FAD8253MX-1 [ONSEMI]

1200V Half-Bridge Gate Driver, 2.5 A Source/3.4 A Sink, SOIC-8 package;
FAD8253MX-1
型号: FAD8253MX-1
厂家: ONSEMI    ONSEMI
描述:

1200V Half-Bridge Gate Driver, 2.5 A Source/3.4 A Sink, SOIC-8 package

文件: 总19页 (文件大小:278K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Half-Bridge Gate Driver  
1200 V 2.5 A Source/3.4 A Sink  
14  
1
SOIC14 NB  
CASE 751A  
FAD8253MX-1  
Description  
MARKING DIAGRAM  
The FAD8253 is a monolithic halfbridge gate driver IC designed  
for driving high voltage, high speed and high power IGBTs up to  
+1200 V. The FAD8253 employs ON’s highvoltage process and  
commonmode noise canceling technique to provide stable operation  
of highside driver under high dv/dt noise circumstances. The gate  
driver includes UVLO circuits tailored to IGBT threshold for both  
14  
Pin 1 Bar  
FAD  
8253MX  
AWLYWW  
or  
ON  
Pin 1 Dot  
high side and low side outputs to prevent malfunction when V and  
DD  
1
V
BS  
are lower than the specified threshold voltage.  
The FAD8253 offers a builtin lowside current detection circuitry  
FAD8253MX  
A
WL  
Y
WW  
= Specific Device Code  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
with an additional provision for soft shutdown (for low side) during  
overcurrent or shortcircuit conditions. The driver can provide  
adequate protection during shortcircuits by turning off its outputs  
while simultaneously generating a fault output for fault reporting  
purposes. The driver also provides additional flexibility by providing  
a shutdown pin to disable driver outputs externally.  
PIN ASSIGNMENT  
Features  
VSS  
LIN  
1
2
3
4
5
6
7
14 VB  
13 HO  
12 VS  
11 NC  
10 NC  
Floating Channel for Bootstrap Operation to +1200 V  
Peak Output Current Capability of 2.5 A Source/3.4 A Sink  
SD  
Allowable Negative V Transient Swing of up to 15 V at  
S
V
BS  
= 15 V  
HIN  
FO  
Builtin Common Mode dv/dt Noise Canceling Circuit  
Separate Power and Signal Ground for Enhanced dl/dt Immunity  
Matched Propagation Delay < 50 ns  
3.3 V and 5 V Input Logic Compatible  
Built in Shootthrough Prevention Logic with 120 ns (Typ) Dead  
Time  
CSC  
VDD  
9
8
LO  
COM  
ORDERING INFORMATION  
Builtin UVLO Functions for both High and Low Side with  
Thresholds Optimized for IGBTs  
Device  
Package  
Shipping  
FAD8253MX1 SOIC14 NB  
(PbFree)  
2,500 /  
Builtin Low Side Shortcircuit Protection with Soft Shutdown  
Tape & Reel  
In SOIC14NB with Non Connected Pins for High Voltage  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Creepage and Clearance Requirements  
Fault Reporting during Overcurrent or Shortcircuit Condition  
External Shutdown Pin to Enable or Disable Driver Outputs  
AECQ100 Qualified and PPAP Capable  
PbFree Devices  
Typical Applications  
High Voltage Auxiliary Motor Drive  
Generic HalfBridge and FullBridge Driver  
OnBoard Chargers & DC/DC Converters  
Traction Inverters  
© Semiconductor Components Industries, LLC, 2020  
1
Publication Order Number:  
August, 2022 Rev. 3  
FAD8253/D  
FAD8253MX1  
APPLICATION DIAGRAMS  
VDC  
VCC  
VDD  
VDD  
VDD  
or  
VSS  
HO  
VB  
VS  
VSS  
HO  
VSS  
HO  
HIN  
LIN  
UH  
UL  
VB  
VS  
HIN  
LIN  
VH  
VL  
WH  
WL  
3-Phase  
W
Motor  
Controller  
HIN  
LIN  
VB  
VS  
FO  
SD  
FO  
SD  
FO  
SD  
LO  
LO  
LO  
CSC  
CSC  
CSC  
COM  
COM  
COM  
Rsense  
Figure 1. 3Phase Motor Drive Application  
VDC  
VCC  
VDD  
VDD  
or  
VSS  
HO  
VB  
VS  
VSS  
HO  
PHA_H  
PHA_L  
HIN  
LIN  
PHB_H  
PHB_L  
HIN  
LIN  
M
VB  
VS  
FAULT  
FO  
SD  
FO  
SD  
SHUTDOWN  
LO  
LO  
CSC  
CSC  
DC Motor  
Controller  
COM  
COM  
Figure 2. DC Motor Drive Application  
www.onsemi.com  
2
FAD8253MX1  
BLOCK DIAGRAM  
14 VB  
13 HO  
UVLO  
R
LIN  
HIN  
SD  
2
4
3
SCHMITT  
TRIGGER INPUT  
R
S
NOISE  
CANCELLER  
Q
SHOOTTHROUGH  
PREVENTION  
12 VS  
CONTROL LOGIC  
7
9
VD D  
LO  
UVLO  
V
SS /COM  
DELAY  
LEVEL SHIFTER  
CSC  
FO  
6
5
Pulse  
generator  
+
_
RCSCIN  
0.5V  
8
COM  
SOFT  
SHUTDOWN  
FAULT  
LOGIC  
VSS  
1
Figure 3. Block Diagram  
PIN DESCRIPTION  
PIN FUNCTION DESCRIPTION  
Pin No.  
Name  
VSS  
LIN  
Description  
1
Logic Ground  
2
3
Logic Input for LowSide Gate Driver Output  
Shutdown Control Input with Active Low  
Logic Input for HighSide Gate Driver Output  
Fault Output with Open Drain (Low True)  
ShortCircuit Current Detection Input  
LowSide and Logic Power Supply Voltage  
Lowside Driver Return  
SD  
4
HIN  
FO  
5
6
CSC  
VDD  
COM  
LO  
7
8
9
LowSide Driver Output  
12  
13  
14  
10, 11  
VS  
HighSide Floating Supply Return  
HighSide Driver Output  
HO  
VB  
HighSide Floating Supply  
NC  
No Connect  
www.onsemi.com  
3
FAD8253MX1  
SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (T = 25°C, unless otherwise specified.)  
A
Symbol  
Rating  
Value  
Unit  
V
V
S
V
B
Highside Offset Voltage V  
(V 25) to (V + 0.3)  
S
B
B
Highside Floating Supply Voltage V  
Highside Floating Output Voltage  
0.3 to 1225  
V
B
V
(V – 0.3) to (V + 0.3)  
V
HO  
DD  
S
B
V
Lowside and Logicfixed Supply Voltage  
Logic Input Voltage (HIN, LIN, SD)  
Current Sense Input Voltage  
0.3 to 25  
V
V
IN  
0.3 to (V + 0.3)  
V
DD  
V
CSC  
0.3 to (V + 0.3)  
V
DD  
dV /dt  
Allowable Offset Voltage Slew Rate  
Power Dissipation (SO14NB) (Note 1)  
Thermal Resistance, JunctiontoAmbient (SO14NB)  
Junction Temperature  
50  
0.8  
V/ns  
W
S
P
D
θ
JA  
156  
°C/W  
°C  
°C  
V
T
+150  
J(max)  
TSTG  
Storage Temperature  
55 to +150  
2500  
ESDHBM  
ESDCDM  
ESD, Human Body Model (Note 3)  
ESD, Charged Device Model (Note 3)  
750  
V
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Do not exceed PD under any circumstances.  
2. Mounted on 76.2 × 114.3 × 1.6 mm PCB (FR4 glass epoxy material). Refer to the following standards:  
JESD512: Integral circuits thermal test method environmental conditions – natural convection  
JESD513: Low effective thermal conductivity test board for leaded surface mount packages  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per ANSI/ESDA/JEDEC JS0012012  
ESD Charged Device Model tested per JESD22C101  
RECOMMENDED OPERATING RANGES (Parameters are referenced to V  
)
SS  
Symbol  
Rating  
Min  
Max  
18.0  
1200  
22  
Unit  
V
V
DD  
Supply Voltage Range  
HighSide V Floating Supply Offset Voltage (Note 4)  
4.5  
V
S
5 V  
V
S
BS  
V
Highside V Bootstrap Voltage  
V
V
BS  
HO  
DD  
BS  
BSUV+  
V
V
HighSide Output Voltage  
LowSide and Logic Supply Voltage  
LowSide Output Voltage  
Logic Input Voltage (IN, SD)  
Power Ground  
V
S
V
B
V
V
22  
V
DDUV+  
V
LO  
COM  
V
V
DD  
DD  
DD  
V
IN  
V
SS  
V
V
V
COM  
V
22  
V
DD  
T
A
Ambient Temperature (Note 5)  
40  
125  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
4. Recommended based on min 5 V on V , for proper operation of the level shifter circuit and ensure proper propagation of the signal from the  
B
input to the output.  
5. Power and thermal impedance should be determined with care so that T does not exceed 150°C.  
j
www.onsemi.com  
4
 
FAD8253MX1  
ELECTRICAL CHARACTERISTICS  
(V  
BIAS  
(V  
V
) = 15 V, T = 40°C to 125°C unless otherwise specified. The V and I parameters are referenced to V . The V  
DD, BS A IN IN SS  
O
and I parameters are referenced to V and COM and are applicable to the respective outputs HO and LO.)  
O
S
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
LOW SIDE POWER SUPPLY SECTION  
Quiescent V Supply Current  
I
V = 0 V or 5 V  
LIN  
50  
280  
660  
400  
800  
mA  
mA  
QDD  
DD  
I
Operating V Supply Current  
C = 1 nF, f  
= 20 kHz,  
400  
PDD  
DD  
L
LIN  
rms value  
V
V
V
Supply UnderVoltage Positivegoing  
V
= Rising  
11  
10.5  
12  
11.4  
0.6  
12.9  
12.4  
V
V
V
DDUV+  
DDUV  
DDHYS  
DD  
DD  
DD  
Threshold  
V
Supply Undervoltage Negative going  
V
= Falling  
DD  
Threshold  
V Supply Undervoltage Lockout Hysteresis  
DD  
V
BOOSTRAPPED POWER SUPPLY SECTION  
Quiescent V Supply Current  
I
V
= 0 V or 5 V  
25  
45  
mA  
mA  
QBS  
BS  
HIN  
I
Operating V Supply Current  
C = 1 nF, f  
rms value  
= 20 kHz,  
430  
550  
PBS  
BS  
L
HIN  
I
Offset Supply Leakage Current  
V
V
= V = 1200 V  
120  
mA  
LK  
B
S
V
V
V
Supply UnderVoltage Positivegoing  
= Rising  
10.6  
11.7  
12.5  
V
BSUV+  
BSUV−  
BSHYS  
BS  
BS  
Threshold  
V
Supply Undervoltage Negative Going  
V
BS  
= Falling  
10.1  
11.1  
0.6  
11.9  
V
V
BS  
Threshold  
V
V
BS  
Supply Undervoltage Lockout Hysteresis  
GATE DRIVER OUTPUT SECTION  
Highlevel Output Voltage, V  
V
OH  
V  
O
I
I
= 0 mA (No Load)  
= 0 mA (No Load)  
50  
50  
mV  
mV  
mA  
BIAS  
O
V
OL  
O+  
Lowlevel Output Voltage, V  
O
O
I
Output HIGH Shortcircuit Pulsed Current  
V
= 0 V, V = 5 V with  
1200  
2700  
O
IN  
PW < 10 ms  
I
Output LOW Shortcircuit Pulsed Current  
V
= 15 V, V = 0 V with  
1200  
10.0  
15.0  
7.0  
4200  
mA  
V
O−  
O
IN  
PW < 10 ms  
V
Allowable Negative V Pin Voltage, with Signal  
V
BS  
V
BS  
V
DD  
= 15 V  
S
S
Propagation Capability from HIN to HO  
V
Allowable Transient Negative V Pin Voltage,  
= 15 V  
V
S
S
(Note 6)  
No Signal Propagation Capability from HIN to HO  
COMV  
Allowable COMV Power/Signal Grounds Offset  
= 15 V, V = 0 V  
V
SS  
SS  
SS  
LOGIC INPUT SECTION (HIN, LIN, SD)  
V
Logic “1” Input Voltage Threshold  
Logic “0” Input Voltage Threshold  
Logic Input Hysteresis Voltage  
1.2  
2.5  
V
V
IH  
V
IL  
V
0.5  
23  
V
INHYS  
I
Logic “1” Input Bias Current (HIN, LIN)  
Logic “0” Input Bias Current (HIN, LIN)  
Logic “1” Input Bias Current (SD)  
Logic “0” Input Bias Current (SD)  
V
V
V
V
= 5 V  
= 0 V  
= 5 V  
= 0 V  
mA  
mA  
mA  
mA  
IN+  
IN  
I
2.0  
IN−  
IN  
I
15.7  
SD+  
SD  
SD  
I
2.0  
SD−  
SHORTCIRCUIT PROTECTION  
V
Shortcircuit detector reference voltage  
Input Pull Down Short Circuit Resistance  
ShortCircuit Input Current  
0.45  
0.50  
210  
23.5  
110  
0.6  
V
CSCREF  
R
kW  
mA  
mA  
CSCIN  
CSCIN  
I
V
V
= 5 V  
15  
70  
37.5  
140  
CSCIN  
I
Soft Turnoff Source Current  
= 15 V, L = 7.5 V  
DD O  
SOFT  
www.onsemi.com  
5
FAD8253MX1  
ELECTRICAL CHARACTERISTICS (continued)  
(V (V ) = 15 V, T = 40°C to 125°C unless otherwise specified. The V and I parameters are referenced to V . The V  
V
BIAS  
DD, BS  
A
IN  
IN  
SS  
O
and I parameters are referenced to V and COM and are applicable to the respective outputs HO and LO.)  
O
S
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
FAULT DETECTION SECTION  
V
Fault Output High Level Voltage  
Fault Output Low Level Voltage  
V
V
= 0 V, R = 4.7 kW  
PULLUP  
4.7  
V
V
FOH  
CSC  
V
= 1 V, I = 2 mA  
0.8  
FOL  
CSC  
FO  
DYNAMIC OUTPUT SECTION  
(V  
(V , V ) = 15.0 V, T = 40°C to 125°C, V = V , C  
= 1000 pF unless otherwise specified.)  
BIAS  
DD  
BS  
A
S
SS  
LOAD  
t
t
Turnon Propagation Delay (Note 7)  
Turnoff Propagation Delay  
SD to Lowside Propagation Delay  
SD to Howside Propagation Delay  
Turnon Rise Time  
V
V
= 0 V  
65  
65  
25  
65  
100  
90  
145  
145  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ms  
ns  
on  
off  
S
= 0 V or 1200 V  
S
t
45  
SDOFF_LO  
SDOFF_HO  
t
95  
145  
25  
t
r
13  
t
f
Turnoff Fall Time  
15  
26  
Mt  
Delay Matching HO and LO TurnOn  
Delay Matching HO and LO TurnOff  
Deadtime (Note 8)  
25  
ON  
Mt  
25  
OFF  
DT  
70  
120  
10  
200  
t
Undervoltage Filtering Time (Note 6)  
CSC Pin Filtering Time (Note 6)  
Time from CSC Triggering to FO  
Fault Output Pulse Width  
UVFLT  
t
300  
530  
65  
CSCFLT  
t
1250  
140  
1350  
CSCFO  
t
24  
FO  
t
Time from CSC Triggering to Lowside and  
Highside Gate Output  
From V  
turnoff  
= 1 V to starting gate  
600  
CSCLO  
CSC  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. Parameter guaranteed by design.  
7. The turnon propagation delay does not includes the dead time.  
8. The dead time includes the turn on propagation time.  
www.onsemi.com  
6
 
FAD8253MX1  
TYPICAL CHARACTERISTICS  
13.0  
12.5  
Min  
Typ  
Max  
12.0  
12.5  
12.0  
11.5  
11.5  
11.0  
10.5  
10.0  
Min  
Typ  
Max  
11.0  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
Temperature (5C)  
Temperature (5C)  
Figure 4. VDD UVLO (+) vs. Temperature  
Figure 5. VDD UVLO () vs. Temperature  
12.5  
12.0  
11.5  
11.0  
10.5  
12.0  
11.5  
11.0  
10.5  
10.0  
Min  
Typ  
Max  
Min  
Typ  
Max  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
Temperature (5C)  
Temperature (5C)  
Figure 6. VBS UVLO (+) vs. Temperature  
Figure 7. VBS UVLO () vs. Temperature  
400  
360  
45  
40  
35  
30  
25  
320  
280  
240  
200  
160  
20  
15  
10  
Typ  
Max  
Typ  
Max  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
Temperature (5C)  
Temperature (5C)  
Figure 8. VDD Quiescent Current vs. Temperature  
Figure 9. VBS Quiescent Current vs. Temperature  
www.onsemi.com  
7
FAD8253MX1  
TYPICAL CHARACTERISTICS (Continued)  
900  
850  
800  
750  
700  
650  
600  
550  
600  
Typ  
Max  
575  
550  
525  
500  
475  
450  
425  
Typ  
Max  
500  
400  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
125  
125  
Temperature (5C)  
Temperature (5C)  
Figure 10. VDD Operating Current vs.  
Temperature  
Figure 11. VBS Operating Current vs.  
Temperature  
40  
35  
30  
25  
20  
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
Typ  
Max  
Typ  
Max  
15  
10  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
Temperature (5C)  
Temperature (5C)  
Figure 12. Logic High Input Bias Current vs.  
Temperature  
Figure 13. ICSCIN vs. Temperature  
140  
130  
120  
110  
25  
20  
15  
10  
5
100  
90  
Typ  
Max  
Typ  
Max  
80  
50  
0
50  
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
Temperature (5C)  
Temperature (5C)  
Figure 14. ISOFT vs. Temperature  
Figure 15. Turnon Rising Time vs. Temperature  
www.onsemi.com  
8
FAD8253MX1  
TYPICAL CHARACTERISTICS (Continued)  
25  
150  
140  
130  
120  
110  
20  
15  
10  
5
100  
90  
80  
70  
Typ  
Max  
Typ  
Max  
0
50  
60  
50  
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
Temperature (5C)  
Temperature (5C)  
Figure 16. Turnoff Falling Time vs. Temperature  
Figure 17. Turnon Delay Time vs. Temperature  
150  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
140  
130  
120  
110  
100  
90  
80  
70  
60  
Typ  
Max  
Typ  
Max  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
Temperature (5C)  
Temperature (5C)  
Figure 18. Turnoff Delay time vs. Temperature  
Figure 19. Logic High Input Voltage Threshold  
vs. Temperature  
1.9  
0.57  
Min  
Typ  
Max  
1.8  
1.7  
1.6  
0.55  
0.53  
0.51  
0.49  
0.47  
0.45  
1.5  
1.4  
1.3  
Typ  
Max  
1.2  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
Temperature (5C)  
Temperature (5C)  
Figure 20. Logic Low Input Voltage Threshold vs.  
Temperature  
Figure 21. VCSCREF vs. Temperature  
www.onsemi.com  
9
FAD8253MX1  
TYPICAL CHARACTERISTICS (Continued)  
24  
22  
20  
330  
310  
290  
270  
250  
Min  
Typ  
Max  
18  
230  
210  
190  
16  
14  
12  
Typ  
Max  
170  
10  
50  
150  
50  
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
Temperature (5C)  
Temperature (5C)  
Figure 22. SD Logic High Input Bias Current vs.  
Temperature  
Figure 23. Input Pull Down Short Circuit  
Resistance vs. Temperature  
5.3  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
5.2  
5.1  
5.0  
4.9  
4.8  
Min  
Typ  
Max  
Min  
Typ  
Max  
4.7  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
Temperature (5C)  
Temperature (5C)  
Figure 24. Fault Output High Level Voltage vs.  
Temperature  
Figure 25. Fault Output Low Level Voltage vs.  
Temperature  
10  
5
4
3
2
1
Typ  
Max  
11  
12  
13  
14  
Min  
Typ  
Max  
15  
50  
0
50  
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
Temperature (5C)  
Temperature (5C)  
Figure 26. Allowable Negative VS Voltage vs.  
Temperature  
Figure 27. Highlevel Output Voltage vs.  
Temperature  
www.onsemi.com  
10  
FAD8253MX1  
TYPICAL CHARACTERISTICS (Continued)  
5
4
3
2
1
200  
Typ  
Max  
180  
160  
140  
120  
100  
80  
Typ  
Max  
0
50  
60  
50  
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
Temperature (5C)  
Temperature (5C)  
Figure 28. Lowlevel Output Voltage vs.  
Figure 29. Dead Time vs. Temperature  
Temperature  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
Typ  
Max  
Typ  
Max  
0
50  
0
50  
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
Temperature (5C)  
Temperature (5C)  
Figure 30. Delay Matching HO and LO Turnon  
Figure 31. Delay Matching HO and LO Turnoff  
vs. Temperature  
vs. Temperature  
70  
145  
135  
125  
115  
105  
65  
60  
55  
50  
45  
40  
35  
30  
95  
85  
75  
Typ  
Max  
Typ  
Max  
25  
20  
65  
50  
50  
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
Temperature (5C)  
Temperature (5C)  
Figure 32. SD to Lowside Propagation Delay vs.  
Figure 33. SD to Highside Propagation Delay  
Temperature  
vs. Temperature  
www.onsemi.com  
11  
FAD8253MX1  
TYPICAL CHARACTERISTICS (Continued)  
145  
125  
1300  
1200  
1100  
1000  
900  
Typ  
Max  
105  
85  
65  
45  
24  
800  
700  
Typ  
Max  
600  
500  
50  
50  
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
Temperature (5C)  
Temperature (5C)  
Figure 34. Fault Output Minimum Pulse Width vs.  
Temperature  
Figure 35. Time from CSC Triggering to  
Lowside Gate Output vs. Temperature  
1300  
1000  
900  
Typ  
Max  
1200  
1100  
1000  
900  
Typ  
Max  
800  
700  
600  
500  
400  
800  
700  
600  
500  
400  
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
Temperature (5C)  
Temperature (5C)  
Figure 36. Time from CSC Triggering to  
Highside Gate Output vs. Temperature  
Figure 37. Time from CSC Triggering to FO vs.  
Temperature  
8
7
6
5
4
3
9
8
7
6
5
4
3
Typ  
Max  
Typ  
Max  
2
1
0
2
1
0
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
Temperature (5C)  
Temperature (5C)  
Figure 38. Output High Shortcircuit Pulsed  
Figure 39. Output Low Shortcircuit Pulsed  
Current vs. Temperature  
Current vs. Temperature  
www.onsemi.com  
12  
FAD8253MX1  
SWITCHING TIME DEFINITIONS  
50%  
SD  
HIN  
LIN  
50%  
ton  
50%  
tSDOFF  
tr  
toff  
tf  
90%  
90%  
90%  
HO  
LO  
10%  
10%  
Figure 40. Switching Timing Waveforms Definition (Propagation Delay, Rise and Fall Time)  
IN (LO)  
50%  
50%  
IN (HO)  
MTOFF  
90%  
HO  
LO  
HO  
10%  
LO  
MTON  
Figure 41. Switching Timing Waveforms Definition (Matching Delay)  
www.onsemi.com  
13  
FAD8253MX1  
LIN  
SD  
Output activated  
at next rising edge  
of input signal  
V
DD  
UVLO−  
0.5 V  
V
CSC  
t
CSCFO  
t
FO  
FO  
LO  
t
SDOFF  
t
UVFLT  
t
CSCLO  
Softshutdown  
Operation  
UnderVoltage  
Detection Point  
Shutdown  
Enable Point Disable Point  
Shutdown  
Shortcircuit  
Detection Point  
Figure 42. Switching Timing Waveforms Definition – Low Side  
HIN  
SD  
Output activated  
at next rising edge  
of input signal  
V
BS  
UVLO−  
0.5 V  
V
CSC  
t
CSCFO  
t
FO  
FO  
HO  
t
SDOFF  
t
UVFLT  
t
CSCLO  
UnderVoltage  
Detection Point  
Shutdown  
Enable Point Disable Point  
Shutdown  
Shortcircuit  
Detection Point  
Figure 43. Switching Timing Waveforms Definition – High Side  
www.onsemi.com  
14  
FAD8253MX1  
APPLICATIONS INFORMATION  
Protection Function  
designed to prevent the outputs of the highside and low−  
side stages from turning on at the same time.  
Shutdown (SD) Function  
As shown in Figure 45, if the lowside input (LIN) signal  
is provided to the driver while the highside input (HIN)  
signal is already present, the high side output (HO) is turned  
off immediately while the lowside output (LO) is kept  
turned off. In addition, both driver outputs are kept turned  
off for as long as both HIN and LIN are present. This  
prevents the shootthrough of the highside and lowside  
devices in an application. Similarly, as shown in Figure 46,  
if HIN signal is provided to the driver while LIN signal is  
already present, LO is turned off immediately while HO is  
kept turned off.  
The shutdown (SD) pin of FAD8253 is active low,  
meaning that the driver outputs are enabled when SD pin is  
pulled up and vice versa. If SD pin is pulled low for a time  
equivalent to propagation delay, the outputs of both high and  
low side driver stages are turned off. The outputs are  
reactivated on the next rising edge of the input signal, once  
the SD pin is pulled up.  
UnderVoltage Lockout (UVLO)  
The FAD8253 has an internal undervoltage lockout  
(UVLO) protection circuitry for both highside and  
lowside driver stages, with a threshold optimized for  
IGBTs. The UVLO independently monitors the supply  
voltage (V ) and bootstrap capacitor voltage (V ) to  
DD  
BS  
HIN  
LIN  
prevent malfunction if V and V drop lower than the  
DD  
BS  
specified threshold voltage in the manner explained below:  
If V drops below its negativegoing threshold voltage,  
BS  
the output of the high side driver stage is pulled down (or  
turned off).  
If V voltage drops below its negativegoing threshold  
DD  
voltage, the outputs of both the low side and high side  
driver stages are pulled down (or turned off).  
Shootthrough  
After DT  
HO  
LO  
Prevention  
In either of the above cases, the outputs will resume their  
normal operation once the V /V  
voltages have risen  
BS DD  
back to the necessary positive going threshold, as shown in  
Figure 44. Moreover, the UVLO hysteresis and the UV  
filtering time prevent chattering during power supply  
After DT  
transitions. If the supply voltage (V or V ) maintains an  
DD  
BS  
undervoltage condition for a duration longer than the  
undervoltage filtering time, the high and low side driver  
outputs are turned off. Note that an UVLO event has no  
impact to the Fault Output flag.  
Figure 45. Example Waveforms for  
Shootthrough Prevention  
LIN  
LIN  
Shootthrough  
HIN  
Prevention  
UVLO+  
UVLO−  
V
DD  
LO  
t
UVFLT  
LO  
After DT  
HO  
Figure 44. Waveforms for UnderVoltage Lockout  
ShootThrough Prevention Function  
The FAD8253 has a shootthrough prevention circuitry  
that monitors both the highside and lowside inputs. It is  
Figure 46. Example waveforms for  
Shootthrough Prevention  
www.onsemi.com  
15  
 
FAD8253MX1  
Please note that the driver resumes normal operation with  
a voltage divider that could lower the voltage at the CSC pin  
(at point B in Figure 47). To minimize the voltage  
a builtin dead time of 120 ns (typ.) between HO and LO,  
only when LIN and HIN signals are not provided at the same  
time.  
difference, a value of 1 kW is recommended for R  
.
CSCEXT  
As a result, the voltage at point B (or CSC pin) will be  
R
/ (R + R ) = 200 kW / (200 kW +  
CSCEXT  
CSCEXT  
CSCIN  
OverCurrent/ShortCircuit Protection Function  
The FAD8253 has a low side overcurrent detection  
circuitry that monitors the voltage across the low side  
1 kW), which is only 0.5% lower than at point A.  
An overcurrent condition must last for a minimum  
duration of t  
(typ. 300 ns) to trigger the shortcircuit  
CSCFLT  
current sensing resistor (R ) through the shortcircuit  
CSR  
protection. This duration has been defined to provide  
adequate noise filtering against high frequency noises  
during IGBT switching. If this time is not sufficient, an  
additional capacitor can be placed at the input of the CSC pin  
to further extend the filtering time.  
current detection input (CSC) pin.  
The input stage of the over current circuitry is depicted in  
Figure 47. The principle of overcurrent/shortcircuit  
detection feature is to monitor the voltage at point A (which  
appears due to the phase current flowing into R  
). If the  
CSR  
Upon detection of a short circuit through the CSC pin:  
sensed voltage exceeds the shortcircuit detector reference  
voltage V (typ. 0.5 V), this indicates an overcurrent  
the high side output turns off immediately;  
CSCREF  
the low side driver output initiates a soft shutdown to turn  
off the low side IGBT slowly to prevent it from entering  
the avalanche mode;  
condition and the driver outputs are turned off.  
For example, if R = 1 mW, the driver will activate the  
short circuit protection for a phase current exceeding 500 A  
CSC  
(1 mW × 500 A = 0.5 V V  
).  
the Fault Output (FO) pin generates a fault signal for  
CSCREF  
a duration of t (typ. 60 ms).  
FO  
Please note that once the FO is triggered, the driver  
outputs can be reactivated on the next rising edge of input  
FAD8253  
+
I
signal only after the duration of t has passed.  
PHASE  
FO  
CSC  
B
A
Layout Considerations  
For optimum performance, considerations must be taken  
during printed circuit board (PCB) layout.  
R
= 200 kW  
R
CSCIN  
_
CSCEXT  
R
CSR  
0.5 V  
Power Supply Bypass Capacitors  
V
CSCref  
The implementation of bypass capacitors is essential to  
optimal operation of gate drivers like FAD8253 and so,  
special attention is required.  
Figure 47. Input Circuit of the  
Overcurrent/Shortcircuit Protection Block  
The local bypass capacitor between V and V needs  
DD  
SS  
to provide pulsed currents for the low side driver output. At  
the same time, if a highside bootstrap circuit is employed,  
it has to rapidly charge the bootstrap capacitor as well.  
A typical criterion for choosing the value of bypass  
capacitor is to keep the ripple voltage on the supply pin to  
5%. Typically, two capacitors in parallel are  
recommended. Often, a capacitor of smaller value is placed  
LIN  
0.5 V  
V
CSC  
very close to the V pin in parallel with another capacitor  
DD  
t
CSCFO  
of higher value to reduce impedance. For sizing of the  
bootstrap capacitor please refer to application note  
AN6076.  
t
FO  
FO  
Softshutdown  
Operation  
t
GateDrive Loop  
CSCLO  
Current loops behave like antennae, able to receive and  
transmit noise. To reduce the noise coupling/emission and  
improve the power switch turnon and off performance,  
gatedrive loops must be reduced as much as possible.  
LO  
Shortcircuit Detection Point  
Figure 48. Waveforms for Short Circuit Protection  
Ground Plane  
To minimize noise coupling, the ground plane should not  
be placed under or near the high voltage floating side.  
It is recommended to place a series resistance R  
to  
CSCEXT  
limit the input current that may flow into the driver during  
transient conditions. Note that R and R form  
CSCEXT  
CSCIN  
www.onsemi.com  
16  
 
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC14 NB  
CASE 751A03  
ISSUE L  
14  
1
DATE 03 FEB 2016  
SCALE 1:1  
NOTES:  
D
A
B
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.13 TOTAL IN EXCESS OF AT  
MAXIMUM MATERIAL CONDITION.  
4. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD PROTRUSIONS.  
14  
8
7
A3  
E
H
5. MAXIMUM MOLD PROTRUSION 0.15 PER  
SIDE.  
L
DETAIL A  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
13X b  
M
M
B
0.25  
A
A1  
A3  
b
D
E
1.35  
0.10  
0.19  
0.35  
8.55  
3.80  
1.75 0.054 0.068  
0.25 0.004 0.010  
0.25 0.008 0.010  
0.49 0.014 0.019  
8.75 0.337 0.344  
4.00 0.150 0.157  
M
S
S
B
0.25  
C A  
DETAIL A  
h
A
X 45  
_
e
H
h
L
1.27 BSC  
0.050 BSC  
6.20 0.228 0.244  
0.50 0.010 0.019  
1.25 0.016 0.049  
5.80  
0.25  
0.40  
0
0.10  
M
A1  
e
M
7
0
7
_
_
_
_
SEATING  
PLANE  
C
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
6.50  
14  
14X  
1.18  
XXXXXXXXXG  
AWLYWW  
1
1
XXXXX = Specific Device Code  
A
WL  
Y
= Assembly Location  
= Wafer Lot  
= Year  
1.27  
PITCH  
WW  
G
= Work Week  
= PbFree Package  
14X  
0.58  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42565B  
SOIC14 NB  
PAGE 1 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SOIC14  
CASE 751A03  
ISSUE L  
DATE 03 FEB 2016  
STYLE 1:  
STYLE 2:  
CANCELLED  
STYLE 3:  
STYLE 4:  
PIN 1. NO CONNECTION  
2. CATHODE  
PIN 1. COMMON CATHODE  
2. ANODE/CATHODE  
3. ANODE/CATHODE  
4. NO CONNECTION  
5. ANODE/CATHODE  
6. NO CONNECTION  
7. ANODE/CATHODE  
8. ANODE/CATHODE  
9. ANODE/CATHODE  
10. NO CONNECTION  
11. ANODE/CATHODE  
12. ANODE/CATHODE  
13. NO CONNECTION  
14. COMMON ANODE  
PIN 1. NO CONNECTION  
2. ANODE  
3. ANODE  
4. NO CONNECTION  
5. ANODE  
6. NO CONNECTION  
7. ANODE  
8. ANODE  
9. ANODE  
10. NO CONNECTION  
11. ANODE  
12. ANODE  
13. NO CONNECTION  
14. COMMON CATHODE  
3. CATHODE  
4. NO CONNECTION  
5. CATHODE  
6. NO CONNECTION  
7. CATHODE  
8. CATHODE  
9. CATHODE  
10. NO CONNECTION  
11. CATHODE  
12. CATHODE  
13. NO CONNECTION  
14. COMMON ANODE  
STYLE 5:  
STYLE 6:  
STYLE 7:  
STYLE 8:  
PIN 1. COMMON CATHODE  
2. ANODE/CATHODE  
3. ANODE/CATHODE  
4. ANODE/CATHODE  
5. ANODE/CATHODE  
6. NO CONNECTION  
7. COMMON ANODE  
8. COMMON CATHODE  
9. ANODE/CATHODE  
10. ANODE/CATHODE  
11. ANODE/CATHODE  
12. ANODE/CATHODE  
13. NO CONNECTION  
14. COMMON ANODE  
PIN 1. CATHODE  
2. CATHODE  
3. CATHODE  
4. CATHODE  
5. CATHODE  
6. CATHODE  
7. CATHODE  
8. ANODE  
PIN 1. ANODE/CATHODE  
2. COMMON ANODE  
3. COMMON CATHODE  
4. ANODE/CATHODE  
5. ANODE/CATHODE  
6. ANODE/CATHODE  
7. ANODE/CATHODE  
8. ANODE/CATHODE  
9. ANODE/CATHODE  
10. ANODE/CATHODE  
11. COMMON CATHODE  
12. COMMON ANODE  
13. ANODE/CATHODE  
14. ANODE/CATHODE  
PIN 1. COMMON CATHODE  
2. ANODE/CATHODE  
3. ANODE/CATHODE  
4. NO CONNECTION  
5. ANODE/CATHODE  
6. ANODE/CATHODE  
7. COMMON ANODE  
8. COMMON ANODE  
9. ANODE/CATHODE  
10. ANODE/CATHODE  
11. NO CONNECTION  
12. ANODE/CATHODE  
13. ANODE/CATHODE  
14. COMMON CATHODE  
9. ANODE  
10. ANODE  
11. ANODE  
12. ANODE  
13. ANODE  
14. ANODE  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42565B  
SOIC14 NB  
PAGE 2 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FADK14I4470/IO

Through Beam Photoelectric Sensor, 50mm Min, 400mm Max, 4-20mA, Rectangular
IVO

FADK14I4470/S14

Through Beam Photoelectric Sensor, 50mm Min, 400mm Max, 100mA, Rectangular, Board Mount
IVO

FADK14I4470/S14/IO

Through Beam Photoelectric Sensor, 50mm Min, 400mm Max, 4-20mA, Rectangular
IVO

FADK14I4470/S35A

Through Beam Photoelectric Sensor, 50mm Min, 400mm Max, 100mA, Rectangular
IVO

FADK14I4470/S35A/IO

Through Beam Photoelectric Sensor, 50mm Min, 400mm Max, 4-20mA, Rectangular
IVO

FADK14U4470

Through Beam Photoelectric Sensor, 50mm Min, 400mm Max, 100mA, Rectangular, Board Mount
IVO

FADK14U4470/IO

Through Beam Photoelectric Sensor, 50mm Min, 400mm Max, 100mA, Rectangular
IVO

FADK14U4470/S14

Through Beam Photoelectric Sensor, 50mm Min, 400mm Max, 100mA, Rectangular, Board Mount
IVO

FADK14U4470/S14/IO

Through Beam Photoelectric Sensor, 50mm Min, 400mm Max, 100mA, Rectangular
IVO

FADK14U4470/S35A

Through Beam Photoelectric Sensor, 50mm Min, 400mm Max, 100mA, Rectangular, Board Mount
IVO

FADK14U4470/S35A/IO

Through Beam Photoelectric Sensor, 50mm Min, 400mm Max, 100mA, Rectangular
IVO

FADSFACT

MPC860 and MPC850 Family Application Development Systems Facts Sheet
ETC