FAN4010IL6X-F113 [ONSEMI]

High-Side Current Sensor;
FAN4010IL6X-F113
型号: FAN4010IL6X-F113
厂家: ONSEMI    ONSEMI
描述:

High-Side Current Sensor

光电二极管
文件: 总9页 (文件大小:192K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FAN4010  
High-Side Current Sensor  
Description  
Features at +5 V  
The FAN4010 is a high-side current sense amplifier  
designed for battery-pow ered systems. Using the  
FAN4010 for high-side pow er-line monitoring does not  
interfere w ith the battery charger’s ground path. The  
FAN4010 is designed for portable PCs, cellular phones,  
and other portable systems w here battery / DC pow er-  
line monitoring is critical.  
.
.
.
.
.
.
.
.
Low Cost, Accurate, High-Side Current Sensing  
Output Voltage Scaling  
Up to 2.5 V Sense Voltage  
2 V to 6 V Supply Range  
2 μA Typical Offset Current  
3.5 μA Quiescent Current  
-0.2% Accuracy  
To provide a high level of flexibility, the FAN4010  
functions w ith an external sense resistor to set the  
range of load current to be monitored. It has a current  
output that can be converted to a ground-referred  
voltage w ith a single resistor, accommodating a w ide  
range of battery voltages and currents. The FAN4010  
features allow it to be used for gas gauging as w ell as  
uni-directional or bi-directional current monitoring.  
6-Lead MicroPak™ MLP Package  
Applications Battery Chargers  
.
.
.
.
.
.
Battery Chargers  
Smart Battery Packs  
DC Motor Control  
Over-Current Monitor  
Pow er Management  
Programmable Current Source  
Ordering Information  
Operating  
Temperature  
Range  
Packing  
Package  
Part Number  
Top Mark  
Method  
FAN4010IL6X  
FAN4010IL6X-F113(1)  
Tape &  
Reel  
-40°C to +85°C  
PX  
6-Lead, Molded Leadless Package (MLP)  
Note s:  
1. Legacy product number; please order FAN4010IL6X for new designs.  
2. All packages are lead free per JEDEC: J-STD-020B standard.  
3. Moisture sensitivity level for all parts is MSL-1.  
© 2007 Semiconductor Components Industries, LLC.  
Nov em ber-2017, Rev. 2  
Publication Order Number:  
FAN4010/D  
 
Block Diagram and Typical Circuit  
Rsense  
Load  
VIN  
100  
6
5
4
1
2
3
V
Load  
GND  
NC  
IN  
RLoad  
NC  
VOUT  
IOUT  
ROUT  
IOUT  
Figure 1.  
Functional Block Diagram  
Figure 2.  
Typical Circuit  
Pin Configuration  
VIN  
6
5
4
1
2
3
Load  
NC  
GND  
NC  
IOUT  
Figure 3.  
Pin Assignment (Top Through View)  
Pin Descriptions  
Name  
Type  
Description  
2, 4  
5
NC  
GND  
IOUT  
VIN  
No Connect; leave pin floating  
Ground  
3
Output Current, proportional to VIN-VLOAD  
Input Voltage, Supply Voltage  
1
6
Load  
Connection to load or battery  
www.onsemi.com  
2
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
VS  
Parameter  
Min. Typ. Max. Unit  
Supply Voltage  
0
0
6.3  
V
V
VIN  
Input Voltage Range  
Junction Temperature  
Storage Temperature Range  
6.3  
TJ  
+150  
+150  
+260  
°C  
TSTG  
TL  
-65  
°C  
Reflow Temperature, Soldering  
Package Thermal Resistance(4)  
°C  
456  
°C/W  
ΘJA  
ESD  
Human Body Model, JESD22-A114  
Charged Device Model, JESD22-C101  
5000  
1000  
Electrostatic Discharge  
Protection  
V
Note :  
4. Package thermal resistance (ΘJA), JEDEC standard, multi-layer test boards, still air.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor  
does not recommend exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
Parameter  
Min. Max. Unit  
TA  
VS  
Operating Temperature Range  
Supply Voltage Range  
Input Voltage  
-40  
2
+85  
6
°C  
V
VIN  
2
6
V
VSENSE  
Sensor Voltage Range, VSENSE=VIN-VLOAD, ROUT=0 Ω  
2.5  
V
www.onsemi.com  
3
 
Electrical Characteristics at +5 V  
TA = 25°C, VS = VIN = 5 V, ROUT = 100 Ω, RSENSE = 100 Ω, unless otherw ise noted.  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Frequency Domain Response  
(
BWSS  
BWLS  
VIN  
Small Signal Bandw idth  
Large Signal Bandw idth  
Input Voltage Range  
P =-40 dBm 5), VSENSE=10 mV  
600  
2
kHz  
MHz  
V
IN  
(
P =-20 dBm 6), VSENSE=100 mV  
IN  
VIN=VS  
2
0
6
VSENSE=0 mV  
1
100  
1.000  
2.00  
10.0  
3.5  
9
µA  
VSENSE=10 mV  
VSENSE=100 mV  
VSENSE=200 mV  
VSENSE=1 V  
90  
110  
1.025  
2.05  
10.3  
5.0  
IOUT  
Output Current(7,8)  
0.975  
1.95  
9.7  
mA  
IS  
ISENSE  
ACY  
Gm  
Supply Current(7)  
Load Pin Input Current  
Accuracy  
VSENSE=0 V, GND Pin Current  
µA  
nA  
2
RSENSE=100 Ω, RSENSE=200 mV(7)  
-2.5  
-0.2  
10000  
2.5  
%
Transconductance  
IOUT/VSENSE  
µA/V  
Notes :  
5. -40 dBm = 6.3 mVpp into 50 Ω.  
6. -20 dBm = 63 mVpp into 50 Ω.  
7. 100% tested at 25°C.  
8. Includes input offset voltage contribution.  
www.onsemi.com  
4
 
 
 
 
Typical Performance Characteristics  
TA = 25°C, VS = VIN = 5 V, ROUT = 100 Ω, RSENSE = 100 Ω, unless otherw ise noted.  
10  
250  
200  
150  
100  
50  
VS = 5V  
VIN = 5Vꢀ  
ROUT = 0Ωꢀ  
Average of 100 partsꢀ  
ROUT = 0Ω  
+1 SIGMA  
Average  
ROUT = 100Ω  
1
0
-50  
-100  
-150  
-1 SIGMA  
0.1  
0.01  
0.1  
1
0.1m  
1m  
10m  
100m  
1
10  
VSENSE (V)  
VSENSE vs. Output Current  
VSENSE (V)  
Output Current Error vs. VSENSE  
Figure 4.  
Figure 5.  
10.4  
10.2  
10.0  
9.8  
3
VSENSE = 1Vꢀ  
VIN = 5Vꢀ  
RL= 0Ω  
Vs = 5Vꢀ  
ROUT = 100Ω  
VSENSE = 1V  
0
-3  
VSENSE = 0.1V  
VSENSE = 0.01V  
-6  
9.6  
-9  
PIN = -20dBm of VSENSE = 0.1V & 1Vꢀ  
PIN = -40dBm of VSENSE = 0.01V  
9.4  
-12  
-40  
-20  
0
20  
40  
60  
80  
0.01  
0.1  
1
10  
Temperature (°C)  
Frequency (MHz)  
Figure 6.  
Output Current vs. Temperature  
Figure 7.  
Frequency Response  
12  
10  
8
12  
10  
8
ROUT = 0Ω  
ROUT = 100Ω  
VSENSE = 1V  
VSENSE = 1V  
VSENSE = 0.8V  
VSENSE = 0.6V  
VSENSE = 0.4V  
VSENSE = 0.2V  
VSENSE = 0.8V  
VSENSE = 0.6V  
VSENSE = 0.4V  
VSENSE = 0.2V  
6
6
4
4
2
2
0
0
-2  
-2  
0
0
1
2
3
4
5
1
2
3
4
5
VIN (V)  
Transfer Characteristics  
VIN (V)  
Transfer Characteristics  
Figure 8.  
Figure 9.  
www.onsemi.com  
5
Typical Performance Characteristics (Continued)  
TA = 25°C, VS = VIN = 5 V, ROUT = 100 Ω, RSENSE = 100 Ω, unless otherw ise noted.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
SENSE = 200mVꢀ  
OUT = 0Ωꢀ  
Average of 100 partsꢀ  
V
IN = 5Vꢀ  
R
P
IN = -20dBmꢀ  
R
OUT = 100Ω  
+1 SIGMA  
Average  
V
SENSE = 100mV  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-1 SIGMA  
V
SENSE = 10mV  
VSENSE = 1mV  
0.00001 0.0001 0.001  
0.01  
0.1  
1
10  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Frequency (MHz)  
V
IN (V)  
Figure 10. CMRR vs. Frequency  
Figure 11. VIN vs. Output Current Error  
6.0  
V
IN = 5Vꢀ  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
R
OUT = 100Ω  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
VSENSE (V)  
Figure 12. Supply Current vs. VSENSE  
www.onsemi.com  
6
Application Information  
Detailed Description  
must be taken not to exceed the maximum pow er  
dissipation of the copper trace.  
The FAN4010 measures the voltage drop (VSENSE  
across an external sense resistor in the high-voltage  
side of the circuit. VSENSE is converted to a linear current  
via an internal operational amplifier and precision 100 Ω  
resistor. The value of this current is VSENSE/100 Ω  
(internal). Output current flow s from the IOUT pin to an  
external resistor ROUT to generate an output voltage  
proportional to the current flow ing to the load.  
)
INPUT  
LOAD  
R
SENSE  
0.3in COPPER  
0.3in COPPER  
0.1in COPPER  
Use the follow ing equations to scale a load current to an  
output voltage:  
6
5
4
1
2
V
Load  
GND  
NC  
IN  
VSENSE = ILOAD • RSENSE  
(1)  
(2)  
NC  
VOUT = 0.01 × VSENSE × ROUT  
VOUT  
I
3
OUT  
Load  
6
ROUT  
RLoad  
+
Rsense  
1
Vsense  
100  
-
IOUT  
3
VIN  
V
IN  
Figure 14. Using PCB Trace for RSENSE  
VOUT  
ROUT  
Selecting ROUT  
ROUT can be chosen to obtain the output voltage range  
required for the particular dow nstream application. For  
example, if the output of the FAN4010 is intended to  
drive an analog-to-digital convertor (ADC), ROUT should  
be chosen such that the expected full-scale output  
current produces an input voltage that matches the input  
range of the ADC. For instance, if expected loading  
current ranges from 0 to 1 A, an RSENSE resistor of 1 Ω  
produces an output current that ranges from 0 to 10 mA.  
If the input voltage range of the ADC is 0 to 2 V, an ROUT  
value of 200 Ω should be used. The input voltage and  
full-scale output current (IOUT_FS) needs to be taken into  
account w hen setting up the output range. To ensure  
sufficient operating headroom, choose:  
Figure 13. Functional Circuit  
Selecting RSENSE  
Selection of RSENSE is a balance betw een desired  
accuracy and allow able voltage loss. Although the  
FAN4010 is optimized for high accuracy w ith low VSENSE  
values,  
a larger RSENSE value provides additional  
accuracy. How ever, larger values of RSENSE create a  
larger voltage drop, reducing the effective voltage  
available to the load. This can be troublesome in low -  
voltage applications. Because of this, the maximum  
expected load current and allow able load voltage should  
be w ell understood. Although higher values of VSENSE  
can be used, RSENSE should be chosen to satisfy the  
follow ing condition:  
such that  
ROUT I  
OUTFꢀ  
(4)  
> 1.6푉  
VIN V SENSE – ROUT IOUT  
Fꢀ  
Output current accuracy for the recommended VSENSE  
betw een 10 mV and 200 mV are typically better than  
1%. As a result, the absolute output voltage accuracy is  
dependent on the precision of the output resistor.  
10mV < 푉  
< 200푚푉  
(3)  
SENSE  
For low -cost applications w here accuracy is not as  
important, a portion of the printed circuit board (PCB)  
trace can be used as an RSENSE resistor. Figure 14  
show s an example of this configuration. The resistivity  
of a 0.1-inch w ide trace of tw o-ounce copper is about  
30 mΩ/ft. Unfortunately, the resistance temperature  
coefficient is relatively large (approximately 0.4%/°C), so  
systems w ith a w ide temperature range may need to  
compensate for this effect. Additionally, self heating due  
to load currents introduces a nonlinearity error. Care  
Make sure the input impedance of the circuit connected  
to VOUT is much higher than ROUT to ensure accurate  
VOUT values.  
Since the FAN4010 provides  
a
trans-impedance  
function, it is suitable for applications involving current  
rather than voltage sensing.  
www.onsemi.com  
7
 
Physical Dimensions  
2X  
0.05 C  
1.45  
B
2X  
(1)  
0.05 C  
(0.49)  
5X  
(0.254)  
1.00  
(0.75)  
(0.52)  
1X  
TOP VIEW  
A
PIN 1 IDENTIFIER  
5
0.50±0.05  
(0.30)  
6X  
PIN 1  
0.05  
0.00  
RECOMMENED  
LAND PATTERN  
0.05 C  
0.35±0.05  
C
1.45±0.05  
1.0  
6X  
0.20±0.05  
DETAIL A  
0.10  
0.05  
C B A  
C
0.30±0.05 5X  
1.00±0.05  
0.40±0.05  
DETAIL A  
5X  
0.35±0.05  
0.075 X 45  
CHAMFER  
PIN 1 TERMINAL  
0.5  
(0.050)  
6X  
(0.125)  
4X  
BOTTOM VIEW  
NOTES:  
1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD  
2. DIMENSIONS ARE IN MILLIMETERS  
3. DRAWING CONFORMS TO ASME Y14.5M-2009  
4. LANDPATTERN RECOMMENDATION PER FSC  
5. PIN ONE IDENTIFIER IS 2X LENGTH OF ANY  
OTHER LINE IN THE MARK CODE LAYOUT.  
6. FILENAME AND REVISION: MAC06AREV6  
Figure 15. 6-Lead MicroPak™ Molded Leadless Package (MLP)  
www.onsemi.com  
8
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the  
United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A  
listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make  
changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor  
products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by  
ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do var y in different applications and  
actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts.  
ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for  
use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or  
any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,  
damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Eur ope, Middle East and Afr ica Technical Support:  
N. Amer ican Technical Support: 800-282-9855 Toll Free  
USA/Canada.  
ON Semiconductor Website: www.onsemi.com  
Or der Literature: http://www.onsemi.com/orderlit  
Fax : 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81-3-5817-1050  
For additional information, please contact your local  
Sales Representative  
www.onsemi.com  
9

相关型号:

FAN4010IL6X_F113

High-Side Current Sensor
FAIRCHILD

FAN4010IS5X

High-Side Current Sensor
FAIRCHILD

FAN4010_08

High-Side Current Sensor
FAIRCHILD

FAN4040

Precision Micropower Shunt Voltage Reference
FAIRCHILD

FAN4040-2.5

Precision Micropower Shunt Voltage Reference
FAIRCHILD

FAN4040-3.3

Precision Micropower Shunt Voltage Reference
FAIRCHILD

FAN4040-5.0

Precision Micropower Shunt Voltage Reference
FAIRCHILD

FAN4040A-ES325

Precision Micropower Shunt Voltage Reference
FAIRCHILD

FAN4040A-ES333

Precision Micropower Shunt Voltage Reference
FAIRCHILD

FAN4040A-ES350

Precision Micropower Shunt Voltage Reference
FAIRCHILD

FAN4040A-IS325

Precision Micropower Shunt Voltage Reference
FAIRCHILD

FAN4040A-IS333

Precision Micropower Shunt Voltage Reference
FAIRCHILD