FAN53555BUC05X [ONSEMI]

5 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator;
FAN53555BUC05X
型号: FAN53555BUC05X
厂家: ONSEMI    ONSEMI
描述:

5 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator

开关
文件: 总32页 (文件大小:1448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FAN53555  
5 A, 2.4 MHz, Digitally  
Programmable TinyBuck®  
Regulator  
Description  
www.onsemi.com  
The FAN53555 is a stepdown switching voltage regulator that  
delivers a digitally programmable output from an input voltage supply  
of 2.5 V to 5.5 V. The output voltage is programmed through an I C  
2
interface capable of operating up to 3.4 MHz.  
Using a proprietary architecture with synchronous  
2.5 V to 5.5 V Input Voltage Range  
rectification, the FAN53555 is capable of delivering 5 A  
continuous at over 80% efficiency, while maintaining over  
80% efficiency at load currents as low as 10 mA. Pulse  
currents as high as 6.5 A can be supported by the 05 option.  
The regulator operates at a nominal fixed frequency of  
2.4 MHz, which reduces the value of the external  
components to 330 nH for the output induction and as low  
as 20 mF for the output capacitor. Additional output  
capacitance can be added to improve regulation during load  
transients without affecting stability. Inductance up to  
1.2 mH may be used with additional output capacitance.  
At moderate and light loads, Pulse Frequency Modulation  
(PFM) is used to operate in PowerSave Mode with a typical  
quiescent current of 60 mA. Even with such a low quiescent  
current, the part exhibits excellent transient response during  
large load swings. At higher loads, the system automatically  
switches to fixedfrequency control, operating at 2.4 MHz.  
In Shutdown Mode, the supply current drops below 1 mA,  
reducing power consumption. PFM Mode can be disabled if  
constant frequency is desired. The FAN53555 is available in  
a 20bump, 1.6 x 2 mm, WLCSP.  
Digitally Programmable Output Voltage:  
00/01/03/05/08/18 Options: 0.61.23 V in 10 mV  
Steps  
04/042/09/ Options: 0.6031.411 V in 12.826 mV  
Steps  
23, 79 Option: 0.601.3875 V in 12.5 mV Steps  
24 Option: 0.6031.420 V in 12.967 mV Steps  
13 Option: 0.81.43 V in 10 mV Steps  
Programmable Slew Rate for Voltage Transitions  
2
I CCompatible Interface Up to 3.4 Mbps  
PFM Mode for High Efficiency in Light Load  
Quiescent Current in PFM Mode: 60 mA (Typical)  
Internal SoftStart  
Input UnderVoltage Lockout (UVLO)  
Thermal Shutdown and Overload Protection  
20Bump WaferLevel Chip Scale Package (WLCSP)  
Applications  
Application, Graphic, and DSP Processors  
ARM®, Krait, OMAP™, NovaThor™, ARMADA  
Features  
Hard Disk Drives  
FixedFrequency Operation: 2.4 MHz  
BestinClass Load Transient  
Continuous Output Current Capability: 5 A  
Pulse Current Capability: 6.5 A (05 Option)  
Tablets, Netbooks, UltraMobile PCs  
Smart Phones  
Gaming Devices  
PVIN  
CIN1  
CIN  
EN  
VOUT  
SW  
SDA  
L1  
FAN53555  
SCL  
VDD  
COUT  
Core  
Processor  
VSEL  
GND  
(System Load)  
AGND  
GND  
Figure 1. Typical Application  
© Semiconductor Components Industries, LLC, 2010  
1
Publication Order Number:  
March, 2018 Rev. 3  
FAN53555/D  
 
FAN53555  
Table 1. ORDERING INFORMATION  
Max. R5C  
Max. Pulse  
Current  
(50 ms)  
PowerUp Defaults  
2
I C Slave  
A1 PIN  
Function  
Programmable  
Output Voltage  
MS Cur-  
rent  
VSEL0  
1.05  
VSEL1  
1.20  
Address  
Part Number  
FAN53555UC00X  
FAN53555UC01X  
FAN53555UC03X  
EN Pin Low  
VSEL  
VSEL  
5 A  
5 A  
5 A  
N/A  
N/A  
N/A  
Registers not  
reset  
0.90  
OFF  
N/A  
0.61.23 V in 10mV  
0.90  
PGOOD  
0.6031.411 V in  
Registers  
reset  
FAN53555UC04X  
FAN53555UC05X  
1.10  
0.90  
0.90  
1.02  
1.02  
1.20  
OFF  
OFF  
1.15  
1.15  
VSEL  
VSEL  
VSEL  
VSEL  
VSEL  
5 A  
5 A  
5 A  
4 A  
4 A  
N/A  
6.5 A  
6.5 A  
N/A  
12.826mV  
FAN53555BUC05X  
(Note 1)  
0.61.23 V in 10mV  
FAN53555UC08X  
FAN53555BUC08X  
(Note 1)  
N/A  
FAN53555BUC09X  
(Note 1)  
1.10  
1.10  
VSEL  
3 A  
N/A  
0.6031.411 V in  
Registers not  
reset  
12.826mV  
C0  
FAN53555UC09X  
FAN53555UC13X  
1.10  
1.15  
1.10  
1.15  
VSEL  
VSEL  
3 A  
5 A  
N/A  
N/A  
0.81.43 V in 10mV  
0.61.23 V in 10mV  
FAN53555BUC13X  
(Note 1)  
1.15  
1.02  
1.02  
1.15  
1.15  
1.15  
VSEL  
VSEL  
VSEL  
5 A  
5 A  
5 A  
N/A  
N/A  
N/A  
FAN53555UC18X  
FAN53555BUC18X  
(Note 1)  
Registers  
reset  
FAN5355BUC79X  
0.85  
N/A  
PGOOD  
5 A  
N/A  
FAN53555BUC23X  
(Note 1)  
0.61.3875 V in  
Registers not  
reset  
1.15  
1.225  
1.225  
1.15  
1.212  
1.212  
VSEL  
VSEL  
VSEL  
5 A  
4 A  
4 A  
N/A  
N/A  
N/A  
12.5mV  
FAN53555UC24X  
0.6031.42 V in  
12.967mV  
FAN53555BUC24X  
(Note 1)  
Registers  
reset  
FAN53555UC042X  
(Note 2)  
0.6031.411 V in  
1.10  
1.20  
C4  
VSEL  
5 A  
N/A  
12.826mV  
1. The FAN53555BUC05X, FAN53555BUC08X, FAN53555BUC09X, FAN53555BUC13X, FAN53555BUC18X, FAN53555BUC23X, and  
FAN53555BUC24X, include backside lamination.  
2
2. The 042 option is the same as the 04 option, except the I C slave addresses.  
3. Temperature Range 40 to 85 °C, Package WLCSP20, Packing Method Tape & Reel  
www.onsemi.com  
2
 
FAN53555  
RECOMMENDED EXTERNAL COMPONENTS  
Table 2. RECOMMENDED EXTERNAL COMPONENTS FOR 5 A MAXIMUM LOAD CURRENT  
Component  
Description  
Vendor  
Parameter  
Typ.  
0.33  
13  
Unit  
mH  
L
See Table 3  
L1  
330 nH Nominal  
DCR  
mW  
2 Pieces;  
GRM21BR60J226M (Murata)  
C2012X5R0J226M (TDK)  
C
C
C
C
C
44  
10  
20  
10  
OUT  
22 μF, 6.3 V, X5R, 0805  
1 Piece;  
10 μF, 10 V, X5R, 0805  
LMK212BJ106KGT (Taiyo Yuden)  
mF  
C2012X5R1A106M (TDK)  
C
IN  
2 Pieces;  
10 μF, 6.3 V, X5R, 0805  
GRM21BR60J106M (Murata)  
C2012X5R0J106M (TDK)  
GRM155R71E103K (Murata)  
C1005X7R1E103K (TDK)  
C
10 nF, 25 V, X7R, 0402  
nF  
IN1  
Table 3. RECOMMENDED INDUCTORS FOR HIGHCURRENT APPLICATIONS  
Component Dimensions  
I
MAXDC  
(Note 4)  
L
W
H
Manufacturer  
Vishay  
Part#  
L (nH)  
470  
330  
470  
330  
DCR (mW)  
20.0  
IHLP1616ABERR47M01  
MMD04ABNR33MM1RU  
MMD04ABNR47MM1RU  
SM1608R33M  
5.0  
7.5  
5.0  
9.0  
6.7  
5.0  
5.4  
4.5  
4.5  
4.5  
4.5  
4.7  
4.7  
5.0  
4.1  
4.1  
4.1  
4.1  
4.2  
4.2  
5.0  
1.2  
1.2  
1.2  
2.0  
1.2  
1.2  
2.0  
Mag. Layers (Note 5)  
Mag. Layers  
InterTechnical  
Bournes  
12.5  
20.0  
9.6  
SRP4012R33M  
330  
470  
470  
15.0  
Bournes  
SRP4012R47M  
20.0  
TDK  
VLC5020TR47M  
15.0  
4. I  
is the lesser current to produce 40°C temperature rise or 30% inductance rolloff.  
MAXDC  
5. Preferred inductor value is 330 nH and all dynamic characterization was performed with this coil.  
FAN5355524, 08, and 09 Reduced Output Current (4 A Max. RMS. for 08, and 24, 3 A Max. RMS for  
09) Smaller Footprint Application  
The FAN5355524, 08, and 09 were developed to provide power for core processors with highperformance graphics  
acceleration in LiIonpowered handheld devices. These applications require a very compact solution. The smaller input and  
output capacitors in the table below assume that additional bypass capacitance exists across the battery in fairly close proximity  
to the regulator(s). The C capacitors specified below are the capacitors that are required in very close proximity to VIN and  
IN  
PGND (see layout recommendations in Figure 2 below).  
Table 4. RECOMMENDED EXTERNAL COMPONENTS FOR LOWERCURRENT APPLICATIONS WITH  
FAN53555080924  
Component  
Description  
Vendor  
Parameter  
Typ  
Unit  
L1  
470 or 330 nH, 2016 case size  
See Table 5  
08, ,24 Option  
44  
22  
2 Pieces 22 μF, 6.3 V, X5R, 0603  
C
C1608X5R0J226M (TDK)  
C
OUT  
09 Option  
1 Piece 22 μF, 6.3 V, X5R, 0603  
mF  
1 Piece;  
C
GRM155R61A106M (Murata)  
C
C
10  
10  
IN  
10 μF, 10 V, X5R, 0402  
C
10 nF, 25 V, X5R, 0201  
TMK063CG100DTF (Taiyo Yuden)  
nF  
IN1  
www.onsemi.com  
3
 
FAN53555  
Table 5. RECOMMENDED INDUCTORS FOR LOWERCURRENT APPLICATIONS WITH FAN53555080924  
Component Dimensions  
I
MAXDC  
(Note 6)  
L
W
H
Manufacturer  
Toko  
Part#  
L (nH)  
330  
DCR (mW Typ.)  
DFE201612R-HR33N  
DFE201612CR47N  
PIFE20161BR47MS39  
CIGT201610HMR47SCE  
25  
40  
30  
30  
3.2  
2.0  
2.0  
2.0  
2.0  
1.6  
1.6  
1.6  
1.6  
1.2  
1.2  
1.2  
0.9  
Toko  
470  
3.2  
Cyntek  
470  
3.1  
SEMCO  
470  
3.1  
6. I  
is the lesser current to produce 40°C temperature rise or 30% inductance rolloff.  
MAXDC  
LAYOUT  
Figure 2. ReducedFootprint Layout  
PIN CONFIGURATION  
VSEL*  
A1  
EN  
A2  
SCL  
A3  
VOUT  
A4  
A4  
B4  
C4  
D4  
E4  
A3  
B3  
C3  
D3  
E3  
A2  
B2  
C2  
D2  
E2  
A1  
B1  
C1  
D1  
E1  
SDA  
B1  
AGND  
B4  
B2  
C2  
D2  
E2  
B3  
C3  
D3  
E3  
GND  
C1  
D1  
E1  
C4  
D4  
E4  
VIN  
SW  
A1 = VSEL for 00, 01, 04, 05, 08, 09, 13, 18, 23, 24  
A1 = PGOOD for 03,79  
Figure 3. Top View  
Table 6. PIN DEFINITIONS  
Pin #  
Name  
Description  
VSEL  
(Except 03  
Option)  
Voltage Select. When this pin is LOW, V  
set by the VSEL1 register.  
is set by the VSEL0 register. When this pin is HIGH, V  
is  
OUT  
OUT  
A1  
PGOOD  
(03)  
Power Good. This opendrain pin pulls LOW if an overload condition occurs or softstart is in progress.  
Enable. The device is in Shutdown Mode when this pin is LOW. All register values are kept during shut-  
down. Options 00, 01, 03, 05, 08 09, 13, 18, and 23 do not reset register values when EN is raised. The 04,  
24, 79, and 042 options reset all registers to default values when EN pin is LOW. If pulled up to a lowim-  
pedance voltage source greater than 1.8 V, use at least 100 W series resistor.  
A2  
EN  
2
A3  
A4  
B1  
SCL  
VOUT  
SDA  
I C Serial Clock  
VOUT. Sense pin for VOUT. Connect to COUT.  
2
I C Serial Data  
B2, B3,  
C1 – C4  
GND  
Ground. Lowside MOSFET is referenced to this pin. C and C  
should be returned with a minimal path  
IN  
OUT  
to these pins.  
B4  
AGND  
Analog Ground. All signals are referenced to this pin. Avoid routing high dV/dt AC currents through this pin.  
www.onsemi.com  
4
 
FAN53555  
Table 6. PIN DEFINITIONS  
Pin #  
Name  
Description  
D1, D2,  
E1, E2  
VIN  
Power Input Voltage. Connect to the input power source. Connect to C with minimal path.  
IN  
D3, D4,  
E3, E4  
SW  
Switching Node. Connect to the inductor.  
Table 7. ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Min  
0.3  
0.3  
0.3  
Max  
7.0  
6.5  
2.0  
Unit  
IC Not Switching  
IC Switching  
Voltage on SW, VIN Pins  
V
V
)
Tied without Series Resistance  
V
IN  
Voltage on EN Pin  
Tied through Series Resistance of  
0.3  
V
V
(Note 7)  
IN  
at Least 100 W  
Voltage on All Other Pins  
IC Not Switching  
0.3  
0.3  
(Note 7)  
3.0  
V
V
IN  
V
Voltage on VOUT Pin  
Maximum Slew Rate of V > 6.5 V, PWM Switching  
OUT  
V
100  
V/ms  
INOV_SLEW  
IN  
Human Body Model per  
2000  
1500  
JESD22A114  
ESD  
Electrostatic Discharge Protection Level  
V
Charged Device Model per  
JESD22C101  
T
Junction Temperature  
40  
65  
+150  
+150  
+260  
°C  
°C  
°C  
J
T
Storage Temperature  
STG  
T
L
Lead Soldering Temperature, 10 Seconds  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
7. Lesser of 7 V or V +0.3 V.  
IN  
Table 8. RECOMMENDED OPERATING CONDITIONS  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions  
are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or  
designing to Absolute Maximum Ratings.  
Symbol  
Parameter  
Min  
2.5  
0
Typ  
Max  
5.5  
5
Unit  
V
V
IN  
Supply Voltage Range  
Output Current  
I
A
OUT  
L
Inductor  
0.33  
10  
mH  
mF  
mF  
°C  
°C  
C
Input Capacitor  
IN  
C
Output Capacitor  
44  
OUT  
T
A
Operating Ambient Temperature  
Operating Junction Temperature  
40  
40  
+85  
T
J
+125  
Table 9. THERMAL PROPERTIES  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
θ
JA  
JunctiontoAmbient Thermal Resistance (Note 8)  
38  
°C/W  
8. See Thermal Considerations in the Application Information section.  
www.onsemi.com  
5
 
FAN53555  
Table 10. ELECTRICAL CHARACTERISTICS  
Minimum and maximum values are at V = 2.5 V to 5.5 V, T = 40°C to +85°C, unless otherwise noted. Typical values are at T =  
IN  
A
A
25°C, V = 5 V, and EN = HIGH.  
IN  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
POWER SUPPLIES  
I
I
=0  
60  
43  
100  
mA  
mA  
mA  
mA  
V
LOAD  
I
Quiescent Current  
Q
=0, MODE Bit=1 (Forced PWM)  
LOAD  
H/W Shutdown Supply Current  
S/W Shutdown Supply Current  
UnderVoltage Lockout Threshold  
UnderVoltage Lockout Hysteresis  
EN=GND  
EN= V , BUCK_ENx=0  
0.1  
41  
5.0  
75  
I
SD  
IN  
V
V
Rising  
2.35  
350  
2.45  
UVLO  
IN  
V
mV  
UVHYST  
EN, VSEL, SDA, SCL  
V
highLevel Input Voltage  
lowLevel Input Voltage  
Logic Input Hysteresis Voltage  
Input Bias Current  
1.1  
V
V
IH  
V
IL  
LHYST  
0.4  
V
160  
mV  
mA  
I
IN  
Input Tied to GND or VIN  
0.01  
1.00  
PGOOD (03, 79 Option)  
I
PGOOD PullDown Current  
1
mA  
OUTL  
OUTH  
I
PGOOD HIGH Leakage Current  
0.01  
1.00  
mA  
V
OUT  
REGULATION  
V
REG  
V
OUT  
DC Accuracy  
I
=0, Forced PWM, V =VSEL0  
OUT  
1.5  
2.0  
1.5  
4.0  
%
%
OUT(DC)  
Default Value  
08, 24 Op-  
tions  
2.5 V V 4.5 V, V  
IN OUT  
from Minimum to Maximum,  
=0 to 4 A, Auto  
I
OUT(DC)  
PFM/PWM  
09 Option  
2.5 V V 4.5 V, V  
2.0  
2.0  
3.0  
4.0  
4.0  
5.0  
%
%
%
IN  
OUT  
from Minimum to Maximum,  
=0 to 3 A, Auto  
I
OUT(DC)  
PFM/PWM  
13, 18, 23  
Options  
2.5 V V 4.5 V, V  
IN  
OUT  
from Minimum to Maximum,  
=0 to 5 A, Auto  
I
OUT(DC)  
PFM/PWM  
All Other  
Options  
2.5 V V 5.5 V, V  
IN  
OUT  
from Minimum to Maximum,  
=0 to 5 A, Auto  
I
OUT(DC)  
PFM/PWM  
DVOUT  
DILOAD  
Load Regulation  
I =1 to 5 A  
OUT(DC)  
0.1  
%/A  
Line Regulation  
2.5 V V 5.5 V, I  
=1.5 A  
0.01  
40  
%/V  
mV  
IN  
OUT(DC)  
DVOUT  
DV  
IN  
I
Step 0.1 A to 1.5 A, t =t =100 ns,  
r f  
LOAD  
V
TRSP  
Transient Response  
V
OUT  
=1.2 V  
Continued on the following page  
Power Switch and Protection  
R
R
PChannel MOSFET On Resistance  
NChannel MOSFET On Resistance  
V
V
=5 V  
=5 V  
28  
17  
mW  
mW  
DS(on)P  
DS(on)N  
IN  
IN  
www.onsemi.com  
6
 
FAN53555  
Table 10. ELECTRICAL CHARACTERISTICS  
Minimum and maximum values are at V = 2.5 V to 5.5 V, T = 40°C to +85°C, unless otherwise noted. Typical values are at T =  
IN  
A
A
25°C, V = 5 V, and EN = HIGH.  
IN  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Power Switch and Protection  
00, 01, 03, 04, 13, 18, 23, 042, 79 Options  
6.3  
8.5  
5.0  
4.0  
7.4  
10.0  
5.9  
8.5  
11.5  
6.8  
A
A
A
05 Option  
I
PMOS Peak Current Limit  
LIMPK  
08, 24 Options  
09 Option  
4.75  
150  
17  
5.5  
T
LIMIT  
Thermal Shutdown  
°C  
°C  
V
T
HYST  
Thermal Shutdown Hysteresis  
Rising Threshold  
Falling Threshold  
6.15  
5.85  
V
SDWN  
Input OVP Shutdown  
5.50  
2.05  
V
Frequency Control  
f
Oscillator Frequency  
2.40  
6
2.75  
0.5  
MHz  
SW  
DAC  
Resolution  
Bits  
(
)
Differential Nonlinearity 9  
LSB  
Timing  
2
2
I C  
EN=HIGH to I C Start  
100  
ms  
EN  
SoftStart  
Regulator Enable to Regulated V  
300  
135  
160  
R
> 5 W; to V  
=1.2 V;  
tSS  
ms  
OUT  
LOAD  
OUT  
00, 01, 03, 04, 042, 05, 09, 13, 23 and 79  
Options  
2.5 V V 4.5 V; R  
=2 W; to  
175  
ms  
IN  
LOAD  
V
OUT  
=1.127 V with 1.1 V PreBias Volt-  
age; 08 and 18 Options  
R
VOUT PullDown Resistance, Dis-  
abled  
EN=0 or V <V  
W
OFF  
IN  
UVLO  
9. Monotonicity assured by design.  
Table 11. I2C TIMING SPECIFICATIONS  
Guaranteed by design.  
Symbol  
Parameter  
SCL Clock Frequency  
Condition  
Min.  
Typ.  
Max.  
100  
Unit  
f
Standard Mode  
Fast Mode  
kHz  
SCL  
400  
Fast Mode Plus  
1000  
3400  
1700  
HighSpeed Mode, C 100 pF  
B
HighSpeed Mode, C 400 pF  
B
t
BusFree Time between STOP and  
Standard Mode  
Fast Mode  
4.7  
1.3  
0.5  
4
ms  
BUF  
START Conditions  
Fast Mode Plus  
Standard Mode  
Fast Mode  
t
START or REPEATED START  
Hold Time  
ms  
ns  
ns  
ns  
HD;STA  
600  
260  
160  
Fast Mode Plus  
HighSpeed Mode  
www.onsemi.com  
7
 
FAN53555  
Table 11. I2C TIMING SPECIFICATIONS  
Guaranteed by design.  
Symbol  
Parameter  
SCL LOW Period  
Condition  
Standard Mode  
Min.  
Typ.  
4.7  
Max.  
Unit  
ms  
ms  
ms  
ns  
ns  
ms  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ns  
ns  
t
LOW  
Fast Mode  
1.3  
Fast Mode Plus  
0.5  
HighSpeed Mode, C 100 pF  
160.0  
320.0  
4
B
HighSpeed Mode, C 400 pF  
B
t
SCL HIGH Period  
Standard Mode  
Fast Mode  
HIGH  
600  
260  
60  
Fast Mode Plus  
HighSpeed Mode, C 100 pF  
B
HighSpeed Mode, C 400 pF  
120  
4.7  
B
t
Repeated START Setup Time  
Data Setup Time  
Standard Mode  
Fast Mode  
SU;STA  
600.0  
260.0  
160.0  
250  
100  
50  
Fast Mode Plus  
HighSpeed Mode  
Standard Mode  
Fast Mode  
t
SU;DAT  
Fast Mode Plus  
HighSpeed Mode  
Standard Mode  
Fast Mode  
10  
t
Data Hold Time  
0
0
0
0
0
3.45  
900.00  
450.00  
70.00  
150.00  
1000  
300  
ms  
ns  
ns  
ns  
ns  
ns  
HD;DAT  
Fast Mode Plus  
HighSpeed Mode, C 100 pF  
B
HighSpeed Mode, C 400 pF  
B
t
SCL Rise Time  
SCL Fall Time  
Standard Mode  
Fast Mode  
20+0.1C  
RCL  
B
20+0.1C  
B
Fast Mode Plus  
20+0.1C  
120  
B
HighSpeed Mode, C 100 pF  
10  
80  
B
HighSpeed Mode, C 400 pF  
20  
160  
B
t
Standard Mode  
Fast Mode  
20+0.1C  
20+0.1C  
20+0.1C  
300  
ns  
FCL  
B
B
300  
Fast Mode Plus  
120  
B
HighSpeed Mode, C 100 pF  
10  
40  
B
HighSpeed Mode, C 400 pF  
20  
10  
20  
80  
B
t
Rise Time of SCL After a REPEATED  
START Condition and After ACK Bit  
HighSpeed Mode, C 100 pF  
80  
ns  
ns  
RCL1  
B
HighSpeed Mode, C 400 pF  
160  
B
t
SDA Rise Time  
Standard Mode  
Fast Mode  
20+0.1C  
20+0.1C  
20+0.1C  
1000  
300  
RDA  
B
B
Fast Mode Plus  
120  
B
HighSpeed Mode, C 100 pF  
10  
80  
B
HighSpeed Mode, C 400 pF  
20  
160  
B
www.onsemi.com  
8
FAN53555  
Table 11. I2C TIMING SPECIFICATIONS  
Guaranteed by design.  
Symbol  
Parameter  
Condition  
Standard Mode  
Min.  
Typ.  
Max.  
300  
300  
120  
80  
Unit  
t
SDA Fall Time  
20+0.1C  
ns  
FDA  
B
B
Fast Mode  
20+0.1C  
20+0.1C  
Fast Mode Plus  
B
HighSpeed Mode, C 100 pF  
10  
B
HighSpeed Mode, C 400 pF  
20  
4
160  
B
t
Stop Condition Setup Time  
Standard Mode  
Fast Mode  
ms  
ns  
ns  
ns  
pF  
SU;STO  
600  
120  
160  
Fast Mode Plus  
HighSpeed Mode  
C
Capacitive Load for SDA and SCL  
400  
B
TIMING DIAGRAMS  
tF  
tSU;STA  
tBUF  
SDA  
SCL  
tR  
TSU;DAT  
tHD;STO  
tHIGH  
tLOW  
tHD;STA  
tHD;DAT  
tHD;STA  
REPEATED  
START  
START  
STOP  
START  
Figure 4. I2C Interface Timing for Fast Plus, Fast, and Slow Modes  
REPEATED  
START  
STOP  
tFDA  
tRDA  
tSU;DAT  
SDAH  
tSU;STA  
tRCL1  
tFCL  
tHIGH  
tHD;DAT  
note A  
tRCL  
tSU;STO  
SCLH  
tLOW  
tHD;STA  
REPEATED  
START  
= MCS Current Source Pullup  
= RP Resistor Pullup  
Note A: First rising edge of SCLH after Repeated Start and after each ACK bit.  
Figure 5. I2C Interface Timing for HighSpeed Mode  
www.onsemi.com  
9
FAN53555  
TYPICAL CHARACTERISTICS  
Unless otherwise specified, Auto PFM/PWM, V = 3.6 V, V  
= 1.2 V, SCL = SDA = VSEL = EN = 1.8 V, T = 25°C; circuit and  
IN  
OUT  
A
components according to Figure 1 and Table 1.  
92%  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
92%  
2.7 VIN  
3.6 VIN  
90%  
5.0 VIN  
88%  
86%  
84%  
82%  
80%  
40°C  
+25°C  
+85°C  
78%  
76%  
0
1000  
2000  
3000  
4000  
5000  
0
0
0
1000  
2000  
3000  
4000  
5000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 6. Efficiency vs. Load Current and  
Input Voltage  
Figure 7. Efficiency vs. Load Current and  
Temperature  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
74%  
72%  
70%  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
74%  
72%  
70%  
40°C  
+25°C  
+85°C  
2.7 VIN  
3.6 VIN  
5.0 VIN  
0
1000  
2000  
3000  
4000  
5000  
1000  
2000  
3000  
4000  
5000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 8. Efficiency vs. Load Current and  
Input Voltage, VOUT = 0.9 V  
Figure 9. Efficiency vs. Load Current and  
Temperature, VIN = 5 V, VOUT = 1.2 V  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
2.7 VIN  
3.6 VIN  
5.0 VIN  
3.6VIN, 1.2VOUT, L=MMD04ABNR33M  
3.6VIN, 1.2VOUT, L=VLC5020TR47M  
5.0VIN, 1.2VOUT, L=MMD04ABNR33M  
5.0VIN, 1.2VOUT, L=VLC5020TR47M  
5.0VIN, 0.9VOUT, L=MMD04ABNR33M  
5.0VIN, 0.9VOUT, L=VLC5020TR47M  
1000 2000 3000 4000 5000 6000 7000  
LOAD CURRENT (mA)  
0
1000  
2000  
3000  
4000  
5000  
LOAD CURRENT (mA)  
Figure 10. Efficiency vs. Load Current and  
Input Voltage, VOUT = 0.6 V  
Figure 11. Efficiency vs. Load Current, VIN  
3.6 V and 5 V, VOUT = 1.2 V and 0.9 V  
=
www.onsemi.com  
10  
 
FAN53555  
TYPICAL CHARACTERISTICS (Continued)  
Unless otherwise specified, Auto PFM/PWM, V = 3.6 V, V  
= 1.2 V, SCL = SDA = VSEL = EN = 1.8 V, T = 25°C; circuit and  
IN  
OUT  
A
components according to Figure 1 and Table 1.  
25  
20  
15  
10  
5
20  
2.7 VIN  
3.6 VIN  
5.0 VIN  
16  
2.7 VIN  
3.6 VIN  
5.0 VIN  
12  
8
4
0
0
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 13. Output Regulation vs. Load Current  
and Input Voltage, VOUT=0.9 V  
Figure 12. Output Regulation vs. Load  
Current and Input Voltage, VOUT = 1.2 V  
1,000  
800  
600  
400  
200  
1,000  
800  
600  
400  
200  
PFM Exit  
PFM Enter  
PFM Exit  
PFM Enter  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 14. PFM Entry / Exit Level vs. Input  
Voltage, VOUT=1.2 V  
Figure 15. PFM Entry / Exit Level vs. Input  
Voltage, VOUT=0.9 V  
25  
20  
15  
10  
5
3,000  
2,500  
2,000  
1,500  
1,000  
500  
3.6VIN, 1.2VOUT, Auto  
3.6VIN, 1.2VOUT, PWM  
5.0VIN, 1.2VOUT, Auto  
5.0VIN, 1.2VOUT, PWM  
5.0VIN, 0.9VOUT, Auto  
3.6VIN, 1.2VOUT, Auto  
3.6VIN, 0.9VOUT, Auto  
5.0VIN, 1.2VOUT, Auto  
5.0VIN, 0.9VOUT, Auto  
0
0
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 16. Output Ripple vs. Load Current,  
VIN=5 V and 3.6 V, VOUT=1.2 V and 0.9 V, Auto  
and FPWM  
Figure 17. Frequency vs. Load Current,  
VIN=5 V and 3.6 V, VOUT=1.2 V and 0.9 V, Auto  
PWM  
www.onsemi.com  
11  
FAN53555  
TYPICAL CHARACTERISTICS (Continued)  
Unless otherwise specified, Auto PFM/PWM, V = 3.6 V, V  
= 1.2 V, SCL = SDA = VSEL = EN = 1.8 V, T = 25°C; circuit and  
IN  
OUT  
A
components according to Figure 1 and Table 1.  
80  
70  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
40°C  
+25°C  
+85°C  
40°C  
10  
+25°C  
+85°C  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT SUPPLY VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 18. Quiescent Current vs. Input Voltage  
and Temperature, Auto PWM  
Figure 19. Quiescent Current vs. Input Voltage  
and Temperature, FPWM  
70  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
10  
0
EN_BUCK=0, 40C  
EN_BUCK=0, +25C  
EN_BUCK=0, +85C  
EN=0, +25C  
3.6VIN, 1.2VOUT, 2A Load  
3.6VIN, 0.9VOUT, 2A Load  
5.0VIN, 0.9VOUT, 18mA Load, PFM  
10  
100  
1,000  
10,000  
100k  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 20. Shutdown Current vs. Input Voltage  
and Temperature  
Figure 21. PSRR vs. Frequency  
Figure 22. Line Transient, 34 VIN, 1.2 VOUT, 10 ms  
Edge, 50 W Load  
Figure 23. Line Transient, 34 VIN, 1.2 VOUT, 10 ms  
Edge, 1 A Load  
www.onsemi.com  
12  
FAN53555  
TYPICAL CHARACTERISTICS (Continued)  
Unless otherwise specified, Auto PFM/PWM, V = 3.6 V, V  
= 1.2 V, SCL = SDA = VSEL = EN = 1.8 V, T = 25°C; circuit and  
IN  
OUT  
A
components according to Figure 1 and Table 1.  
Figure 24. Load Transient, 5 VIN, 0.9 VOUT, 0.33 A,  
Figure 25. Load Transient, 3.6 VIN, 1.2 VOUT, 0.33 A,  
100 ns Edge  
100 ns Edge  
Figure 26. Load Transient, 3.6 VIN, 1.2 VOUT, 0.33 A,  
100 ns Edge, COUT=4x22 mF  
Figure 27. Load Transient, 3.6 VIN, 1.2 VOUT, 1.56 A,  
100 ns Edge, COUT=4x22 mF  
Figure 28. Input OverVoltage Protection  
www.onsemi.com  
13  
FAN53555  
TYPICAL CHARACTERISTICS (Continued)  
Unless otherwise specified, Auto PFM/PWM, V = 3.6 V, V  
= 1.2 V, SCL = SDA = VSEL = EN = 1.8 V, T = 25°C; circuit and  
IN  
OUT  
A
components according to Figure 1 and Table 1.  
Figure 29. Startup / Shutdown, No Load, VOUT=0.9 V  
Figure 30. Startup / Shutdown, 180 mW Load,  
VOUT=0.9 V  
Figure 31. Overload Protection and Recovery  
Figure 32. Startup into Faulted Load, VOUT=0.9 V  
OPERATION DESCRIPTION  
The FAN53555 is a stepdown switching voltage  
regulator that delivers a programmable output voltage from  
an input voltage supply of 2.5 V to 5.5 V. Using a proprietary  
architecture with synchronous rectification, the FAN53555  
is capable of delivering 5 A at over 80% efficiency. Pulse  
currents as high as 6.5 A can be supported by the 05 option.  
The regulator operates at a nominal frequency of 2.4 MHz  
at full load, which reduces the value of the external  
components to 330 nH for the output inductor and 22 mF for  
the output capacitor. High efficiency is maintained at light  
load with singlepulse PFM.  
The FAN53555 integrates an I Ccompatible interface,  
allowing transfers up to 3.4 Mbps. This communication  
interface can be used to:  
Dynamically reprogram the output voltage in 10 mV,  
12.826 mV increments (option 04, 09, and 042),  
12.5 mV increments (option 23), or 12.967 mV  
increments (option 24);  
Reprogram the mode to enable or disable PFM;  
Control voltage transition slew rate; or  
Enable / disable the regulator.  
Control Scheme  
The FAN53555 uses  
a
proprietary nonlinear,  
fixedfrequency PWM modulator to deliver a fast load  
transient response, while maintaining a constant switching  
frequency over a wide range of operating conditions. The  
regulator performance is independent of the output  
capacitor ESR, allowing for the use of ceramic output  
capacitors. Although this type of operation normally results  
in a switching frequency that varies with input voltage and  
load current, an internal frequency loop holds the switching  
frequency constant over a large range of input voltages and  
load currents.  
2
For very light loads, the FAN53555 operates in  
Discontinuous Current Diode (DCM) singlepulse PFM,  
www.onsemi.com  
14  
FAN53555  
which produces low output ripple compared with other PFM  
limits the duty cycle of full output current during softstart  
to prevent excessive heating.  
architectures. Transition between PWM and PFM is  
relatively seamless, providing a smooth transition between  
DCM and CCM Modes.  
PFM can be disabled by programming the MODE bit  
HIGH in the VSEL registers.  
The IC allows for software enable of the regulator, when  
EN is HIGH, through the BUCK_EN bits. BUCK_EN0 and  
BUCK_EN1 are both initialized HIGH in the 00, 04, 08, 09,  
23, 24, 42 and 79 options. These options start after a POR  
regardless of the state of the VSEL pin.  
Enable and SoftStart  
In the 01 and 05 options, BUCK_EN0 and BUCK_EN1  
are initialized to 10. Using these options, VSEL must be  
LOW after a POR if the IC is powering the processor used  
When the EN pin is LOW; the IC is shut down, all internal  
circuits are off, and the part draws very little current. In this  
2
state, I C cannot be written to or read from. For all options  
2
to communicate through I C. The 03 option has the VSEL  
except the 04, 24, and 042 options, all register values are  
kept while EN pin is LOW. For the 04, 24 042 and 79  
options; registers are reset to default values when EN pin is  
LOW. For all options, registers are reset to default values  
during a Power On Reset (POR).  
When the OUTPUT_DISCHARGE bit in the CONTROL  
register is enabled (logic HIGH) and the EN pin is LOW or  
the BUCK_ENx bit is LOW, a load is connected from  
VOUT to GND to discharge the output capacitors.  
Raising EN while the BUCK_ENx bit is HIGH activates  
the part and begins the softstart cycle. During softstart, the  
modulator’s internal reference is ramped slowly to minimize  
surge currents on the input and prevent overshoot of the  
output voltage. Synchronous rectification is inhibited  
during softstart, allowing the IC to start into a precharged  
capacitive load.  
input to the modulator logic internally tied LOW.  
Table 12. HARDWARE AND SOFTWARE ENABLE  
Pins  
VSEL  
BITS  
EN  
0
BUCK_EN0  
BUCK_EN1  
Output  
OFF  
OFF  
ON  
X
0
0
1
1
X
0
X
X
X
0
1
1
1
1
X
X
OFF  
ON  
1
1
VSEL Pin and I2C Programming Output Voltage  
The output voltage is set by the NSELx control bits in  
VSEL0 and VSEL1 registers. The output voltage for options  
00, 01, 03, 05, 08, 18 and 79 is given as:  
If large output capacitance values are used, the regulator  
may fail to start. Maximum C  
capacitance for  
OUT  
V
OUT + 0.60 V ) NSELx @ 10 mV  
(eq. 2)  
successfully starting with a heavy constantcurrent load is  
approximately:  
For example, when NSEL = 011111 (31 decimal), then  
= 0.60 + 0.310 = 0.91 V.  
320m  
V
OUT  
ǒ Ǔ @  
OUTMAX + ILIMPK * ILOAD  
(eq. 1)  
C
VOUT  
V
OUT + 0.603 ) NSELx @ 12.826 mV  
(eq. 3)  
where C  
is expressed in μF and I  
is the load  
OUTMAX  
LOAD  
For the 04, 042, and 09 options; the output voltage is given  
as:  
current during softstart, expressed in A.  
If the regulator is at its current limit for 16 consecutive  
current limit cycles, the regulator shuts down and enters  
3state before reattempting softstart 1700 ms later. This  
For the 13 option, the output voltage is given as:  
V
OUT + 0.80 ) NSELx @ 10 mV  
(eq. 4)  
www.onsemi.com  
15  
FAN53555  
2
Regulator is disabled (EN pin LOW, disabled by I C,  
fault timeout, UVLO, OVP, overtemperature);  
Regulator is performing a softstart.  
2
For the 23 option, the output voltage is given as:  
V
OUT + 0.60 V ) NSELx @ 12.5 mV  
(eq. 5)  
(eq. 6)  
PGOOD remains HIGH during I C initiated V  
transitions.  
OUT  
For the 24 option, the output voltage is given as:  
V
OUT + 0.603 V ) NSELx   12.967 mV  
Current Limiting  
Output voltage can also be controlled by toggling the  
VSEL pin LOW or HIGH. VSEL LOW corresponds to  
VSEL0 and VSEL HIGH corresponds to VSEL1. Upon  
POR, VSEL0 and VSEL1 are reset to their default voltages,  
shown in Table 9.  
A heavy load or short circuit on the output causes the  
current in the inductor to increase until a maximum current  
threshold is reached in the highside switch. Upon reaching  
this point, the highside switch turns off, preventing high  
currents from causing damage. Sixteen consecutive current  
limit cycles in current limit cause the regulator to shut down  
and stay off for about 1700 μs before attempting a restart.  
Transition Slew Rate Limiting  
When transitioning from a low to high voltage, the IC can  
be programmed for one of eight possible slew rates using the  
SLEW bits in the CONTROL register.  
Thermal Shutdown  
When the die temperature increases, due to a high load  
condition and/or high ambient temperature, the output  
switching is disabled until the die temperature falls  
sufficiently. The junction temperature at which the thermal  
shutdown activates is nominally 150°C with a 17°C  
hysteresis.  
Table 13. TRANSITION SLEW RATE  
Decimal  
Bin  
000  
001  
010  
011  
100  
101  
110  
111  
Slew Rate  
64.00  
0
1
2
3
4
5
6
7
mV / ms  
mV / ms  
mV / ms  
mV / ms  
mV / ms  
mV / ms  
mV / ms  
mV / ms  
32.00  
16.00  
8.00  
4.00  
2.00  
1.00  
0.50  
Monitor Register (Reg05)  
The Monitor register indicates of the regulation state of  
the IC. If the IC is enabled and is regulating, its value is  
(1000 0000).  
I2C Interface  
The FAN53555’s serial interface is compatible with  
2
Standard, Fast, Fast Plus, and HS Mode I CBus  
specifications. The FAN53555’s SCL line is an input and its  
SDA line is a bidirectional opendrain output; it can only  
pull down the bus when active. The SDA line only pulls  
LOW during data reads and when signaling ACK. All data  
is shifted in MSB (bit 7) first.  
Transitions from high to low voltage rely on the output  
load to discharge V to the new set point. Once the  
OUT  
hightolow transition begins, the IC stops switching until  
has reached the new set point.  
V
OUT  
For options 04, 042, 09, 23, and 24 where the Dynamic  
I2C Slave Address  
Voltage Scaling (DVS) step is not 10 mV; the actual slew  
rate is the corresponding number shown in Table 6 scaled by  
the ratio of the DVS step to 10 mV. For example, the slew  
rate of option 13 for Bin=011 is 8.00 mV / ms X 12.5 mV /  
10 mV = 10.00 mV / ms.  
In hex notation, the slave address assumes a 0 LS Bit. The  
hex slave address is C0 for all options except 42, which has  
a hex slave address of C4.  
Table 14. I2C SLAVE ADDRESS  
Bits  
UnderVoltage Lockout  
When EN is HIGH, the undervoltage lockout keeps the  
part from operating until the input supply voltage rises  
HIGH enough to properly operate. This ensures proper  
operation of the regulator during startup or shutdown.  
7
6
5
4
3
2
1
0
Option  
Hex  
00 to 24,  
79  
C0  
1
1
0
0
0
0
0
R/W  
Input OverVoltage Protection (OVP)  
42  
C4  
1
1
0
0
0
1
0
R/W  
When V exceeds V  
(about 6.2 V) the IC stops  
IN  
SDWN  
switching to protect the circuitry from internal spikes above  
6.5 V. An internal filter prevents the circuit from shutting  
down due to noise spikes.  
Other slave addresses can be assigned. Contact a ON  
Semiconductor representative.  
Power Good (03 & 79 Option)  
Bus Timing  
The PGOOD pin is an opendrain output indicating that  
the regulator is enabled when its state is HIGH. PGOOD  
pulls LOW under the following conditions:  
As shown in , data is normally transferred when SCL is  
LOW. Data is clocked in on the rising edge of SCL.  
www.onsemi.com  
16  
 
FAN53555  
Slave Releases  
tSU;STA  
tHD;STA  
Typically, data transitions shortly at or after the falling edge  
of SCL to allow ample time for the data to set up before the  
next SCL rising edge.  
ACK(0) or  
NACK(1)  
SLADDR  
MS Bit  
SDA  
SCL  
Data change allowed  
Figure 36. REPEATED START Timing  
SDA  
tH  
HighSpeed (HS) Mode  
tSU  
SCL  
The protocols for HighSpeed (HS), LowSpeed (LS),  
and FastSpeed (FS) Modes are identical, except the bus  
speed for HS mode is 3.4 MHz. HS Mode is entered when  
the bus master sends the HS master code 00001XXX after  
a START condition. The master code is sent in Fast or  
FastPlus Mode (less than 1 MHz clock); slaves do not ACK  
this transmission.  
Figure 33. Data Transfer Timing  
Each bus transaction begins and ends with SDA and SCL  
HIGH. A transaction begins with a START condition, which  
is defined as SDA transitioning from 1 to 0 with SCL HIGH,  
as shown in .  
The master generates a REPEATED START condition ()  
that causes all slaves on the bus to switch to HS Mode. The  
tHD;STA  
2
Slave Address  
master then sends I C packets, as described above, using the  
SDA  
MS Bit  
HS Mode clock rate and timing.  
The bus remains in HS Mode until a STOP bit () is sent by  
the master. While in HS Mode, packets are separated by  
REPEATED START conditions ().  
SCL  
Figure 34. START Bit  
Read and Write Transactions  
The following figures outline the sequences for data read  
and write. Bus control is signified by the shading of the  
packet, defined as Master Drives Bus and Slave Drives Buss.  
All addresses and data are MSB first.  
A transaction ends with a STOP condition, which is  
defined as SDA transitioning from 0 to 1 with SCL HIGH,  
as shown in .  
Slave Releases  
Master Drives  
tHD;STO  
Table 15. I2C BIT DEFINITIONS FOR FIGURE 38 AND  
FIGURE 39  
ACK(0) or  
NACK(1)  
SDA  
SCL  
Symbol  
Definition  
REPEATED START, see Figure 37  
R
STOP, see Figure 36  
START, see Figure 35  
P
S
A
Figure 35. STOP Bit  
During a read from the FAN53555, the master issues a  
REPEATED START after sending the register address, and  
before resending the slave address. The REPEATED  
START is a 1 to 0 transition on SDA while SCL is HIGH, as  
shown in .  
ACK. The slave drives SDA to 0 to acknowledge  
the preceding packet.  
NACK. The slave sends a 1 to NACK the pre-  
ceding packet.  
A
Repeated START, see Figure 37.  
STOP, see Figure 36.  
R
P
0
0
0
7 bits  
8 bits  
8 bits  
Data  
S
Slave Address  
0
A
Reg Addr  
A
A
P
Figure 37. Write Transaction  
0
0
0
1
7 bits  
Slave Address  
8 bits  
7 bits  
8 bits  
Data  
S
0
A
Reg Addr  
A
R
Slave Address  
1
A
A
P
Figure 38. Read Transaction  
www.onsemi.com  
17  
 
FAN53555  
REGISTER DESCRIPTION  
Table 16. REGISTER MAP  
Hex  
POR Default  
Binary  
Address  
Option  
00  
V
OUT  
Hex  
AD  
AA  
9E  
A7  
B0  
A3  
AC  
A7  
99  
Name  
Function  
settings when VSEL pin = 0  
00  
VSEL0  
Controls V  
10101101  
10101010  
10011110  
10100111  
10110000  
10100011  
10101100  
10100111  
10011001  
11111100  
01101000  
11101111  
10101111  
10110111  
10100011  
10101100  
11100111  
10000000  
1.050  
1.020  
0.900  
1.100  
1.225  
1.150  
1.150  
1.100  
0.85  
OUT  
08, 18  
01, 03, 05  
04,  
24  
13  
23  
09  
79  
01  
VSEL1  
Controls V  
settings when VSEL pin = 1  
00  
FC  
68  
1.200  
1.000  
1.200  
1.212  
1.150  
1.150  
1.150  
1.100  
OUT  
01, 05  
04,  
EF  
AF  
B7  
A3  
AC  
E7  
80  
24  
08, 18  
13  
23  
09  
02  
03  
CONTROL  
Determines whether V  
output discharge is en-  
00, 01, 03, 04,  
05, 24  
OUT  
abled and also the slew rate of positive transitions  
08, 09, 18  
00000000  
10110000  
10000000  
10000001  
10000011  
10000100  
10000101  
10001000  
10001100  
0000XXXX  
X0000000  
00  
B0  
80  
81  
83  
84  
85  
88  
8C  
0X  
X0  
13, 23  
ID1  
Readonly register identifies vendor and chip type  
00, 13, 23, 24  
01  
03  
04  
05  
08, 18  
09  
04  
05  
ID2  
Readonly register identifies die revision  
All  
MONITOR  
Indicates device status  
All  
Table 17. BIT DEFINITIONS  
The following table defines the operation of each register bit. Bold indicates poweron default values.  
Bit  
Name  
Value  
Description  
VSEL0 R/W  
Register Address: 00  
7
BUCK_EN0  
1
Software buck enable. When EN pin is LOW, the regulator is off. When EN pin is  
HIGH, BUCK_EN bit takes precedent.  
6
MODE0  
0
1
Allow AutoPFM Mode during light load.  
Forced PWM Mode.  
www.onsemi.com  
18  
 
FAN53555  
Table 17. BIT DEFINITIONS  
The following table defines the operation of each register bit. Bold indicates poweron default values.  
Bit  
Name  
Value  
Description  
VSEL0 R/W  
Register Address: 00  
5:0  
NSEL0  
00 Option  
101101  
Sets V  
value from 0.6 to 1.23 V in 10 mV steps (see Eq. (2)).  
OUT  
08, 18 Options  
101010  
01, 03, 05 Options  
011110  
79 Option 011001  
04 Option  
100111  
Sets V  
value from 0.603 to 1.411 V in 12.826 mV steps (see Eq. (3)).  
OUT  
09 Option  
100111  
13 Option  
100011  
Sets V  
Sets V  
Sets V  
value from 0.8 to 1.43 V in 10 mV steps (see Eq. (4)).  
value from 0.6 to 1.3875 V in 12.5 mV steps (see Eq. (5)).  
value from 0.603 to 1.42 V in 12.967 mV steps (see Eq. (6)).  
OUT  
OUT  
OUT  
23 Option  
101100  
24 Option  
110000  
VSEL1 R/W  
Register Address: 01  
7
BUCK_EN1  
Software buck enable. When EN pin is LOW, the regulator is off. When EN pin is  
HIGH, BUCK_EN bit takes precedent.  
00, 04, 08, 09,13,  
18, 23, 24 Options  
1
01, 05 Options  
0
6
MODE1  
NSEL1  
08, 13, 18, 23, 24  
Options  
Allow AUTOPFM Mode during light load.  
0
00, 01, 04, 05, 09  
Options  
Forced PWM Mode.  
1
5:0  
00 Option  
111100  
Sets V  
value from 0.6 to 1.23 V in 10 mV steps (see Eq. (2)).  
OUT  
01, 05 Options  
101000  
08, 18 Options  
110111  
04 Option  
101111  
Sets V  
value from 0.603 to 1.411 V in 12.826 mV steps (see Eq. (3)).  
OUT  
09 Option  
100111  
13 Option  
100011  
Sets V  
Sets V  
Sets V  
value from 0.8 to 1.43 V in 10 mV steps (see Eq. (4)).  
value from 0.6 to 1.3875 V in 12.5 mV steps (see Eq. (5)).  
value from 0.603 to 1.42 V in 12.967 mV steps (see Eq. (6)).  
OUT  
OUT  
OUT  
23 Option  
010100  
24 Option  
101111  
CONTROL  
R/W  
Register Address: 02  
www.onsemi.com  
19  
FAN53555  
Table 17. BIT DEFINITIONS  
The following table defines the operation of each register bit. Bold indicates poweron default values.  
Bit  
Name  
Value  
Description  
CONTROL  
R/W  
Register Address: 02  
7
OUTPUT_DISCHARGE  
08, 09, 18, 79  
Options  
When the regulator is disabled, V  
When the regulator is disabled, V  
is not discharged.  
OUT  
OUT  
0
00, 01, 03, 04,  
05,13, 23, 24  
Options  
discharges through an internal pulldown.  
1
6:4  
SLEW  
000 –111  
Sets the slew rate for positive voltage transitions (see Table 6).  
Default value for 13 and 23 options  
011  
0
3
2
Reserved  
Always reads back 0  
04, 09, 24, 79 Options  
RESET  
0
Setting to 1 resets all registers to default values.  
All other options  
Reserved  
0
Always reads back 0  
Always reads back 00  
1:0  
ID1  
7:5  
4
Reserved  
00  
R
Register Address: 03  
VENDOR  
Reserved  
DIE_ID  
100  
0
Signifies ON Semiconductor as the IC vendor  
Always reads back 0  
3:0  
0000  
0001  
0011  
0100  
0100  
0101  
1000  
IC Type = 00 Option (FAN53555UC00X / FAN53555BUC24X)  
IC Type = 01 Option (FAN53555UC01X/ FAN5355BUC79X)  
IC Type = 03 Option (FAN53555UC03X)  
IC Type = 04 Option (FAN53555UC04X)  
IC Type = 042 Option (FAN53555UC042X)  
IC Type = 05 Option (FAN53555UC05X / FAN53555BUC05X)  
IC Type = 08, 18 Options (FAN53555UC08X / FAN53555BUC08X,  
FAN53555UC18X / FAN53555BUC18X)  
1100  
0000  
0000  
IC Type = 09 Option (FAN53555UC09X / FAN53555BUC09X)  
IC Type = 13 Option (FAN53555UC13X / FAN53555BUC13X)  
IC Type = 23 Option (FAN53555BUC23X)  
ID2  
R
Register Address: 04  
7:4  
Reserved  
0000  
Always reads back 0000  
www.onsemi.com  
20  
FAN53555  
Table 17. BIT DEFINITIONS  
The following table defines the operation of each register bit. Bold indicates poweron default values.  
Bit  
ID1  
3:0  
Name  
Value  
Description  
R
Register Address: 03  
DIE_REV  
00 Option  
0011  
IC mask revision  
01 Option  
0011  
03 Option  
0011  
04 Option  
1111  
24Option  
0100  
042 Option  
1111  
05 Option  
0011  
08, 18 Options  
0001  
BUC08, BUC18  
Options  
1111  
09 Option  
1111  
13 Option  
1111  
23 Option  
1100  
79 Option 1000  
Register Address: 05  
0
MONITOR  
R
PGOOD  
Not used  
7
1: buck is enabled and softstart is completed  
6:0  
000 0000  
Always reads back 000 0000  
APPLICATION INFORMATION  
Selecting the Inductor  
(nominal). The inductor should be rated to maintain at least  
80% of its value at I . Failure to do so lowers the  
amount of DC current the IC can deliver.  
Efficiency is affected by the inductor DCR and inductance  
value. Decreasing the inductor value for a given physical  
size typically decreases the DCR; but since DI increases, the  
RMS current increases, as do core and skineffect losses.  
The output inductor must meet both the required  
inductance and the energyhandling capability of the  
application. The inductor value affects the average current  
limit, the output voltage ripple, and the efficiency.  
The ripple current (DI) of the regulator is:  
LIM(PK)  
VOUT  
VIN  
VIN * VOUT  
@ ǒ Ǔ  
DI +  
(eq. 7)  
DI2  
L @ fsw  
2
+ Ǹ  
IRMS  
IOUT(DC)  
)
(eq. 9)  
12  
The maximum average load current, I  
is  
MAX(LOAD),  
The increased RMS current produces higher losses  
related to the peak current limit, I  
current such that:  
, by the ripple  
LIM(PK)  
through the R  
inductor ESR.  
of the IC MOSFETs as well as the  
DS(ON)  
DI  
I
MAX(LOAD) + ILIM(PK)  
*
Increasing the inductor value produces lower RMS  
currents, but degrades transient response. For a given  
(eq. 8)  
2
The FAN53555 is optimized for operation with  
L=330 nH, but is stable with inductances up to 1.0 μH  
www.onsemi.com  
21  
FAN53555  
physical inductor size, increased inductance usually results  
in an inductor with lower saturation current.  
A good practice to minimize this ripple is to use multiple  
output capacitors to achieve the desired C value. For  
OUT  
example, to obtain C =20 μF, a single 22 μF 0805 would  
OUT  
produce twice the square wave ripple as two x 10 μF 0805.  
To minimize ESL, try to use capacitors with the lowest  
ratio of length to width. 0805s have lower ESL than 1206s.  
If low output ripple is a chief concern, some vendors  
produce 0508 or 0612 capacitors with ultralow ESL.  
Placing additional smallvalue capacitors near the load also  
reduces the highfrequency ripple components.  
Table 18. EFFECTS OF INDUCTOR VALUE (FROM  
330 nH RECOMMENDED) ON REGULATOR  
PERFORMANCE  
(Eq.(11))  
I
DV  
Transient Response  
MAX(LOAD)  
OUT  
Increase  
Decrease  
Degraded  
Inductor Current Rating  
The current limit circuit can allow substantial peak  
currents to flow through L1 under worstcase conditions. If  
it is possible for the load to draw such currents, the inductor  
should be capable of sustaining the current or failing in a safe  
manner.  
Input Capacitor  
The ceramic input capacitors should be placed as close as  
possible between the VIN pin and PGND to minimize the  
parasitic inductance. If a long wire is used to bring power to  
the IC, additional “bulk” capacitance (electrolytic or  
tantalum) should be placed between C and the power  
source lead to reduce underdamped ringing that can occur  
For spaceconstrained applications, a lower current rating  
for L1 can be used. The FAN53555 may still protect these  
inductors in the event of a short circuit, but may not be able  
to protect the inductor from failure if the load is able to draw  
higher currents than the DC rating of the inductor.  
IN  
between the inductance of the power source leads and C .  
IN  
The effective C capacitance value decreases as V  
IN  
IN  
increases due to DC bias effects. This has no significant  
impact on regulator performance.  
Output Capacitor and VOUT Ripple  
Table 1suggests 0805 capacitors, but 0603 capacitors may  
be used if space is at a premium. Due to voltage effects, the  
0603 capacitors have a lower incircuit capacitance than the  
0805 package, which can degrade transient response and  
output ripple.  
Thermal Considerations  
Heat is removed from the IC through the solder bumps to  
the PCB copper. The junctiontoambient thermal  
resistance ( ) is largely a function of the PCB layout (size,  
JA  
copper weight, and trace width) and the temperature rise  
from junction to ambient (ΔT).  
Increasing C  
has negligible effect on loop stability  
OUT  
For the FAN53555UC, θ is 38°C/W when mounted on  
and can be increased to reduce output voltage ripple or to  
improve transient response. Output voltage ripple, DV  
is calculated by:  
JA  
its fourlayer evaluation board in still air with twoounce  
outer layer copper weight and oneounce inner layers.  
,
OUT  
Halving the copper thickness results in an increased θ of  
(eq. 10)  
JA  
48°C/W.  
f
SW @ COUT @ ESR 2  
1
DVOUT + DIL  
ƪ
)
ƫ
For longterm reliable operation, the IC’s junction  
(
)
2 @ D @ 1 * D  
8 @ fSW @ COUT  
temperature (T ) should be maintained below 125°C.  
J
To calculate maximum operating temperature (<125°C)  
where C  
is the effective output capacitance.  
The capacitance of C  
voltages, which results in higher DV  
OUT  
for a specific application:  
decreases at higher output  
OUT  
1. Use efficiency graphs to determine efficiency for  
. Equation (10) is  
only valid for Continuous Current Mode (CCM) operation,  
which occurs when the regulator is in PWM Mode.  
OUT  
the desired V , V  
, and load conditions.  
OUT  
IN  
2. Calculate total power dissipation using:  
ǒ1 * 1Ǔ  
For large C  
values, the regulator may fail to start under  
OUT  
(eq. 12)  
P
T + VOUT   ILOAD   
h
a load. If an inductor value greater than 1.0 μH is used, at  
least 30 μF of C  
The lowest DV  
should be used to ensure stability.  
is obtained when the IC is in PWM  
where h is efficiency from Figure 7 through Figure  
OUT  
12.  
OUT  
Mode and, therefore, operating at 2.4 MHz. In PFM Mode,  
is reduced, causing DV to increase.  
3. Estimate inductor copper losses using:  
f
2
SW  
OUT  
(eq. 13)  
PL + ILOAD   DCRL  
ESL Effects  
4. Determine IC losses by removing inductor losses  
(step 3) from total dissipation:  
The Equivalent Series Inductance (ESL) of the output  
capacitor network should be kept low to minimize the  
squarewave component of output ripple that results from  
the division ratio C  
The squarewave component due to the ESL can be  
(eq. 14)  
(eq. 15)  
(eq. 16)  
P
IC + PT * PL  
5. Determine device operating temperature:  
ESL and the output inductor (L  
).  
OUT  
OUT  
DT + PIC   qszie7JA  
estimated as:  
and  
ESLCOUT  
(eq. 11)  
@
IN  
T
IC + TA ) DT  
DV  
[ V  
OUT(SQ)  
L1  
www.onsemi.com  
22  
FAN53555  
It is important to note that the R  
MOSFETs increases linearly with temperature at about  
of the IC’s power  
1.21%/°C. This causes the efficiency (h) to degrade with  
increasing die temperature.  
DS(ON)  
LAYOUT RECOMMENDATION  
Figure 39. Guidance for Layer 1  
Figure 40. Guidance for Layer 2  
www.onsemi.com  
23  
FAN53555  
Figure 41. Guidance for Layer 3  
1. FB trace connects to “+” side of COUT cap.  
ot place COUT near FAN53555, place cap near load  
Length should be less than 0.5 inches  
2. Max trace resistance between FAN53555 and CPU should not exceed 30m  
Ω
Width (mils)  
Length (mils)  
Copper (Oz)  
Resistance (mW)  
25  
25  
25  
25  
500  
500  
500  
500  
2
1.5  
1
4.2  
4.9  
5.8  
7.6  
Table provides resistance values  
for given Copper Oz  
0.5  
Figure 42. Remote Sensing Schematic  
www.onsemi.com  
24  
FAN53555  
Figure 43. Remote Sensing Guidance, Top Layer  
Table 19. ProductSpecific Dimensions  
Product  
D
E
X
Y
Land Pattern  
Option 1  
FAN53555UC00 to FAN53555UC08X, FAN53555BUC05X  
2.000 0.03  
2.015 0.03  
1.600 0.03  
1.615 0.03  
0.200  
0.200  
FAN53555BUC08X, FAN53555BUC09X, FAN53555UC09X,  
FAN53555UC13X, FAN53555BUC13X, FAN53555UC18X,  
FAN53555BUC18X, FAN53555BUC23X, FAN53555UC24X,  
FAN53555BUC24X, FAN53555BUC79X  
0.2075 0.2075  
Option 2  
OMAP is a trademark of Texas Instruments Incorporated. NOVATHOR is a trademark of STEricsson SA. Arm is a registered trademark of Arm Limited (or  
its subsidiaries) in the US and/or elsewhere.  
www.onsemi.com  
25  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
WLCSP20 2.015x1.615x0.586  
CASE 567QK  
ISSUE O  
DATE 31 OCT 2016  
98AON13330G  
ON SEMICONDUCTOR STANDARD  
DOCUMENT NUMBER:  
STATUS:  
Electronic versions are uncontrolled except when  
accessed directly from the Document Repository. Printed  
versions are uncontrolled except when stamped  
“CONTROLLED COPY” in red.  
NEW STANDARD:  
DESCRIPTION: WLCSP20 2.015x1.615x0.586  
PAGE 1 OF2
DOCUMENT NUMBER:  
98AON13330G  
PAGE 2 OF 2  
ISSUE  
REVISION  
DATE  
O
RELEASED FOR PRODUCTION FROM FAIRCHILD UC020AA TO ON SEMICON-  
DUCTOR. REQ. BY F. ESTRADA.  
31 OCT 2016  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
© Semiconductor Components Industries, LLC, 2016  
Case Outline Number:  
October, 2016 − Rev. O  
567QK  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
WLCSP20 2.015x1.615x0.586  
CASE 567SH  
ISSUE O  
DATE 30 NOV 2016  
98AON16602G  
ON SEMICONDUCTOR STANDARD  
DOCUMENT NUMBER:  
STATUS:  
Electronic versions are uncontrolled except when  
accessed directly from the Document Repository. Printed  
versions are uncontrolled except when stamped  
“CONTROLLED COPY” in red.  
NEW STANDARD:  
DESCRIPTION: WLCSP20 2.015x1.615x0.586  
PAGE 1 OF2
DOCUMENT NUMBER:  
98AON16602G  
PAGE 2 OF 2  
ISSUE  
REVISION  
DATE  
O
RELEASED FOR PRODUCTION FROM FAIRCHILD UC020AA TO ON SEMICON-  
DUCTOR. REQ. BY F. ESTRADA.  
30 NOV 2016  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
© Semiconductor Components Industries, LLC, 2016  
Case Outline Number:  
November, 2016 − Rev. O  
567SH  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
WLCSP20 2.0x1.6x0.586  
CASE 567SK  
ISSUE O  
DATE 30 NOV 2016  
98AON16604G  
DOCUMENT NUMBER:  
STATUS:  
Electronic versions are uncontrolled except when  
accessed directly from the Document Repository. Printed  
versions are uncontrolled except when stamped  
“CONTROLLED COPY” in red.  
ON SEMICONDUCTOR STANDARD  
NEW STANDARD:  
DESCRIPTION: WLCSP20 2.0x1.6x0.586  
PAGE 1 OF2
DOCUMENT NUMBER:  
98AON16604G  
PAGE 2 OF 2  
ISSUE  
REVISION  
DATE  
O
RELEASED FOR PRODUCTION FROM FAIRCHILD UC020AA TO ON SEMICON-  
DUCTOR. REQ. BY F. ESTRADA.  
30 NOV 2016  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
© Semiconductor Components Industries, LLC, 2016  
Case Outline Number:  
November, 2016 − Rev. O  
567SK  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  

相关型号:

FAN53555BUC08X

5 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53555BUC09X

5 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53555BUC13X

5 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53555BUC18X

5 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53555BUC23X

5 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53555BUC24X

5 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53555BUC79X

5A,2.4MHz,可数字编程的 TinyBuck® 稳压器
ONSEMI

FAN53555UC00X

5 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53555UC01X

5 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53555UC03X

5 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53555UC042X

5 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI

FAN53555UC04X

5 A, 2.4 MHz, Digitally Programmable TinyBuck Regulator
ONSEMI