FAN3223TMX [ONSEMI]

Dual 4-A High-Speed, Low-Side Gate Drivers;
FAN3223TMX
型号: FAN3223TMX
厂家: ONSEMI    ONSEMI
描述:

Dual 4-A High-Speed, Low-Side Gate Drivers

文件: 总29页 (文件大小:1974K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FAN3223 /FAN3224 /FAN3225  
Dual 4-A High-Speed, Low-SideGate Drivers  
Features  
Description  
The FA N3223-25 family of dual 4 A gate drivers is  
designed to drive N-channel enhancement-mode  
MOSFETs in low -side sw itching applications by  
providing high peak current pulses during the short  
sw itching intervals. The driver is available w ith either  
TTL or CMOS input thresholds. Internal circuitry  
provides an under-voltage lockout function by holding  
the output LOW until the supply voltage is w ithin the  
operating range. In addition, the drivers feature matched  
internal propagation delays betw een A and B channels  
for applications requiring dual gate drives w ith critical  
timing, such as synchronous rectifiers. This also  
enables connecting tw o drivers in parallel to effectively  
double the current capability driving a single MOSFET.  
.
.
.
.
.
.
Industry-Standard Pinouts  
4.5-V to 18-V Operating Range  
5-A Peak Sink/Source at VDD =12 V  
4.3-A Sink / 2.8-A Source at VOUT =6 V  
Choice of TTL or CMOS Input Thresholds  
Three Versions of Dual Independent Drivers:  
-
-
-
Dual Inverting + Enable (FAN3223)  
Dual Non-Inverting + Enable (FAN3224)  
Dual-Inputs (FAN3225)  
.
.
.
.
Internal Resistors Turn Driver Off If No Inputs  
MillerDrive™ Technology  
The FAN322X drivers incorporate MillerDrive™  
architecture for the final output stage. This bipolar-  
MOSFET combination provides high current during the  
Miller plateau stage of the MOSFET turn-on / turn-off  
process to minimize sw itching loss, w hile providing rail-  
to-rail voltage sw ing and reverse current capability.  
12-ns / 9-ns Typical Rise/Fall Times (2.2-nF Load)  
Under 20-ns Typical Propagation Delay Matched  
w ithin 1 ns to the Other Channel  
.
.
.
.
Double Current Capability by Paralleling Channels  
8-Lead 3x3 mm MLP or 8-Lead SOIC Package  
Rated from –40°C to +125°C Ambient  
The FAN3223 offers two inverting drivers and the  
FAN3224 offers tw o non-inverting drivers. Each device  
has dual independent enable pins that default to ON if  
not connected. In the FAN3225, each channel has dual  
inputs of opposite polarity, w hich allow s configuration as  
non-inverting or inverting w ith an optional enable  
function using the second input. If one or both inputs are  
left unconnected, internal resistors bias the inputs such  
that the output is pulled LOW to hold the pow er  
MOSFET OFF.  
Automotive Qualified to AEC-Q100 (F085 Version)  
Applications  
.
.
.
.
.
.
Sw itch-Mode Pow er Supplies  
High-Efficiency MOSFET Sw itching  
Synchronous Rectifier Circuits  
DC-to-DC Converters  
Motor Control  
Automotive-Qualified Systems (F085 version)  
ENA  
1
8
ENA  
1
8
1
8
ENB  
ENB  
INA+  
INA-  
+
-
INA  
GND  
INB  
2
3
4
7
6
5
OUTA  
VDD  
INA  
GND  
INB  
2
3
4
7
6
5
OUTA  
VDD  
INB+  
GND  
2
3
4
7
6
5
OUTA  
VDD  
A
B
A
B
A
B
+
-
OUTB  
OUTB  
OUTB  
INB-  
FAN3223  
FAN3224  
FAN3225  
Figure 1.  
Pin Configurations  
© 2016 Semiconductor Components Industries, LLC  
December-2017, Rev. 2  
Publication Order Number  
FAN3224/D  
Ordering Information  
Input  
Threshold  
Packing Quantity  
Part Number  
Logic  
Package  
Method  
per Reel  
FAN3223CMPX  
3x3 mm MLP-8  
SOIC-8  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
3,000  
2,500  
2,500  
3,000  
2,500  
2,500  
3,000  
2,500  
2,500  
3,000  
2,500  
FAN3223CMX  
FAN3223CMX-F085(1)  
CMOS  
TTL  
Dual Inverting  
Channels + Dual  
Enable  
SOIC-8  
FAN3223TMPX  
3x3 mm MLP-8  
SOIC-8  
FAN3223TMX  
FAN3223TMX-F085(1)  
SOIC-8  
3x3 mm MLP-8  
SOIC-8  
FAN3224CMPX  
FAN3224CMX  
FAN3224CMX-F085(1)  
CMOS  
SOIC-8  
Dual Non-Inverting  
Channels + Dual  
Enable  
3x3 mm MLP-8  
SOIC-8  
FAN3224TMPX  
FAN3224TMX  
TTL  
FAN3224TMX-F085(1)  
FAN3224TUMX-F085(2)  
FAN3225CMPX  
2,500  
2,500  
3,000  
2,500  
2,500  
3,000  
2,500  
2,500  
SOIC-8  
SOIC-8  
3x3 mm MLP-8  
SOIC-8  
FAN3225CMX  
FAN3225CMX-F085(1)  
CMOS  
TTL  
Dual Channels of Tw o-  
Input / One-Output  
Drivers  
SOIC-8  
FAN3225TMPX  
3x3 mm MLP-8  
SOIC-8  
FAN3225TMX  
FAN3225TMX-F085(1)  
SOIC-8  
Note s:  
1. Qualified to AEC-Q100.  
2. Modified UVLO thresholds.  
www.onsemi.com  
2
 
Package Outlines  
1
2
3
8
7
6
1
2
3
4
8
7
6
5
4
5
Figure 2.  
3x3 mm MLP-8 (Top View)  
Figure 3.  
SOIC-8 (Top View)  
Thermal Characteristics(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
Package  
ΘJL  
ΘJT  
ΘJA  
ΨJB  
ΨJT  
Unit  
°C/W  
°C/W  
1.2  
64  
42  
2.8  
0.7  
8-Lead 3x3 mm Molded Leadless Package (MLP)  
8-Pin Small Outline Integrated Circuit (SOIC)  
38  
29  
87  
41  
2.3  
Notes:  
3. Estimatesderived from thermal simulation; actual valuesdependon the application.  
4. Theta_JL (Θ ): Thermal resistance betweenthe semiconductor junction andthe bottom surface of all the leads(including any  
JL  
thermal pad) that are typically solderedto a PCB.  
5. Theta_JT (Θ ): Thermal resistance betweenthe semiconductor junction andthe top surface of the package,assuming it is  
JT  
held at a uniform temperature by a top-side heatsink.  
6. Theta_JA (ΘJA): Thermal resistance betweenjunction andambient,dependenton the PCB design, heat sinking, and airflow.  
The value given isfor natural convection with noheatsinkusing a 2S2P board, asspecifiedin JEDEC standardsJESD51-2,  
JESD51-5, and JESD51-7, asappropriate.  
7. Psi _JB (ΨJB): Thermal characterizationparameter providingcorrelation betweensemiconductor junctiontemperature andan  
application circuit board referencepoint for the thermal environment definedin Note 6. For the MLP-8package, the board  
reference isdefined asthe PCB copper connectedto the thermal pad andprotrudingfrom either end of the package.For the  
SOIC-8 package, the board reference isdefinedasthe PCB copper adjacent to pin 6.  
8. Psi _JT (ΨJT): Thermal characterizationparameter providingcorrelation betweenthe semiconductor junction temperature and  
the center of the top of the package for the thermal environmentdefined in Note6.  
www.onsemi.com  
3
 
 
 
 
 
 
ENA  
1
8
ENA  
1
8
1
8
ENB  
ENB  
INA+  
INA-  
+
-
INA  
GND  
INB  
2
3
4
7
6
5
OUTA  
VDD  
INA  
GND  
INB  
2
3
4
7
6
5
OUTA  
VDD  
INB+  
GND  
2
3
4
7
6
5
OUTA  
VDD  
A
B
A
B
A
B
+
-
OUTB  
OUTB  
OUTB  
INB  
-
FAN3223  
FAN3224  
FAN3225  
Figure 4.  
Pin Assignments (Repeated)  
Pin Definitions  
Name  
Pin Description  
Enable Input for Channel A. Pull pin LOW to inhibit driver A. ENA has TTL thresholds for both TTL and  
CMOS INx threshold.  
ENA  
ENB  
Enable Input for Channel B. Pull pin LOW to inhibit driver B. ENB has TTL thresholds for both TTL and  
CMOS INx threshold.  
GND  
INA  
Ground. Common ground reference for input and output circuits.  
Input to Channel A.  
INA+  
INA-  
INB  
Non-Inverting Input to Channel A. Connect to VDD to enable output.  
Inverting Input to Channel A. Connect to GND to enable output.  
Input to Channel B.  
INB+  
INB-  
Non-Inverting Input to Channel B. Connect to VDD to enable output.  
Inverting Input to Channel B. Connect to GND to enable output.  
OUTA Gate Drive Output A: Held LOW unless required input(s) are present and VDD is above UVLO threshold.  
OUTB Gate Drive Output B: Held LOW unless required input(s) are present and VDD is above UVLO threshold.  
Gate Drive Output A (inverted from the input): Held LOW unless required input is present and VDD is  
OUTA  
above UVLO threshold.  
Gate Drive Output B (inverted from the input): Held LOW unless required input is present and VDD is  
above UVLO threshold.  
OUTB  
Thermal Pad (MLP only). Exposed metal on the bottom of the package; may be left floating or connected  
to GND; NOT suitable for carrying current.  
P1  
VDD  
Supply Voltage. Provides pow er to the IC.  
Output Logic  
FAN3223 (x=A or B)  
FAN3224 (x=A or B)  
FAN3225 (x=A or B)  
ENx  
INx  
ENx  
INx  
OUTx  
INx+  
INx  
OUTx  
OUTx  
0
0
1(9)  
1(9)  
0
1(9)  
0
0
0
1
0
0
0
1(9)  
1(9)  
0(9)  
0
0
0
1
0(9)  
0(9)  
1
0
1(9)  
0
0
0
1
0
1
0(9)  
1
1(9)  
1
1(9)  
Note:  
9. Default input signal if no external connection is made.  
www.onsemi.com  
4
 
Block Diagrams  
VDD  
VDD  
100k  
100kΩ  
100kΩ  
ENA  
1
8
ENB  
VDD  
INA  
2
3
OUTA  
VDD  
7
6
100kΩ  
GND  
UVLO  
VDD_OK  
VDD  
100kΩ  
OUTB  
5
INB  
4
100kΩ  
Figure 5.  
FAN3223 Block Diagram  
VDD  
VDD  
100k  
100kΩ  
ENA  
1
8
ENB  
INA  
2
7
6
OUTA  
VDD  
100kΩ  
100kΩ  
UVLO  
GND  
3
4
VDD_OK  
INB  
5
OUTB  
100kΩ  
100kΩ  
Figure 6.  
FAN3224 Block Diagram  
www.onsemi.com  
5
 
Block Diagrams  
VDD  
INA+  
INA-  
8
1
100k  
OUTA  
VDD  
7
6
100kΩ  
100kΩ  
VDD_OK  
GND  
INB+  
3
2
UVLO  
VDD  
100kΩ  
OUTB  
5
INB-  
4
100kΩ  
100kΩ  
Figure 7.  
FAN3225 Block Diagram  
www.onsemi.com  
6
 
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
VDD  
VEN  
Parameter  
Min.  
Max. Unit  
VDD to PGND  
-0.3  
20.0  
V
V
ENA and ENB to GND  
GND - 0.3 VDD + 0.3  
GND - 0.3 VDD + 0.3  
GND - 0.3 VDD + 0.3  
+260  
VIN  
INA, INA+, INA–, INB, INB+ and INB– to GND  
OUTA and OUTB to GND DC  
V
VOUT  
TL  
V
Lead Soldering Temperature (10 Seconds)  
Junction Temperature  
ºC  
ºC  
ºC  
TJ  
-55  
-65  
+150  
+150  
TSTG  
Storage Temperature  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. ON does not  
recommend exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
VDD  
Parameter  
Min.  
4.5  
9.5  
0
Max. Unit  
Supply Voltage Range  
18.0  
18.0  
V
V
VDD  
Supply Voltage Range (FAN3224TU only)  
Enable Voltage ENA and ENB  
VEN  
VDD  
V
VIN  
Input Voltage INA, INA+, INA–, INB, INB+ and INB–  
0
VDD  
V
VOUT  
TA  
OUTA and OUTB to GND  
Repetitive Pulse < 200 ns  
-2.0  
-40  
VDD + 0.3  
+125  
V
Operating Ambient Temperature  
ºC  
www.onsemi.com  
7
Electrical Characteristics  
Unless otherw ise noted, VDD=12 V, TJ=-40°C to +125°C. Currents are defined as positive into the device and  
negative out of the device.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Supply  
VDD  
Operating Range  
4.5  
18.0  
0.95  
0.35  
4.3  
V
mA  
mA  
V
All except FAN3225C  
0.70  
0.21  
3.9  
Supply Current, Inputs / EN Not  
Connected  
IDD  
(10)  
FAN3225C  
VON  
Turn-On Voltage  
Turn-Off Voltage  
INA=ENA=VDD, INB=ENB=0 V  
INA=ENA=VDD, INB=ENB=0 V  
3.5  
3.3  
VOFF  
3.7  
4.1  
V
FAN322xTMX-F085, FAN322xCMX-F085 (Automotive-Qualified Versions)  
VDD  
Operating Range  
4.5  
18.0  
1.20  
0.35  
4.5  
V
mA  
mA  
V
All Except FAN3225C  
0.70  
0.21  
3.9  
Supply Current, Inputs / EN Not  
Connected(15)  
IDD  
(10)  
FAN3225C  
Turn-On Voltage(15)  
Turn-Off Voltage(15)  
VON  
INA=ENA=VDD, INB=ENB=0 V  
INA=ENA=VDD, INB=ENB=0 V  
3.4  
3.2  
VOFF  
3.7  
4.3  
V
FAN3224TUMX-F085 (Modified UVLO Version)  
Operating Range  
VDD  
IDD  
9.5  
18.0  
1.20  
V
Supply Current, Inputs / EN Not  
Connected(15)  
0.70  
mA  
VON  
Turn-On Voltage(15)  
Turn-Off Voltage(15)  
INA=ENA=VDD, INB=ENB=0 V  
INA=ENA=VDD, INB=ENB=0 V  
8.0  
7.0  
9.1  
8.2  
10.2  
9.3  
V
V
VOFF  
Inputs(FAN322xT)(11)  
VINL_T  
VINH_T  
VHYS_T TTL Logic Hysteresis Voltage  
INx Logic LOW Threshold  
0.8  
1.2  
1.6  
0.4  
V
V
INx Logic HIGH Threshold  
2.0  
0.2  
-1  
0.8  
175  
1
V
I
Non-Inverting Input Current  
Inverting Input Current  
IN from 0 to VDD  
IN from 0 to VDD  
µA  
µA  
IN+  
I
IN-  
-175  
FAN322xTMX-F085, FAN3224TUMX-F085 (Automotive-Qualified Versions)  
VINL_T  
VINH_T  
INx Logic LOW Threshold  
INx Logic HIGH Threshold  
0.8  
1.2  
1.6  
0.4  
V
V
2.0  
0.9  
1.5  
175  
-90  
1.5  
VHYS_T TTL Logic Hysteresis Voltage  
0.1  
-1.5  
80  
V
I
Non-inverting Input Current(15)  
Non-inverting Input Current(15)  
Inverting Input Current(15)  
Inverting Input Current(15)  
IN=0 V  
IN=VDD  
IN=0 V  
IN=VDD  
µA  
µA  
µA  
µA  
INx_T  
I
120  
INx_T  
I
-175  
-1.5  
-120  
INx_T  
I
INx_T  
Inputs(FAN322xC)(11)  
VINL_C  
INx Logic Low Threshold  
30  
-1  
38  
55  
17  
%VDD  
%VDD  
VINH_C INx Logic High Threshold  
VHYS_C CMOS Logic Hysteresis Voltage  
70  
%VDD  
µA  
I
Non-Inverting Input Current  
IN from 0 to VDD  
175  
IN+  
www.onsemi.com  
8
Electrical Characteristics  
Unless otherw ise noted, VDD=12 V, TJ=-40°C to +125°C. Currents are defined as positive into the device and  
negative out of the device.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
I
IN-  
Inverting Input Current  
IN f rom 0 to VDD  
-175  
1
µA  
FAN322xCMX-F085 (Automotive-Qualified Versions)  
VINL_C INx Logic Low Threshold  
30  
38  
55  
17  
%VDD  
%VDD  
%VDD  
µA  
VINH_C INx Logic High Threshold  
70  
VHYS_C CMOS Logic Hysteresis Voltage  
I
Non-Inverting Input Current(15)  
Non-Inverting Input Current(15)  
Inverting Input Current(15)  
IN=0 V  
IN=VDD  
IN=0 V  
IN=VDD  
-1.5  
90  
1.5  
175  
-90  
1.5  
INx_T  
I
120  
µA  
INx_T  
I
-175  
-1.5  
-120  
µA  
INx_T  
I
Inverting Input Current(15)  
µA  
INx_T  
ENABLE (FAN3223C, FAN3223T, FAN3224C, FAN3224T)  
VENL  
Enable Logic Low Threshold  
EN f rom 5 V to 0 V  
0.8  
1.2  
1.6  
0.4  
100  
V
V
VENH  
Enable Logic High Threshold  
EN f rom 0 V to 5 V  
2.0  
VHYS_T TTL Logic Hysteresis Voltage(12)  
V
RPU  
tD3  
Enable Pull-Up Resistance(12)  
kΩ  
0 V to 5 V EN, 1 V/ns Slew  
Rate  
9
17  
18  
26  
28  
ns  
ns  
EN to Output Propagation Delay(13)  
5 V to 0 V EN, 1 V/ns Slew  
Rate  
tD4  
11  
FAN3223C-TMX-F085, FAN3224C-TMX-F085, FAN3224TUMX-F085 (Automotive-Qualified Versions)  
VENL  
VENH  
Enable Logic Low Threshold  
Enable Logic High Threshold  
EN f rom 5 V to 0 V  
EN f rom 0 V to 5 V  
0.8  
1.2  
1.6  
0.4  
100  
V
V
2.0  
VHYS_T TTL Logic Hysteresis Voltage(12)  
V
RPU  
tD3  
Enable Pull-Up Resistance(12)  
kΩ  
0 V to 5V EN, 1 V/ns Slew  
Rate  
6
6
17  
19  
34  
31  
ns  
ns  
EN to Output Propagation Delay(13,15)  
5 V to 0V EN, 1 V/ns Slew  
Rate  
tD4  
Outputs  
OUT at VDD/2, CLOAD=0.22 µF,  
f=1 kHz  
ISINK  
OUT Current, Mid-Voltage, Sinking(12)  
4.3  
A
A
OUT Current, Mid-Voltage,  
Sourcing(12)  
OUT at VDD/2, CLOAD=0.22 µF,  
f=1 kHz  
ISOURCE  
-2.8  
IPK_SINK OUT Current, Peak, Sinking(12)  
IPK_SOURCE OUT Current, Peak, Sourcing(12)  
CLOAD=0.22 µF, f=1 kHz  
CLOAD=0.22 µF, f=1 kHz  
CLOAD=2200 pF  
5
-5  
12  
9
A
A
tRISE  
tFALL  
Output Rise Time(14)  
Output Fall Time(14)  
20  
17  
ns  
ns  
CLOAD=2200 pF  
Propagation Matching Betw een  
Channels  
Output Reverse Current Withstand(12)  
INA=INB, OUTA and OUTB at  
50% Point  
tDEL.MATCH  
IRVS  
2
4
ns  
mA  
ns  
500  
18  
Output Propagation Delay, CMOS  
Inputs(14)  
tD1, tD2  
0 – 12 VIN, 1 V/ns Slew Rate  
0 – 5 VIN, 1 V/ns Slew Rate  
10  
9
29  
29  
Output Propagation Delay, TTL  
Inputs(14)  
tD1, tD2  
17  
ns  
www.onsemi.com  
9
Electrical Characteristics  
Unless otherw ise noted, VDD=12 V, TJ=-40°C to +125°C. Currents are defined as positive into the device and  
negative out of the device.  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
All Except for FAN3225C-TMX-F085 (Automotive-Qualified Versions)  
tRISE  
tFALL  
Output Rise Time(14)  
Output Fall Time(14)  
CLOAD=2200 pF  
CLOAD=2200 pF  
12  
9
20  
17  
ns  
ns  
Propagation Matching Betw een  
Channels  
Output Reverse Current Withstand(12)  
INA=INB, OUTA and OUTB at  
50% Point  
tDEL.MATCH  
IRVS  
2
4
ns  
mA  
ns  
500  
18  
Output Propagation Delay, CMOS  
Inputs(14,15)  
tD1, tD2  
0 – 12 VIN, 1 V/ns Slew Rate  
0 – 5 VIN, 1 V/ns Slew Rate  
9
6
34  
30  
Output Propagation Delay, TTL  
Inputs(14,15)  
tD1, tD2  
16  
ns  
VOH  
VOL  
High Level Output Voltage(15)  
Low Level Output Voltage(15)  
15  
10  
35  
25  
mV  
mV  
VOH =VDDVOUT, IOUT=1 mA  
IOUT = 1 mA  
FAN3225C_TMX_F085 (Automotive-Qualificed Versions)  
tRISE  
tFALL  
Output Rise Time(14)  
Output Fall Time(14)  
CLOAD=2200 pF  
CLOAD=2200 pF  
12  
9
28  
26  
ns  
ns  
VOH  
High Level Output Voltage(15)  
Low Level Output Voltage(15)  
15  
10  
37  
25  
mV  
mV  
VOH =VDDVOUT, IOUT=1 mA  
VOL  
IOUT = 1 mA  
Notes:  
10. Low er supply current due to inactive TTL circuitry.  
11. EN inputs have TTL thresholds; refer to the ENABLE section.  
12. Not tested in production.  
13. See Timing Diagrams of Figure 10 and Figure 11.  
14. See Timing Diagrams of Figure 8 and Figure 9.  
15. Applies only to _F085 versions.  
www.onsemi.com  
10  
 
 
 
 
 
 
Timing Diagrams  
VINH  
VINH  
VINL  
Input  
Input  
VINL  
tD1  
tD2  
tD1  
tD2  
tRISE  
tFALL  
tRISE  
tFALL  
90%  
10%  
90%  
10%  
Output  
Output  
Figure 8.  
Non-Inverting (EN HIGH or Floating)  
Figure 9.  
Inverting (EN HIGH or Floating)  
HIGH  
HIGH  
LOW  
Input  
Input  
LOW  
V
ENH  
Enable  
V
ENH  
V
ENL  
Enable  
V
ENL  
tD3  
tD4  
D3  
D4  
t
t
tFALL  
tRISE  
tFALL  
tRISE  
90%  
10%  
90%  
10%  
Output  
Output  
Figure 10. Non-Inverting (IN HIGH)  
Figure 11. Inverting (IN LOW)  
www.onsemi.com  
11  
 
 
 
Typical Performance Characteristics  
Typical characteristics are provided at 25°C and VDD=12 V unless otherw ise noted.  
Figure 12.  
IDD (Static) vs. Supply Voltage(16)  
Figure 13.  
IDD (Static) vs. Supply Voltage(16)  
Figure 14.  
IDD (Static) vs. Supply Voltage(16)  
Figure 15.  
IDD (No-Load) vs. Frequency  
Figure 16.  
IDD (No-Load) vs. Frequency  
www.onsemi.com  
12  
 
 
 
 
Typical Performance Characteristics  
Typical characteristics are provided at 25°C and VDD=12 V unless otherw ise noted.  
Figure 17.  
IDD (2.2 nF Load) vs. Frequency  
Figure 18.  
IDD (2.2 nF Load) vs. Frequency  
Figure 19.  
IDD (Static) vs. Temperature(16)  
Figure 20.  
IDD (Static) vs. Temperature(16)  
Figure 21.  
IDD (Static) vs. Temperature(16)  
www.onsemi.com  
13  
 
 
Typical Performance Characteristics  
Typical characteristics are provided at 25°C and VDD=12 V unless otherw ise noted.  
Figure 22.  
Input Thresholds vs. Supply Voltage Figure 23.  
Input Thresholds vs. Supply Voltage  
Figure 24.  
Input Threshold % vs. Supply Voltage  
Figure 25.  
Input Thresholds vs. Temperature  
Figure 26.  
Input Thresholds vs. Temperature  
www.onsemi.com  
14  
Typical Performance Characteristics  
Typical characteristics are provided at 25°C and VDD=12 V unless otherw ise noted.  
Figure 27.  
UVLO Thresholds vs. Temperature  
Figure 28. UVLO Threshold vs. Temperature  
Figure 29. UVLO Thresholds vs. Temperature  
Figure 30. Propagation Delay vs. Supply  
Voltage  
Figure 31. Propagation Delay vs. Supply  
Voltage  
www.onsemi.com  
15  
Typical Performance Characteristics  
Typical characteristics are provided at 25°C and VDD=12 V unless otherw ise noted.  
Typical Performance Characteristics  
Typical characteristics are provided at 25°C and VDD=12 V unless otherw ise noted.  
Figure 32. Propagation Delay vs. Supply  
Voltage  
Figure 33. Propagation Delay vs. Supply  
Voltage  
Figure 34. Propagation Delays vs. Temperature  
Figure 35. Propagation Delays vs. Temperature  
www.onsemi.com  
16  
Typical Performance Characteristics  
Typical characteristics are provided at 25°C and VDD=12 V unless otherw ise noted.  
Figure 36. Propagation Delays vs. Temperature  
Figure 37. Propagation Delays vs. Temperature  
Typical Performance Characteristics  
Typical characteristics are provided at 25°C and VDD=12 V unless otherw ise noted.  
Figure 38.  
Fall Time vs. Supply Voltage  
Figure 39. Rise Time vs. Supply Voltage  
Figure 40.  
Rise and Fall Times vs. Temperature  
www.onsemi.com  
17  
Typical Performance Characteristics  
Typical characteristics are provided at 25°C and VDD=12 V unless otherw ise noted.  
Figure 41.  
Rise/Fall Waveforms with 2.2 nF  
Load  
Figure 42.  
Rise/Fall Waveforms with 10 nF  
Load  
www.onsemi.com  
18  
Typical Performance Characteristics  
Typical characteristics are provided at 25°C and VDD=12 V unless otherw ise noted.  
Figure 43.  
Quasi-Static Source Current  
with VDD=12 V(17)  
Figure 44.  
Quasi-Static Sink Current with  
VDD=12 V(17)  
Figure 45.  
Notes:  
Quasi-Static Source Current  
with VDD=8 V(17)  
Figure 46.  
Quasi-Static Sink Current with  
VDD=8 V(17)  
16. For any inverting inputs pulled low , non-inverting inputs pulled high, or outputs driven high, static IDD increases by  
the current flow ing through the corresponding pull-up/dow n resistor show n in the block diagram.  
17. The initial spike in each current w aveformis a measurement artifact caused by the stray inductance of the  
current-measurement loop.  
www.onsemi.com  
19  
 
 
Test Circuit  
VDD  
470 µF  
Al. El.  
4.7 µF  
ceramic  
Current Probe  
LECROY AP015  
IOUT  
IN  
1 kHz  
1 µF  
ceramic  
CLOAD  
0.22 µF  
VOUT  
Figure 47. Quasi-Static IOUT / VOUT Test Circuit  
www.onsemi.com  
20  
Applications Information  
Input Thresholds  
MillerDrive™ Gate Drive Technology  
Each member of the FAN322x driver family consists of  
tw o identical channels that may be used independently  
at rated current or connected in parallel to double the  
individual current capacity. In the FAN3223 and  
FAN3224, channels A and B can be enabled or disabled  
independently using ENA or ENB, respectively. The EN  
pin has TTL thresholds for parts w ith either CMOS or  
TTL input thresholds. If ENA and ENB are not  
connected, an internal pull-up resistor enables the driver  
channels by default. ENA and ENB have TTL thresholds  
in parts w ith either TTL or CMOS INx threshold. If the  
channel A and channel B inputs and outputs are  
connected in parallel to increase the driver current  
capacity, ENA and ENB should be connected and  
driven together.  
FAN322x gate drivers incorporate the MillerDrive™  
architecture show n in Figure 48. For the output stage, a  
combination of bipolar and MOS devices provide large  
currents over a w ide range of supply voltage and  
temperature variations. The bipolar devices carry the  
bulk of the current as OUT sw ings betw een 1/3 to 2/3  
VDD and the MOS devices pull the output to the HIGH or  
LOW rail.  
The purpose of the MillerDrive™ architecture is to  
speed up sw itching by providing high current during the  
Miller plateau region w hen the gate-drain capacitance of  
the MOSFET is being charged or discharged as part of  
the turn-on / turn-off process.  
For applications that have zero voltage sw itching during  
the MOSFET turn-on or turn-off interval, the driver  
supplies high peak current for fast sw itching even  
though the Miller plateau is not present. This situation  
often occurs in synchronous rectifier applications  
because the body diode is generally conducting before  
the MOSFET is sw itched ON.  
The FAN322x family offers versions in either TTL or  
CMOS input thresholds. In the FAN322xT, the input  
thresholds meet industry-standard TTL-logic thresholds  
independent of the VDD voltage, and there is  
a
hysteresis voltage of approximately 0.4 V. These levels  
permit the inputs to be driven from a range of input logic  
signal levels for w hich a voltage over 2 V is considered  
logic HIGH. The driving signal for the TTL inputs should  
have fast rising and falling edges w ith a slew rate of  
6 V/µs or faster, so a rise time from 0 to 3.3 V should be  
550 ns or less. With reduced slew rate, circuit noise  
could cause the driver input voltage to exceed the  
hysteresis voltage and retrigger the driver input, causing  
erratic operation.  
The output pin slew rate is determined by VDD voltage  
and the load on the output. It is not user adjustable, but  
a series resistor can be added if a slow er rise or fall time  
at the MOSFET gate is needed.  
VDD  
In the FAN322xC, the logic input thresholds are  
dependent on the VDD level and, w ith VDD of 12V, the  
logic rising edge threshold is approximately 55% of VDD  
and the input falling edge threshold is approximately  
38% of VDD. The CMOS input configuration offers a  
hysteresis voltage of approximately 17% of VDD. The  
CMOS inputs can be used w ith relatively slow edges  
(approaching DC) if good decoupling and bypass  
techniques are incorporated in the system design to  
prevent noise from violating the input voltage hysteresis  
w indow . This allow s setting precise timing intervals by  
fitting an R-C circuit betw een the controlling signal and  
the IN pin of the driver. The slow rising edge at the IN  
pin of the driver introduces a delay betw een the  
controlling signal and the OUT pin of the driver.  
Input  
stage  
VOUT  
Figure 48. MillerDrive™ Output Architecture  
Under-Voltage Lockout  
The FAN322x startup logic is optimized to drive ground-  
referenced N-channel MOSFETs w ith an under-voltage  
lockout (UVLO) function to ensure that the IC starts up  
in an orderly fashion. When VDD is rising, yet below the  
UVLO level, this circuit holds the output LOW,  
regardless of the status of the input pins. After the part  
is active, the supply voltage must drop 0.2 V before the  
part shuts dow n. This hysteresis helps prevent chatter  
when low VDD supply voltages have noise from the  
pow er sw itching. This configuration is not suitable for  
driving high-side P-channel MOSFETs because the low  
output voltage of the driver w ould turn the P-channel  
MOSFET ON w ith VDD below the UVLO level.  
Static SupplyCurrent  
In the IDD (static) typical performance characteristics  
(Figure 12 - Figure 14 and Figure 19 - Figure 21), the  
curve is produced w ith all inputs/enables floating (OUT  
is low ) and indicates the low est static IDD current for the  
tested configuration. For other states, additional current  
flow s through the 100 kresistors on the inputs and  
outputs show n in the block diagram of each part (see  
Figure 5 - Figure 7). In these cases, the actual static IDD  
current is the value obtained from the curves plus this  
additional current.  
www.onsemi.com  
21  
 
For best results, make connections to all pins as  
short and direct as possible.  
VDD Bypass Capacitor Guidelines  
To enable this IC to turn a device ON quickly, a local  
high-frequency bypass capacitor, CBYP, w ith low ESR  
and ESL should be connected betw een the VDD and  
GND pins w ith minimal trace length. This capacitor is  
in addition to the bulk electrolytic capacitance of 10 µF  
to 47 µF commonly found on the driver and controller  
bias circuits.  
.
.
The FAN322x is compatible w ith many other  
industry-standard drivers. In single input parts w ith  
enable pins, there is an internal 100 kresistor tied  
to VDD to enable the driver by default; this should  
be considered in the PCB layout.  
The turn-on and turn-off current paths should be  
minimized, as discussed in the follow ing section.  
A typical criterion for choosing the value of CBYP is to  
keep the ripple voltage on the VDD supply to 5%. This  
is often achieved w ith a value 20 times the equivalent  
load capacitance CEQV, defined here as QGATE/VDD  
Ceramic capacitors of 0.1 µF to 1 µF or larger are  
common choices, as are dielectrics, such as X5R and  
X7R w ith good temperature characteristics and high  
pulse current capability.  
Figure 49 show s the pulsed gate drive current path  
when the gate driver is supplying gate charge to turn the  
MOSFET ON. The current is supplied from the local  
bypass capacitor, CBYP, and flow s through the driver to  
the MOSFET gate and to ground. To reach the high  
peak currents possible, the resistance and inductance in  
the path should be minimized. The localized CBYP acts  
to contain the high peak current pulses w ithin this driver-  
MOSFET circuit, preventing them from disturbing the  
sensitive analog circuitry in the PWM controller.  
.
If circuit noise affects normal operation, the value of  
CBYP may be increased to 50-100 times the CEQV, or  
CBYP may be split into tw o capacitors. One should be a  
larger value, based on equivalent load capacitance, and  
the other a smaller value, such as 1-10 nF mounted  
closest to the VDD and GND pins to carry the higher  
frequency components of the current pulses. The  
bypass capacitor must provide the pulsed current from  
both of the driver channels and, if the drivers are  
sw itching simultaneously, the combined peak current  
sourced from the CBYP w ould be tw ice as large as w hen  
a single channel is sw itching.  
VDD  
VDS  
CBYP  
FAN322x  
Layout and Connection Guidelines  
PWM  
The FA N3223-25 family of gate drivers incorporates  
fast-reacting input circuits, short propagation delays,  
and pow erful output stages capable of delivering current  
peaks over 4 A to facilitate voltage transition times from  
under 10 ns to over 150 ns. The follow ing layout and  
connection guidelines are strongly recommended:  
Figure 49. Current Path for MOSFET Turn-On  
Figure 50 show s the current path w hen the gate driver  
turns the MOSFET OFF. Ideally, the driver shunts the  
current directly to the source of the MOSFET in a s mall  
circuit loop. For fast turn-off times, the resistance and  
inductance in this path should be minimized.  
.
Keep high-current output and pow er ground paths  
separate logic and enable input signals and signal  
ground paths. This is espec ially critical w hen  
dealing w ith TTL-level logic thresholds at driver  
inputs and enable pins.  
VDD  
VDS  
.
Keep the driver as close to the load as possible to  
minimize the length of high-current traces. This  
reduces the series inductance to improve high-  
speed sw itching, w hile reducing the loop area that  
can radiate EMI to the driver inputs and  
surrounding circuitry.  
CBYP  
FAN322x  
.
.
If the inputs to a channel are not externally  
connected, the internal 100 kresistors indicated  
on block diagrams command a low output. In noisy  
environments, it may be necessary to tie inputs of  
an unused channel to VDD or GND using short  
traces to prevent noise from causing spurious  
output sw itching.  
PWM  
Figure 50. Current Path for MOSFET Turn-Off  
Many high-speed pow er circuits can be susceptible  
to noise injected from their ow n output or other  
external sources, possibly causing output re-  
triggering. These effects can be obvious if the  
circuit is tested in breadboard or non-optimal circuit  
layouts w ith long input, enable, or output leads.  
www.onsemi.com  
22  
 
 
Truth Table of Logic Operation  
OperationalWaveforms  
The FAN3225 truth table indicates the operational states  
using the dual-input configuration. In a non-inverting  
driver configuration, the IN- pin should be a logic LOW  
signal. If the IN- pin is connected to logic HIGH, a disable  
function is realized, and the driver output remains LOW  
regardless of the state of the IN+ pin.  
At pow er-up, the driver output remains LOW until the  
VDD voltage reaches the turn-on threshold. The  
magnitude of the OUT pulses rises w ith VDD until  
steady-state VDD is reached. The non-inverting  
operation illustrated in Figure 53 shows that the output  
remains LOW until the UVLO threshold is reached, then  
the output is in-phase w ith the input.  
IN+  
0
IN-  
0
OUT  
0
0
1
0
VDD  
0
1
Turn-on threshold  
1
0
1
1
In the non-inverting driver configuration in Figure 51, the  
IN- pin is tied to ground and the input signal (PWM) is  
applied to IN+ pin. The IN- pin can be connected to logic  
HIGH to disable the driver and the output remains LOW,  
regardless of the state of the IN+ pin.  
IN-  
IN+  
VDD  
IN+  
PWM  
OUT  
FAN3225  
IN-  
OUT  
GND  
Figure 53. Non-Inverting Startup Waveforms  
For the inverting configuration of Figure 52, startup  
waveforms are show n in Figure 54. With IN+ tied to  
VDD and the input signal applied to IN–, the OUT  
pulses are inverted w ith respect to the input. At pow er-  
up, the inverted output remains LOW until the VDD  
voltage reaches the turn-on threshold, then it follows the  
input w ith inverted phase.  
Figure 51. Dual-Input Driver Enabled,  
Non-Inverting Configuration  
In the inverting driver application in Figure 52, the IN+  
pin is tied HIGH. Pulling the IN+ pin to GND forces the  
output LOW, regardless of the state of the IN- pin.  
VDD  
VDD  
Turn-on threshold  
IN+  
IN-  
OUT  
FAN3225  
IN-  
PWM  
GND  
IN+  
(VDD)  
Figure 52. Dual-Input Driver Enabled,  
Inverting Configuration  
OUT  
Figure 54. Inverting Startup Waveforms  
www.onsemi.com  
23  
 
 
 
 
Thermal Guidelines  
Gate drivers used to sw itch MOSFETs and IGBTs at  
high frequencies can dissipate significant amounts of  
pow er. It is important to determine the driver pow er  
dissipation and the resulting junction temperature in the  
application to ensure that the part is operating w ithin  
acceptable temperature limits.  
To give a numerical example, assume for a 12 V VDD  
(VBIAS) system, the synchronous rectifier sw itches of  
Figure 55 have a total gate charge of 60 nC at  
VGS = 7 V. Therefore, tw o devices in parallel w ould have  
120 nC gate charge. At a sw itching frequency of  
300 kHz, the total pow er dissipation is:  
The total pow er dissipation in a gate driver is the sum of  
PGATE = 120 nC • 7 V • 300 kHz • 2 = 0.504 W  
PDYNAMIC = 3.0 mA • 12 V • 1 = 0.036 W  
PTOTAL = 0.540 W  
(5)  
(6)  
(7)  
tw o components, PGATE and PDYNAMIC  
:
PTOTAL = PGATE + PDYNAMIC  
(1)  
PGATE (Gate Driving Loss): The most significant pow er  
loss results from supplying gate current (charge per  
unit time) to sw itch the load MOSFET on and off at  
the sw itching frequency. The pow er dissipation that  
results from driving a MOSFET at a specified gate-  
source voltage, VGS, w ith gate charge, QG, at  
sw itching frequency, fSW, is determined by:  
The SOIC-8 has  
characterization parameter of  
a
junction-to-board thermal  
ψJB  
= 42°C/W. In a  
system application, the localized temperature around  
the device is a function of the layout and construction of  
the PCB along w ith airflow across the surfaces. To  
ensure reliable operation, the maximum junction  
temperature of the device must be prevented from  
exceeding the maximum rating of 150°C; w ith 80%  
derating, TJ w ould be limited to 120°C. Rearranging  
Equation 4 determines the board temperature required  
to maintain the junction temperature below 120°C:  
PGATE = QG • VGS • fSW • n  
w here n is the number of driver channels in use (1 or 2).  
PDYNAMIC (Dynamic Pre-Drive Shoot-through  
(2)  
/
Current): A pow er loss resulting from internal current  
consumption under dynamic operating conditions,  
including pin pull-up / pull-dow n resistors. The internal  
current consumption (IDYNAMIC) can be estimated using  
the graphs in Figure 15 and Figure 16 of the Typical  
Performance Characteristics to determine the current  
IDYNAMIC draw n from VDD under actual operating  
conditions:  
ψ
(8)  
(9)  
TB,MAX = TJ - PTOTAL  
JB  
TB,MAX = 120°C – 0.54 W • 42°C/W = 97°C  
PDYNAMIC = IDYNAMIC • VDD • n  
(3)  
where n is the number of driver ICs in use. Note that n is  
usually be one IC even if the IC has tw o channels,  
unless two or more.driver ICs are in parallel to driv e a  
large load.  
Once the pow er dissipated in the driver is determined,  
the driver junction rise w ith respect to circuit board can  
be evaluated using the follow ing thermal equation,  
ψJB  
assuming  
w as determined for a similar thermal  
design (heat sinking and air flow ):  
ψ
JB + TB  
(4)  
TJ = PTOTAL  
w here:  
TJ  
= driver junction temperature;  
ψJB  
= (psi) thermal characterization parameter  
relating temperature rise to total pow er  
dissipation; and  
TB  
= board temperature in location as defined in  
the Thermal Characteristics table.  
www.onsemi.com  
24  
Typical Application Diagrams  
VIN  
VOUT  
PWM  
1
2
3
4
8
7
6
5
FAN3224  
8
7
6
5
1
2
3
4
ENA  
ENB  
Vbias  
Timing/  
Isolation  
A
B
GND  
VDD  
FAN3224  
Figure 55. High Current Forward Converter  
with Synchronous Rectification  
Figure 56.  
Center-Tapped Bridge Output with  
Synchronous Rectifiers  
Vin  
QC  
QA  
QD  
QB  
FAN3224  
PWM-A  
FAN3225  
SR-1  
SR-2  
Secondary  
Phase Shift  
Controller  
PWM-B  
PWM-C  
FAN3225  
PWM-D  
Figure 57. Secondary Controlled Full Bridge with Current Doubler Output, Synchronous  
Rectifiers (Simplified)  
www.onsemi.com  
25  
 
Table 1.  
Type  
RelatedProducts  
Gate  
Part  
Input  
Threshold  
Drive(18)  
(Sink/Src)  
Logic  
Package  
Number  
Single 1 A FAN3111C +1.1 A / -0.9 A  
CMOS  
Single Channel of Dual-Input/Single-Output  
SOT23-5, MLP6  
Single 1 A FAN3111E +1.1 A / -0.9 A External(19) Single Non-Inverting Channel withExternal Reference SOT23-5, MLP6  
Single 2 A FAN3100C +2.5 A / -1.8 A  
Single 2 A FAN3100T +2.5 A / -1.8 A  
Single 2 A FAN3180 +2.4 A / -1.6 A  
CMOS  
TTL  
Single Channel of Two-Input/One-Output  
Single Channel of Two-Input/One-Output  
Single Non-Inverting Channel + 3.3-V LDO  
Dual Inverting Channels  
SOT23-5, MLP6  
SOT23-5, MLP6  
SOT23-5  
TTL  
Dual 2 A  
Dual 2 A  
Dual 2 A  
Dual 2 A  
Dual 2 A  
Dual 2 A  
Dual 2 A  
Dual 2 A  
Dual 2 A  
Dual 2 A  
FAN3216T +2.4 A / -1.6 A  
FAN3217T +2.4 A / -1.6 A  
FAN3226C +2.4 A / -1.6 A  
FAN3226T +2.4 A / -1.6 A  
FAN3227C +2.4 A / -1.6 A  
FAN3227T +2.4 A / -1.6 A  
FAN3228C +2.4 A / -1.6 A  
FAN3228T +2.4 A / -1.6 A  
FAN3229C +2.4 A / -1.6 A  
FAN3229T +2.4 A / -1.6 A  
TTL  
SOIC8  
TTL  
Dual Non-InvertingChannels  
SOIC8  
CMOS  
TTL  
Dual Inverting Channels+ Dual Enable  
Dual Inverting Channels+ Dual Enable  
Dual Non-InvertingChannels+ Dual Enable  
Dual Non-InvertingChannels+ Dual Enable  
SOIC8, MLP8  
SOIC8, MLP8  
SOIC8, MLP8  
SOIC8, MLP8  
CMOS  
TTL  
CMOS  
TTL  
Dual Channelsof Two-Input/One-Output, Pin Config.1 SOIC8, MLP8  
Dual Channelsof Two-Input/One-Output, Pin Config.1 SOIC8, MLP8  
Dual Channelsof Two-Input/One-Output, Pin Config.2 SOIC8, MLP8  
Dual Channelsof Two-Input/One-Output, Pin Config.2 SOIC8, MLP8  
CMOS  
TTL  
20 V Non-Inverting Channel (NMOS) and Inverting  
SOIC8  
Dual 2 A  
Dual 2 A  
FAN3268T +2.4 A / -1.6 A  
FAN3278T +2.4 A / -1.6 A  
TTL  
TTL  
Channel (PMOS) + Dual Enables  
30 V Non-Inverting Channel (NMOS) and Inverting  
SOIC8  
Channel (PMOS) + Dual Enables  
Dual 4 A  
Dual 4 A  
FAN3213T +4.3 A / -2.8 A  
FAN3214T +4.3 A / -2.8 A  
TTL  
TTL  
Dual Inverting Channels  
SOIC8  
SOIC8  
Dual Non-InvertingChannels  
Dual 4 A  
Dual 4 A  
Dual 4 A  
Dual 4 A  
Dual 4 A  
Dual 4 A  
FAN3223C +4.3 A / -2.8 A  
FAN3223T +4.3 A / -2.8 A  
FAN3224C +4.3 A / -2.8 A  
FAN3224T +4.3 A / -2.8 A  
FAN3225C +4.3 A / -2.8 A  
FAN3225T +4.3 A / -2.8 A  
CMOS  
TTL  
Dual Inverting Channels + Dual Enable  
Dual Inverting Channels + Dual Enable  
Dual Non-Inverting Channels + Dual Enable  
Dual Non-Inverting Channels + Dual Enable  
Dual Channels of Two-Input/One-Output  
Dual Channels of Two-Input/One-Output  
Single Inverting Channel + Enable  
SOIC8, MLP8  
SOIC8, MLP8  
SOIC8, MLP8  
SOIC8, MLP8  
SOIC8, MLP8  
SOIC8, MLP8  
SOIC8, MLP8  
SOIC8, MLP8  
SOIC8, MLP8  
SOIC8, MLP8  
SOIC8  
CMOS  
TTL  
CMOS  
TTL  
Single 9 A FAN3121C +9.7 A / -7.1 A  
Single 9 A FAN3121T +9.7 A / -7.1 A  
Single 9 A FAN3122T +9.7 A / -7.1 A  
Single 9 A FAN3122C +9.7 A / -7.1 A  
CMOS  
TTL  
Single Inverting Channel + Enable  
CMOS  
TTL  
Single Non-Inverting Channel + Enable  
Single Non-Inverting Channel + Enable  
Dual-Coil Relay Driver, TimingConfig. 0  
Dual-Coil Relay Driver, TimingConfig. 1  
Dual 12 A FAN3240  
Dual 12 A FAN3241  
Notes:  
+12.0 A  
+12.0 A  
TTL  
TTL  
SOIC8  
18. Typical currents w ith OUTx at 6 V and VDD=12 V.  
19. Thresholds proportional to an externally supplied reference voltage.  
www.onsemi.com  
26  
 
 
Physical Dimensions  
0.10 C  
2.37  
3.00  
A
B
5
8
2X  
1.99  
3.30  
1.42  
3.00  
(0.65)  
PIN #1 IDENT  
0.10 C  
1
4
0.42 TYP  
TOP VIEW  
2X  
0.65 TYP  
RECOMMENDED LAND PATTERN  
0.80 MAX  
0.10 C  
0.08 C  
(0.20)  
0.05  
0.00  
C
NOTES:  
FRONT VIEW  
SEATING  
PLANE  
A. CONFORMS TO JEDEC REGISTRATION MO-229,  
VARIATION VEEC, DATED 11/2001.  
0.45  
0.20  
B. DIMENSIONS ARE IN MILLIMETERS.  
2.25MAX  
4
1
C. DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M, 2009.  
PIN #1 IDENT  
D. LAND PATTERN RECOMMENDATION IS  
EXISTING INDUSTRY LAND PATTERN.  
1.30MAX  
E. DRAWING FILENAME: MKT-MLP08Drev3  
5
8
0.25  
0.35  
0.10  
0.65  
C
C
A B  
1.95  
0.05  
BOTTOM VIEW  
Figure 58. 3x3 mm, 8-Lead Molded Leadless Package (MLP)  
www.onsemi.com  
27  
Physical Dimensions (Continued)  
A
4.90±0.10  
0.65  
(0.635)  
8
5
B
1.75  
6.00±0.20  
5.60  
3.90±0.10  
1
4
PIN ONE  
INDICATOR  
1.27  
1.27  
LAND PATTERN RECOMMENDATION  
0.25  
C B A  
SEE DETAIL A  
0.175±0.075  
0.22±0.03  
C
1.75 MAX  
0.10  
0.42±0.09  
(0.86)  
OPTION A - BEVEL EDGE  
x 45°  
R0.10  
R0.10  
GAGE PLANE  
OPTION B - NO BEVEL EDGE  
0.36  
NOTES:  
8°  
0°  
A) THIS PACKAGE CONFORMS TO JEDEC  
MS-012, VARIATION AA.  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS DO NOT INCLUDE MOLD  
FLASH OR BURRS.  
SEATING PLANE  
0.65±0.25  
(1.04)  
D) LANDPATTERN STANDARD: SOIC127P600X175-8M  
E) DRAWING FILENAME: M08Arev16  
DETAIL A  
SCALE: 2:1  
Figure 59. 8-Lead Small Outline Integrated Circuit (SOIC)  
www.onsemi.com  
28  
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the  
United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A  
listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make  
changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor  
products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by  
ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do var y in different applications and  
actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts.  
ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for  
use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or  
any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,  
damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Eur ope, Middle East and Afr ica Technical Support:  
N. Amer ican Technical Support: 800-282-9855 Toll Free  
USA/Canada.  
ON Semiconductor Website: www.onsemi.com  
Or der Literature: http://www.onsemi.com/orderlit  
Fax : 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81-3-5817-1050  
For additional information, please contact your local  
Sales Representative  
www.onsemi.com  
29  

相关型号:

FAN3223TMX-F085

Dual 4-A High-Speed, Low-Side Gate Drivers
ONSEMI

FAN3223TMX_12

Dual 4A High-Speed, Low-Side Gate Drivers
FAIRCHILD

FAN3223_10

Dual 4A High-Speed, Low-Side Gate Drivers
FAIRCHILD

FAN3223_11

Dual 4A High-Speed, Low-Side Gate Drivers
FAIRCHILD

FAN3223_12

Dual 4A High-Speed, Low-Side Gate Drivers
FAIRCHILD

FAN3224

Dual 4A High-Speed, Low-Side Gate Drivers
FAIRCHILD

FAN3224C

Application Review and Comparative Evaluation of Low-Side Gate Drivers
FAIRCHILD

FAN3224CMPX

Dual 4A High-Speed, Low-Side Gate Drivers
FAIRCHILD

FAN3224CMPX

Dual 4-A High-Speed, Low-Side Gate Drivers
ONSEMI

FAN3224CMX

Dual 4A High-Speed, Low-Side Gate Drivers
FAIRCHILD

FAN3224CMX

Dual 4-A High-Speed, Low-Side Gate Drivers
ONSEMI

FAN3224CMX-F085

Dual 4-A High-Speed, Low-Side Gate Drivers
ONSEMI