BUL45D2AU [ONSEMI]

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN;
BUL45D2AU
型号: BUL45D2AU
厂家: ONSEMI    ONSEMI
描述:

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN

晶体 晶体管 功率双极晶体管 开关 局域网
文件: 总12页 (文件大小:446K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by BUL45D2/D  
SEMICONDUCTOR TECHNICAL DATA  
POWER TRANSISTORS  
5 AMPERES  
700 VOLTS  
75 WATTS  
The BUL45D2 is state–of–art High Speed High gain BIPolar transistor (H2BIP).  
High dynamic characteristics and lot to lot minimum spread (±150 ns on storage time)  
make it ideally suitable for light ballast applications. Therefore, there is no need to  
guarantee an h  
window.  
FE  
Main features:  
Low Base Drive Requirement  
High Peak DC Current Gain (55 Typical) @ I = 100 mA  
Extremely Low Storage Time Min/Max Guarantees Due to the  
H2BIP Structure which Minimizes the Spread  
C
Integrated Collector–Emitter Free Wheeling Diode  
Fully Characterized and Guaranteed Dynamic V  
CE(sat)  
“6 Sigma” Process Providing Tight and Reproductible Parameter Spreads  
It’s characteristics make it also suitable for PFC application.  
CASE 221A–06  
TO–220AB  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
400  
700  
700  
12  
Unit  
Vdc  
Vdc  
Vdc  
Vdc  
Adc  
Collector–Emitter Sustaining Voltage  
Collector–Base Breakdown Voltage  
Collector–Emitter Breakdown Voltage  
Emitter–Base Voltage  
V
V
CEO  
CBO  
V
CES  
EBO  
V
Collector Current — Continuous  
— Peak (1)  
I
C
5
10  
I
CM  
Base Current — Continuous  
Base Current — Peak (1)  
I
2
4
Adc  
B
I
BM  
*Total Device Dissipation @ T = 25 C  
C
*Derate above 25°C  
P
D
75  
0.6  
Watt  
W/ C  
Operating and Storage Temperature  
T , T  
65 to 150  
C
J
stg  
THERMAL CHARACTERISTICS  
Thermal Resistance  
— Junction to Case  
— Junction to Ambient  
C/W  
R
θJC  
R
θJA  
1.65  
62.5  
Maximum Lead Temperature for Soldering Purposes:  
1/8from case for 5 seconds  
T
L
260  
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.  
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.  
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
Motorola, Inc. 1995
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Sustaining Voltage  
(I = 100 mA, L = 25 mH)  
C
V
400  
700  
12  
450  
910  
14.1  
Vdc  
Vdc  
CEO(sus)  
Collector–Base Breakdown Voltage  
V
V
CBO  
EBO  
CEO  
(I  
CBO  
= 1 mA)  
Emitter–Base Breakdown Voltage  
(I = 1 mA)  
Vdc  
EBO  
Collector Cutoff Current  
(V = Rated V , I = 0)  
I
100  
µAdc  
µAdc  
CE CEO  
B
Collector Cutoff Current (V  
= Rated V  
, V  
CES EB  
= 0)  
@ T = 25°C  
I
100  
500  
100  
CE  
C
CES  
@ T = 125°C  
C
Collector Cutoff Current (V  
Emitter–Cutoff Current  
= 500 V, V  
= 0)  
@ T = 125°C  
C
CE  
EB  
I
100  
µAdc  
EBO  
(V  
EB  
= 10 Vdc, I = 0)  
C
ON CHARACTERISTICS  
Base–Emitter Saturation Voltage  
(I = 0.8 Adc, I = 80 mAdc)  
V
Vdc  
BE(sat)  
@ T = 25°C  
0.8  
0.7  
1
0.9  
C
B
C
@ T = 125°C  
C
(I = 2 Adc, I = 0.4 Adc)  
@ T = 25°C  
0.89  
0.79  
1
0.9  
C
B
C
@ T = 125°C  
C
Collector–Emitter Saturation Voltage  
(I = 0.8 Adc, I = 80 mAdc)  
V
Vdc  
CE(sat)  
@ T = 25°C  
0.28  
0.32  
0.4  
0.5  
C
B
C
@ T = 125°C  
C
(I = 2 Adc, I = 0.4 Adc)  
@ T = 25°C  
0.32  
0.38  
0.5  
0.6  
C
B
C
@ T = 125°C  
C
(I = 0.8 Adc, I = 40 mAdc)  
@ T = 25°C  
0.46  
0.62  
0.75  
1
C
B
C
@ T = 125°C  
C
DC Current Gain  
(I = 0.8 Adc, V  
C CE  
h
FE  
= 1 Vdc)  
@ T = 25°C  
22  
20  
34  
29  
C
@ T = 125°C  
C
(I = 2 Adc, V  
C CE  
= 1 Vdc)  
@ T = 25°C  
10  
7
14  
9.5  
C
@ T = 125°C  
C
DIODE CHARACTERISTICS  
Forward Diode Voltage  
V
EC  
V
(I  
EC  
(I  
EC  
(I  
EC  
= 1 Adc)  
= 2 Adc)  
= 0.4 Adc)  
@ T = 25°C  
1.04  
0.7  
1.5  
1.6  
1.2  
C
@ T = 125°C  
C
@ T = 25°C  
1.2  
C
@ T = 125°C  
C
@ T = 25°C  
0.85  
0.62  
C
@ T = 125°C  
C
Forward Recovery Time (see Figure 27)  
(I = 1 Adc, di/dt = 10 A/µs)  
T
fr  
330  
ns  
@ T = 25°C  
F
C
(I = 2 Adc, di/dt = 10 A/µs)  
@ T = 25°C  
360  
320  
F
C
(I = 0.4 Adc, di/dt = 10 A/µs)  
F
@ T = 25°C  
C
2
Motorola Bipolar Power Transistor Device Data  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth  
f
13  
50  
MHz  
pF  
T
(I = 0.5 Adc, V  
C CE  
= 10 Vdc, f = 1 MHz)  
Output Capacitance  
(V = 10 Vdc, I = 0, f = 1 MHz)  
C
75  
ob  
CB  
Input Capacitance  
(V = 8 Vdc)  
E
C
340  
500  
pF  
ib  
EB  
DYNAMIC SATURATION VOLTAGE  
@ 1 µs  
@ 3 µs  
@ 1 µs  
@ 3 µs  
@ T = 25°C  
V
3.7  
9.4  
V
V
V
V
C
CE(dsat)  
I
= 1 A  
= 100 mA  
= 300 V  
@ T = 125°C  
C
C
I
V
Dynamic Saturation  
Voltage:  
Determined 1 µs and  
3 µs respectively after  
B1  
CC  
@ T = 25°C  
0.35  
2.7  
C
@ T = 125°C  
C
@ T = 25°C  
3.9  
12  
C
rising I reaches  
I
C
= 2 A  
= 0.8 A  
= 300 V  
B1  
@ T = 125°C  
C
90% of final I  
B1  
I
B1  
CC  
@ T = 25°C  
0.4  
1.5  
C
V
@ T = 125°C  
C
SWITCHING CHARACTERISTICS: Resistive Load (D.C. 10%, Pulse Width = 20 µs)  
Turn–on Time  
Turn–off Time  
Turn–on Time  
Turn–off Time  
@ T = 25°C  
t
90  
105  
150  
1.3  
150  
2.4  
ns  
µs  
ns  
µs  
C
on  
I
= 2 Adc, I = 0.4 Adc  
B1  
@ T = 125°C  
C
C
C
I
= 1 Adc  
B2  
CC  
@ T = 25°C  
t
1.15  
1.5  
C
off  
V
= 300 Vdc  
@ T = 125°C  
C
@ T = 25°C  
t
on  
90  
110  
C
I
= 2 Adc, I = 0.4 Adc  
@ T = 125°C  
B1  
= 0.4 Adc  
= 300 Vdc  
C
I
B2  
@ T = 25°C  
t
2.1  
C
off  
V
CC  
@ T = 125°C  
3.1  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
= 300 V, V  
CC  
= 15 V, L = 200 µH)  
clamp  
Fall Time  
@ T = 25°C  
t
90  
93  
150  
0.9  
ns  
µs  
ns  
ns  
µs  
ns  
C
f
@ T = 125°C  
C
I
= 1 Adc  
= 100 mAdc  
= 500 mAdc  
C
Storage Time  
Crossover Time  
Fall Time  
@ T = 25°C  
t
s
t
c
0.72  
1.05  
C
I
I
B1  
B2  
@ T = 125°C  
C
@ T = 25°C  
95  
95  
150  
150  
2.25  
300  
C
@ T = 125°C  
C
@ T = 25°C  
t
f
80  
105  
C
@ T = 125°C  
C
I
= 2 Adc  
= 0.4 Adc  
= 0.4 Adc  
C
B1  
B2  
Storage Time  
Crossover Time  
@ T = 25°C  
t
t
1.95  
C
s
I
I
@ T = 125°C  
2.9  
C
@ T = 25°C  
225  
450  
C
c
@ T = 125°C  
C
3
Motorola Bipolar Power Transistor Device Data  
TYPICAL STATIC CHARACTERISTICS  
100  
80  
100  
V
CE  
= 1 V  
V
= 5 V  
CE  
T
= 125°C  
T
= 125°C  
80  
60  
40  
J
J
T
= 25°C  
T
= 25°C  
J
J
60  
40  
T
= 20°C  
T
= 20°C  
J
J
20  
0
20  
0
0.001  
0.01  
0.1  
1
10  
10  
10  
0.001  
0.01  
0.1  
1
10  
10  
10  
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 1. DC Current Gain @ 1 Volt  
Figure 2. DC Current Gain @ 5 Volt  
4
3
2
10  
T
= 25°C  
J
I
/I = 5  
C B  
T
= 25°C  
J
1
T
= 125°C  
J
5 A  
3 A  
1
0
2 A  
4 A  
T
= 20°C  
1 A  
J
I
= 500 mA  
0.01  
C
0.1  
0.001  
0.001  
0.1  
, BASE CURRENT (AMPS)  
1
0.01  
0.1  
1
I
I , COLLECTOR CURRENT (AMPS)  
C
B
Figure 3. Collector Saturation Region  
Figure 4. Collector–Emitter Saturation Voltage  
10  
10  
I
/I = 10  
I
/I = 20  
C B  
C B  
1
1
T
= 125°C  
J
T
= 25°C  
J
T
= 20°C  
T
= 20°C  
J
J
T
= 125°C  
J
T
= 25  
°
C
J
0.1  
0.001  
0.1  
0.001  
0.01  
0.1  
1
0.01  
0.1  
1
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 5. Collector–Emitter Saturation Voltage  
Figure 6. Collector–Emitter Saturation Voltage  
4
Motorola Bipolar Power Transistor Device Data  
TYPICAL STATIC CHARACTERISTICS  
10  
10  
I
/I = 5  
I
/I = 10  
C B  
C B  
T
= 25°C  
J
T
= 20°C  
1
1
T
= 20°C  
J
J
T
= 125°C  
J
T
= 125°C  
J
T
= 25°C  
J
0.1  
0.001  
0.1  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 7. Base–Emitter Saturation Region  
Figure 8. Base–Emitter Saturation Region  
10  
10  
I
/I = 20  
C B  
25°C  
1
1
T = 20°C  
J
125°C  
T
= 125°C  
J
T
= 25°C  
J
0.1  
0.001  
0.1  
0.01  
0.01  
0.1  
1
10  
0.1  
1
10  
I
, COLLECTOR CURRENT (AMPS)  
REVERSE EMITTER–COLLECTOR CURRENT (AMPS)  
C
Figure 9. Base–Emitter Saturation Region  
Figure 10. Forward Diode Voltage  
1000  
100  
1000  
900  
800  
700  
600  
T
f
= 25°C  
T
= 25°C  
C
(pF)  
J
J
ib  
BVCER @ 10 mA  
= 1 MHz  
(test)  
C
(pF)  
ob  
10  
1
BVCER(sus) @ 200 mA  
500  
400  
1
10  
, REVERSE VOLTAGE (VOLTS)  
100  
10  
100  
1000  
V
R
()  
R
BE  
Figure 11. Capacitance  
Figure 12. BVCER = f(ICER)  
5
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
1000  
800  
600  
400  
5
I
= I  
= 300 V  
T
T
= 125°C  
= 25°C  
Bon Boff  
J
J
I
= I  
= 300 V  
Bon Boff  
V
CC  
PW = 20  
V
I
/I = 10  
CC  
PW = 20  
C B  
4
3
2
µs  
µs  
I
/I = 10  
C B  
I
/I = 5  
C B  
I
/I = 5  
C B  
200  
0
1
0
T
T
= 125°C  
J
J
= 25°C  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0.5  
1
1.5  
2
2.5  
3
3.5  
4
I
, COLLECTOR CURRENT (AMPS)  
I
, COLLECTOR CURRENT (AMPS)  
C
C
Figure 13. Resistive Switch Time, t  
Figure 14. Resistive Switch Time, t  
off  
on  
4
3
2
5
4
3
2
I
V
V
= I  
= 15 V  
= 300 V  
= 200  
I
V
V
L
= I  
Bon Boff  
CC  
Bon Boff  
I
/I = 5  
C B  
= 15 V  
CC  
= 300 V  
= 200  
Z
C
Z
L
µH  
µH  
C
1
0
1
0
T
T
= 125  
°
C
T
T
= 125°C  
= 25°C  
J
J
J
J
= 25°C  
0
1
2
3
4
0
1
2
3
4
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 15. Inductive Storage Time,  
@ I /I = 5  
Figure 16. Inductive Storage Time,  
t
t @ I /I = 10  
si C B  
si  
C B  
600  
500  
400  
300  
200  
400  
300  
200  
I
V
V
= I  
= 15 V  
= 300 V  
= 200  
T
T
= 125°C  
= 25°C  
Bon Boff  
CC  
J
J
I
V
V
= I  
= 15 V  
= 300 V  
= 200 µH  
Boff Bon  
CC  
Z
C
Z
C
L
µH  
t
c
L
100  
0
100  
0
T
T
= 125  
= 25°C  
°
C
J
J
t
fi  
0
1
2
3
4
0
1
2
3
4
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 17. Inductive Switching,  
Figure 18. Inductive Switching,  
@ I /I = 10  
t & t @ I /I = 5  
t
fi  
c
fi C B  
C B  
6
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
1500  
1000  
5
I
V
V
= I  
= 15 V  
= 300 V  
= 200 µH  
Bon Boff  
CC  
Z
C
T
T
= 125°C  
= 25°C  
I
= I  
T
T
= 125°C  
= 25°C  
J
J
Boff Bon  
J
J
V
V
L
= 15 V  
CC  
= 300 V  
I
= 1 A  
Z
C
C
L
= 200 µH  
4
500  
0
3
2
I
= 2 A  
C
0
1
2
3
4
0
5
10  
, FORCED GAIN  
15  
20  
I
, COLLECTOR CURRENT (AMPS)  
h
FE  
C
Figure 19. Inductive Switching,  
t @ I /I = 10  
Figure 20. Inductive Storage Time  
c
C B  
450  
350  
250  
1400  
1200  
1000  
800  
I
V
V
= I  
= 15 V  
= 300 V  
= 200 µH  
Boff Bon  
CC  
Z
C
T
T
= 125  
°
C
I
V
V
= I  
= 15 V  
= 300 V  
= 200 µH  
T
T
= 125°C  
= 25°C  
J
J
Bon Boff  
CC  
Z
C
J
J
= 25°C  
I
= 1 A  
C
L
L
I
I
= 2 A  
C
600  
400  
150  
50  
200  
0
I
= 2 A  
18  
C
= 1 A  
18  
C
2
4
6
8
10  
12  
14  
16  
20  
2
4
6
8
10  
12  
14  
16  
20  
h
, FORCED GAIN  
h , FORCED GAIN  
FE  
FE  
Figure 21. Inductive Fall Time  
Figure 22. Inductive Crossover Time  
3000  
2000  
360  
340  
I
= I  
I
V
V
= I  
= 15 V  
= 300 V  
= 200 µH  
B1 B2  
Bon Boff  
CC  
Z
C
dI/dt = 10 A/  
µs  
T
= 25°C  
C
L
I
= 50 mA  
B
I
= 100 mA  
B
1000  
0
320  
300  
I
= 200 mA  
B
I
= 500 mA  
B
I
= 1 A  
B
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
I
, COLLECTOR CURRENT (AMPS)  
I , FORWARD CURRENT (AMP)  
C
F
Figure 23. Inductive Storage Time, t  
si  
Figure 24. Forward Recovery Time t  
fr  
7
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
10  
V
CE  
9
8
7
6
5
4
3
2
I
90% I  
C
C
dyn 1  
µs  
t
fi  
t
si  
dyn 3 µs  
10% I  
C
0 V  
V
10% V  
clamp  
clamp  
t
c
90% I  
B
I
B
90% I  
B1  
1 µs  
I
1
0
B
3
µs  
0
1
2
3
4
5
6
8
7
TIME  
TIME  
Figure 25. Dynamic Saturation  
Voltage Measurements  
Figure 26. Inductive Switching Measurements  
V
V
(1.1 V unless  
F
FRM  
FR  
otherwise specified)  
V
F
V
F
t
fr  
0.1 V  
F
0
I
F
10% I  
F
0
2
4
6
8
10  
Figure 27. t Measurements  
fr  
8
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
Table 1. Inductive Load Switching Drive Circuit  
+15 V  
I
PEAK  
C
100 µF  
1
µ
F
100  
3 W  
MTP8P10  
MUR105  
150  
3 W  
V
PEAK  
CE  
V
MTP8P10  
CE  
R
MPF930  
B1  
I
1
B
MPF930  
I
+10 V  
out  
I
B
A
I
2
B
50  
R
B2  
MJE210  
COMMON  
MTP12N10  
150  
3 W  
V
Inductive Switching  
L = 200  
RBSOA  
L = 500 µH  
(BR)CEO(sus)  
L = 10 mH  
µH  
500 µF  
R
=
R
= 0  
= 15 Volts  
selected for  
R
= 0  
= 15 Volts  
B2  
B2  
B2  
V
= 20 Volts  
= 100 mA  
V
R
V
CC  
CC  
B1  
CC  
1
µF  
I
R selected for  
C(pk)  
B1  
–V  
off  
desired I  
desired I  
B1  
B1  
TYPICAL CHARACTERISTICS  
100  
10  
6
5
T
125°C  
5  
= 2 mH  
C
GAIN  
1 µs  
L
C
10  
µs  
4
3
2
5 ms  
1 ms  
1
DC  
–5 V  
0.1  
1
0
0 V  
–1.5 V  
600  
0.01  
10  
100  
1000  
200  
300  
400  
500  
700  
800  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
CE  
Figure 28. Forward Bias Safe Operating Area  
Figure 29. Reverse Bias Safe Operating Area  
9
Motorola Bipolar Power Transistor Device Data  
TYPICAL CHARACTERISTICS  
1
0.8  
0.6  
SECOND BREAKDOWN  
DERATING  
THERMAL DERATING  
0.4  
0.2  
0
20  
40  
60  
80  
100  
120  
C)  
140  
160  
T
, CASE TEMPERATURE (  
°
C
Figure 30. Forward Bias Power Derating  
There are two limitations on the power handling ability of a  
transistor: average junction temperature and second break-  
T
may be calculated from the data in Figure 31. At any  
J(pk)  
case temperatures, thermal limitations will reduce the power  
that can be handled to values less than the limitations  
imposed by second breakdown. For inductive loads, high  
voltage and current must be sustained simultaneously during  
turn–off with the base to emitter junction reverse biased. The  
safe level is specified as a reverse biased safe operating  
area (Figure 29). This rating is verified under clamped  
conditions so that the device is never subjected to an  
avalanche mode.  
down. Safe operating area curves indicate I V  
limits of  
C
CE  
the transistor that must be observed for reliable operation;  
i.e., the transistor must not be subjected to greater dissipa-  
tion than the curves indicate. The data of Figure 28 is based  
on T = 25°C; T  
Second breakdown pulse limits are valid for duty cycles to  
is variable depending on power level.  
C
J(pk)  
10% but must be derated when T > 25°C. Second  
C
breakdown limitations do not derate the same as thermal  
limitations. Allowable current at the voltages shown on  
Figure 28 may be found at any case temperature by using  
the appropriate curve on Figure 30.  
TYPICAL THERMAL RESPONSE  
1
0.5  
0.2  
0.1  
P
(pk)  
R
R
(t) = r(t) R  
θ
θ
θ
JC  
JC  
JC  
°C/W MAX  
0.1  
0.05  
= 2.5  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
0.02  
t
1
READ TIME AT t  
1
t
2
SINGLE PULSE  
T
– T = P  
C
R
(t)  
JC  
J(pk)  
(pk)  
θ
DUTY CYCLE, D = t /t  
1 2  
0.01  
0.01  
0.1  
1
10  
100  
1000  
t, TIME (ms)  
Figure 31. Typical Thermal Response (Z  
θJC  
(t)) for BUL45D2  
10  
Motorola Bipolar Power Transistor Device Data  
PACKAGE DIMENSIONS  
NOTES:  
SEATING  
PLANE  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
A
K
Q
Z
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
1
2
3
U
H
L
R
J
V
G
T
U
V
D
N
Z
0.080  
2.04  
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
CASE 221A–06  
TO–220AB  
ISSUE Y  
11  
Motorola Bipolar Power Transistor Device Data  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
BUL45D2/D  

相关型号:

BUL45D2BA

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL45D2BC

TRANSISTOR 5 A, 400 V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

BUL45D2BD

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL45D2BG

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL45D2BS

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL45D2BU

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL45D2BV

5A, 400V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BUL45D2DW

暂无描述
ONSEMI

BUL45D2G

High Speed, High Gain Bipolar NPN Power Transistor
ONSEMI

BUL45F

POWER TRANSISTOR 5.0 AMPERES 700 VOLTS 35 and 75 WATTS
MOTOROLA

BUL45F

POWER TRANSISTOR 5.0 AMPERES 700 VOLTS 35 and 75 WATTS
ONSEMI

BUL45G

NPN Silicon Power Transistor
ONSEMI