BZX85C8V2RL2 [ONSEMI]

1 Watt DO-41 Hermetically Sealed Glass Zener Voltage Regulators; 1瓦DO- 41密封式玻璃齐纳稳压器
BZX85C8V2RL2
型号: BZX85C8V2RL2
厂家: ONSEMI    ONSEMI
描述:

1 Watt DO-41 Hermetically Sealed Glass Zener Voltage Regulators
1瓦DO- 41密封式玻璃齐纳稳压器

稳压器 二极管 测试
文件: 总8页 (文件大小:61K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BZX85C3V3RL Series  
1 Watt DO-41 Hermetically  
Sealed Glass Zener Voltage  
Regulators  
This is a complete series of 1 Watt Zener diodes with limits and  
excellent operating characteristics that reflect the superior capabilities  
of silicon–oxide passivated junctions. All this in an axial–lead  
hermetically sealed glass package that offers protection in all common  
environmental conditions.  
http://onsemi.com  
Cathode  
Anode  
Specification Features:  
Zener Voltage Range – 3.3 V to 85 V  
ESD Rating of Class 3 (>16 KV) per Human Body Model  
DO–41 (DO–204AL) Package  
Double Slug Type Construction  
Metallurgical Bonded Construction  
Oxide Passivated Die  
AXIAL LEAD  
CASE 59  
GLASS  
Mechanical Characteristics:  
CASE: Double slug type, hermetically sealed glass  
FINISH: All external surfaces are corrosion resistant and leads are  
readily solderable  
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:  
230°C, 1/16from the case for 10 seconds  
POLARITY: Cathode indicated by polarity band  
MOUNTING POSITION: Any  
MARKING DIAGRAM  
L
BZX  
85C  
xxx  
YWW  
L
= Assembly Location  
BZX85Cxxx= Device Code  
= (See Table Next Page)  
= Year  
= Work Week  
MAXIMUM RATINGS  
Y
WW  
Rating  
Symbol  
Value  
Unit  
Max. Steady State Power Dissipation  
P
D
1
W
@ T 50°C, Lead Length = 3/8″  
L
Derate above 50°C  
6.67  
mW/°C  
°C  
ORDERING INFORMATION  
Operating and Storage  
Temperature Range  
T , T  
–65 to  
+200  
J
stg  
Device  
BZX85CxxxRL  
Package  
Shipping  
Axial Lead  
6000/Tape & Reel  
6000/Tape & Reel  
BZX85CxxxRL2 Axial Lead  
* The “2” suffix refers to 26 mm tape spacing.  
Semiconductor Components Industries, LLC, 2002  
1
Publication Order Number:  
February, 2002 – Rev. 1  
BZX85C3V3RL/D  
BZX85C3V3RL Series  
ELECTRICAL CHARACTERISTICS (T = 25°C unless  
A
I
otherwise noted, V = 1.2 V Max., I = 200 mA for all types)  
F
F
I
F
Symbol  
Parameter  
V
Z
Reverse Zener Voltage @ I  
ZT  
I
ZT  
Reverse Current  
Z
I
Maximum Zener Impedance @ I  
Reverse Current  
ZT  
ZT  
V
Z
V
R
V
I
ZT  
ZK  
V
F
R
I
Z
ZK  
Maximum Zener Impedance @ I  
ZK  
I
Reverse Leakage Current @ V  
Breakdown Voltage  
R
R
V
R
I
F
Forward Current  
V
Forward Voltage @ I  
F
F
Zener Voltage Regulator  
I
R
Surge Current @ T = 25°C  
A
http://onsemi.com  
2
BZX85C3V3RL Series  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted, V = 1.2 V Max., I = 200 mA for all types)  
A
F
F
Zener Voltage (Notes 2 and 3)  
Zener Impedance (Note 4)  
Leakage Current  
I
R
V (Volts)  
Z
@ I  
Z
ZT  
@ I  
Z
ZK  
@ I  
I @ V  
R
(Note 5)  
ZT  
ZT  
ZK  
R
Device  
Device  
Min  
Nom  
Max  
mA  
W
W
mA  
µA Max  
Volts  
mA  
(Note 1)  
Marking  
BZX85C3V3RL BZX85C3V3  
BZX85C3V6RL BZX85C3V6  
BZX85C3V9RL BZX85C3V9  
BZX85C4V3RL BZX85C4V3  
BZX85C4V7RL BZX85C4V7  
3.1  
3.4  
3.7  
4.0  
4.4  
3.3  
3.6  
3.9  
4.3  
4.7  
3.5  
3.8  
4.1  
4.6  
5.0  
80  
60  
60  
50  
45  
20  
15  
15  
13  
13  
400  
500  
500  
500  
600  
1
1
1
1
1
1
1
1
1
1.5  
60  
30  
5
3
3
1380  
1260  
1190  
1070  
970  
BZX85C5V1RL BZX85C5V1  
BZX85C5V6RL BZX85C5V6  
BZX85C6V2RL BZX85C6V2  
BZX85C6V8RL BZX85C6V8  
BZX85C7V5RL BZX85C7V5  
4.8  
5.2  
5.8  
6.4  
7.0  
5.1  
5.6  
6.2  
6.8  
7.45  
5.4  
6.0  
6.6  
7.2  
7.9  
45  
45  
35  
35  
35  
10  
7
4
3.5  
3
500  
400  
300  
300  
200  
1
1
1
1
0.5  
2
2
3
4
4.5  
1
1
1
1
1
890  
810  
730  
660  
605  
BZX85C8V2RL BZX85C8V2  
BZX85C9V1RL BZX85C9V1  
7.7  
8.5  
9.4  
11.4  
12.4  
8.2  
9.05  
10  
12.05  
13.25  
8.7  
9.6  
10.6  
12.7  
14.1  
25  
25  
25  
20  
20  
5
5
7
9
10  
200  
200  
200  
350  
400  
0.5  
0.5  
0.5  
0.5  
0.5  
5
1
550  
500  
454  
380  
344  
6.5  
7
8.4  
9.1  
1
BZX85C10RL  
BZX85C12RL  
BZX85C13RL  
BZX85C10  
BZX85C12  
BZX85C13  
0.5  
0.5  
0.5  
BZX85C15RL  
BZX85C16RL  
BZX85C18RL  
BZX85C22RL  
BZX85C24RL  
BZX85C15  
BZX85C16  
BZX85C18  
BZX85C22  
BZX85C24  
13.8  
15.3  
16.8  
20.8  
22.8  
14.7  
16.2  
17.95  
22.05  
24.2  
15.6  
17.1  
19.1  
23.3  
25.6  
15  
15  
15  
10  
10  
15  
15  
20  
25  
25  
500  
500  
500  
600  
600  
0.5  
0.5  
0.5  
0.5  
0.5  
10.5  
11  
12.5  
15.5  
17  
0.5  
0.5  
0.5  
0.5  
0.5  
304  
285  
250  
205  
190  
BZX85C27RL  
BZX85C30RL  
BZX85C33RL  
BZX85C36RL  
BZX85C43RL  
BZX85C27  
BZX85C30  
BZX85C33  
BZX85C36  
BZX85C43  
25.1  
28  
31  
34  
40  
27  
30  
33  
36  
43  
28.9  
32  
35  
38  
46  
8
8
8
8
6
30  
30  
35  
40  
50  
750  
0.25  
0.25  
0.25  
0.25  
0.25  
19  
21  
23  
25  
30  
0.5  
0.5  
0.5  
0.5  
0.5  
170  
150  
135  
125  
110  
1000  
1000  
1000  
1000  
BZX85C47RL  
BZX85C62RL  
BZX85C75RL  
BZX85C82RL  
BZX85C47  
BZX85C62  
BZX85C75  
BZX85C82  
44  
58  
70  
77  
47  
62  
75  
82  
50  
66  
80  
87  
4
4
4
90  
1500  
2000  
2000  
3000  
0.25  
0.25  
0.25  
0.25  
33  
43  
51  
56  
0.5  
0.5  
0.5  
0.5  
95  
70  
60  
55  
125  
150  
200  
2.7  
1. TOLERANCE AND TYPE NUMBER DESIGNATION  
The type numbers listed have zener voltage min/max limits as shown and have a standard tolerance on the nominal zener voltage of ±5%.  
2. AVAILABILITY OF SPECIAL DIODES  
For detailed information on price, availability and delivery of nominal zener voltages between the voltages shown and tighter voltage  
tolerances, contact your nearest ON Semiconductor representative.  
3. ZENER VOLTAGE (V ) MEASUREMENT  
Z
V measured after the test current has been applied to 40 ±10 msec, while maintaining the lead temperature (T ) at 30°C ±1°C, 3/8from  
Z
L
the diode body.  
4. ZENER IMPEDANCE (Z ) DERIVATION  
Z
The zener impedance is derived from 1 kHz cycle AC voltage, which results when an AC current having an rms value equal to 10% of the  
DC zener current (I or I ) is superimposed on I or I  
.
ZK  
ZT  
ZK  
ZT  
5. SURGE CURRENT (I ) NON–REPETITIVE  
R
The rating listed in the electrical characteristics table is maximum peak, non–repetitive, reverse surge current of 1/2 square wave or eqivalent  
sine wave pulse of 1/120 second duration superimposed on the test current, I . However, actual device capability is as described in Figure  
ZT  
5 of the General Data – DO–41 Glass.  
http://onsemi.com  
3
BZX85C3V3RL Series  
1.25  
1
L = LEAD LENGTH  
TO HEAT SINK  
L = 1″  
L = 1/8″  
L = 3/8″  
0.75  
0.5  
0.25  
0
20 40  
60  
80 100 120 140 160 180  
200  
T , LEAD TEMPERATURE (°C)  
L
Figure 1. Power Temperature Derating Curve  
http://onsemi.com  
4
BZX85C3V3RL Series  
a. Range for Units to 12 Volts  
b. Range for Units to 12 to 100 Volts  
100  
70  
+12  
+10  
+8  
50  
30  
20  
+6  
+4  
+2  
0
RANGE  
V Ă@ĂI  
Z ZT  
10  
7
5
V Ă@ĂI  
Z
ZT  
RANGE  
3
2
-2  
-4  
1
2
3
4
5
6
7
8
9
10  
11 12  
10  
20  
30  
50  
70 100  
V , ZENER VOLTAGE (VOLTS)  
Z
V , ZENER VOLTAGE (VOLTS)  
Z
Figure 2. Temperature Coefficients  
(–55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)  
+6  
175  
150  
125  
100  
75  
V Ă@ĂI  
Z
Z
+4  
+2  
T Ă=Ă25°C  
A
20ĂmA  
0
0.01ĂmA  
50  
1ĂmA  
-2  
-4  
NOTE: BELOW 3 VOLTS AND ABOVE 8 VOLTS  
NOTE: CHANGES IN ZENER CURRENT DO NOT  
NOTE: EFFECT TEMPERATURE COEFFICIENTS  
25  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8 0.9  
1
3
4
5
6
7
8
L, LEAD LENGTH TO HEAT SINK (INCHES)  
V , ZENER VOLTAGE (VOLTS)  
Z
Figure 3. Typical Thermal Resistance  
versus Lead Length  
Figure 4. Effect of Zener Current  
100  
70  
RECTANGULAR  
WAVEFORM  
T Ă=Ă25°C PRIOR TO  
J
INITIAL PULSE  
50  
11ĂV-100ĂV NONREPETITIVE  
3.3ĂV-10ĂV NONREPETITIVE  
30  
20  
5% DUTY CYCLE  
10  
7
10% DUTY CYCLE  
5
20% DUTY CYCLE  
3
2
1
0.01 0.02  
0.05  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100  
200  
500 1000  
PW, PULSE WIDTH (ms)  
This graph represents 90 percentile data points.  
For worst case design characteristics, multiply surge power by 2/3.  
Figure 5. Maximum Surge Power  
http://onsemi.com  
5
BZX85C3V3RL Series  
1000  
500  
1000  
700  
500  
T = 25°C  
Z
f = 60 Hz  
T = 25°C  
Z
f = 60 Hz  
J
i (rms) = 0.1 I (dc)  
J
i (rms) = 0.1 I (dc)  
V = 2.7 V  
Z
Z
Z
I = 1 mA  
Z
200  
200  
100  
70  
50  
47 V  
27 V  
100  
50  
5 mA  
20 mA  
20  
10  
20  
10  
7
5
6.2 V  
5
2
1
2
1
0.1  
0.2  
0.5  
1
2
5
10  
20  
50 100  
1
2
3
5
7
10  
20 30  
50 70 100  
I , ZENER CURRENT (mA)  
Z
V , ZENER VOLTAGE (V)  
Z
Figure 6. Effect of Zener Current  
on Zener Impedance  
Figure 7. Effect of Zener Voltage  
on Zener Impedance  
10000  
7000  
5000  
400  
300  
200  
100  
50  
TYPICAL LEAKAGE CURRENT  
AT 80% OF NOMINAL  
BREAKDOWN VOLTAGE  
2000  
1000  
700  
500  
0 V BIAS  
1 V BIAS  
200  
20  
100  
70  
50  
10  
8
50% OF BREAKDOWN BIAS  
20  
4
10  
7
5
1
2
5
10  
20  
50  
100  
V , NOMINAL V (VOLTS)  
Z Z  
Figure 9. Typical Capacitance versus VZ  
2
1
0.7  
0.5  
1000  
MINIMUM  
MAXIMUM  
500  
200  
100  
50  
+125°C  
0.2  
0.1  
0.07  
0.05  
0.02  
20  
10  
5
75°C  
0.01  
0.007  
0.005  
+25°C  
25°C  
0°C  
150°C  
0.002  
0.001  
2
1
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
3
4
5
6
7
8
9
10 11 12 13 14 15  
V , NOMINAL ZENER VOLTAGE (VOLTS)  
Z
V , FORWARD VOLTAGE (VOLTS)  
F
Figure 8. Typical Leakage Current  
Figure 10. Typical Forward Characteristics  
http://onsemi.com  
6
BZX85C3V3RL Series  
APPLICATION NOTE  
TJ = TL + TJL  
.
Since the actual voltage available from a given zener  
TJL = θJLPD.  
diode is temperature dependent, it is necessary to determine  
junction temperature under any set of operating conditions  
in order to calculate its value. The following procedure is  
recommended:  
θ
may be determined from Figure 3 for dc power  
conditions. For worst-case design, using expected limits of  
I , limits of P and the extremes of T (T ) may be  
JL  
Z
D
J
J
Lead Temperature, T , should be determined from:  
L
estimated. Changes in voltage, V , can then be found from:  
Z
TL = θLAPD + TA.  
V = θVZ TJ.  
θ
is the lead-to-ambient thermal resistance (°C/W) and P  
D
LA  
θ
, the zener voltage temperature coefficient, is found  
VZ  
is the power dissipation. The value for θ will vary and  
depends on the device mounting method. θ is generally 30  
to 40°C/W for the various clips and tie points in common use  
and for printed circuit board wiring.  
The temperature of the lead can also be measured using a  
thermocouple placed on the lead as close as possible to the  
tie point. The thermal mass connected to the tie point is  
normally large enough so that it will not significantly  
respond to heat surges generated in the diode as a result of  
pulsed operation once steady-state conditions are achieved.  
LA  
from Figure 2.  
LA  
Under high power-pulse operation, the zener voltage will  
vary with time and may also be affected significantly by the  
zener resistance. For best regulation, keep current  
excursions as low as possible.  
Surge limitations are given in Figure 5. They are lower  
than would be expected by considering only junction  
temperature, as current crowding effects cause temperatures  
to be extremely high in small spots, resulting in device  
degradation should the limits of Figure 5 be exceeded.  
Using the measured value of T , the junction temperature  
L
may be determined by:  
T is the increase in junction temperature above the lead  
JL  
temperature and may be found as follows:  
http://onsemi.com  
7
BZX85C3V3RL Series  
OUTLINE DIMENSIONS  
Zener Voltage Regulators – Axial Leaded  
1 Watt DO–41 Glass  
GLASS DO–41  
CASE 59–10  
ISSUE R  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
B
2. CONTROLLING DIMENSION: INCH.  
3. 59-04 OBSOLETE, NEW STANDARD 59-09.  
4. 59-03 OBSOLETE, NEW STANDARD 59-10.  
5. ALL RULES AND NOTES ASSOCIATED WITH  
JEDEC DO-41 OUTLINE SHALL APPLY  
6. POLARITY DENOTED BY CATHODE BAND.  
7. LEAD DIAMETER NOT CONTROLLED WITHIN F  
DIMENSION.  
K
D
F
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
4.10  
2.00  
0.71  
---  
MAX  
5.20  
2.70  
0.86  
1.27  
---  
A
B
D
F
0.161  
0.079  
0.028  
---  
0.205  
0.106  
0.034  
0.050  
---  
A
F
K
1.000  
25.40  
K
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
BZX85C3V3RL/D  

相关型号:

BZX85C8V2RLRL

8.2V, 1W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE, DO-41
MOTOROLA

BZX85C8V2RLRL2

8.2V, 1W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE, DO-41
MOTOROLA

BZX85C8V2RLTA

8.2V, 1W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE, DO-41
MOTOROLA

BZX85C8V2RLTA2

Zener Diode, 8.2V V(Z), 2%, 1W, Silicon, Unidirectional, DO-41
MOTOROLA

BZX85C8V2T26A

DIODE 8.2 V, 1.3 W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE, DO-41, Voltage Regulator Diode
TI

BZX85C8V2T26R

8.2V, 1.3W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE, DO-41
TI

BZX85C8V2T50A

8.2V, 1.3W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE, DO-41
TI

BZX85C8V2T50R

8.2V, 1.3W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE, DO-41
TI

BZX85C8V2TA

Zener Diode, 8.2V V(Z), 6.1%, 1.3W, Silicon, Unidirectional, DO-41, HERMETIC SEALED, GLASS, DO-204AL, 2 PIN
TAK_CHEONG

BZX85C8V2TA2

Zener Diode, 8.2V V(Z), 6.1%, 1.3W, Silicon, Unidirectional, DO-41, HERMETIC SEALED, GLASS, DO-204AL, 2 PIN
TAK_CHEONG

BZX85C91

SILICON PLANAR POWER ZENER DIODES
GOOD-ARK

BZX85C91

SILICON ZENER DIODES
EIC