FAM65V05DF1 [ONSEMI]

智能功率模块 (IPM),AEC-Q,汽车,逆变器,650V,50A;
FAM65V05DF1
型号: FAM65V05DF1
厂家: ONSEMI    ONSEMI
描述:

智能功率模块 (IPM),AEC-Q,汽车,逆变器,650V,50A

文件: 总16页 (文件大小:766K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Auto SPM) Series  
Automotive 3-Phase IGBT  
Smart Power Module  
FAM65V05DF1  
General Description  
FAM65V05DF1 is an advanced Auto SPM module providing  
a fullyfeatured highperformance auxiliary inverter output stage  
for hybrid and electric vehicles. These modules integrate optimized  
gate drive of the builtin IGBTs to minimize EMI and losses, while  
also providing various protection features, in a compact 12 cm  
footprint.  
2
3D Package Drawing  
(Click to Activate 3D Content)  
ASPM27CCA  
Features  
CASE MODCB  
Automotive SPM in 27 Pin DIP Package  
650 V/50 A 3phase IGBT Module with Low Loss IGBTs  
and Soft Recovery Diodes Optimized for Motor Control  
Applications  
MARKING DIAGRAM  
Integrated Gate Drivers with Internal VS connection, Under  
Voltage lockout, Overcurrent shutdown, Temperature Sensing  
Unit and Fault reporting  
Electrically Isolated AlN Substrate with Low Rqjc  
Module Serialization for Full Traceability  
UL Certified No. E209204 (UL 1557)  
PbFree, Halid Free and RoHS Compliant  
AEC & AQG324 Qualified and PPAP Capable  
Applications and Benefits  
Automotive high voltage auxiliary motors such as air conditioning  
compressor and oil pump.  
Compact Design  
Simplified PCB Layout and Low EMI  
Simplified Assembly  
High Reliability  
ON  
= onsemi Logo  
FAM65V05DF1  
XXX  
Y
WW  
0000001  
= Specific Device Code  
= Lot Number  
= Year  
= Work Week  
= Serial Number  
ORDERING INFORMATION  
Related Resources  
AN8422 650 V Auto SPM Series; Automotive 3Phase IGBT  
Smart Power Module User’s Guide  
See detailed ordering and shipping information on page 7  
of this data sheet.  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
May, 2022 Rev. 2  
FAM65V05DF1/D  
FAM65V05DF1  
PIN CONFIGURATION  
TOP VIEW  
Figure 1. Pin Configuration  
PIN DESCRIPTION  
Pin Number  
Name  
VCC (L)  
COM  
Description  
1
2
Lowside Common Bias Voltage for IC and IGBTs Driving  
Common Supply Ground  
3
IN (UL)  
IN (VL)  
IN (WL)  
VFO  
Signal Input for Lowside U Phase  
4
Signal Input for Lowside V Phase  
5
Signal Input for Lowside W Phase  
6
Fault Output  
7
VTS  
Output for LVIC temperature sense  
8
CSC  
Capacitor (Lowpass Filter) for ShortCurrent Detection Input  
Signal Input for Highside U Phase  
9
IN (UH)  
VCC (H)  
VB (U)  
VS (U)  
IN (VH)  
VCC (H)  
VB (V)  
VS (V)  
IN (WH)  
VCC (H)  
VB (W)  
VS (W)  
NU  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
Highside Common Bias Voltage for IC and IGBTs Driving  
Highside Bias Voltage for U Phase IGBT Driving  
Highside Bias Voltage Ground for U Phase IGBT Driving  
Signal Input for Highside V Phase  
Highside Common Bias Voltage for IC and IGBTs Driving  
Highside Bias Voltage for V Phase IGBT Driving  
Highside Bias Voltage Ground for V Phase IGBT Driving  
Signal Input for Highside W Phase  
Highside Common Bias Voltage for IC and IGBTs Driving  
Highside Bias Voltage for W Phase IGBT Driving  
Highside Bias Voltage Ground for W Phase IGBT Driving  
Negative DC–Link Input for U Phase  
NV  
Negative DC–Link Input for V Phase  
www.onsemi.com  
2
FAM65V05DF1  
PIN DESCRIPTION (continued)  
Pin Number  
Name  
NW  
U
Description  
23  
24  
25  
26  
27  
Negative DC–Link Input for W Phase  
Output for U Phase  
V
Output for V Phase  
W
Output for W Phase  
P
Positive DC–Link Input  
INTERNAL EQUIVALENT CIRCUIT AND INPUT/OUTPUT PINS  
Figure 2. Schematic  
www.onsemi.com  
3
FAM65V05DF1  
GATE DRIVERS BLOCK DIAGRAM  
High Side Gate Driver (x3 Single Channel)  
Control circuit undervoltage (UV) protection  
3.3 V/5 V CMOS/LSTTL compatible, Schmitt trigger  
input  
HighSide Region  
AS7107X  
VB  
R
R
UVLO  
XOR  
Common  
Mode  
Pre  
Driver  
Q
HO  
VS  
Common  
Mode  
Noise  
Filter  
VCC  
Noise  
Canceller  
Noise  
Canceller  
25 V  
S
25 V  
25 V  
Input  
Filter  
ShortPulse  
Generator  
HIN  
5 kW  
COM  
Figure 3. High Side Gate Drivers (Block Diagram)  
Low Side Gate Driver (x1 Monolithic ThreeChannel)  
Control circuit undervoltage (UV) protection  
Short circuit protection (SC)  
Fault Output  
3.3 V/5 V CMOS/LSTTL compatible, Schmitt trigger  
input  
Temperature sensing unit  
UPhase  
LINU  
LOU  
LOV  
VPhase  
LINV  
WPhase  
VDD  
Pre  
Driver  
Restart  
LINW  
Input Filter  
Matching Delay  
LOW  
5 kW  
80 mA  
TSD  
TSU  
FO  
TSU  
CSC  
UVLO  
(Temperature Sensing Unit)  
Timer  
Filter  
CSC Filter  
0.5 V  
VCC  
COM  
25 V  
AS4743X  
Figure 4. Low Side Gate Drivers (Block Diagram)  
www.onsemi.com  
4
FAM65V05DF1  
ABSOLUTE MAXIMUM RATINGS (T = 25°C, unless otherwise specified)  
J
Symbol  
Parameter  
Conditions  
Rating  
Unit  
INVERTER PART  
V
Supply Voltage  
Applied between PN , N , N  
500  
575  
V
V
PN  
PN(Surge)  
U
V
W
V
Supply Voltage (Surge)  
Applied between PN , N , N  
U V  
W
dI/dt 3 A/ns  
V
CollectorEmitter Voltage  
T = 25°C  
650  
50  
V
A
A
CES  
J
at the IGBT/Diode  
I
C
IGBT Continuous Collector  
Current  
T
T
= 100°C, T  
= 100°C, T  
= 175°C (Note 1)  
= 175°C,  
C
Jmax  
I
IGBT Peak Collector Pulse  
Current  
150  
CP  
C
Jmax  
V
CC  
= V = 15 V, less than 1 ms (Note 6)  
BS  
P
Collector Dissipation  
Junction Temperature  
T
= 25°C per IGBT  
333  
W
°C  
°C  
C
C
T
IGBT/Diode  
Driver IC  
40 ~ +175  
40 ~ +150  
J
CONTROL PART  
V
Control Supply Voltage  
Applied between V  
, V COM  
20  
20  
V
V
CC  
CC(H) CC(L)  
V
Highside Control Bias Voltage Applied between V  
V  
,
BS  
B(U)  
S(U)  
V  
S(V) B(W) S(W)  
V
V  
, V  
B(V)  
V
IN  
Input Signal Voltage  
Applied between IN  
, IN  
, IN  
,
0.3 ~ V + 0.3  
V
(UH)  
(VH)  
(WH)  
CC  
IN  
, IN  
, IN  
COM  
(UL)  
(VL)  
(WL)  
V
Fault Output Supply Voltage  
Fault Output Current  
Applied between V COM  
0.3 ~ V + 0.3  
V
mA  
V
FO  
FO  
CC  
I
Sink Current at V Pin  
5
FO  
FO  
V
SC  
Current Sensing Input Voltage  
Temperature Sense Unit  
Applied between C COM  
0.3 ~ V + 0.3  
CC  
SC  
V
0.3 ~ 2/3 × V  
V
TS  
CC  
TOTAL SYSTEM  
T
Storage Temperature  
Isolation Voltage  
40 ~ 125  
2500  
°C  
STG  
V
60 Hz, Sinusoidal, AC 1 minute,  
Connection Pins to heat sink plate  
V
rms  
ISO  
T
LEAD  
Max Lead Temperature at the  
Base of the Package During  
pcb Assembly  
No remelt of internal solder joints  
200  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
PACKAGE CHARACTERISTICS  
Symbol  
Parameter  
Conditions  
Inverter IGBT part (per IGBT)  
Inverter FWD part (per DIODE)  
Typ  
Max  
0.45  
0.85  
Unit  
°C/W  
°C/W  
nH  
R
Junction to Case Thermal  
Resistance (Note 2)  
th(jc)Q  
R
th(jc)F  
L
s
Package Stray Inductance  
P to N , N , N (Note 3)  
24  
U
V
W
1. Current limited by package terminal, defined by design.  
2. Case temperature measured below the package at the chip center, compliant with MIL STD 8831012.1 (single chip heating), DBC  
discoloration allowed, please refer to application note AN9190 (Impact of DBC Oxidation on SPM Module Performance).  
3. Stray inductance per phase measured per IEC 6074715.  
www.onsemi.com  
5
 
FAM65V05DF1  
ELECTRICAL CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
INVERTER PART (T as specified)  
J
V
Collector-Emitter Leakage  
Current  
V
I
= V = 15 V, V = 5 V  
1.65  
1.9  
V
V
CE(SAT)  
CC  
C
BS  
IN  
= 50 A, T = 25°C  
J
V
= V = 15 V, V = 5 V  
2.4  
CC  
BS  
IN  
I
= 50 A, T = 125°C  
C
J
V
FWD Forward Voltage  
V
V
V
= 0 V, I = 30 A, T = 25°C  
2.1  
2.5  
V
V
F
IN  
F
J
= 0 V, I = 30 A, T = 125°C  
1.9  
IN  
F
J
HS  
t
High Side Switching Times  
= 300 V, V = V = 15 V  
0.73  
0.12  
0.80  
0.14  
0.10  
0.70  
0.15  
0.87  
0.19  
0.20  
0.68  
0.20  
0.86  
0.19  
0.14  
0.64  
0.24  
0.88  
0.23  
0.20  
5
ms  
ON  
PN  
CC  
BS  
I
= 50 A  
C
t
C(ON)  
V
IN  
= 0 V 5 V, Ls = 55 nH,  
Inductive Load  
t
OFF  
T = 25°C (Notes 4, 5)  
J
t
C(OFF)  
t
rr  
t
High Side Switching Times  
Low Side Switching Times  
Low Side Switching Times  
V
C
= 300 V, V = V = 15 V  
ms  
ms  
ms  
ON  
PN  
CC  
BS  
I
= 50 A  
t
C(ON)  
V
IN  
= 0 V 5 V, Ls = 55 nH,  
Inductive Load  
T = 125°C (Notes 4, 5)  
t
OFF  
J
t
C(OFF)  
trr  
LS  
t
V
C
= 300 V, V = V = 15 V  
CC BS  
ON  
PN  
I
= 50 A  
t
C(ON)  
V
IN  
= 0 V 5 V, Ls = 55 nH,  
Inductive Load  
T = 25°C (Notes 4, 5)  
t
OFF  
J
t
C(OFF)  
t
rr  
t
V
C
= 300 V, V = V = 15 V  
CC BS  
ON  
PN  
I
= 50 A  
t
C(ON)  
V
IN  
= 0 V 5 V, Ls = 55 nH,  
Inductive Load  
T = 125°C (Notes 4, 5)  
t
OFF  
J
t
C(OFF)  
trr  
SCWT  
Short Circuit Withstand Time  
(Note 6)  
V
CC  
= V = 15 V, V = 450 V,  
ms  
BS  
PN  
T = 25°C, Nonrepetitive  
J
I
CollectorEmitter Leakage  
Current for IGBT and Diode  
in Parallel  
T = 25°C, V = 650 V  
3
mA  
CES  
J
CE  
T = 125°C, V = 650 V  
150  
1500  
mA  
J
CE  
www.onsemi.com  
6
FAM65V05DF1  
ELECTRICAL CHARACTERISTICS (continued)  
Symbol Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
CONTROL PART (T = 40°C to 150°C, unless otherwise specified, typical values specified at T = 125°C)  
J
J
I
Quiescent V Supply Current  
V
= 15 V,  
(UL, VL, WL)  
V
COM  
5
mA  
mA  
QCCL  
CC  
CC  
IN  
CC(L)  
= 0 V  
= 0 V  
I
V
= 15 V,  
(UH, VH, WH)  
V
CC(H)  
COM  
150  
0.30  
QCCH  
CC  
IN  
I
Operating V Supply Current  
V
PWM  
= 15 V  
V
V
V
– COM  
– COM  
– COM  
mA  
PCCH  
CC  
CC(UH, VH, WH)  
CC(UH)  
CC(VH)  
CC(WH)  
f
= 20 kHz  
Duty = 50%, applied to  
one PWM signal input  
for highside  
I
V
PWM  
= 15 V  
V
CC(L)  
– COM  
8.5  
mA  
QCCL  
CC(UH, VH, WH)  
f
= 20 kHz  
Duty = 50%, applied to  
one PWM signal input  
for lowside  
I
Quiescent V Supply Current  
V
= 15 V,  
(UH, VH, WH)  
V
V
V
V  
150  
4.5  
mA  
QBS  
BS  
BS  
B(U)  
B(V)  
B(W)  
S(U)  
S(V)  
S(W)  
IN  
= 0 V  
V  
V  
I
Operating V Supply Current  
V
CC  
= V = 15 V  
V
B(U)  
V
B(V)  
V
B(W)  
V  
mA  
PBS  
BS  
BC  
S(U)  
V  
S(V)  
IN  
= 0 V  
(UH, VH, WH)  
V  
S(W)  
V
Fault Output Voltage  
V
V
V
= 0 V, V Circuit: 4.7 kW to 5 V Pullup  
4.5  
V
V
V
V
V
V
V
ms  
V
FOH  
SC  
SC  
CC  
FO  
V
= 1 V, V Circuit: 4.7 kW to 5 V Pullup  
0.5  
0.59  
13.2  
13.8  
13  
FOL  
FO  
V
SC(ref)  
ShortCircuit Trip Level  
= 15 V (Note 7)  
C
COM  
SC  
0.45  
10.6  
11.0  
10.5  
10.8  
0.52  
UV  
Supply Circuit Under−  
Voltage Protection  
Detection Level, T = 125°C  
J
CCD  
CCR  
BSD  
BSR  
UV  
UV  
UV  
Reset Level, T = 125°C  
J
Detection Level, T = 125°C  
J
Reset Level, T = 125°C  
13.3  
J
t
Faultout Pulse Width  
60  
2.4  
FOD  
V
LVIC Temperature Sensing  
Voltage Output  
V
CC(L)  
= 15 V, T =125°C (Note 8)  
LVIC  
TS  
V
ON Threshold Voltage  
OFF Threshold Voltage  
Applied between IN  
, IN  
, IN ,  
(VH) (WH)  
2.6  
1.2  
3.1  
V
V
IN(ON)  
(UH)  
IN  
, IN  
, IN  
– COM  
(UL)  
(VL)  
(WL)  
V
0.9  
IN(OFF)  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. t and t  
include the propagation delay time of the internal drive IC. t  
and t  
are the switching times of IGBT itself under the  
ON  
OFF  
C(ON)  
C(OFF)  
given gate driving condition internally. Refer to Figure 6 for detailed information.  
5. Stray inductance Ls is sum of stray inductance of module & setup.  
6. Verified by design and benchtesting only.  
7. Shortcircuit current protection is functional only for low side.  
8. T  
is the junction temperature of the LVIC itself.  
LVIC  
PACKAGE MARKING AND ORDERING INFORMATION  
Part Number  
Top Marking  
Package  
Shipping  
FAM65V05DF1  
FAM65V05DF1  
ASPM27CCA  
10 Units/Tube  
www.onsemi.com  
7
 
FAM65V05DF1  
HINx  
LINx  
t
rr  
t
off  
t
on  
100% I  
Cx  
I
Cx  
90% I  
Cx  
10% V  
10% V  
CEx  
10% I  
CEx  
10% I  
Cx  
Cx  
V
CEx  
t
t
c(on)  
c(off)  
Figure 5. Switching Time Definition  
Figure 6. Switching Evaluation Circuit  
www.onsemi.com  
8
FAM65V05DF1  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Supply Voltage  
Conditions  
Min  
Max  
450  
15  
Max  
500  
Unit  
V
V
Applied between P N , N , N  
U V W  
PN  
CC  
V
Control Supply Voltage  
Applied between V  
Applied between V  
, V  
COM  
13.5  
13.3  
16.5  
18.5  
V
CC(H) CC(L)  
V
BS  
Highside Bias Voltage  
V  
,
15  
V
B(U)  
S(U)  
V  
S(V) B(W) S(W)  
V
B(V)  
V  
, V  
dV /dt,  
Control Supply Variation  
1  
1
V/ms  
CC  
dV /dt  
BS  
t
Blanking Time for Preventing Armshort  
PWM Input Signal  
For Each Input Signal  
T = 125°C  
C
1.0  
20  
4
ms  
kHz  
V
dead  
f
PWM  
V
Voltage for Current Sensing  
Applied between N , N , N  
W
4  
SEN  
U
V
– COM (Including surge voltage)  
T
J
Junction Temperature  
40  
150  
°C  
MECHANICAL CHARACTERISTICS AND RATINGS  
Limits  
Typ  
0.62  
Parameter  
Mounting Torque  
Conditions  
Conditions  
Recommended 0.62 Nm  
Min  
0.52  
Max  
0.80  
+150  
Unit  
Nm  
mm  
g
Mounting Screw: M3  
Device Flatness  
Weight  
15  
Figure 7. Flatness Measurement Position  
www.onsemi.com  
9
FAM65V05DF1  
TYPICAL INVERTER CHARACTERISTICS  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T = 25°C  
T = 25°C  
J
J
90  
T = 125°C  
T = 125°C  
J
J
80  
T = 150°C  
J
T = 150°C  
J
70  
60  
50  
40  
30  
20  
10  
0
0
1
2
3
4
0
1
2
3
4
V
CE  
(V)  
V
CE  
(V)  
Figure 8. Output Characteristics IGBT Inverter  
(Typical)  
Figure 9. Forward Characteristics DIODE Inverter  
(Typical)  
VCC = VBS = 15 V, VIN = 5 V  
VIN = 0 V  
18.00  
18.00  
EON, VPN = 450 V  
EOFF, VPN = 450 V  
EON, VPN = 300 V  
EOFF, VPN = 300 V  
EON, VPN = 450 V  
EOFF, VPN = 450 V  
EON, VPN = 300 V  
EOFF, VPN = 300 V  
16.00  
14.00  
12.00  
10.00  
8.00  
16.00  
14.00  
12.00  
10.00  
8.00  
6.00  
6.00  
4.00  
4.00  
2.00  
2.00  
0.00  
0.00  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
I , Collector Current (A)  
C
I , Collector Current (A)  
C
Figure 10. Switching Losses IGBT Inverter HighSide  
Figure 11. Switching Losses IGBT Inverter LowSide  
(Typical) versus Collector Current  
(Typical) versus Collector Current  
V
CC = VBS = 15 V  
V
CC = VBS = 15 V  
V
IN = 0 V 5 V, Ls = 55 nH, Inductive Load, TJ = 125°C  
VIN = 0 V 5 V, Ls = 55 nH, Inductive Load, TJ = 125°C  
www.onsemi.com  
10  
FAM65V05DF1  
TYPICAL INVERTER CHARACTERISTICS (continued)  
175  
150  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
ERR, VPN = 450 V, HS  
ERR, VPN = 450 V, LS  
ERR, VPN = 300 V, HS  
ERR, VPN = 300 V, LS  
IC Module  
125  
IC Chip  
100  
75  
50  
25  
0
0
20  
40  
60  
80  
100  
0
100  
200  
300  
400  
500  
600  
700  
V
CE  
(V)  
I , Forward Current (A)  
F
Figure 12. Reverse Recovery Energy DIODE Inverter  
(Typical) versus Forward Current  
VCC = VBS = 15 V  
Figure 13. Reverse Bias Safe Operating Area IGBT  
(RBSOA) Inverter  
VCC = VBS = 15 V, Tj = 150°C  
V
IN = 0 V 5 V, Ls = 55 nH, Inductive Load, TJ = 125°C  
1.00  
1.00  
ZthJC DIODE  
ZthJC IGBT  
0.10  
0.10  
0.01  
i:  
1
2
3
4
i:  
1
2
3
4
0.05  
ri [°C/W]: 0.0070  
t [s]:  
0.1389 0.2439 0.1411  
1.31e4 2.09e3 5.86e−  
ri [°C/W]: 0.0264  
0.0615 0.132  
5.8e5 1.25e3 5.14e3  
1.05e5  
t [s]:  
0.0001  
6.04e6  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
0.001  
0.01 0.1  
1
Time Duration (s)  
Time Duration (s)  
Figure 14. Transient Thermal Impedance IGBT  
Inverter  
Figure 15. Transient Thermal Impedance DIODE  
Inverter  
www.onsemi.com  
11  
FAM65V05DF1  
TYPICAL CONTROLLER CHARACTERISTICS  
3.50  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
VTS  
VIN(ON)  
VIN(OFF)  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
50  
80  
140  
50  
80  
140  
40  
10  
20  
110  
40  
10  
20  
110  
TJ (5C)  
TJ (5C)  
Figure 16. Temperature Profile of VTS (Typical)  
Figure 17. Threshold Voltage versus Temperature  
12.40  
12.80  
UVCCD  
UVCCR  
UVBSD  
UVBSR  
12.60  
12.40  
12.20  
12.00  
11.80  
12.20  
12.00  
11.80  
11.60  
11.40  
11.20  
11.00  
11.60  
11.40  
11.20  
50  
80  
140  
40  
10  
20  
110  
50  
80  
140  
40  
10  
20  
110  
TJ (5C)  
TJ (5C)  
Figure 18. Supply UnderVoltage Protection  
HighSide (Typical)  
Figure 19. Supply UnderVoltage Protection  
LowSide (Typical)  
www.onsemi.com  
12  
FAM65V05DF1  
TIMING CHART PROTECTIVE FUNCTION  
Lower arms  
control input  
A6  
A7  
Protection  
circuit state  
SET  
A4  
RESET  
Lower arms  
gate input  
A3  
A2  
SC  
A1  
Output Current  
Sensing Voltage  
A8  
SC Reference Voltage  
t
FOD  
Fault Output Signal  
A5  
Step  
Description  
Normal operation. IGBT on and carrying current  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
Shortcircuit current threshold reached  
Protection function triggered  
IGBT turns off with soft turnoff  
Fault output activated (initial delay 2 ms, t  
min. 50 ms)  
FOD  
IGBT “LO” input  
IGBT “HI” input is ignored  
Current stays at zero during fault state  
Figure 20. ShortCircuit Current Protection  
www.onsemi.com  
13  
FAM65V05DF1  
Input Signal  
Protection Circuit  
State  
RESET  
SET  
RESET  
Filtering  
UV  
CCR  
B1  
B6  
Control  
Supply Voltage  
UV  
B3  
B4  
CCD  
B2  
B7  
Restart  
Output Current  
Highlevel (no fault output)  
B5  
Fault Output Signal  
Step  
Description  
Control supply voltage rises above reset voltage UV  
Normal operation. IGBT on and carrying current  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
CCR  
Control supply voltage falls below detection voltage UV  
CCD  
Filtered supply voltage falls below UV  
and IGBT turns off  
CCD  
Fault output activated (initial delay 2 ms, t  
min. 50ms)  
FOD  
Control supply voltage rises above reset voltage UV  
CCR  
IGBT “HI” input is followed after fault output duration and supply voltage rise  
Figure 21. UnderVoltage Protection (Lowside)  
Input Signal  
Protection Circuit  
State  
RESET  
C1  
SET  
RESET  
Filtering  
UV  
BSR  
C5  
Control  
Supply Voltage  
UV  
C3  
C4  
BSD  
C2  
C6  
Restart  
Output Current  
Fault Output Signal  
Step  
Description  
Control supply voltage rises above reset voltage UV  
Normal operation. IGBT on and carrying current  
C1  
C2  
C3  
C4  
C5  
C6  
CCR  
Control supply voltage falls below detection voltage UV  
CCD  
Filtered supply voltage falls below UVCCD and IGBT turns off  
Control supply voltage rises above reset voltage UV  
CCR  
IGBT “HI” input is followed after supply voltage rise  
Figure 22. UnderVoltage Protection (Highside)  
SPM is a registered trademark of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or  
other countries.  
www.onsemi.com  
14  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
27LD MODULE PDD STD  
CASE MODCB  
ISSUE A  
DATE 30 JAN 2023  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13500G  
27LD MODULE PDD STD  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FAMAV3600ZC010

PCB Mount Filters
KEMET

FAMAV3600ZI010

PCB Mount Filters
KEMET

FAMAV3940ZA

PCB Mount Filters
KEMET

FAMAV3940ZB001

PCB Mount Filters
KEMET

FAMDL-10

Logic Buffered Single - Dual - Triple Independent Delay Modules
RHOMBUS-IND

FAMDL-100

Logic Buffered Single - Dual - Triple Independent Delay Modules
RHOMBUS-IND

FAMDL-100G

Logic Buffered Single - Dual - Triple Independent Delay Modules
RHOMBUS-IND

FAMDL-100J

Logic Buffered Single - Dual - Triple Independent Delay Modules
RHOMBUS-IND

FAMDL-10G

Logic Buffered Single - Dual - Triple Independent Delay Modules
RHOMBUS-IND

FAMDL-10J

Logic Buffered Single - Dual - Triple Independent Delay Modules
RHOMBUS-IND

FAMDL-12

Logic Buffered Single - Dual - Triple Independent Delay Modules
RHOMBUS-IND

FAMDL-12G

Logic Buffered Single - Dual - Triple Independent Delay Modules
RHOMBUS-IND