voltage Accuracy  
PWM Output Voltage Accuracy  
V
= 0.6 V, AV = PV = 3.8 V, PFM  
OUT  
3  
2  
3  
2  
3
2
3
2
%
%
%
%
BK_ACC  
OUT  
IN  
= 0 A  
IN  
Mode, I  
AV = PV = 3.8 V, No Load, PFM Mode,  
IN  
IN  
V
OUT  
= 1.0125 V to 3.3 V  
V
= 0.6 V, AV = PV = 3.8 V, PWM  
OUT  
IN  
= 0 A  
IN  
Mode, I  
OUT  
AV = PV = 3.8V, No Load, PWM Mode,  
IN  
IN  
V
OUT  
= 1.0125 V to 3.3 V  
CURRENT LIMIT  
ILIM  
Peak Inductor Current Limit  
Switching Frequency  
Programmed to support 1.2 A DC load  
1600  
2.25  
1900  
2.5  
2200  
2.75  
mA  
BK  
REGULATOR  
F
PWM, I  
= 0 A, AV = PV = 3.8 V,  
MHz  
BK_SW  
OUT  
IN  
IN  
V
= 1.1 V  
OUT  
RDS  
RDS  
PMOS Resistance BalltoBall AP  
NMOS Resistance BalltoBall AP  
= V = 3.8 V, Temp = 25°C  
0.125  
0.085  
1.1  
0.200  
0.140  
3.3  
W
W
V
ON BK_P  
ON BK_N  
BK_RNG  
VIN  
VIN  
GS  
= V = 3.8 V, Temp = 25°C  
GS  
VO  
Buck Output Voltage Range  
When V  
+ 300 mV < AV & PV  
IN  
0.6  
OUT  
IN  
BUCK OUTPUT PROTECTION  
OVP  
Rising Over Voltage Output  
Threshold  
V
V
= 3.8 V, V = 1.1 V,  
OUT  
OUT  
Vtarget Vtarget Vtarget  
x 1.17 x 1.2 x 1.23  
V
V
V
V
V
V
BK_RS  
IN  
= 2.85 V  
V
V
V
V
V
= 0.6 V  
Vtarget Vtarget Vtarget  
x 1.15 x 1.2 x 1.25  
OUT  
OUT  
OUT  
OVP  
UVP  
Falling Over Voltage Output  
Threshold  
= 0.6 V to 3.300V  
= 0.6 V  
Vtarget Vtarget Vtarget  
x 1.04 x 1.10 x 1.14  
BK_FL  
Falling Under Voltage Output  
Threshold  
Vtarget Vtarget Vtarget  
x 0.83 x 0.90 x 0.97  
BK_FL  
= 3.8 V, V  
= 1.1 V, 2.85 V  
Vtarget Vtarget Vtarget  
x 0.86 x 0.90 x 0.93  
IN  
OUT  
UVP  
Rising Under Voltage Output  
Threshold  
= 0.6 V to 3.3 V  
Vtarget Vtarget Vtarget  
x 0.90 x 0.95 x 0.99  
BK_RS  
OUT  
www.onsemi.com  
6
 
FAN53880  
Table 6. ELECTRICAL CHARACTERISTICS (continued)  
Minimum and maximum values are at AV = PV = 2.5 V to 5.5 V & PV > V  
+ 350 mV and PV < V  
250 mV, V  
= 2.5 V  
= 3.0 V  
IN  
IN  
IN  
BUCK  
IN  
BST  
IN12  
to 5.5 V & V > V  
+ 300 mV, V , V  
= 1.95 V to 5.5 V & V , V  
> V  
+ 150 mV, V  
= 0.6 V to 3.3 V, V  
IN  
LDO1/2  
IN3  
IN4  
IN3  
IN4  
LDO3/4  
BUCK  
BST  
to 5.7 V, V  
, V  
LDO2  
, V  
LDO3  
and V  
= 0.8 V to 3.3 V, T = 40°C to +85°C, unless otherwise noted. Typical values are at T = 25°C,  
LDO1  
LDO4  
A
A
AV , PV , V  
= 3.8 V, V , V  
= 1.95 V, V  
= 1.1 V, V  
= 5.0 V, V  
and V  
= 2.8 V, V  
and V  
Typ  
40  
= 1.8 V.  
IN  
IN  
IN12  
IN3  
IN4  
BUCK  
BST  
LDO1  
LDO2  
LDO3  
LDO4  
Symbol  
Parameter  
Conditions  
Min  
32  
Max  
Units  
OVP  
Over Voltage Output Protection  
Timer  
V
= 2.85 V, V  
held at 3.65 V,  
held at 2.05 V,  
56  
ms  
BK_TMR  
OUT_Target  
OUT  
INTB going high trigger  
UVP  
Under Voltage Output Protec-  
tion Timer  
V
= 2.85 V, V  
32  
40  
56  
ms  
BK_TMR  
OUT_Target  
OUT  
Time to Output Disabled  
BOOST EC  
POWER SUPPLIES  
IQ  
Quiescent Current  
Total current on PV and AV ,  
IN  
32  
44  
90  
mA  
BST_PFM  
IN  
V
= 5 V when V  
= AV , VHWEN  
OUT  
BSTEN IN  
= 0, PFM Mode, Non Switching, No Load,  
all other converters disabled.  
IQ  
IQ in Auto PassThru Mode  
Total current on PV and AV when  
39  
18  
mA  
mA  
BST PT  
IN  
IN  
V
= AV , VHWEN = 0, No Load, all  
BSTEN  
IN  
other converters disabled.  
IQ  
IQ when part is in Forced  
PassThru Mode  
Total current on PV and AV when AV  
BST_FPT  
IN  
IN  
IN  
= PV = V  
= 3.8 V,  
IN  
BSTEN  
VHWEN = 0, BST_MODE bit = 1,  
No Load, all other converters disabled.  
R
Output Discharge Resistance  
80  
100  
120  
W
BST_DCHG  
PFM e PWM THRESHOLDS  
PFM Mode I  
I
Threshold  
Threshold  
100  
130  
mA  
mA  
BST_PFM  
OUT  
I
PWM Mode I  
OUT  
BST_PWM  
BOOST V  
ACCURACY  
OUT  
VO  
PFM Output Voltage Accuracy  
PWM Output Voltage Accuracy  
V
V
= 3.8 V, No Load, PFM Mode  
= 3.8 V, No Load, PWM Mode  
3  
3  
3
3
%
%
BST_ACC  
IN  
IN  
CURRENT LIMIT  
I
Peak Inductor Current Limit  
PWM Switching Frequency  
Programmed to support 1 A DC load  
3.0  
3.5  
4.0  
A
LIMBST  
REGULATOR  
F
V
IN  
= 3.8 V  
2.25  
2.5  
65  
2.75  
120  
100  
5.7  
MHz  
mW  
mW  
V
SW_BST  
RDS  
RDS  
PMOS Resistance BalltoBall Temp = 25°C  
NMOS Resistance BalltoBall Temp = 25°C  
ON BST_P  
ON BST_N  
BST_RNG  
50  
VO  
Boost Output Voltage Range  
When PV < V  
and 2.5 V PV /AV  
3.0  
5.0  
IN  
BST  
IN  
IN  
5.5 V  
BOOST OUTPUT PROTECTION  
OVP  
OVP  
UVP  
Rising Over Voltage Output  
Threshold  
V
= 3.8 V, V  
= 5.0 V  
= 5.0 V  
Vtarget Vtarget Vtarget  
x 1.16 x 1.2 x 1.22  
V
V
BST_RS  
AVIN  
OUT  
Falling Over Voltage Output  
Threshold  
Vtarget Vtarget Vtarget  
x 1.07 x 1.1 x 1.12  
BST_FL  
Falling Under Voltage Output  
Threshold  
V
AVIN  
= 3.8 V, V  
Vtarget Vtarget Vtarget  
x 0.78 x 0.80 x 0.82  
V
BST_FL  
OUT  
UVP  
Rising Under Voltage Output  
Threshold  
Vtarget Vtarget Vtarget  
V
BST_RS  
BST_TMR  
BST_TMR  
x 0.88  
x 0.90  
x 0.93  
OVP  
UVP  
Over Voltage Output Protection  
Timer  
V
= 5.0 V, V  
held at 6.25 V,  
held at 4.00 V,  
OUT  
32  
40  
56  
ms  
ms  
OUT_Target  
OUT  
INTB going high trigger  
Under Voltage Output Protec-  
tion Timer  
V
= 5.0 V, V  
32  
40  
56  
OUT_Target  
Time to Output Disabled  
www.onsemi.com  
7
FAN53880  
Table 6. ELECTRICAL CHARACTERISTICS (continued)  
Minimum and maximum values are at AV = PV = 2.5 V to 5.5 V & PV > V  
+ 350 mV and PV < V  
250 mV, V  
= 2.5 V  
= 3.0 V  
IN  
IN  
IN  
BUCK  
IN  
BST  
IN12  
to 5.5 V & V > V  
+ 300 mV, V , V  
= 1.95 V to 5.5 V & V , V  
> V  
+ 150 mV, V  
= 0.6 V to 3.3 V, V  
IN  
LDO1/2  
IN3  
IN4  
IN3  
IN4  
LDO3/4  
BUCK  
BST  
to 5.7 V, V  
, V  
LDO2  
, V  
LDO3  
and V  
= 0.8 V to 3.3 V, T = 40°C to +85°C, unless otherwise noted. Typical values are at T = 25°C,  
LDO1  
LDO4  
A
A
AV , PV , V  
= 3.8 V, V , V  
= 1.95 V, V  
= 1.1 V, V  
= 5.0 V, V  
and V  
= 2.8 V, V  
and V  
= 1.8 V.  
IN  
IN  
IN12  
IN3  
IN4  
BUCK  
BST  
LDO1  
LDO2  
LDO3  
LDO4  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
LDO1/2 EC SPECS  
QUIESCENT CURRENT  
IQ  
Quiescent Current, No Load  
I
= 0 A, Combined Current Measured  
40  
55  
mA  
L12  
OUT  
at AV and V  
when LDO1 is enabled  
IN  
IN12  
only or LDO2 is enabled only, Buck and  
Boost are disabled, VHWEN = AV  
IN  
VO  
LDO Output Voltage Range  
Output Voltage Accuracy  
Dropout Voltage  
When V  
+ 300 mV < V and  
IN12  
IN12  
0.8  
2.8  
3.3  
+2.0  
250  
V
L12_RNG  
L12_ACC  
L12_DO  
OUT  
2.5 V V  
5.5 V  
VO  
I
= 300 mA, AV = V = 3.8 V,  
IN12  
OUT  
2.0  
%
OUT  
IN  
V
= 0.8 V to 3.3 V  
V
V
= V  
100 mV, I  
OUT_TARGET  
=
mV  
mA  
OUT  
OUT_TARGET  
OUT  
300 mA, V  
= 2.8 V  
IO  
Max load current  
V
OUT  
V
IN12  
+ 0.3 V < V and  
IN12  
= 2.5 V to 4.5 V  
300  
MAX_L12  
CURRENT LIMIT  
I
Current Limit  
V
+ 500 mV < V and  
IN12  
150  
360  
180  
420  
210  
480  
mA  
mA  
LIM_L12  
OUT  
2.5 V V  
4.5 V  
IN12  
V
OUT  
+ 500 mV < V  
and  
IN12  
2.5 V V  
4.5 V  
IN12  
OUTPUT PROTECTION  
OVP  
OVP  
UVP  
Rising Over Voltage Output  
Threshold  
V
= V  
= 3.8 V, V  
= 3.8 V, V  
= 3.8 V, V  
= 3.8 V, V  
= 2.8 V  
Vtarget Vtarget Vtarget  
x 1.17 x 1.2 x 1.23  
V
V
L12_RS  
AVIN  
IN1/2  
IN1/2  
IN1/2  
IN1/2  
OUT  
OUT  
OUT  
OUT  
Falling Over Voltage Output  
Threshold  
V
AVIN  
= V  
= V  
= V  
= 2.8 V  
= 2.8 V  
= 2.8 V  
Vtarget Vtarget Vtarget  
x 1.07 x 1.1 x 1.12  
L12_FL  
Falling Under Voltage Output  
Threshold  
V
AVIN  
Vtarget Vtarget Vtarget  
x 0.77 x 0.8 x 0.82  
V
L12_FL  
UVP  
Rising Under Voltage Output  
Threshold  
V
AVIN  
Vtarget Vtarget Vtarget  
V
L12_HS  
x 0.88  
x 0.9  
x 0.93  
OVP  
UVP  
Over Voltage Output Protection  
Timer  
V
= 2.8 V, V  
held at 3.5 V,  
held at 1.8 V,  
OUT  
32  
40  
56  
ms  
ms  
W
L12_TMR  
L12_TMR  
L12_DCHG  
OUT_Target  
OUT  
INTB going high trigger  
Under Voltage Output Protec-  
tion Timer  
V
= 2.8 V, V  
32  
80  
40  
56  
OUT_Target  
Time to Output Disabled  
R
Output Discharge Resistance  
100  
120  
LDO3/4 EC SPECS  
QUIESCENT CURRENT  
IQ Quiescent Current, No Load  
I
= 0 A, Combined Current Measured  
38  
50  
mA  
L34  
OUT  
at AV and V  
when LDO3 is enabled or  
IN  
IN3  
IN4  
AV and V  
when LDO4 is enabled.  
IN  
LDO1, LDO2, Buck and Boost are dis-  
abled, VHWEN = AV  
IN  
VO  
LDO3/4 Output Voltage Range LDO3: V  
+ 0.15 < V  
and V = 1.95  
IN3  
0.8  
1.8  
3.3  
V
L34_RNG  
OUT  
IN3  
V to 4.5 V, LDO4: V  
+ 150 mV < V  
OUT  
IN4  
and V  
= 1.95 V to 4.5 V  
IN4  
VO  
Output Voltage Accuracy  
Dropout Voltage  
I
= 300 mA, AV = 3.8 V, V = 3.8  
IN3/4  
OUT  
2.5  
+2.0  
150  
%
L34_ACC  
OUT  
IN  
V, V  
= 0.8 V to 3.3 V  
V
V
= V  
100 mV, I =  
OUT  
OUT_TARGET  
mV  
mA  
L34_DO  
OUT  
OUT_TARGET  
300 mA, V  
= 1.8 V  
IO  
Max load current  
V
+ 150 mV < V  
and V = 1.95 V  
IN3  
300  
MAX_L34  
OUT  
IN3  
to 4.5 V, LDO4: V  
+ 150 mV < V  
and  
OUT  
IN4  
V
= 1.95 V to 4.5 V  
IN4  
www.onsemi.com  
8
FAN53880  
Table 6. ELECTRICAL CHARACTERISTICS (continued)  
Minimum and maximum values are at AV = PV = 2.5 V to 5.5 V & PV > V  
+ 350 mV and PV < V  
250 mV, V  
= 2.5 V  
= 3.0 V  
IN  
IN  
IN  
BUCK  
IN  
BST  
IN12  
to 5.5 V & V > V  
+ 300 mV, V , V  
= 1.95 V to 5.5 V & V , V  
> V  
+ 150 mV, V  
= 0.6 V to 3.3 V, V  
IN  
LDO1/2  
IN3  
IN4  
IN3  
IN4  
LDO3/4  
BUCK  
BST  
to 5.7 V, V  
, V  
LDO2  
, V  
LDO3  
and V  
= 0.8 V to 3.3 V, T = 40°C to +85°C, unless otherwise noted. Typical values are at T = 25°C,  
LDO1  
LDO4  
A
A
AV , PV , V  
= 3.8 V, V , V  
= 1.95 V, V  
= 1.1 V, V  
= 5.0 V, V  
and V  
= 2.8 V, V  
and V  
= 1.8 V.  
IN  
IN  
IN12  
IN3  
IN4  
BUCK  
BST  
LDO1  
LDO2  
LDO3  
LDO4  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
CURRENT LIMIT  
I
Current Limit  
V
+ 500 mV < V  
and V = 1.95 V  
IN3  
150  
360  
80  
180  
420  
100  
210  
mA  
LIM_L34  
OUT  
IN3  
to 4.5 V, LDO4: V  
+ 500 mV < V  
and  
OUT  
IN4  
V
IN4  
= 1.95 V to 4.5 V  
V
OUT  
+ 500 mV < V  
and V = 1.95 V  
IN3  
480  
120  
mA  
IN3  
to 4.5 V, LDO4: V  
+ 500 mV < V  
and  
OUT  
IN4  
V
IN4  
= 1.95 V to 4.5 V  
R
Output Discharge Resistance  
W
L34_DCHG  
OUTPUT PROTECTION  
OVP  
OVP  
UVP  
Rising Over Voltage Output  
Threshold  
V
= 3.8 V, V  
= 3.8 V, V  
= 3.8 V, V  
= 3.8 V, V  
= 1.95V, V  
= 1.95V, V  
= 1.95V, V  
= 1.95V, V  
= 1.8 V Vtarget Vtarget Vtarget  
V
V
L34_RS  
AVIN  
IN3/4  
IN3/4  
IN3/4  
IN3/4  
OUT  
OUT  
OUT  
x 1.17  
x 1.2  
x 1.23  
Falling Over Voltage Output  
Threshold  
V
AVIN  
= 1.8 V Vtarget Vtarget Vtarget  
L34_FL  
x 1.07 x 1.1 x 1.12  
Falling Under Voltage Output  
Threshold  
V
AVIN  
= 1.8 V Vtarget Vtarget Vtarget  
x 0.77 x 0.80 x 0.82  
V
L34_FL  
UVP  
Rising Under Voltage Output  
Threshold  
V
AVIN  
= 1.8 V Vtarget Vtarget Vtarget  
V
L34_RS  
L34_TMR  
L34_TMR  
OUT  
x 0.88  
x 0.90  
x 0.93  
OVP  
UVP  
Over Voltage Output Protection  
Timer  
V
= 1.8 V, V  
held at 2.25 V,  
32  
40  
56  
ms  
ms  
OUT_Target  
OUT  
INTB going high trigger  
Under Voltage Output Protec-  
tion Timer  
V
= 1.8 V, V  
held at 1.35 V,  
OUT  
32  
40  
56  
OUT_Target  
Time to Output Disabled  
I/O LEVELS  
V
HWEN Logic Low threshold  
HWEN Logic High threshold  
BSTEN Logic Low threshold  
BSTEN Logic High threshold  
0.35  
V
V
IL  
V
IH  
1.2  
V
IN  
V
0.25  
V
IL  
IH  
V
AV = 4.5 V;  
1.05  
1
V
IN  
V
IN  
R
HWEN and BSTEN Input  
Resistance  
V
IN  
= High or Low  
4.4  
MW  
PD  
V
INTB  
Isink = 5 mA  
= 5.5 V  
0.3  
0.5  
V
OL_INTB  
I
V
mA  
INTB  
INTB  
IQ CONDITIONS  
I
Shutdown Supply Current  
Total current on AV when AV = 5.0 V  
5
mA  
mA  
mA  
mA  
mA  
Q AVIN_SD  
IN  
IN  
and all xxx_EN bits = 0, xxx_SEQ bits  
=000, HWEN = BSTEN = SDA = SCL =  
Low  
I
Total current on PV when PV = 5.0 V  
1.5  
1.5  
1.5  
1.5  
Q PVIN_SD  
IN  
IN  
and all xxx_EN bits = 0, xxx_SEQ bits  
=000, HWEN = BSTEN = SDA = SCL =  
Low  
I
Total current on V  
when V  
= 5.0 V  
Q VIN12_SD  
IN12  
IN12  
and all xxx_EN bits = 0, xxx_SEQ bits  
=000, HWEN = BSTEN = SDA = SCL =  
Low  
I
I
Total current on V  
when V  
= 5.0 V  
Q VIN3_SD  
Q VIN4_SD  
IN3  
IN3  
and all xxx_EN bits = 0, xxx_SEQ bits  
=000, HWEN = BSTEN = SDA = SCL =  
Low  
Total current on V  
when V  
= 5.0 V  
IN4  
IN4  
and all xxx_EN bits = 0, xxx_SEQ bits  
=000, HWEN = BSTEN = SDA = SCL =  
Low  
www.onsemi.com  
9
FAN53880  
Table 6. ELECTRICAL CHARACTERISTICS (continued)  
Minimum and maximum values are at AV = PV = 2.5 V to 5.5 V & PV > V  
+ 350 mV and PV < V  
250 mV, V  
= 2.5 V  
= 3.0 V  
IN  
IN  
IN  
BUCK  
IN  
BST  
IN12  
to 5.5 V & V > V  
+ 300 mV, V , V  
= 1.95 V to 5.5 V & V , V  
> V  
+ 150 mV, V  
= 0.6 V to 3.3 V, V  
IN  
LDO1/2  
IN3  
IN4  
IN3  
IN4  
LDO3/4  
BUCK  
BST  
to 5.7 V, V  
, V  
LDO2  
, V  
LDO3  
and V  
= 0.8 V to 3.3 V, T = 40°C to +85°C, unless otherwise noted. Typical values are at T = 25°C,  
LDO1  
LDO4  
A
A
AV , PV , V  
= 3.8 V, V , V  
= 1.95 V, V  
= 1.1 V, V  
= 5.0 V, V  
and V  
= 2.8 V, V  
and V = 1.8 V.  
LDO4  
IN  
IN  
IN12  
IN3  
IN4  
BUCK  
BST  
LDO1  
LDO2  
LDO3  
Symbol  
Parameter  
Conditions  
Total current on PV , AV , V  
Min  
Typ  
Max  
Units  
I
Standby Supply Current  
, V  
IN3  
165  
190  
mA  
Q_STBY  
IN  
IN  
IN12  
and V  
when = 5.0 V and all xxx_EN bits  
IN4  
= 1 (Except BST_EN), xxx_SEQ bits =000,  
AV = PV = VHWEN = V . LDO14  
IN  
IN  
BSTEN  
on, Buck on, Boost on  
I
Sleep Supply Current  
Total current on PV , AV , V  
, V  
IN3  
12  
20  
mA  
SLP  
IN  
IN  
IN12  
and V  
when = 5.0 V and all xxx_EN bits  
IN4  
= 0, xxx_SEQ bits =000, AV = PV  
=
IN  
IN  
VHWEN, BSTEN = Low. LDO14 off,  
Buck off, Boost off, No I2C activity  
{
2
I C Timing and Performance  
V
SDA and SCL Logic Low  
threshold  
0.5  
0.4  
5.5  
0.4  
V
V
IL  
V
IH  
SDA and SCL Logic High  
threshold  
1.2  
V
OL  
SDA Logic Low Output  
SDA Sink Current  
3 mA Sink  
V
I
OL  
20  
mA  
kHz  
ms  
fSCL  
tBUF  
SCL Clock Frequency  
Fast Mode Plus  
1000  
BusFree Time Between STOP Fast Mode Plus  
and START Conditions  
0.5  
tHD;STA  
START or Repeated START  
Hold Time  
Fast Mode Plus  
260  
ns  
tLOW  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tVD;DAT  
tVD;ACK  
tR  
SCL LOW Period  
Fast Mode Plus  
Fast ModePlus  
Fast ModePlus  
Fast Mode Plus  
Fast Mode Plus  
Fast Mode Plus  
Fast Mode Plus  
Fast Mode Plus  
Fast Mode Plus, VDD = 1.8 V  
Fast Mode Plus  
0.5  
260  
260  
0
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
SCL HIGH Period  
Repeated START Setup Time  
Data Hold Time  
Data Setup Time  
50  
Data Valid Time  
450  
450  
120  
120  
Data Valid Acknowledge Time  
SDA and SCL Rise Time  
SDA and SCL Fall Time  
Stop Condition Setup Time  
tF  
6.55  
260  
tSU;STO  
Ci  
SDA and SCL Input Capaci-  
tance  
10  
550  
50  
Cb  
Capacitive Load for SDA and  
SCL  
pF  
ns  
t
SP  
Pulse width of spikes which  
must be suppressed by input  
filter  
SCL, SDA only  
0
Notes: Refer to Typical Characteristics waveforms/graphs for closed loop data and variation with input supply and temperature. Electrical  
specifications reflects open loop steady state data. System specifications reflects both steady state and dynamic close loop data  
associated with the recommended external components.  
Guarantee Levels:  
{
Guaranteed by Design Only. Not Characterized or Production Tested.  
www.onsemi.com  
10  
FAN53880  
Table 7. SYSTEM CHARACTERISTICS  
System Specifications are guaranteed by design and are not production tested. They reflect closed loop performance using the  
Recommended Layout and External Components. Minimum and Maximum values are at AV = PV = 2.5 V to 5.5 V & PV > V +  
BUCK  
IN  
IN  
IN  
350 mV and PV < V  
250 mV, V  
= 2.5 V to 5.5 V & V > V  
+ 300 mV, V , V  
= 1.95 V to 5.5 V & V , V  
> V  
IN4 LDO3/4  
IN  
BST  
IN12  
IN  
LDO1/2  
IN3  
IN4  
IN3  
+ 150 mV, V  
= 0.6 V to 3.3 V, V  
= 3.0 V to 5.7 V, V  
, V  
LDO2  
, V  
LDO3  
and V = 0.8 V to 3.3 V, T = 40°C to 85°C, unless  
LDO4 A  
BUCK  
BST  
LDO1  
otherwise noted. Typical values are at T = 25°C, AV = PV = V  
= 3.8 V, V  
= V  
= 1.95 V, V  
= 1.1 V, V = 5.0 V,  
BST  
A
IN  
IN  
IN12  
IN3  
IN4  
BUCK  
V
LDO1  
= V  
= 2.8 V, V  
= V  
= 1.8 V.  
LDO2  
LDO3  
LDO4  
Symbol  
SOFT START  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
T
SoftStart  
Time from enabling to 95% of V  
Target of 1.1 V,  
300  
30  
480  
ms  
SS BK  
OUT  
I
= 300 mA and 1.2 A, Auto Mode, C  
=
OUT  
OUT  
10 uF, PV = 3.0 V to 4.4 V  
IN  
RIPPLE  
V
Output Ripple  
I
I
= 20 mA, PFM Mode  
= 200 mA, PWM Mode  
40  
10  
mV  
mV  
BK PFM_RPL  
BK PWM_RPL  
OUT  
V
OUT  
REGULATION & TRANSIENT  
REG  
Load Regulation  
Line Regulation  
I
= 1 mA to 1200 mA, PWM Mode  
1.5  
0.5  
1.5  
0.5  
%
%
BK_LOAD  
OUT  
REG  
V
= 3.0 V to 4.4 V , I  
= 50 mA, 300 mA, and  
BK_LINE  
IN  
OUT  
1200 mA, PWM Mode  
V
Load Transient  
I
= 240 mA <> 960 mA, T = T = 1 us,  
70  
mV  
BK TR_LD  
OUT  
R
F
V
= 1.1 V, PV = 3.8 V, Auto Mode,  
OUT  
IN  
Trecovery < 10 us  
I
MAX  
OUT  
IO  
I
Max  
1200  
mA  
MAX_BK  
OUT  
EFFICIENCY  
EFF  
Efficiency  
I
I
I
I
= 10 mA, V  
= 2.85 V, PV = 3.8 V  
92  
93  
90  
85  
%
%
%
%
BK  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
= 600 mA, V  
= 2.85 V, PV = 3.8 V  
IN  
OUT  
= 1.2 A, V  
= 2.85 V, PV = 3.8 V  
IN  
OUT  
= 200 mA to 600 mA, V  
3.8 V  
= 1.1 V, PV  
=
OUT  
IN  
I
I
I
= 10 mA, V  
= 1.1 V, PV = 3.8 V  
84  
85  
77  
%
%
%
OUT  
OUT  
OUT  
OUT  
IN  
= 600 mA, V  
= 1.1 V, PV = 3.8 V  
IN  
OUT  
= 1.2 A, V  
= 1.1 V, PV = 3.8 V  
IN  
OUT  
SOFT START  
T
Soft Start Input Linear  
Current Limit  
450  
280  
190  
700  
580  
580  
mA  
ms  
LIN_BST  
T
SoftStart  
Time from enabling to 90% of V  
OUT  
Target,  
SS_BST  
OUT  
I
= 100 mA  
T
PV = 3.8 V, BST_MODE bit = 1, V  
= PV  
IN  
ms  
SS BST_PS  
IN  
OUT  
(Start up into Forced PassThrough Mode)  
RIPPLE  
V
Output Ripple  
I
I
= 10 mA, V  
= 5 V, PV = 3.8 V  
40  
20  
80  
40  
mV  
mV  
BST PFM_RPL  
BST PWM_RPL  
OUT  
OUT  
IN  
V
= 500 mA, V  
= 5 V, PV = 3.8 V  
OUT IN  
OUT  
REGULATION & TRANSIENT  
REG  
REG  
Load Regulation  
Line Regulation  
Load Transient  
I
= 1 mA <> 1 A, PV = 3.8 V, V = 5.0 V  
OUT  
1.5  
0.5  
+1.5  
+0.5  
150  
%
%
BST_LD  
BST_LN  
OUT  
IN  
PV = 3.0 V <> 4.4 V , I  
= 50 mA and 1 A  
IN  
OUT  
V
I
= 200 mA <> 800 mA, T = T = 2 us,  
mV  
BST TR_LD  
OUT  
R
F
V
= 5.0 V, PV = 3.8 V, Trecovery < 10 us  
OUT  
IN  
I
MAX  
OUT  
I
I
Max  
1000  
mA  
O_BST  
OUT  
www.onsemi.com  
11  
 
FAN53880  
Table 7. SYSTEM CHARACTERISTICS (continued)  
System Specifications are guaranteed by design and are not production tested. They reflect closed loop performance using the  
Recommended Layout and External Components. Minimum and Maximum values are at AV = PV = 2.5 V to 5.5 V & PV > V +  
BUCK  
IN  
IN  
IN  
350 mV and PV < V  
250 mV, V  
= 2.5 V to 5.5 V & V > V  
+ 300 mV, V , V  
= 1.95 V to 5.5 V & V , V  
> V  
IN4 LDO3/4  
IN  
BST  
IN12  
IN  
LDO1/2  
IN3  
IN4  
IN3  
+ 150 mV, V  
= 0.6 V to 3.3 V, V  
= 3.0 V to 5.7 V, V  
, V  
LDO2  
, V  
LDO3  
and V = 0.8 V to 3.3 V, T = 40°C to 85°C, unless  
LDO4 A  
BUCK  
BST  
LDO1  
otherwise noted. Typical values are at T = 25°C, AV = PV = V  
= 3.8 V, V  
= V  
= 1.95 V, V  
= 1.1 V, V = 5.0 V,  
BST  
A
IN  
IN  
IN12  
IN3  
IN4  
BUCK  
V
LDO1  
= V  
= 2.8 V, V  
= V  
= 1.8 V.  
LDO2  
LDO3  
LDO4  
Symbol  
EFFICIENCY  
EFF  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Efficiency  
PV = 3.8 V, V  
= 5.0 V, I  
= 5.0 V, I  
= 5.0 V, I  
= 10 mA  
= 600 mA  
= 1 A  
88  
94  
93  
%
%
%
BST  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
PV = 3.8 V, V  
IN  
PV = 3.8 V, V  
IN  
LDO1/2 SOFT START  
Startup Time  
T
Time from enabling to 90% of V  
(2.8 V), I =  
OUT  
100  
150  
ms  
SS_LDO12  
OUT  
10 mA, C  
= 14.7 uF  
OUT  
PSRR & NOISE  
PSRR  
Power Supply Rejection  
Ratio  
V
= 3.4 V, I  
BUCK  
= 100 mA, F = 1 kHz, C =  
OUT  
70  
45  
35  
dB  
dB  
L12 1KHZ  
L12 100KHZ  
N_L12  
IN12  
OUT  
2.2 uF, I  
= 1.2 A, I  
= 1 A  
BST  
PSRR  
V
V
= 3.4 V, I  
= 100 mA, F = 100 kHz, C  
=
IN12  
OUT  
OUT  
2.2 uF, I  
= 1.2 A, I  
= 1 A  
BUCK  
BST  
LDO1/2 Output Noise  
V
IN12  
= 3.4 V, V  
= 1.8 V and 2.8 V, F = 100 Hz  
60  
uVrms  
OUT  
to 100 kHz, I  
= 100 mA, C  
= 2.2 uF  
OUT  
OUT  
REGULATION & TRANSIENT PERFORMANCE  
REG  
REG  
LDO Load Regulation  
LDO Line Regulation  
I
= 100 uA to 300 mA, AV = V = 3.8 V  
IN12  
0.5  
0.5  
+0.5  
+0.5  
%
%
L12_LD  
L12_LN  
OUT  
IN  
AV = V  
V
= 3.1 V to 4.4 V and AV /V  
IN IN12  
>
IN  
IN12  
+ 300 mV, I  
= 50 mA and 300 mA  
OUT  
OUT  
V
LDO Load Transient  
I
= 1 mA <> 100 mA, 150 mA/us  
50  
mV  
L12 TR_LD  
OUT  
SHORT CIRCUIT  
T
Short Circuit Debounce  
Timer  
40  
20  
ms  
L12 SC_DEB  
T
Period from Short Circuit  
Shutdown to Restart  
ms  
L12 SC_RST  
LDO3/4 SOFT START  
T
Soft Start Time  
Time from enabling to 90% of V  
(1.8 V), I  
=
80  
150  
ms  
SS_L34  
OUT  
OUT  
10 mA, C  
= 14.7 uF  
OUT  
PSRR & NOISE  
PSRR  
Power Supply Rejection  
Ratio  
I
= 100 mA, F = 1 kHz, V = 1.95 V,  
IN3/4  
60  
45  
25  
dB  
dB  
L34  
OUT  
C
= 2.2 uF, I  
= 1.2 A, I  
= 1 A  
OUT  
BUCK  
BST  
I
= 100 mA, F = 10 kHz, V  
= 1.95 V,  
= 1 A  
OUT  
IN3/4  
C
= 2.2 uF, I  
= 1.2 A, I  
OUT  
BUCK BST  
V
N_L34  
LDO3/4 Output Noise  
V
= 1.95 V, V = 1.8 V, F = 100 Hz to  
OUT  
60  
uVrms  
IN3/4  
100 kHz, I  
= 100 mA, C  
= 2.2 uF  
OUT  
OUT  
REGULATION & TRANSIENT PERFORMANCE  
REG  
LDO Load Regulation  
LDO Line Regulation  
LDO Load Transient  
I
= 100 uA to 300 mA, AV = V = 3.8 V,  
IN3/4  
OUT  
0.5  
0.5  
+0.5  
+0.5  
50  
%
%
L34_LD  
OUT  
IN  
V
= 1.8 V  
REG  
AV = V  
V
= 3.0 V to 4.4 V and AV = V  
>
L34_LN  
IN  
IN3/4  
IN  
IN3/4  
+ 150 mV, I  
= 50 mA and 300 mA  
OUT  
OUT  
V
I
= 1 mA <> 100 mA, 150 mA/us  
mV  
L34 TR_LD  
OUT  
www.onsemi.com  
12  
FAN53880  
Table 7. SYSTEM CHARACTERISTICS (continued)  
System Specifications are guaranteed by design and are not production tested. They reflect closed loop performance using the  
Recommended Layout and External Components. Minimum and Maximum values are at AV = PV = 2.5 V to 5.5 V & PV > V +  
BUCK  
IN  
IN  
IN  
350 mV and PV < V  
250 mV, V  
= 2.5 V to 5.5 V & V > V  
+ 300 mV, V , V  
= 1.95 V to 5.5 V & V , V  
> V  
IN4 LDO3/4  
IN  
BST  
IN12  
IN  
LDO1/2  
IN3  
IN4  
IN3  
+ 150 mV, V  
= 0.6 V to 3.3 V, V  
= 3.0 V to 5.7 V, V  
, V  
LDO2  
, V  
LDO3  
and V = 0.8 V to 3.3 V, T = 40°C to 85°C, unless  
LDO4 A  
BUCK  
BST  
LDO1  
otherwise noted. Typical values are at T = 25°C, AV = PV = V  
= 3.8 V, V  
= V  
= 1.95 V, V  
= 1.1 V, V = 5.0 V,  
BST  
A
IN  
IN  
IN12  
IN3  
IN4  
BUCK  
V
LDO1  
= V  
= 2.8 V, V  
= V  
= 1.8 V.  
LDO2  
LDO3  
LDO4  
Symbol  
SHORT CIRCUIT  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
T
Short Circuit Debouncer  
Timer  
40  
20  
ms  
L34 SC_DEB  
T
Period from Short Circuit  
Shutdown to Restart  
ms  
L34 SC_RST  
THERMAL PROTECTION  
T
Thermal Warning  
Thermal Shutdown  
115  
130  
125  
140  
135  
150  
°C  
°C  
WRN  
T
SD  
www.onsemi.com  
13  
FAN53880  
TYPICAL CHARACTERISTICS  
Unless otherwise specified, T = 25°C, AV = PV = V  
= 3.8 V, V = V = 1.95 V, V  
= 1.8 V, Recommended Layout and External Components.  
= 1.1 V,  
A
IN  
IN  
IN12  
IN3  
IN4  
BUCK  
V
= 5.0 V, V  
= V  
= 2.8 V, V  
= V  
BST  
LDO1  
LDO2  
LDO3  
LDO4  
Figure 4. Buck Efficiency vs. Load Current and  
Input Voltage, VOUT = 1.1 V, Auto Mode  
Figure 5. Buck Efficiency vs. Load Current and  
Input Voltage, VOUT = 2.85 V, Auto Mode  
Figure 6. Boost Efficiency vs. Load Current and  
Input Voltage, VOUT = 5.0 V, Auto Mode  
Figure 7. Buck Output Regulation vs. Load Current  
and Input Voltage, VOUT = 1.1 V, Auto Mode  
Figure 9. Boost Output Regulation vs. Load Current  
and Input Voltage, VOUT = 5.0 V, Auto Mode  
Figure 8. Buck Output Regulation vs. Load Current  
and Input Voltage, VOUT = 2.85 V, Auto Mode  
www.onsemi.com  
14  
FAN53880  
Figure 10. LDO1/2 Output Regulation vs. Load  
Current and Input Voltage, VOUT = 2.8 V, Auto Mode  
Figure 11. LDO3/4 Output Regulation vs. Load  
Current and Input Voltage, VOUT = 1.8 V, Auto Mode  
Figure 12. Buck Output Ripple in PFM Mode,  
IN = 3.8 V, VOUT = 1.1 V, IOUT = 10 mA  
Figure 13. Buck Output Ripple in PWM Mode,  
V
VIN = 3.8 V, VOUT = 1.1 V, IOUT = 200 mA  
Figure 14. Boost Output Ripple in PFM Mode, VIN  
3.8 V, VOUT = 5.0 V, IOUT = 10 mA, Auto Mode  
=
Figure 15. Boost Output Ripple in PWM Mode, VIN  
3.8 V, VOUT = 5.0 V, IOUT = 500 mA, Auto Mode  
=
www.onsemi.com  
15  
FAN53880  
Figure 16. Buck Load Transient, VIN = 3.8 V, VOUT  
1.1 V, 240 mA @ 960 mA, 1 ms Edge, Auto Mode  
=
Figure 17. Boost Load Transient, VIN = 3.8 V, VOUT  
5.0 V, 200 mA @ 800 mA, 2 ms Edge, Auto Mode  
=
Figure 19. LDO3/4 Load Transient, VIN = 1.95 V,  
Figure 18. LDO1/2 Load Transient, VIN = 3.8 V,  
V
OUT = 1.8 V, 1 mA @ 150 mA, 1 ms Edge  
V
OUT = 2.85 V, 1 mA @ 150 mA, 1 ms Edge  
Figure 20. Buck Startup, VIN = 3.8 V, VOUT = 1.1 V,  
Figure 21. Boost Startup, VIN = 3.8 V, VOUT = 5.0 V,  
300 mA Resistive Load, Auto Mode  
100 mA Resistive Load, Auto Mode  
www.onsemi.com  
16  
FAN53880  
Figure 22. LDO1/2 Startup, VIN = 3.8 V,  
OUT = 2.8 V, No Load  
Figure 23. LDO3/4 Startup, VIN = 1.95 V,  
OUT = 1.8 V, No Load  
V
V
Figure 25. LDO3/4 PSRR vs. Frequency,  
100 mA Load  
Figure 24. LDO1/2 PSRR vs. Frequency,  
100 mA Load  
Figure 26. LDO1/2 Output Noise Voltage vs.  
Frequency, 100 mA Load  
Figure 27. LDO3/4 Output Noise Voltage vs.  
Frequency, 100 mA Load  
www.onsemi.com  
17  
FAN53880  
FUNCTIONAL SPECIFICATIONS  
Device Operation  
Overview  
available for powerup and powerdown of the Buck and  
LDOs.  
Many of the ICs protection mechanisms have  
programmable thresholds. For fault handling, a dedicated  
interrupt pin, maskable interrupt bits, and real time status  
bits are provided.  
The FAN53880 is a MiniPMIC containing:  
One 2.5 MHz, 1200 mA Buck converter  
One 2.5 MHz, 1000 mA Boost converter  
Four 300 mA low noise LDOs  
The Buck and Boost allow the use of small inductors and  
capacitors for a small overall solution size.  
Refer to the figure below for an additional overview of the  
FAN53880 operation.  
Each converter can be individually enabled/disabled  
through I2C communication. The Boost converter also has  
an enable pin, BSTEN. A configurable sequencer is  
www.onsemi.com  
18  
FAN53880  
AVIN  
Applied  
Start Up/Shut Down Flow Chart  
No  
AVIN>VPOR  
BUCK_SEQ  
=000  
LDO1_SEQ  
= 000  
LDO2_SEQ  
= 000  
LDO3_SEQ  
= 000  
LDO4_SEQ  
= 000  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
Start POR  
BST_EN  
= 1  
BUCK_EN  
= 1  
LDO1_EN  
= 1  
LDO2_EN  
= 1  
LDO3_EN  
= 1  
LDO4_EN  
= 1  
No  
No  
No  
No  
HWEN Asserted  
High  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Enable Boost  
Enable Buck  
Enable LDO1  
Enable LDO2  
Enable LDO3  
Enable LDO4  
Wait 100us  
APVIN_UVLO  
&VIN12_UVLO  
Good?  
APVIN_UVLO  
&VIN12_UVLO  
Good?  
APVIN_UVLO  
&VIN3_UVLO  
Good?  
APVIN_UVLO  
&VIN4_UVLO  
Good?  
APVIN_UVLO  
Good?  
APVIN_UVLO  
Good?  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
BG Good?  
Yes  
No  
No  
No  
No  
No  
No  
FAULT  
Disable  
Boost  
FAULT  
Disable  
Buck  
FAULT  
Disable  
LDO1  
FAULT  
Disable  
LDO2  
FAULT  
Disable  
LDO3  
FAULT  
Disable  
LDO4  
APVIN_UVLO  
Good?  
Yes  
No  
No  
XXXX_SEQ =  
SEQ_  
CONTROL =  
01  
No  
Reset  
SEQ_COUNT  
to 000  
010  
Set AVIN_UVLO  
Interrupt/Stat bits  
Yes  
Yes  
Enable  
Converter  
Start  
Sequence  
Execution  
HWEN = Low Yes  
No  
Update  
SEQ_COUNT  
BSTEN Asserted  
High  
Shutdown  
Buck and  
LDOs if  
VIN_UVLO  
Good?  
XXXX_SEQ =  
001  
No  
No  
Enabled  
FAULT  
Disable  
Converter  
Wait 100us  
SEQ_  
CONTROL =  
10  
Yes  
No  
Yes  
Yes  
Enable  
Converter  
.  
Repeat Steps for  
No  
BG Good?  
Update  
SEQ_COUNT  
XXXX_SEQ = 011 to 110  
Start Reverse  
Sequence  
Execution  
Yes  
VIN_UVLO  
Good?  
XXXX_SEQ =  
111  
No  
No  
Update  
SEQ_COUNT  
Enable Boost  
Yes  
Yes  
FAULT  
Disable  
Converter  
Enable  
Converter  
Sequencing  
Complete  
No  
APVIN_UVLO  
Good?  
No  
Yes  
FAULT  
Disable  
Boost  
VIN_UVLO  
Good?  
Yes  
No  
Reset  
SEQ_COUNT  
to 000  
FAULT  
Disable  
Converter  
Yes  
BSTEN = Low No  
Yes  
Note: VIN_UVLO is used as a generic term for the power input associated with the converter being enabled.  
Shutdown  
Boost  
Figure 28. Startup and Shut Down Flow Chart  
www.onsemi.com  
19  
FAN53880  
Power Supplies  
All converters use AV to power their analog and control  
Table 8. CONVERTER DEPENDENCY OFF POWER  
INPUTS  
IN  
circuitry.  
The Buck and Boost use PV as their power source. PV  
Converter  
BUCK  
AV  
PV  
V
V
V
IN4  
IN  
IN  
IN12  
IN3  
IN  
IN  
X
X
X
X
X
X
X
must remain within 25 mV of AV for proper device  
IN  
BOOST  
LDO1/LDO2  
LDO3  
operation (it’s recommended to locally connect PVIN to  
AVIN). Because of this, the term APV may instead be used  
X
IN  
throughout this datasheet.  
X
LDO1 and LDO2 use V  
, LDO3 uses V and LDO4  
IN3  
IN12  
LDO4  
X
uses V to power their outputs. These power supplies have  
IN4  
independent UVLO thresholds with dedicated interrupts  
and status bits.  
See Table 8 for details.  
POR  
When a rising AV reaches ~2 V a POR occurs where  
IN  
registers reset and are readable through I2C.  
See Table 9 for details.  
Table 9. PMIC OPERATION IN APVIN UVLO  
AV State  
HWEN or BSTEN = High  
Results  
(1)  
After AV > UVLO  
IN  
IN  
AV < V  
No  
No  
(4)  
(5)  
(4)  
(6)  
IN  
POR  
V
POR  
<AV < UVLO  
(2)  
IN  
AV < V  
Yes  
Yes  
(1)  
IN  
POR  
V
POR  
< AV < UVLO  
(3)  
IN  
1. Device in shutdown, I2C registers not reliable  
2. Band Gap off, I2C registers readable  
3. Band Gap on, I2C registers readable  
4. All registers set to their default values  
5. Registers retain value prior to the fault and begin a  
start up after HWEN or BSTEN are high  
6. Registers retain value prior to fault and do an  
automatic restart  
Enable AutoSequencing  
A programmable sequencer is available for controlling  
powerup and powerdown timing of the Buck and LDOs.  
There are 7 time slots available and the sequencing speed  
(period per slot) is programmable. The FAN53880  
sequences through time slots 001 to 111 during power up,  
and from 111 to 001 during power down when initiated with  
the SEQ_CONTROL bits.  
UVLO Rising  
When rising AV reaches V  
When a converter is added into a sequence slot, it can no  
longer be enabled using the XXX_EN bits.  
the ICs  
VIN_UVLO_RISE  
IN  
internal circuitry is operable and an interrupt is generated.  
The part will be in a Sleep state if HWEN=BSTEN=LOW.  
If a converter faults during a startup sequence, the other  
converters will be started in their assigned time slot and the  
faulted converter will not attempt to reenable. An interrupt  
is generated to inform the host of the fault and a status bit is  
set.  
UVLO Falling  
When falling AV reaches V  
a Chip  
IN  
VIN_UVLO_FALL  
Fault occurs, all converters are suspended, an interrupt  
generated, and related Status bits set. Registers will not reset  
The two tables below summarize control pin, register bit,  
and sequence combinations.  
to default values unless AV falls below POR (~2 V).  
IN  
Control Pins and Enable Bits  
There are two control pins, HWEN and BSTEN.  
When HWEN=HIGH, the ICs internal circuitry turns on  
in Standby state where converters can be enabled through  
I2C, assuming their related power supplies are above their  
UVLO thresholds (refer to the Electrical Characteristics  
table).  
Each converter has an independent enable bit, XXX_EN.  
The BSTEN pin is a hardware enable option for the Boost  
and its basic control circuits. BSTEN functions independent  
of HWEN.  
www.onsemi.com  
20  
 
FAN53880  
These protections allow the converter to remain enabled  
Table 10. BUCK AND LDO ENABLE/DISABLE  
CONTROLS  
or suspends or shuts off the faulted converter, but  
doesn’t affect operation of nonrelated converters. The  
specific fault behavior depends on the FLT_SD_B bit  
setting.  
Buck and LDO Control  
HWEN XXX_SEQ XXX_EN SEQ_CONTROL  
Dependent  
On/Off  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
000  
000  
0
0
0
0
1
1
1
1
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Off  
Off  
FLT_SD_B Bit  
There are two I2C selectable fault behavior options:  
Multiple Fault Shutdown (default)  
Limits repetitive starting and faulting of a converter or  
chip faults to 4 failures.  
>000  
>000  
000  
Off  
CNTL  
Off  
Automatic Fault Recovery  
000  
On  
No limit to repetitive starting and faulting of a  
converter or to number of chip faults.  
>000  
>000  
Off  
CNTL  
NOTE: Sequencer fault behavior is independent of these  
protection schemes.  
NOTE: CNTL indicates that the state of the output will be  
dependent on the setting of the SEQ_CONTROL bits.  
When HWEN is high, SEQ_CONTROL = 01 will enable  
any outputs based on their XXX_SEQ > 000.  
Multiple Fault Shutdown  
FLT_SD_B=“0” (default)  
If a fault occurs, the IC will:  
Suspend the converter  
Table 11. BOOST ENABLE/DISABLE CONTROLS  
Boost Control  
Set Interrupt and Status bits  
Increment the internal 4fault counter  
Wait 20 ms  
HWEN  
Low  
BSTEN  
Low  
BST_ENx  
On/Off  
Off  
0
0
0
0
1
1
1
1
High  
Low  
Low  
Off  
Reenable the converter if XXX_EN=“1” or shut off  
High  
High  
Low  
On  
the converter if XXX_SEQ=“1”  
Reenable requires another SEQ_CONTROL=“01”  
write  
High  
Low  
On  
Off  
NOTE: UVLO and TSD faults will not reenable the  
converter after 20 ms unless the fault was  
removed.  
High  
Low  
Low  
On  
High  
High  
On  
High  
On  
If any four Chip Faults occur, the IC will:  
Shut off all converters  
NOTE: The Boost Control table above shows that the Boost  
operation requires either BSTEN to be high or a  
combination of HWEN high and one of the enable bits in  
register 0x0A needs to be set to 1.  
Reset all XXX_EN and XXX_SEQ bits to “0”  
Set Interrupt and Status bits, including the CHIP_SUSD  
Status bit, to “1”. This bit will only clear after both  
HWEN and BSTEN are set LOW  
Fault Protection  
Fault Protection Overview  
Each fault described below has a dedicated interrupt and  
status bit.  
If any four Converter Faults occur, the IC will:  
Shut off that converter  
Set XXX_SUSD bit to “1”. This bit will only clear after  
that converter is successfully reenabled  
Reset that converter’s XXX_EN or XXX_SEQ bit to  
“0”  
The FAN53880 has two levels of fault protection:  
Chip Faults  
(TSD, APV UVLO)  
IN  
The protection suspends or shuts off all enabled  
converters. Recovery behavior depends on the  
FLT_SD_B bit setting.  
Reenabling any converter after a fourth Chip Fault first  
requires setting the HWEN and BSTEN pins LOW. Any  
time HWEN and BSTEN pin is taken LOW, all fault  
counters are globally reset.  
Converter Faults  
(UVP, OVP, IPK, Short Circuit, V  
UVLO)  
V
V
IN12/ IN3 / IN4  
www.onsemi.com  
21  
FAN53880  
Automatic Fault Recovery  
Modes of Operation  
FLT_SD_B=“1” (should only be set prior to enabling any  
converter).  
If a fault occurs, the IC will:  
During PWM operation, the Buck switches at a nominal  
fixed frequency of 2.5 MHz. In Automode at light load  
operation, the device will enter PFM mode. Instead, the  
Buck can be put into Forced PWM mode by setting the  
BUCK_MODE bit to “1”. Also, the FAN53880 provides a  
bit, BUCK_LOAD, which the user can set to apply an  
internal artificial load to maintain a minimum switching  
frequency above 20 kHz.  
Set Interrupt and Status bits  
Also:  
Chip Faults  
Suspend all converters  
Any converter with XXX_EN=“1” will reenable  
after the APV UVLO or TSD fault is removed  
Any converter with XXX_SEQ=“1” reenable  
IN  
Programmable Output Voltage  
The Buck output voltage can be programmed via I2C in  
12.5 mV steps.  
requires another SEQ_CONTROL=“01” write  
Converter Faults  
Shutdown  
Any converter with an OVP or UVP, or any LDO  
with an IPK or LDO short circuit fault will remain  
enabled. Otherwise suspend that converter and:  
When the Buck is disabled, switching will cease, the  
output tristated, and the output will be discharged via the  
load or if BUCK_DIS bit = “1”, via the active discharge  
resistor.  
Automatically reenable after V  
UVLO fault is removed  
V
V
IN12/ IN3 / IN4  
Automatically reenable 20 ms after Buck or  
Boost IPK fault or short circuit if XXX_EN=“1”,  
or remain off until another  
Boost Functionality  
Startup Behavior  
The Boost can be enabled by two methods:  
SEQ_CONTROL=“01” write if XXX_SEQ=“1”  
Setting the BSTEN pin HIGH  
Thermal Management  
When the die temperature rises to T  
Setting the HWEN pin HIGH and setting any  
, a Thermal  
BOOST_ENx bit to “1”  
WRN  
Warning (TSD_WRN) interrupt is issued. Also, a Status bit  
will be set and remain set until the die temperature drops to  
a nominal value of 110°C.  
The Boost can startup in PFM mode or automatic  
passthrough mode depending on the VIN to VOUT  
difference. When starting in PFM mode, the part has a linear  
mode which limits inrush currents. Once VOUT charges up  
to VIN, the linear mode current limit is disabled and the  
regulator uses onequarter current limit to charge the output  
cap to the final VOUT target value. If VOUT fails to reach  
90% of the VOUT target within 1 ms, a UVP fault is  
declared.  
If the die temperature continues to rise above T  
,
WRN  
Thermal Shutdown (TSD) will occur. After the die  
temperature has fallen below T , recovery behavior  
WRN  
depends on the FLT_SD_B bit setting. Refer to the Fault  
Protection section for details on Chip Faults.  
Fault Handling  
Maskable Interrupt bits, a dedicated INTB pin, and real  
time status bits are provided. Each converter has  
independent protection debounce timers.  
An interrupt is generated each time a fault occurs. All bits  
set in the Interrupt registers must be cleared to reset the  
INTB pin to HIGH.  
Modes of Operation  
During PWM operation, the Boost switches at a nominal  
fixed frequency of 2.5 MHz. In Automode at light load  
operation, the device will enter PFM mode. Instead, the  
Boost can be put into Forced PWM mode by setting the  
BST_MODE bit to “1”. Also, the FAN53880 provides a bit,  
BST_LOAD, which the user can set to apply an internal  
artificial load to maintain a minimum switching frequency  
above 20 kHz.  
Buck Functionality  
Startup Behavior  
The Buck can be enabled by two methods if and only if the  
HWEN pin is high:  
In normal operation, the device automatically transitions  
from Boost Mode to PassThrough Mode if  
Setting BUCK_EN to “1”  
V
IN  
> V _target 250 mV. In PassThrough Mode, there  
OUT  
Setting BUCK_SEQ > “000” and SEQ_CONTROL to  
is no switching and the device has a low impedance path  
between V and V  
“01”  
.
OUT  
IN  
The Buck has internal softstart and starts up within  
400 ms (typical) when using the recommended external  
components.  
Programmable Output Voltage  
The Boost output voltage can be programmed via I2C in  
25 mV steps. When the output voltage is programmed to a  
lower voltage, the active pulldown is used to expedite the  
drop in voltage across the output capacitance.  
www.onsemi.com  
22  
FAN53880  
Shutdown  
specifications. The SCL pin is an input and the SDA pin is  
a bidirectional opendrain output. The IC supports single  
register read and write transactions as well as multiple  
register read transactions.  
When the Boost is disabled, switching will cease, the  
output tristated, and the output will be discharged via the  
load or if BOOST_DIS bit = “1”, via the active discharge  
resistor.  
Slave Address  
The default I2C Slave Address is the Table 12 and  
Table 13. Other slave addresses can be accommodated  
upon request. Contact your ON Semiconductor  
representative if a different slave address is required.  
LDO Functionality  
Startup Behavior  
The LDO’s can be enabled by two methods if and only if  
the HWEN pin is high:  
Setting LDOx_EN to “1”  
Table 12. I2C SLAVE ADDRESS  
Setting LDO_SEQ > “000” and SEQ_CONTROL to  
Device  
Hex  
Decimal  
7 bit Binary  
“01”  
FAN53880  
7h35  
53d  
0110101  
The Buck has internal softstart which limits supply  
current to the LDOx_ILIM setting. If VOUT fails to reach  
UVP  
in T  
a UVP fault is declared.  
LDOxx_HYS  
SS_LDOxx,  
Table 13. FAN53880 (7 BIT) SLAVE ADDRESS BYTE  
7
6
5
4
3
2
1
X
Programmable Output Voltage  
The LDO output voltages can be programmed via I2C in  
25 mV steps.  
0
1
1
0
1
0
1
R/W  
NOTE: READ = 1  
WRITE = 0  
I2C Functionality  
Introduction  
Timing Diagrams  
The FAN53880 serial interface is compatible with the  
StandardMode, FastMode, and FastMode Plus I C bus  
2
tF  
tSU;STA  
tBUF  
SDA  
tSU;DAT  
tR  
tHIGH  
tSU;STO  
SCL  
tLOW  
tHD;DAT  
tHD;STA  
tHD;STA  
STOP  
START  
START  
REPEATED  
START  
Figure 29. I2C Interface Timing for FastMode Plus, FastMode, and StandardMode  
2
Normally, data transfer occurs when SCL is LOW. Data  
is clocked in on the rising edge of SCL. Typically data  
transitions at or after the subsequent falling edge of SCL to  
provide ample setup time for the next data bit to be ready  
before the subsequent rising edge of SCL.  
The idle state of the I C bus is SDA and SCL both in the  
HIGH state. A valid transaction begins with a START  
condition which occurs when SDA transitions from HIGH  
to LOW when SCL remains HIGH.  
Slave Address  
MS Bit  
THD:STA  
Data Change Allowed  
SDA  
SCL  
SDA  
TH  
Figure 31. START Condition  
TSU  
SCL  
A valid transaction ends with a STOP condition which  
occurs when SDA transitions from LOW to HIGH while  
SCL remains HIGH.  
Figure 30. Data Transfer Timing  
www.onsemi.com  
23  
 
FAN53880  
Slave Release Master Drives  
A
REPEATED START condition is functionally  
equivalent to a STOP condition followed immediately by a  
START condition. During a read from the IC, the master  
issues a REPEATED START after sending the register  
address and before resending the slave address. The  
REPEATED START is a HIGH to LOW transition on SDA  
while SCL is HIGH,  
TSU;STO  
ACK(0) or  
NACK(1)  
SDA  
SCL  
Figure 32. STOP Condition  
TSU;STA  
Slave Release  
THD;STA  
ACK(0) or  
NACK(1)  
SLAVE ADDR  
MS Bit  
SDA  
SCL  
TVD;DAT  
Figure 33. REPEATED START Condition  
Read and Write Transactions  
The FAN53880 supports the following read and write  
transaction protocols.  
Figure 34. Single Register Write Transaction  
Figure 35. Single Register Read Transaction  
Figure 36. Multiple Register Read Transaction  
www.onsemi.com  
24  
FAN53880  
REGISTER MAPPING TABLE  
Table 14. REGISTER MAPPING  
Read Only  
Bit[4]  
Write Only  
Bit[3]  
Read /  
Write  
Read /  
Clear  
Write /  
Clear  
Address  
Name  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[2]  
Bit[1]  
Bit[0]  
0x00  
PROD-  
UCT ID  
Product ID  
0x01  
SILICON  
REV ID  
Revision  
0x02  
0x03  
0x04  
BUCK  
BOOST  
LDO1  
BUCK_OUT  
Reserved  
BOOST_VOUT  
LDO1_PA- LDO1_VOUT  
SSTHRU  
0x05  
0x06  
0x07  
0x08  
LDO2  
LDO3  
LDO4  
IOUT  
LDO2_PA- LDO2_VOUT  
SSTHRU  
LDO3_PA- LDO3_VOUT  
SSTHRU  
LDO4_PA- LDO4_VOUT  
SSTHRU  
0
LDO4_ILIM  
0
0
0
0
LDO3_ILIM  
LDO2_ILIM  
LDO3_EN  
LDO1_IL-  
IM  
0x09  
0x0A  
ENABLE  
BST_MOD- BUCK_MO-  
LDO4_EN  
E
DE  
BUCK_EN  
BST_EN4  
LDO2_EN LDO1_EN  
BOOST_E- BST_EN7  
NABLE  
BST_EN6  
BST_EN5  
0
BST_EN3  
BST_EN2  
BST_EN1  
BST_EN0  
0x0B  
0x0C  
BUCK_SE-  
Q
BUCK_SEQ  
LDO12_S-  
EQ  
0
0
LDO1_SEQ  
LDO2_SEQ  
0x0D  
0x0E  
LDO34_S-  
EQ  
LDO4_SEQ  
LDO3_SEQ  
SE-  
SEQ_SPEED  
QUENC-  
ING  
SEQ_CONTROL  
SEQ_ON  
SEQ_COUNT  
0x0F  
DIS-  
BUCK_LO- BOOST_L- LDO4_DIS  
BOOST_D- BUCK_DIS  
IS  
CHARGE  
AD  
OAD  
LDO3_DIS  
LDO2_DIS  
LDO1_DIS  
0
0x10  
0x11  
RESET  
0
SOFT_RESET  
FLT_SD_B  
INTER-  
RUPT1  
LDO4_OV-  
P_INT  
LDO3_UVP LDO2_UV- LDO1_UV-  
_INT P_INT P_INT  
LDO3_OV- LDO2_OVP  
LDO1_OVP  
_INT  
LDO4_UVP  
_INT  
P_INT  
_INT  
0x12  
0x13  
0x14  
0x15  
0x16  
INTER-  
RUPT2  
BST_OVP BUCK_OV- BST_UVP_I- BUCK_UVP LDO4_OCP LDO3_OCP LDO2_OC- LDO1_OC-  
_INT  
P_INT  
NT  
_INT  
_INT  
_INT  
P_INT  
P_INT  
INTER-  
RUPT3  
BST_IPK_I- BUCK_IPK APVIN_UVL- LDO12_UVL- LDO3_UVL- LDO4_UVL- TSD_INT  
TSD_WRN  
_INT  
NT  
_INT  
O_INT  
O_INT  
O_INT  
O_INT  
STATUS1  
STATUS2  
STATUS3  
LDO4_OV- LDO3_OV- LDO2_OVP  
P_STAT P_STAT _STAT  
LDO1_OVP  
_STAT  
LDO4_UVP LDO3_UVP LDO2_UV- LDO1_UV-  
_STAT _STAT P_STAT P_STAT  
BST_OVP BUCK_OV- BST_UVP_- BUCK_UVP LDO4_OCP LDO3_OCP LDO2_OC- LDO1_OC-  
_STAT P_STAT STAT _STAT _STAT _STAT P_STAT P_STAT  
BST_IPK_- BUCK_IPK APVIN_UVL- LDO12_UVL- LDO3_UVL- LDO4_UVL- TSD_STAT TSD_WRN  
STAT _STAT O_STAT O_STAT O_STAT O_STAT _STAT  
www.onsemi.com  
25  
 
FAN53880  
Table 14. REGISTER MAPPING  
Read Only  
Bit[4]  
Write Only  
Bit[3]  
Read /  
Write  
Read /  
Clear  
Write /  
Clear  
Address  
Name  
MINT1  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[2]  
Bit[1]  
Bit[0]  
0x17  
MASK_LD- MASK_LD- MASK_LDO MASK_LDO MASK_LDO MASK_LDO MASK_LD- MASK_LD-  
O4_OVP O3_OVP 2_OVP 1_OVP 4_UVP 3_UVP O2_UVP O1_UVP  
0x18  
0x19  
0x1A  
MINT2  
MASK_BS- MASK_BU- MASK_BST MASK_BUC- MASK_LDO MASK_LDO MASK_LD- MASK_LD-  
T_OVP CK_OVP _UVP K_UVP 4_OCP 3_OCP O2_OCP O1_OCP  
MINT3  
MASK_BS- MASK_BU- MASK_APVI- MASK_LDO MASK_LDO MASK_LDO MASK_TS- MASK_TS-  
T_IPK  
CK_IPK  
N_UVLO  
12_UVLO  
3_UVLO  
4_UVLO  
D
D_WRN  
STATUS4  
0
CHIP_SUS- BOOST_SU- BUCK_SUS- LDO4_SUS- LDO3_SUS- LDO2_SU- LDO1_SU-  
D
SD  
D
D
D
SD  
SD  
www.onsemi.com  
26  
FAN53880  
REGISTER DETAILS  
Table 15. REGISTER DETAILS 0x00 PRODUCT ID  
0x00 PRODUCT ID  
Default = 00000001  
Description  
Bit  
Name  
Default  
Type  
7:00  
Product ID  
00000001  
Read  
Allows customers to identify manufacturer and version  
Product ID Table  
Code  
0
Product  
1
FAN53880  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
10  
11  
100  
101  
110  
111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Table 16. REGISTER DETAILS 0x01 SILICON REV ID  
0x01 SILICON REV ID  
Default = See Description  
Description  
Bit  
Name  
Default  
Type  
7:0  
Revision  
See  
Description  
Read  
Provides the silicon revision  
Part Number  
REG 01 [7:0] Silicon Rev ID  
00000011  
FAN53880UC001X  
FAN53880UC002X  
00000100  
www.onsemi.com  
27  
FAN53880  
Table 17. REGISTER DETAILS 0x02 BUCK  
0x02 BUCK  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
7:00  
BUCK_OUT  
00000000  
R/W  
Buck programming steps are 12.5 mV with a range of 0.6 to 3.3 V.  
Vout = [0.0125 x (d31)] + 0.6; Where “d” is the decimal value of the  
register.  
Hex  
0
V
Hex  
28  
V
OUT  
OUT  
DEFAULT  
Reserved  
0.6000V  
0.6125V  
0.6250V  
0.6375V  
0.6500V  
0.6625V  
0.6750V  
0.6875V  
0.7000V  
0.7125V  
............  
01 1E  
1F  
29F6  
F0  
3.2125V  
3.2250V  
3.2375V  
3.2500V  
3.2625V  
3.2750V  
3.2875V  
3.3000V  
Reserved  
20  
F1  
21  
F2  
22  
F3  
23  
F4  
24  
F5  
25  
F6  
26  
F7  
27  
F8FF  
www.onsemi.com  
28  
FAN53880  
Table 18. REGISTER DETAILS 0x03 BOOST  
0x03 BOOST  
Default = 00000000  
Description  
Bit  
7
Name  
Default  
Type  
R/W  
R/W  
BST_PASS  
0
6:0  
BOOST_VO 0000000  
UT  
The boost output voltage is programmable in the 25 mV steps.  
Equation: V = 3.000 + (d4)*0.025V; where “d” is the decimal value.  
OUT  
Hex  
0
V
Hex  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
V
Hex  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
V
Hex  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
V
OUT  
OUT  
OUT  
OUT  
DEFAULT  
Reserved  
Reserved  
Reserved  
3.000V  
3.025V  
3.050V  
3.075V  
3.100V  
3.125V  
3.150V  
3.175V  
3.200V  
3.225V  
3.250V  
3.275V  
3.300V  
3.325V  
3.350V  
3.375V  
3.400V  
3.425V  
3.450V  
3.475V  
3.500V  
3.525V  
3.550V  
3.575V  
3.600V  
3.625V  
3.650V  
3.675V  
3.700V  
3.725V  
3.750V  
3.775V  
3.800V  
3.825V  
3.850V  
3.875V  
3.900V  
3.925V  
3.950V  
3.975V  
4.000V  
4.025V  
4.050V  
4.075V  
4.100V  
4.125V  
4.150V  
4.175V  
4.200V  
4.225V  
4.250V  
4.275V  
4.300V  
4.325V  
4.350V  
4.375V  
4.400V  
4.425V  
4.450V  
4.475V  
4.500V  
4.525V  
4.550V  
4.575V  
4.600V  
4.625V  
4.650V  
4.675V  
4.700V  
4.725V  
4.750V  
4.775V  
4.800V  
4.825V  
4.850V  
4.875V  
4.900V  
4.925V  
4.950V  
4.975V  
5.000V  
5.025V  
5.050V  
5.075V  
5.100V  
5.125V  
5.150V  
5.175V  
5.200V  
5.225V  
5.250V  
5.275V  
5.300V  
5.325V  
5.350V  
5.375V  
5.400V  
5.425V  
5.450V  
5.475V  
5.500V  
5.525V  
5.550V  
5.575V  
5.600V  
5.625V  
5.650V  
5.675V  
5.700V  
1
2
3
4
5
6
7
8
9
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
717F Reserved  
www.onsemi.com  
29  
FAN53880  
Table 19. REGISTER DETAILS 0x04 LDO1  
0x04 LDO1  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
6:0  
LDO1_VOUT  
0000000  
R/W  
Sets LDO1 regulation target voltage.  
Equation: Vout = 0.800V + [(d15)*25mV]; Where d is the decimal  
value of the register  
Hex  
0
V
Hex  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
V
OUT  
OUT  
DEFAULT  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0.800V  
2.025V  
2.050V  
2.075V  
2.100V  
2.125V  
2.150V  
2.175V  
2.200V  
2.225V  
2.250V  
2.275V  
2.300V  
2.325V  
2.350V  
2.375V  
2.400V  
2.425V  
2.450V  
2.475V  
2.500V  
2.525V  
2.550V  
2.575V  
2.600V  
2.625V  
2.650V  
2.675V  
2.700V  
2.725V  
2.750V  
2.775V  
2.800V  
2.825V  
2.850V  
2.875V  
2.900V  
2.925V  
1
2
3
4
5
6
7
8
9
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
0.825V  
0.850V  
0.875V  
0.900V  
0.925V  
0.950V  
0.975V  
1.000V  
1.025V  
1.050V  
1.075V  
1.100V  
1.125V  
1.150V  
1.175V  
1.200V  
1.225V  
1.250V  
1.275V  
1.300V  
1.325V  
www.onsemi.com  
30  
 
FAN53880  
Table 19. REGISTER DETAILS 0x04 LDO1  
0x04 LDO1  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
1.350V  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
2.950V  
2.975V  
1.375V  
1.400V  
1.425V  
1.450V  
1.475V  
1.500V  
1.525V  
1.550V  
1.575V  
1.600V  
1.625V  
1.650V  
1.675V  
1.700V  
1.725V  
1.750V  
1.775V  
1.800V  
1.825V  
1.850V  
1.875V  
1.900V  
1.925V  
1.950V  
1.975V  
2.000V  
3.000V  
3.025V  
3.050V  
3.075V  
3.100V  
3.125V  
3.150V  
3.175V  
3.200V  
3.225V  
3.250V  
3.275V  
3.300V  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
www.onsemi.com  
31  
FAN53880  
Table 20. REGISTER DETAILS 0x05 LDO2  
0x05 LDO2  
Default = 00000000  
Description  
Bit  
7
Name  
Default  
Type  
UNUSED  
6:0  
LDO2_VOUT  
0000000  
R/W  
Sets LDO2 regulation target voltage.  
Equation: Vout = 0.800V + [(d15)*25mV]; Where d is the decimal  
value of the register  
Hex  
0
V
Hex  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
V
OUT  
OUT  
DEFAULT  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0.800V  
2.025V  
2.050V  
2.075V  
2.100V  
2.125V  
2.150V  
2.175V  
2.200V  
2.225V  
2.250V  
2.275V  
2.300V  
2.325V  
2.350V  
2.375V  
2.400V  
2.425V  
2.450V  
2.475V  
2.500V  
2.525V  
2.550V  
2.575V  
2.600V  
2.625V  
2.650V  
2.675V  
2.700V  
2.725V  
2.750V  
2.75V  
1
2
3
4
5
6
7
8
9
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
0.825V  
0.850V  
0.875V  
0.900V  
0.925V  
0.950V  
0.975V  
1.000V  
1.025V  
1.050V  
1.075V  
1.100V  
1.125V  
1.150V  
1.175V  
1.200V  
2.800V  
2.825V  
2.850V  
2.875V  
2.900V  
1.225V  
1.250V  
1.275V  
1.300V  
www.onsemi.com  
32  
 
FAN53880  
Table 20. REGISTER DETAILS 0x05 LDO2  
0x05 LDO2  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
1.325V  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
2.925V  
2.950V  
1.350V  
1.375V  
1.400V  
1.425V  
1.450V  
1.475V  
1.500V  
1.525V  
1.550V  
1.575V  
1.600V  
1.625V  
1.650V  
1.675V  
1.700V  
1.725V  
1.750V  
1.775V  
1.800V  
1.825V  
1.850V  
1.875V  
1.900V  
1.925V  
1.950V  
1.975V  
2.000V  
2.975V  
3.000V  
3.025V  
3.050V  
3.075V  
3.100V  
3.125V  
3.150V  
3.175V  
3.200V  
3.225V  
3.250V  
3.275V  
3.300V  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
www.onsemi.com  
33  
FAN53880  
Table 21. REGISTER DETAILS 0x06 LDO3  
0x06 LDO3  
Default = 00000000  
Description  
Bit  
7
Name  
Default  
Type  
UNUSED  
6:0  
LDO3_VOUT  
0000000  
R/W  
Sets LDO3 regulation target voltage.  
Equation: Vout = 0.800V + [(d15)*25mV]; Where d is the decimal  
value of the register  
Hex  
0
V
Hex  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
V
OUT  
OUT  
DEFAULT  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0.800V  
2.025V  
2.050V  
2.075V  
2.100V  
2.125V  
2.150V  
2.175V  
2.200V  
2.225V  
2.250V  
2.275V  
2.300V  
2.325V  
2.350V  
2.375V  
2.400V  
2.425V  
2.450V  
2.475V  
2.500V  
2.525V  
2.550V  
2.575V  
2.600V  
2.625V  
2.650V  
2.675V  
2.700V  
2.725V  
2.750V  
2.75V  
1
2
3
4
5
6
7
8
9
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
0.825V  
0.850V  
0.875V  
0.900V  
0.925V  
0.950V  
0.975V  
1.000V  
1.025V  
1.050V  
1.075V  
1.100V  
1.125V  
1.150V  
1.175V  
1.200V  
2.800V  
2.825V  
2.850V  
2.875V  
2.900V  
1.225V  
1.250V  
1.275V  
1.300V  
www.onsemi.com  
34  
 
FAN53880  
Table 21. REGISTER DETAILS 0x06 LDO3  
0x06 LDO3  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
1.325V  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
2.925V  
2.950V  
1.350V  
1.375V  
1.400V  
1.425V  
1.450V  
1.475V  
1.500V  
1.525V  
1.550V  
1.575V  
1.600V  
1.625V  
1.650V  
1.675V  
1.700V  
1.725V  
1.750V  
1.775V  
1.800V  
1.825V  
1.850V  
1.875V  
1.900V  
1.925V  
1.950V  
1.975V  
2.000V  
2.975V  
3.000V  
3.025V  
3.050V  
3.075V  
3.100V  
3.125V  
3.150V  
3.175V  
3.200V  
3.225V  
3.250V  
3.275V  
3.300V  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
www.onsemi.com  
35  
FAN53880  
Table 22. REGISTER DETAILS 0x07 LDO4  
0x07 LDO4  
Default = 00000000  
Description  
Bit  
7
Name  
Default  
Type  
UNUSED  
6:0  
LDO4_VOUT  
0000000  
R/W  
Sets LDO4 regulation target voltage.  
Equation: Vout = 0.800V + [(d15)*25mV]; Where d is the decimal  
value of the register  
Hex  
0
V
Hex  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
V
OUT  
OUT  
DEFAULT  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0.800V  
2.025V  
2.050V  
2.075V  
2.100V  
2.125V  
2.150V  
2.175V  
2.200V  
2.225V  
2.250V  
2.275V  
2.300V  
2.325V  
2.350V  
2.375V  
2.400V  
2.425V  
2.450V  
2.475V  
2.500V  
2.525V  
2.550V  
2.575V  
2.600V  
2.625V  
2.650V  
2.675V  
2.700V  
2.725V  
2.750V  
2.75V  
1
2
3
4
5
6
7
8
9
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
0.825V  
0.850V  
0.875V  
0.900V  
0.925V  
0.950V  
0.975V  
1.000V  
1.025V  
1.050V  
1.075V  
1.100V  
1.125V  
1.150V  
1.175V  
1.200V  
2.800V  
2.825V  
2.850V  
2.875V  
2.900V  
1.225V  
1.250V  
1.275V  
1.300V  
www.onsemi.com  
36  
 
FAN53880  
Table 22. REGISTER DETAILS 0x07 LDO4  
0x07 LDO4  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
1.325V  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
2.925V  
2.950V  
1.350V  
1.375V  
1.400V  
1.425V  
1.450V  
1.475V  
1.500V  
1.525V  
1.550V  
1.575V  
1.600V  
1.625V  
1.650V  
1.675V  
1.700V  
1.725V  
1.750V  
1.775V  
1.800V  
1.825V  
1.850V  
1.875V  
1.900V  
1.925V  
1.950V  
1.975V  
2.000V  
2.975V  
3.000V  
3.025V  
3.050V  
3.075V  
3.100V  
3.125V  
3.150V  
3.175V  
3.200V  
3.225V  
3.250V  
3.275V  
3.300V  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
www.onsemi.com  
37  
FAN53880  
Table 23. REGISTER DETAILS 0x08 IOUT  
0x08 IOUT  
Default = 01010101  
Description  
Bit  
7
Name  
Default  
Type  
UNUSED  
LDO4_ILIM  
6
1
R/W  
Reset condition: −  
Code  
Current Limit  
0
1
150 mA (minimum)  
360 mA (minimum)  
5
4
UNUSED  
LDO3_ILIM  
1
1
1
R/W  
R/W  
R/W  
Code  
Current Limit  
150 mA (minimum)  
360 mA (minimum)  
0
1
3
2
UNUSED  
LDO2_ILIM  
Code  
Current Limit  
150 mA (minimum)  
360 mA (minimum)  
0
1
1
0
UNUSED  
LDO1_ILIM  
Code  
Current Limit  
150 mA (minimum)  
360 mA (minimum)  
0
1
Table 24. REGISTER DETAILS 0x09 ENABLE  
0x09 ENABLE  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
7
BST_MODE  
0
R/W  
Code  
Effect  
0
Automatically select between  
PFM and PWM Modes  
1
Code  
0
Forced PWM mode.  
6
BUCK_MODE  
0
0
0
R/W  
R/W  
R/W  
Effect  
Auto selection between PFM and  
PWM modes  
1
Forced PWM mode  
5
4
UNUSED  
BUCK_EN  
Enable bit for the BUCK. This bit only controls the state of the BUCK  
if BUCK_SEQ = 000.  
Code  
Status of Buck  
Disabled  
0
1
Enabled  
3
LDO4_EN  
Enable bit for LDO4. This bit only controls the state of the LDO if  
LDO4_SEQ = 000.  
Code  
Status of LDO4  
Disabled  
0
1
Enabled  
www.onsemi.com  
38  
 
FAN53880  
Table 24. REGISTER DETAILS 0x09 ENABLE  
0x09 ENABLE  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
2
LDO3_EN  
0
R/W  
Enable bit for LDO3. This bit only controls the state of the LDO if  
LDO3_SEQ = 000.  
Code  
Status of LDO3  
Disabled  
0
1
Enabled  
1
0
LDO2_EN  
LDO1_EN  
0
0
R/W  
R/W  
Enable bit for LDO2. This bit only controls the state of the LDO if  
LDO2_SEQ = 000.  
Code  
Status of LDO2  
Disabled  
0
1
Enabled  
Enable bit for LDO1. This bit only controls the state of the LDO if  
LDO1_SEQ = 000.  
Code  
Status of LDO1  
Disabled  
0
1
Enabled  
Table 25. REGISTER DETAILS 0x0A BOOST_ENABLE  
0x0A BOOST_ENABLE  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
7
BST_EN7  
0
R/W  
BST_EN7 bit is for enabling the boost converter.  
Code  
Effect  
Disabled  
Enabled  
0
1
6
5
4
3
BST_EN6  
BST_EN5  
BST_EN4  
BST_EN3  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
BST_EN6 bit is for enabling the boost converter.  
Code  
Effect  
Disabled  
Enabled  
0
1
BST_EN5 bit is for enabling the boost converter.  
Code  
Effect  
Disabled  
Enabled  
0
1
BST_EN4 bit is for enabling the boost converter.  
Code  
Effect  
Disabled  
Enabled  
0
1
BST_EN3 bit is for enabling the boost converter.  
Code  
Effect  
Diabled  
Enabled  
0
1
www.onsemi.com  
39  
 
FAN53880  
Table 25. REGISTER DETAILS 0x0A BOOST_ENABLE  
0x0A BOOST_ENABLE  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
2
BST_EN2  
0
R/W  
BST_EN2 bit is for enabling the boost converter.  
Code  
Effect  
Disabled  
Enabled  
0
1
1
0
BST_EN1  
BST_EN0  
0
0
R/W  
R/W  
BST_EN1 bit is for enabling the boost converter.  
Code  
Effect  
Disabled  
Enabled  
0
1
BST_EN0 bit is for enabling the boost converter.  
Code  
Effect  
0
1
Disabled  
Ensabled  
Table 26. REGISTER DETAILS 0x0B BUCK_SEQ  
0x0B BUCK_SEQ  
Default = 00000000  
Description  
Bit  
7:3  
2:0  
Name  
Default  
Type  
UNUSED  
BUCK_SEQ  
000  
R/W  
The buck sequencing is selected by setting bits [2:0]  
Code  
Effect  
000  
Controlled through I2C by setting  
the buck_en bit.  
001  
010  
011  
100  
101  
110  
111  
Selects slot 1 for the buck to be  
enabled in at power up.  
Selects slot 2 for the buck to be  
enabled in at power up.  
Selects slot 3 for the buck to be  
enabled in at power up.  
Selects slot 4 for the buck to be  
enabled in at power up.  
Selects slot 5 for the buck to be  
enabled in at power up.  
Selects slot 6 for the buck to be  
enabled in at power up.  
Selects slot 7 for the buck to be  
enabled in at power up.  
www.onsemi.com  
40  
FAN53880  
Table 27. REGISTER DETAILS 0x0C LDO12_SEQ  
0x0C LDO12_SEQ  
Default = 00000000  
Description  
Bit  
7:6  
5:3  
Name  
Default  
Type  
UNUSED  
LDO2_SEQ  
000  
R/W  
The LDO2 sequencing is selected by setting bits [2:0]  
Code  
Effect  
000  
Controlled through I2C by setting  
the LDO2_EN bit.  
001  
010  
011  
100  
101  
110  
111  
Selects slot 1 for the LDO2 to be  
enabled in at power up.  
Selects slot 2 for the LDO2 to be  
enabled in at power up.  
Selects slot 3 for the LDO2 to be  
enabled in at power up.  
Selects slot 4 for the LDO2 to be  
enabled in at power up.  
Selects slot 5 for the LDO2 to be  
enabled in at power up.  
Selects slot 6 for the LDO2 to be  
enabled in at power up.  
Selects slot 7 for the LDO2 to be  
enabled in at power up.  
2:0  
LDO1_SEQ  
000  
R/W  
The LDO1 sequencing is selected by setting bits [2:0]  
Code  
Effect  
000  
Controlled through I2C by setting  
the LDO1_EN bit.  
001  
010  
011  
100  
101  
110  
111  
Selects slot 1 for the LDO1 to be  
enabled in at power up.  
Selects slot 2 for the LDO1 to be  
enabled in at power up.  
Selects slot 3 for the LDO1 to be  
enabled in at power up.  
Selects slot 4 for the LDO1 to be  
enabled in at power up.  
Selects slot 5 for the LDO1 to be  
enabled in at power up.  
Selects slot 6 for the LDO1 to be  
enabled in at power up.  
Selects slot 7 for the LDO1 to be  
enabled in at power up.  
www.onsemi.com  
41  
FAN53880  
Table 28. REGISTER DETAILS 0x0D LDO34_SEQ  
0x0D LDO34_SEQ  
Default = 00000000  
Description  
Bit  
7:6  
5:3  
Name  
Default  
Type  
UNUSED  
LDO4_SEQ  
000  
R/W  
The LDO4 sequencing is selected by setting bits [2:0]  
Code  
Effect  
000  
Controlled through I2C by setting  
the LDO4_EN bit.  
001  
010  
011  
100  
101  
110  
111  
Selects slot 1 for the LDO4 to be  
enabled in at power up.  
Selects slot 2 for the LDO4 to be  
enabled in at power up.  
Selects slot 3 for the LDO4 to be  
enabled in at power up.  
Selects slot 4 for the LDO4to be  
enabled in at power up.  
Selects slot 5 for the LDO4 to be  
enabled in at power up.  
Selects slot 6 for the LDO4 to be  
enabled in at power up.  
Selects slot 7 for the LDO4 to be  
enabled in at power up.  
2:0  
LDO3_SEQ  
000  
R/W  
The LDO3 sequencing is selected by setting bits [2:0]  
Code  
Effect  
000  
Controlled through I2C by setting  
the LDO3_EN bit.  
001  
010  
011  
100  
101  
110  
111  
Selects slot 1 for the LDO3 to be  
enabled in at power up.  
Selects slot 2 for the LDO3 to be  
enabled in at power up.  
Selects slot 3 for the LDO3 to be  
enabled in at power up.  
Selects slot 4 for the LDO3 to be  
enabled in at power up.  
Selects slot 5 for the LDO3 to be  
enabled in at power up.  
Selects slot 6 for the LDO3 to be  
enabled in at power up.  
Selects slot 7 for the LDO3 to be  
enabled in at power up.  
www.onsemi.com  
42  
FAN53880  
Table 29. REGISTER DETAILS 0x0E SEQUENCING  
0x0E SEQUENCING  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
7:6  
SEQ_SPEED  
00  
R/W  
Code  
Period per Slot  
00  
01  
500 ms  
1.0 ms  
10  
1.5 ms  
2.0 ms  
11  
5:4  
SEQ_CONTR  
OL  
00  
W1CLR  
Code  
00  
Effect  
Default  
01  
Starts a converter power up sequence.  
Starts a converter shutdown sequence.  
Bit configuration is ignored  
10  
11  
Note: The bits will always clear immediately when written to  
and always readback 00.  
3
SEQ_ON  
0
Read  
Code  
Effect  
0
1
Indicates that the sequencing is not in process  
Indicates that the sequencing is executing and  
somewhere between the start of slot 1 and the  
end of slot 7. The bit remains a 1 until slot 7 has  
completed at startup or slot 1 has finished at  
shutdown, regardless of what slots are used.  
This bit is a read only status bit to indicate the sequencing is on.  
2:0  
SEQ_COUNT  
000  
Read  
Code  
Slot  
000  
Indicates sequencing has completed or not  
started.  
001  
010  
011  
100  
101  
110  
111  
Indicates was in slot 1 during register read  
Indicates was in slot 2 during register read  
Indicates was in slot 3 during register read  
Indicates was in slot 4 during register read  
Indicates was in slot 5 during register read  
Indicates was in slot 6 during register read  
Indicates was in slot 7 during register read  
These register bits provide the status of the sequencing.  
www.onsemi.com  
43  
FAN53880  
Table 30. REGISTER DETAILS 0x0F DISCHARGE  
0x0F DISCHARGE  
Default = 00111111  
Description  
Bit  
Name  
Default  
Type  
7
BUCK_LOAD  
0
R/W  
Code  
Effect  
0
1
Buck internal load is removed from output.  
Buck internal load is applied to the output during PFM  
operation.  
6
5
BOOST_LOAD  
LDO4_DIS  
0
1
R/W  
R/W  
Code  
Effect  
0
1
Boost internal load is removed from output.  
Boost internal load is applied to the output during PFM  
operation.  
Code  
Effect  
0
LDO4 Active Discharge feature is disabled. Pull down will  
not be activated when LDO4 is disabled by any event.  
1
LDO4 Active Discharge feature is enabled. Pull down will  
be activated when LDO4 is disabled by HWEN going low or  
LDO4_EN = 0 or a Sequenced shutdown or in an OVP  
event.  
4
3
2
LDO3_DIS  
LDO2_DIS  
LDO1_DIS  
1
1
1
R/W  
R/W  
R/W  
Code  
Effect  
0
LDO3 Active Discharge feature is disabled. Pull down will  
not be activated when LDO3 is disabled by any event.  
1
LDO3 Active Discharge feature is enabled. Pull down will  
be activated when LDO3 is disabled by HWEN going low or  
LDO3_EN = 0 or a Sequenced shutdown or in an OVP  
event.  
Code  
Effect  
0
LDO2 Active Discharge feature is disabled. Pull down will  
not be activated when LDO2 is disabled by any event.  
1
LDO2 Active Discharge feature is enabled. Pull down will  
be activated when LDO2 is disabled by HWEN going low or  
LDO2_EN = 0 or a Sequenced shutdown or in an OVP  
event.  
Code  
Effect  
0
LDO1 Active Discharge feature is disabled. Pull down will  
not be activated when LDO1 is disabled by any event.  
1
LDO1 Active Discharge feature is enabled. Pull down will  
be activated when LDO1 is disabled by HWEN going low or  
LDO1_EN = 0 or a Sequenced shutdown or in an OVP  
event.  
1
0
BOOST_DIS  
BUCK_DIS  
1
1
R/W  
R/W  
Code  
Effect  
0
Boost Active Discharge feature is disabled. Pull down will  
not be activated when Boost is disabled by any event.  
1
Boost Active Discharge is enabled and output is discharged  
by internal resistor when the Boost is disabled by BSTEN  
going low or BST_EN0 = 0 or in an OVP event.  
Code  
Effect  
0
Buck Active Discharge feature is disabled. Pull down will not  
be activated when Buck is disabled by any event.  
1
Buck Active Discharge feature is enabled. Pull down will be  
activated when Buck is disabled by HWEN going low or  
BUCK_EN = 0 or a Sequenced shutdown or in an OVP  
event.  
www.onsemi.com  
44  
FAN53880  
Table 31. REGISTER DETAILS 0x10 RESET  
0x10 RESET  
Default = 00000000  
Description  
Bit  
7
Name  
Default  
Type  
UNUSED  
6:3  
SOFT_RESET  
0000  
Write  
Reset condition: 0  
Code  
Effect  
1011  
Writing a “1011” begins a soft reset of the device  
I2C registers to their default values. This bit is  
cleared upon execution of the Reset function.  
Any other value than “1011” will be ignored.  
2:1  
0
UNUSED  
FLT_SD_B  
0
R/W  
Code  
Effect  
0
Converter is shutdown if an OVP, UVP or OCP  
event occurs.  
1
Converter is not shutdown if an OVP, UVP or  
OCP event occurs.  
Notes:  
If this bit function is desired, FLT_SD_B should be set to “1” prior  
to enabling any converters after a PowerOnReset  
If a hard short occurs on either the buck or boost output, the  
converter will shutdown to protect itself even if the FLT_SD_B bit is  
set to “1”.  
www.onsemi.com  
45  
FAN53880  
Table 32. REGISTER DETAILS 0x11 INTERRUPT1  
0x11 INTERRUPT1  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
7
LDO4_OVP_INT  
0
R/CLR  
R/CLR  
R/CLR  
R/CLR  
R/CLR  
R/CLR  
R/CLR  
R/CLR  
Code  
Effect  
0
1
Clear  
OverVoltage event detected on LDO4 output  
or the voltage has fallen below the  
OVP_Falling threshold.  
6
5
4
3
2
1
0
LDO3_OVP_INT  
LDO2_OVP_INT  
LDO1_OVP_INT  
LDO4_UVP_INT  
LDO3_UVP_INT  
LDO2_UVP_INT  
LDO1_UVP_INT  
0
0
0
0
0
0
0
Code  
Effect  
0
1
Clear  
Over Voltage event detected on LDO3  
output or the voltage has fallen below the  
OVP_Falling threshold.  
Code  
Effect  
0
1
Clear  
OverVoltage event detected on LDO2  
output or the voltage has fallen below the  
OVP_Falling threshold.  
Code  
Effect  
0
1
Clear  
OverVoltage event detected on LDO1  
output or the voltage has fallen below the  
OVP_Falling threshold.  
Code  
Effect  
0
1
Clear  
UnderVoltage event detected on LDO4  
output or the voltage has risen above the  
UVP_Rising threshold.  
Code  
Effect  
0
1
Clear  
UnderVoltage event detected on the output of  
LDO3 or the voltage has risen above the  
UVP_Rising threshold.  
Code  
Effect  
0
1
Clear  
UnderVoltage event detected on LDO2  
output or the voltage has risen above the  
UVP_Rising threshold.  
Code  
Effect  
0
1
Clear  
UnderVoltage event detected on LDO1  
output or the voltage has risen above the  
UVP_Rising threshold.  
www.onsemi.com  
46  
FAN53880  
Table 33. REGISTER DETAILS 0x12 INTERRUPT2  
0x12 INTERRUPT2  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
7
BST_OVP_INT  
0
R/CLR  
R/CLR  
R/CLR  
R/CLR  
R/CLR  
R/CLR  
R/CLR  
R/CLR  
Code  
Effect  
0
1
Clear  
OverVoltage event detected on the Boost  
output or the voltage has fallen below the  
OVP_Falling threshold.  
6
5
4
3
2
1
0
BUCK_OVP_IN  
T
0
0
0
0
0
0
0
Code  
Effect  
0
1
Clear  
OverVoltage event detected on the Buck  
output or the voltage has fallen below the  
OVP_Falling threshold.  
BST_UVP_INT  
Code  
Effect  
0
1
Clear  
UnderVoltage event detected on on the  
Boost output or the voltage has risen above  
the UVP_Rising threshold.  
BUCK_UVP_IN  
T
Code  
Effect  
0
1
Clear  
UnderVoltage event detected on on the Buck  
output or the voltage has risen above the  
UVP_Rising threshold.  
LDO4_OCP_IN  
T
Code  
Effect  
0
1
Clear  
OverCurrent event detected on LDO4  
output or that a successful restart has  
occurred after an OCP event.  
LDO3_OCP_IN  
T
Code  
Effect  
0
1
Clear  
OverCurrent event detected on LDO3  
output or that a successful restart has  
occurred after an OCP event.  
LDO2_OCP_IN  
T
Code  
Effect  
0
1
Clear  
OverCurrent event detected on LDO2  
output or that a successful restart has  
occurred after an OCP event.  
LDO1_OCP_IN  
T
Code  
Effect  
0
1
Clear  
OverCurrent event detected on LDO1  
output or that a successful restart has  
occurred after an OCP event.  
www.onsemi.com  
47  
FAN53880  
Table 34. REGISTER DETAILS 0x13 INTERRUPT3  
0x13 INTERRUPT3  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
7
BST_IPK_INT  
0
R/CLR  
Code  
Effect  
0
1
Clear  
Boost Peak Current limit reached or the Boost  
successfully completed a restart after a Peak Current  
fault.  
6
5
BUCK_IPK_INT  
0
0
R/CLR  
R/CLR  
Code  
Effect  
0
1
Clear  
Buck Peak Current reached or the Buck successfully  
completed a restart after a Peak Current fault.  
APVIN_UVLO_INT  
Code  
Effect  
0
1
Normal operation  
Indicates that the AV and/or PV power fell below  
IN  
IN  
the UVLO input threshold or that the supplies have  
risen above the rising thresholds after a UVLO fault.  
Reading the the associated status bit provides present state of the input  
voltage.  
4
3
2
LDO12_UVLO_INT  
LDO3_UVLO_INT  
LDO4_UVLO_INT  
0
0
0
R/CLR  
R/CLR  
R/CLR  
Code  
Effect  
0
1
Normal operation  
Indicates V  
fell below the UVLO threshold while  
LDO1 and/or LDO2 are enabled or that the supply has  
risen above the rising thresholds after a UVLO fault.  
IN12  
Reading the the associated status bit provides present state of the input  
voltage.  
Code  
Effect  
0
1
Normal Operation  
Indicates that the V  
fell below the UVLO threshold  
IN3  
while LDO3 was enabled or that the supply has risen  
above the rising thresholds after a UVLO fault.  
Reading the the associated status bit provides present state of the input  
voltage.  
Code  
Effect  
0
1
Normal Operation  
Indicates V  
fell below the UVLO threshold while  
LDO4 where enabled or that the supply has risen  
above the rising thresholds after a UVLO fault.  
IN4  
Reading the the associated status bit provides present state of the input  
voltage.  
1
0
TSD_INT  
0
0
R/CLR  
R/CLR  
Code  
Effect  
0
1
Clear  
A Thermal Shutdown event detected or that the  
temperature has fallen below the hysteresis level.  
TSD_WRN_INT  
Code  
Effect  
0
1
Clear  
Thermal Shutdown Warning threshold was  
surpassed or that the temperature has fallen below the  
hysteresis level.  
www.onsemi.com  
48  
FAN53880  
Table 35. REGISTER DETAILS 0x14 STATUS1  
0x14 STATUS1  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
7
LDO4_OVP_STAT  
0
Read  
Code  
Effect  
0
Clear  
1
An OverVoltage condition exists on LDO4 output  
6
5
4
3
2
LDO3_OVP_STAT  
LDO2_OVP_STAT  
LDO1_OVP_STAT  
LDO4_UVP_STAT  
LDO3_UVP_STAT  
0
0
0
0
0
Read  
Read  
Read  
Read  
Read  
Code  
Effect  
0
Clear  
1
An OverVoltage condition exists on LDO3 output.  
Code  
Effect  
0
Clear  
1
An OverVoltage condition exists on LDO2 output  
Code  
Effect  
0
Clear  
1
An OverVoltage condition exists on LDO1 output  
Code  
Effect  
0
Clear  
1
Code  
0
An UnderVoltage condition exists on LDO4 output.  
Effect  
Clear  
1
An UnderVoltage condition exists on the output of  
LDO3  
1
0
LDO2_UVP_STAT  
LDO1_UVP_STAT  
0
0
Read  
Read  
Code  
Effect  
0
Clear  
1
Code  
0
An UnderVoltage condition exists on LDO2 output  
Effect  
Clear  
1
An UnderVoltage condition exists on LDO1 output  
Table 36. REGISTER DETAILS 0x15 STATUS2  
0x15 STATUS2  
Default = 00000000  
Bit  
Name  
Default  
Type  
Description  
7
BST_OVP_STAT  
0
Read  
Code  
Effect  
0
Clear  
1
An OverVoltage condition exists on the Boost output.  
6
5
BUCK_OVP_STAT  
BST_UVP_STAT  
0
0
Read  
Read  
Code  
Effect  
0
Clear  
1
Code  
0
An OverVoltage condition exists on the Buck output.  
Effect  
Clear  
1
An UnderVoltage condition exists on the Boost  
output.  
www.onsemi.com  
49  
 
FAN53880  
Table 36. REGISTER DETAILS 0x15 STATUS2  
4
BUCK_UVP_STAT  
0
Read  
Code  
Effect  
0
1
Clear  
An UnderVoltage condition exists on the Buck  
output.  
3
2
1
0
LDO4_OCP_STAT  
LDO3_OCP_STAT  
LDO2_OCP_STAT  
LDO1_OCP_STAT  
0
0
0
0
Read  
Read  
Read  
Read  
Code  
Effect  
0
Clear  
1
An OverCurrent condition exists on LDO4 output  
Code  
Effect  
0
Clear  
1
An OverCurrent condition exists on LDO3 output  
Code  
Effect  
0
Clear  
1
Code  
0
An OverCurrent condition exists on LDO2 output  
Effect  
Clear  
1
An OverCurrent condition exists on LDO1 output  
www.onsemi.com  
50  
FAN53880  
Table 37. REGISTER DETAILS 0x16 STATUS3  
0x16 STATUS3  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
7
BST_IPK_STAT  
0
Read  
Code  
Effect  
0
Clear  
1
Code  
0
Boost is hitting the Peak Current limit.  
6
5
BUCK_IPK_STAT  
0
0
Read  
Read  
Effect  
Clear  
1
The Buck is hitting the Peak Current limit  
Reset condition: 0  
Effect  
APVIN_UVLO_STAT  
Code  
0
1
Normal Operation  
Indicates AV and/or PV are below the UVLO  
IN  
IN  
threshold.  
4
3
2
LDO12_UVLO_STAT  
LDO3_UVLO_STAT  
LDO4_UVLO_STAT  
0
0
0
Read  
Read  
Read  
Code  
Effect  
0
1
Normal Operation  
indicates V  
is below the UVLO threshold while  
LDO1 and/or LDO2 have been enabled.  
IN12  
Code  
Effect  
0
1
Normal Operation  
Indicates V  
power rail is below the UVLO  
threshold while LDO3 is enabled.  
IN3  
Code  
Effect  
0
1
Normal Operation  
Indicates V  
is below the UVLO threshold while  
LDO4 is been commanded to be enabled.  
IN4  
1
0
TSD_STAT  
0
0
Read  
Read  
Code  
Effect  
0
Clear  
1
Code  
0
The device is in thermal shutdown (TSD)  
TSD_WRN_STAT  
Effect  
Clear  
1
The temperature is above the Thermal Shutdown  
Warning threshold and shutdown is impending.  
Table 38. REGISTER DETAILS 0x17 MINT1  
0x17 MINT1  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
7
MASK_LDO4_OVP  
0
R/W  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when LDO4 OverVoltage  
interrupt occurs.  
6
MASK_LDO3_OVP  
0
R/W  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when LDO3 OverVoltage  
interrupt occurs.  
www.onsemi.com  
51  
 
FAN53880  
Table 38. REGISTER DETAILS 0x17 MINT1  
0x17 MINT1  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
5
MASK_LDO2_OVP  
0
R/W  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when LDO2 OverVoltage  
interrupt occurs.  
4
3
2
1
0
MASK_LDO1_OVP  
MASK_LDO4_UVP  
MASK_LDO3_UVP  
MASK_LDO2_UVP  
MASK_LDO1_UVP  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when LDO1 OverVoltage  
interrupt occurs.  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when LDO4  
UnderVoltage interrupt occurs.  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when LDO3  
UnderVoltage interrupt occurs.  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when LDO2  
UnderVoltage interrupt occurs.  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when LDO1  
UnderVoltage interrupt occurs.  
Table 39. REGISTER DETAILS 0x18 MINT2  
0x18 MINT2  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
7
MASK_BST_OVP  
0
R/W  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when Boost OverVoltage  
interrupt occurs.  
6
5
4
MASK_BUCK_OVP  
MASK_BST_UVP  
MASK_BUCK_UVP  
0
0
0
R/W  
R/W  
R/W  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when Buck OverVoltage  
interrupt occurs.  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when Boost  
UnderVoltage interrupt occurs.  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when Buck UnderVoltage  
interrupt occurs.  
www.onsemi.com  
52  
 
FAN53880  
Table 39. REGISTER DETAILS 0x18 MINT2  
0x18 MINT2  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
3
MASK_LDO4_OCP  
0
R/W  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when LDO4 OverCurrent  
interrupt occurs.  
2
1
0
MASK_LDO3_OCP  
MASK_LDO2_OCP  
MASK_LDO1_OCP  
0
0
0
R/W  
R/W  
R/W  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when LDO3 OverCurrent  
interrupt occurs.  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when LDO2 OverCurrent  
interrupt occurs.  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when LDO1 OverCurrent  
interrupt occurs.  
Table 40. REGISTER DETAILS 0x19 MINT3  
0x19 MINT3  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
7
MASK_BST_IPK  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when Boost Peak  
Current limit interrupt occurs.  
6
5
4
3
2
MASK_BUCK_IPK  
MASK_APVIN_UVLO  
MASK_LDO12_UVLO  
MASK_LDO3_UVLO  
MASK_LDO4_UVLO  
0
0
0
0
0
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when Buck Peak Current  
limit interrupt occurs.  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when AV /PV Input  
IN  
IN  
Power Under Voltage interrupt occurs.  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when V  
Input Power  
IN12  
Under Voltage interrupt occurs.  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when V  
Input Power  
IN3  
Under Voltage interrupt occurs.  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when V  
Input Power  
IN4  
Under Voltage interrupt occurs.  
www.onsemi.com  
53  
 
FAN53880  
Table 40. REGISTER DETAILS 0x19 MINT3  
0x19 MINT3  
Default = 00000000  
Description  
Bit  
Name  
Default  
Type  
1
MASK_TSD  
0
R/W  
Code  
Effect  
0
1
No masking of interrupt.  
INTB pin is not pulled low when a Thermal  
Shutdown interrupt occurs.  
0
MASK_TSD_WRN  
0
R/W  
Code  
Effect  
0
1
No masking of interrupt.  
INTB Pin is not pulled low when a Thermal  
Shutdown Warning interrupt occurs.  
Table 41. REGISTER DETAILS 0x1A STATUS4  
0x1A STATUS4  
Default = 00000000  
Description  
Bit  
7
Name  
Default  
Type  
UNUSED  
6
CHIP_SUSD  
0
Read  
Code  
Effect  
0
1
Chip normal state  
The entire chip has been suspended due to a global  
fault condition.  
5
4
3
2
1
0
BOOST_SUSD  
BUCK_SUSD  
LDO4_SUSD  
LDO3_SUSD  
LDO2_SUSD  
LDO1_SUSD  
0
0
0
0
0
0
Read  
Read  
Read  
Read  
Read  
Read  
Code  
Effect  
0
1
Boost normal state  
Boost converter has been suspended due to a fault  
condition.  
Code  
Effect  
0
1
Buck in normal state.  
Buck converter has been suspended due to a fault  
condition.  
Code  
Effect  
0
1
LDO4 in normal state.  
LDO4 converter has been suspended due to a fault  
condition.  
Code  
Effect  
0
1
LDO3 in a normal state  
LDO3 converter has been suspended due to a fault  
condition.  
Code  
Effect  
0
1
LDO2 in normal state  
LDO2 converter has been suspended due to a fault  
condition.  
Code  
Effect  
0
1
LDO1 is in normal state  
LDO1 converter has been suspended due to a fault  
condition.  
www.onsemi.com  
54  
FAN53880  
APPLICATION CIRCUIT  
Application Circuit Diagram  
PVIN  
AVIN  
SW1  
L1  
CPVIN  
CBUCK  
PGND1  
FB1  
CAVIN  
CVIN12  
CVIN3  
LDO1  
AGND  
VIN12  
CLDO1  
CLDO3  
LDO2  
CLDO2  
LDO3  
LDO4  
VIN3  
VIN4  
FAN53880  
CVIN4  
CLDO4  
VBST  
SW2  
SW2  
CBST  
L2  
PGND2  
CBSTIN  
HWEN  
SCL  
BSTEN  
N/C  
SDA  
N/C  
INTB  
DGND  
Figure 37. Application Diagram  
Application Circuit Components  
Table 42. RECOMMENDED EXTERNAL COMPONENTS  
Component  
Manufacturer  
TDK  
Part Number  
Value  
10 mF  
10 mF  
10 mF  
22 mF  
2.2 mF  
Case Size  
Voltage Rating  
6.3 V  
C
C1005X5R0J106M050BC  
C1005X5R0J106M050BC  
C1005X5R0J106M050BC  
GRM188R61A226ME15D  
GRM033R60J225ME47D  
0402/1005 (1.0mm x 0.5mm)  
0402/1005 (1.0mm x 0.5mm)  
0402/1005 (1.0mm x 0.5mm)  
0603/1608 (1.6mm x 0.8mm)  
0201/0603 (0.6mm x 0.3mm)  
PVIN  
BUCK  
BSTIN  
C
TDK  
6.3 V  
C
TDK  
6.3 V  
C
Murata  
Murata  
10 V  
BST  
C
, C  
VIN4  
,
6.3 V  
VIN12  
VIN3  
C
C
C
, C  
LDO3  
,
Murata  
GRM033R60J225ME47D  
2.2 mF  
4.7 mF  
0201/0603 (0.6mm x 0.3mm)  
0402/1005 (1.0mm x 0.5mm)  
6.3 V  
6.3 V  
LDO1  
LDO2  
, C  
LDO4  
C
TDK  
C1005X5R0J475M  
MEKK2016T1R0M  
AVIN  
L1  
Taiyo Yuden  
1.0 mH, I  
= 4.0 A,  
0806/2016 (2.0mm x 1.6mm x  
1.0mm)  
SAT  
R
= 50 mW  
DC  
L2  
Taiyo Yuden  
MEKK2012HR47M  
0.47 mH, I  
= 5.3 A,  
0805/2012 (2.0mm x 1.2mm x  
1.0mm)  
SAT  
R
= 25 mW  
DC  
www.onsemi.com  
55  
FAN53880  
Recommended Alternative Components  
Table 43. ALTERNATIVE COMPONENTS  
Component  
Manufacturer  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
Semco  
Part Number  
Value  
10 mF  
10 mF  
10 mF  
22 mF  
2.2 mF  
Case Size  
Voltage Rating  
6.3 V  
C
JMK105CBJ106MV  
JMK105CBJ106MV  
JMK105CBJ106MV  
CL10A226MP8NUXE  
CLO3A225MQCRNC  
0402/1005 (1.0mm x 0.5mm)  
0402/1005 (1.0mm x 0.5mm)  
0402/1005 (1.0mm x 0.5mm)  
0603/1608 (1.6mm x 0.8mm)  
0201/0603 (0.6mm x 0.3mm)  
PVIN  
BUCK  
BSTIN  
C
6.3 V  
C
6.3 V  
C
10 V  
BST  
C
, C  
LDO3  
,
Semco  
6.3 V  
LDO1  
LDO2  
LDO4  
C
, C  
L1  
TDK  
TFM201610GHM1R0MTAA 1.0 mH, I  
= 3.8 A, 2016 (2.0mm x 1.6mm x 1.0mm)  
SAT  
R
= 50 mW  
DC  
www.onsemi.com  
56  
FAN53880  
APPLICATION GUIDELINES  
Buck Input Capacitor Considerations  
A minimum capacitance of 2.2 mF with ceramic  
the PWMtoPFM transition point, output voltage ripple,  
and efficiency.  
dielectric, input capacitor should be placed as close as  
The ripple current (DI) of the regulator is:  
possible between the V pin and GND to minimize the  
parasitic inductance. If a long wire is used to bring power to  
the IC, additional “bulk” capacitance (electrolytic or  
IN  
VOUT  
VIN  
V
IN * VOUT  
L @ fSW  
@ ǒ  
Ǔ
DI [  
The maximum average load current, I  
related to the peak current limit, I  
current, given by:  
is  
MAX(LOAD),  
tantalum) should be placed between C and the power  
IN  
, by the ripple  
LIM(PK)  
source lead to reduce the ringing that can occur between the  
inductance of the power source leads and C .  
IN  
The effective capacitance value decreases as  
DI  
2
I
MAX(LOAD) + ILIM(PK) *  
V
increases due to DC bias effects.  
IN  
The FAN53880 is optimized for operation with L = 1.0uH.  
The inductor should be rated to maintain at least 80% of its  
Buck Output Capacitor Considerations  
FAN53880 uses a 22 mF, 0402 (1005 metric) for an output  
capacitor. The effective capacitance of ceramic capacitors  
decrease as the bias voltage across the capacitor increases.  
Increasing the output capacitor has no effect on loop stability  
and therefore to overcome the effects of bias voltage across  
value at I  
. It is recommended to select an inductor  
LIM(PK)  
where its saturation current is above the I  
value.  
LIM(PK)  
Efficiency is affected by the inductor DCR and inductance  
value. Decreasing the inductor value for a given physical  
size typically decreases the DCR; but because DI increases,  
the RMS current increases, as do the core and skin effect  
losses.  
C
OUT  
, the capacitor value can be increased to reduce the  
output voltage ripple and/or to improve transient response.  
Output voltage ripple is defined as:  
VOUT  
VIN  
V
IN * VOUT  
L @ fSW  
@ ǒ  
Ǔ
DI [  
f
SW @ COUT @ ESR2  
2 @ D @ (1 * D)  
1
ƪ
ƫ
DVOUT + DIL  
)
8 @ fSW @ COUT  
The increased RMS current produces higher losses  
through the R of the IC MOSFETs, as well as the  
DS(ON)  
Buck Inductor Considerations  
inductor DCR. Increasing the inductor value produces lower  
RMS currents, but degrades transient response. For a given  
physical inductor size, increased inductance usually results  
in an inductor with lower saturation current and higher DCR.  
The output inductor must meet both the required  
inductance and the energyhandling capability of the  
application. The inductor value affects average current limit,  
Table 44.  
Inductor Value  
Increase  
I
DV  
Transient Response  
Degraded  
MAX(LOAD)  
OUT  
Increase  
Decrease  
Increase  
Decrease  
Decrease  
Improved  
www.onsemi.com  
57  
FAN53880  
Boost Input Capacitor Considerations  
The 10 mF ceramic 0402 (1005 metric) input capacitor  
LDO Input Capacitor Considerations  
If long wires are used to bring power to an evaluation  
board, additional “bulk” capacitance (electrolytic or  
tantalum) should be placed (on Eval board) between  
should be placed as close as possible between the V pin  
IN  
and GND to minimize the parasitic inductance. If a long wire  
is used to bring power to the IC, additional “bulk”  
capacitance (electrolytic or tantalum) should be placed (on  
C
IN  
and the power source lead to reduce ringing that can  
occur between the inductance of the power source leads and  
C .  
Eval board) between C and the power source lead to  
IN  
IN  
reduce the ringing that can occur between the inductance of  
The effective capacitance value decreases as  
V increases due to DC bias effects. Adding additional  
IN  
the power source leads and C .  
IN  
The effective capacitance value decreases as  
capacitance to the minimum recommended ensures reliable  
operation.  
V
increases due to DC bias effects.  
IN  
Boost Output Capacitor  
LDO Output Capacitor Considerations  
Output voltage ripple is inversely proportional to C  
.
FAN53880 LDO’s are tuned for high load capacitance of  
2.2 to 26 mF. Total capacitance on the LDO output that is  
outside this window may result in instability or as a  
minimum, the LDO not meeting the performance listed in  
the Electrical and System Characteristics tables. For  
instance: Adding additional capacitance can slow the soft  
start when the LDO is enabled but also improves transient  
response. The effective capacitance of ceramic capacitors  
decrease as the bias voltage across the capacitor increases.  
BST  
During t , when the boost switch is on, all load current is  
ON  
supplied by C . The maximum V  
occurs when V  
BST  
RIPPLE  
IN  
is minimum and I  
is maximum.  
LOAD  
It is recommended to use the capacitor shown in either the  
Recommended External Components or the Alternate  
Components table. If a different component is chosen, it is  
important that it’s effective capacitance is equal to or greater  
than that of the Recommended Component. For better ripple  
performance, additional output capacitance can be added.  
Boost Inductor Considerations  
The FAN53880 employs a peak current limiting, so peak  
inductor current can reach 4 A for a short duration during  
overload conditions. Saturation effects causes the inductor  
current ripple to become higher under high loading, as only  
the peak of the inductor current ripple is controlled.  
www.onsemi.com  
58  
FAN53880  
Recommended Layout  
All Layer Layout  
Figure 38. All Layer Layout  
www.onsemi.com  
59  
FAN53880  
Layer 1  
Figure 39. Layer 1  
www.onsemi.com  
60  
FAN53880  
Layer 2, Ground Plane  
Figure 40. Layer 2, Ground Plane  
www.onsemi.com  
61  
FAN53880  
Layer 3, Signal Plane  
Figure 41. Layer 3, Signal Plane  
www.onsemi.com  
62  
FAN53880  
Layer 4, Power Plane  
Figure 42. Layer 4, Power Plane  
Layout Considerations  
For thermal reasons, it is suggested to maximize the pour  
To minimize spikes for the buck at V  
, C  
must be  
area for all planes other than SW. Especially the ground pour  
should be set to fill all available PCB surface area and tied  
to internal layers with a cluster of thermal vias.  
OUT OUT  
placed as close as possible to PGND1 and VOUT, as shown  
in the recommended layout. For the boost, CIN should be  
located as close to PGND2 as possible to minimize the  
spikes and noise generated by the switching node LX2.  
www.onsemi.com  
63  
FAN53880  
PACKAGE DIMENSIONS  
WLCSP25 2.16x2.16x0.586  
CASE 567QT  
ISSUE A  
Table 45. PRODUCT SPECIFIC DIMENSIONS  
Product  
D (mm)  
E (mm)  
X (mm)  
Y (mm)  
FAN53880  
2.16  
2.16  
0.08  
0.08  
www.onsemi.com  
64  
FAN53880  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
FAN53880/D  

相关型号:

FAN5400

USB-Compliant Single-Cell Li-Ion Switching Charger
FAIRCHILD

FAN54005UCX

电池充电控制器,开关,200mA - 1.45 A,带 USB-OTG 升压稳压器
ONSEMI

FAN5400UCX

USB-Compliant Single-Cell Li-Ion Switching Charger
FAIRCHILD

FAN5400_11

FAN5400 / FAN5401 / FAN5402 / FAN5403 / FAN5404 / FAN5405 USB-Compliant Single-Cell Li-Ion Switching Charger
FAIRCHILD

FAN5401

USB-Compliant Single-Cell Li-Ion Switching Charger
FAIRCHILD

FAN54010

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD

FAN54010UCX

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD

FAN54010UCX(1)

FAN54010 / FAN54011 / FAN54012 / FAN54013 / FAN54014
FAIRCHILD

FAN54011

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD

FAN54011UCX

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD

FAN54011UCX(1)

FAN54010 / FAN54011 / FAN54012 / FAN54013 / FAN54014
FAIRCHILD

FAN54012

USB-Compliant Single-Cell Li-Ion Switching Charger with USB-OTG Boost Regulator
FAIRCHILD