74VCXH16245 [ONSEMI]

Low-Voltage 1.8/2.5/3.3V 16-Bit Transceiver; 低电压1.8 / 2.5 / 3.3V 16位收发器
74VCXH16245
型号: 74VCXH16245
厂家: ONSEMI    ONSEMI
描述:

Low-Voltage 1.8/2.5/3.3V 16-Bit Transceiver
低电压1.8 / 2.5 / 3.3V 16位收发器

文件: 总8页 (文件大小:93K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
74VCXH16245  
Low−Voltage 1.8/2.5/3.3V  
16−Bit Transceiver  
With 3.6 V−Tolerant Inputs and Outputs  
(3−State, Non−Inverting)  
The 74VCXH16245 is an advanced performance, non−inverting  
16−bit transceiver. It is designed for very high−speed, very low−power  
operation in 1.8 V, 2.5 V or 3.3 V systems.  
http://onsemi.com  
When operating at 2.5 V (or 1.8 V) the part is designed to tolerate  
voltages it may encounter on either inputs or outputs when interfacing  
to 3.3 V busses. It is guaranteed to be over−voltage tolerant to 3.6 V.  
The VCXH16245 is designed with byte control. It can be operated  
as two separate octals, or with the controls tied together, as a 16−bit  
wide function. The Transmit/Receive (T/Rn) inputs determine the  
direction of data flow through the bi−directional transceiver. Transmit  
(active−HIGH) enables data from A ports to B ports; Receive  
(active−LOW) enables data from B to A ports. The Output Enable  
inputs (OEn), when HIGH, disable both A and B ports by placing them  
in a HIGH Z condition. The data inputs include active bushold  
circuitry, eliminating the need for external pull−up resistors to hold  
unused or floating inputs at a valid logic state.  
TSSOP−48  
DT SUFFIX  
CASE 1201  
48  
1
MARKING DIAGRAM  
48  
VCXH16245  
AWLYYWW  
Features  
Designed for Low Voltage Operation: V = 1.65−3.6 V  
CC  
1
3.6 V Tolerant Inputs and Outputs  
High Speed Operation: 2.5 ns max for 3.0 to 3.6 V  
3.0 ns max for 2.3 to 2.7 V  
A
= Assembly Location  
WL = Wafer Lot  
YY = Year  
WW = Work Week  
6.0 ns max for 1.65 to 1.95 V  
Static Drive: ±24 mA Drive at 3.0 V  
±18 mA Drive at 2.3 V  
±6 mA Drive at 1.65 V  
ORDERING INFORMATION  
Supports Live Insertion and Withdrawal  
Includes Active Bushold to Hold Unused or Floating Inputs at a Valid  
Device  
Package  
Shipping  
39 / Rail  
Logic State  
74VCXH16245DT  
74VCXH16245DTR  
TSSOP  
*
I  
Specification Guarantees High Impedance When V = 0 V  
CC  
OFF  
TSSOP 2500/Tape & Reel  
Near Zero Static Supply Current in All Three Logic States (20 mA)  
Substantially Reduces System Power Requirements  
74VCXH16245DTRG TSSOP 2500/Tape & Reel  
(Pb−Free)  
Latchup Performance Exceeds ±250 mA @ 125°C  
ESD Performance: Human Body Model >2000 V;  
Machine Model >200 V  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Pb−Free Package is Available*  
*NOTE: To ensure the outputs activate in the 3−state condition,  
*For additional information on our Pb−Free strategy  
and soldering details, please download the  
ON Semiconductor Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
the output enable pins should be connected to V through a  
CC  
pull−up resistor. The value of the resistor is determined by the  
current sinking capability of the output connected to the OE pin.  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
May, 2004 − Rev. 3  
74VCXH16245/D  
74VCXH16245  
1
24  
T/R1  
T/R2  
T/R1  
B0  
1
2
3
4
5
6
7
8
9
48 OE1  
47 A0  
46 A1  
45 GND  
44 A2  
43 A3  
48  
25  
OE1  
OE2  
B1  
GND  
B2  
A0:7  
B0:7  
A8:15  
B8:15  
B3  
V
CC  
42 V  
CC  
B4  
B5  
41 A4  
40 A5  
39 GND  
38 A6  
37 A7  
36 A8  
35 A9  
34 GND  
33 A10  
32 A11  
One of Eight  
GND 10  
B6 11  
Figure 2. Logic Diagram  
B7 12  
B8 13  
1
B9 14  
EN1  
EN2  
EN3  
EN4  
T/R1  
OE1  
OE2  
T/R2  
48  
25  
24  
GND 15  
B10 16  
B11 17  
2
3
47  
46  
44  
43  
41  
40  
38  
37  
36  
35  
33  
32  
30  
29  
27  
26  
1
1
1
2
B0  
A0  
A1  
V
18  
31 V  
CC  
CC  
B1  
5
B12 19  
B13 20  
GND 21  
B14 22  
B15 23  
T/R2 24  
30 A12  
29 A13  
28 GND  
27 A14  
26 A15  
25 OE2  
B2  
A2  
6
B3  
B4  
A3  
A4  
8
9
B5  
A5  
11  
12  
13  
14  
16  
17  
19  
20  
22  
23  
B6  
A6  
1
1
3
4
B7  
B8  
A7  
A8  
B9  
A9  
B10  
B11  
B12  
B13  
B14  
B15  
A10  
A11  
A12  
A13  
A14  
A15  
Figure 1. 48−Lead Pinout  
(Top View)  
PIN NAMES  
Pins  
Function  
Figure 3. IEC Logic Diagram  
OEn  
Output Enable Inputs  
T/Rn  
Transmit/Receive Inputs  
A0−A15  
B0−B15  
Side A Inputs or 3−State Outputs  
Side B Inputs or 3−State Outputs  
Inputs  
Inputs  
Outputs  
Outputs  
OE1  
T/R1  
L
OE2  
L
T/R2  
L
L
L
Bus B0:7 Data to Bus A0:7  
Bus A0:7 Data to Bus B0:7  
High Z State on A0:7, B0:7  
Bus B8:15 Data to Bus A8:15  
Bus A8:15 Data to Bus B8:15  
High Z State on A8:15, B8:15  
H
L
H
H
X
H
X
H = High Voltage Level; L = Low Voltage Level; X = High or Low Voltage Level and Transitions Are Acceptable  
http://onsemi.com  
2
74VCXH16245  
ABSOLUTE MAXIMUM RATINGS*  
Symbol  
Parameter  
Value  
Condition  
Unit  
V
V
V
V
DC Supply Voltage  
DC Input Voltage  
DC Output Voltage  
−0.5 to +4.6  
CC  
−0.5 V +4.6  
V
I
I
−0.5 V +4.6  
Output in 3−State  
V
O
O
−0.5 V V + 0.5  
Note 1.; Outputs Active  
V
O
CC  
I
I
DC Input Diode Current  
DC Output Diode Current  
−50  
V < GND  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
IK  
I
−50  
+50  
V < GND  
O
OK  
V
O
> V  
CC  
I
I
I
DC Output Source/Sink Current  
DC Supply Current Per Supply Pin  
DC Ground Current Per Ground Pin  
Storage Temperature Range  
±50  
O
±100  
±100  
CC  
GND  
T
−65 to +150  
STG  
* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or  
conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute−maximum−rated conditions  
is not implied.  
1. I absolute maximum rating must be observed.  
O
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
V
CC  
Supply Voltage  
Operating  
Data Retention Only  
1.65  
1.2  
3.3  
3.3  
3.6  
3.6  
V
V
V
Input Voltage  
−0.3  
3.6  
V
V
I
Output Voltage  
(Active State)  
(3−State)  
0
0
V
CC  
O
3.6  
−24  
24  
I
I
I
I
I
I
HIGH Level Output Current, V = 3.0 V − 3.6 V  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
OH  
CC  
LOW Level Output Current, V = 3.0 V − 3.6 V  
OL  
OH  
OL  
OH  
OL  
CC  
HIGH Level Output Current, V = 2.3 V − 2.7 V  
−18  
18  
CC  
LOW Level Output Current, V = 2.3 V − 2.7 V  
CC  
HIGH Level Output Current, V = 1.65 − 1.95 V  
−6  
CC  
LOW Level Output Current, V = 1.65 − 1.95 V  
6
CC  
T
A
Operating Free−Air Temperature  
−40  
0
+85  
10  
Dt/DV  
Input Transition Rise or Fall Rate, V from 0.8 V to 2.0 V, V = 3.0 V  
ns/V  
IN  
CC  
http://onsemi.com  
3
 
74VCXH16245  
DC ELECTRICAL CHARACTERISTICS  
T
A
= −40°C to +85°C  
Symbol  
Characteristic  
Condition  
Min  
0.65 x V  
1.6  
Max  
Unit  
V
IH  
HIGH Level Input Voltage (Note 2.)  
V
1.65 V V < 2.3 V  
CC  
CC  
2.3 V V 2.7 V  
CC  
2.7 V < V 3.6 V  
2.0  
CC  
V
LOW Level Input Voltage (Note 2.)  
HIGH Level Output Voltage  
V
V
1.65 V V < 2.3 V  
0.35 x V  
0.7  
IL  
CC  
CC  
2.3 V V 2.7 V  
CC  
2.7 V < V 3.6 V  
0.8  
CC  
V
OH  
1.65 V V 3.6 V; I = −100mA  
V
CC  
− 0.2  
CC  
OH  
V
CC  
= 1.65 V; I = −6mA  
1.25  
OH  
V
= 2.3 V; I = −6mA  
2.0  
1.8  
1.7  
2.2  
2.4  
2.2  
CC  
CC  
CC  
CC  
CC  
CC  
OH  
V
V
V
V
V
= 2.3 V; I = −12mA  
OH  
= 2.3 V; I = −18mA  
OH  
= 2.7 V; I = −12mA  
OH  
= 3.0 V; I = −18mA  
OH  
= 3.0 V; I = −24mA  
OH  
V
LOW Level Output Voltage  
1.65 V V 3.6 V; I = 100mA  
0.2  
0.3  
V
OL  
CC  
OL  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 1.65 V; I = 6mA  
OL  
= 2.3 V; I = 12mA  
0.4  
OL  
= 2.3 V; I = 18mA  
0.6  
OL  
= 2.7 V; I = 12mA  
0.4  
OL  
= 3.0 V; I = 18mA  
0.4  
OL  
= 3.0 V; I = 24mA  
0.55  
±5.0  
OL  
I
I
Input Leakage Current  
1.65 V V 3.6 V; 0V V 3.6 V  
mA  
mA  
I
CC  
I
Minimum Bushold Input Current  
V
CC  
V
CC  
V
CC  
V
CC  
= 3.0 V, V = 0.8V  
75  
−75  
45  
I(HOLD)  
I (OD)  
OZ  
IN  
= 3.0 V, V = 2.0V  
IN  
= 2.3 V, V = 0.7V  
IN  
= 2.3 V, V = 1.6V  
−45  
25  
IN  
V
CC  
= 1.65 V, V = 0.57V  
IN  
V
CC  
= 1.65 V, V = 1.07V  
−25  
450  
−450  
300  
−300  
200  
−200  
IN  
I
Minimum Bushold Over−Drive  
Current Needed to Change State  
mA  
V
CC  
= 3.6 V, (Note 3.)  
V
V
V
= 3.6 V, (Note 4.)  
= 2.7 V, (Note 3.)  
= 2.7 V, (Note 4.)  
= 1.95 V, (Note 3.)  
= 1.95 V, (Note 4.)  
CC  
CC  
CC  
V
CC  
V
CC  
I
3−State Output Current  
1.65 V V 3.6 V; 0 V V 3.6 V;  
±10  
mA  
CC  
O
V = V or V  
IL  
I
IH  
I
I
Power−Off Leakage Current  
V
= 0 V; V or V = 3.6 V  
10  
20  
mA  
mA  
mA  
mA  
OFF  
CC  
I
O
Quiescent Supply Current (Note 5.)  
1.65 V V 3.6 V; V = GND or V  
CC  
CC  
CC  
I
1.65 V V 3.6 V; 3.6 V V , V 3.6 V  
±20  
750  
CC  
I
O
DI  
Increase in I per Input  
2.7 V < V 3.6 V; V = V − 0.6 V  
CC IH CC  
CC  
CC  
2. These values of V are used to test DC electrical characteristics only.  
I
3. An external driver must source at least the specified current to switch from LOW−to−HIGH.  
4. An external driver must source at least the specified current to switch from HIGH−to−LOW.  
5. Outputs disabled or 3−state only.  
http://onsemi.com  
4
 
74VCXH16245  
AC CHARACTERISTICS (Note 6.; tR = tF = 2.0ns; CL = 30pF; RL = 500W)  
Limits  
T
A
= −40°C to +85°C  
V
CC  
= 3.0 V to 3.6 V  
V
CC  
= 2.3 V to 2.7 V  
V
CC  
= 1.65 to1.95 V  
Symbol  
Parameter  
Waveform  
Min  
Max  
Min  
Max  
Min  
1.5  
1.5  
Max  
Unit  
t
t
Propagation Delay  
Input to Output  
1
0.8  
0.8  
2.5  
2.5  
1.0  
1.0  
3.0  
3.0  
6.0  
6.0  
ns  
PLH  
PHL  
t
t
Output Enable Time to  
High and Low Level  
2
2
0.8  
0.8  
3.8  
3.8  
1.0  
1.0  
4.9  
4.9  
1.5  
1.5  
9.3  
9.3  
ns  
ns  
ns  
PZH  
PZL  
t
t
Output Disable Time From  
High and Low Level  
0.8  
0.8  
3.7  
3.7  
1.0  
1.0  
4.2  
4.2  
1.5  
1.5  
7.6  
7.6  
PHZ  
PLZ  
t
t
Output−to−Output Skew  
(Note 7.)  
0.5  
0.5  
0.5  
0.5  
0.75  
0.75  
OSHL  
OSLH  
6. For C = 50pF, add approximately 300ps to the AC maximum specification.  
L
7. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.  
The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (t  
guaranteed by design.  
) or LOW−to−HIGH (t  
); parameter  
OSHL  
OSLH  
DYNAMIC SWITCHING CHARACTERISTICS  
T
A
= +25°C  
Symbol  
Characteristic  
Dynamic LOW Peak Voltage  
(Note 8.)  
Condition  
= 1.8 V, C = 30pF, V = V , V = 0 V  
Typ  
Unit  
V
OLP  
V
OLV  
V
OHV  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
0.25  
0.6  
V
L
IH  
CC  
IL  
= 2.5 V, C = 30pF, V = V , V = 0 V  
L
IH  
CC  
IL  
= 3.3 V, C = 30pF, V = V , V = 0 V  
0.8  
L
IH  
CC  
IL  
Dynamic LOW Valley Voltage  
(Note 8.)  
= 1.8 V, C = 30pF, V = V , V = 0 V  
−0.25  
−0.6  
−0.8  
1.5  
V
V
L
IH  
CC  
IL  
= 2.5 V, C = 30pF, V = V , V = 0 V  
L
IH  
CC  
IL  
= 3.3 V, C = 30pF, V = V , V = 0 V  
L
IH  
CC  
IL  
Dynamic HIGH Valley Voltage  
(Note 9.)  
= 1.8 V, C = 30pF, V = V , V = 0 V  
L IH CC IL  
= 2.5 V, C = 30pF, V = V , V = 0 V  
1.9  
L
IH  
CC  
IL  
= 3.3 V, C = 30pF, V = V , V = 0 V  
2.2  
L
IH  
CC  
IL  
8. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is  
measured in the LOW state.  
9. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is  
measured in the HIGH state.  
CAPACITIVE CHARACTERISTICS  
Symbol  
Parameter  
Input Capacitance  
Condition  
Note 10.  
Typical  
Unit  
pF  
C
C
C
6
7
IN  
Output Capacitance  
Note 10.  
pF  
OUT  
PD  
Power Dissipation Capacitance  
Note 10., 10MHz  
20  
pF  
10.V = 1.8, 2.5 or 3.3 V; V = 0 V or V .  
CC  
CC  
I
AC CHARACTERISTICS (tR = tF = 2.0ns; CL = 50pF; RL = 500W)  
Limits  
= −40°C to +85°C  
T
A
V
CC  
= 3.0 V to 3.6 V  
V
CC  
= 2.7 V  
Symbol  
Parameter  
Waveform  
Min  
1.0  
1.0  
Max  
Min  
Max  
Unit  
t
t
Propagation Delay  
Input to Output  
3
3.0  
3.0  
3.6  
3.6  
ns  
ns  
ns  
ns  
PLH  
PHL  
t
t
Output Enable Time to  
High and Low Level  
4
4
1.0  
1.0  
4.4  
4.4  
5.4  
5.4  
PZH  
PZL  
t
t
Output Disable Time From  
High and Low Level  
1.0  
1.0  
4.1  
4.1  
4.6  
4.6  
PHZ  
PLZ  
t
t
Output−to−Output Skew  
(Note 11.)  
0.5  
0.5  
0.5  
0.5  
OSHL  
OSLH  
11. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.  
The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (t  
guaranteed by design.  
) or LOW−to−HIGH (t  
); parameter  
OSHL  
OSLH  
http://onsemi.com  
5
 
74VCXH16245  
V
IH  
Vm  
Vm  
An, Bn  
Bn, An  
0V  
t
t
PHL  
PLH  
V
OH  
OL  
Vm  
Vm  
V
WAVEFORM 1 − PROPAGATION DELAYS  
= t = 2.0ns, 10% to 90%; f = 1MHz; t = 500ns  
t
R
F
W
V
IH  
Vm  
Vm  
OEn, T/Rn  
0V  
t
t
PHZ  
PZH  
V
OH  
Vy  
Vm  
Vm  
An, Bn  
An, Bn  
0V  
t
t
PLZ  
PZL  
V  
CC  
Vx  
V
OL  
WAVEFORM 2 − OUTPUT ENABLE AND DISABLE TIMES  
= t = 2.0ns, 10% to 90%; f = 1MHz; t = 500ns  
t
R
F
W
Figure 4. AC Waveforms  
V
CC  
3.3 V ±0.3 V  
2.5V ±0.2 V  
1.8 V ±0.15 V  
Symbol  
V
IH  
2.7 V  
V
CC  
V
CC  
V
m
1.5 V  
V
CC  
/2  
V
CC  
/2  
V
V
+ 0.3 V  
− 0.3 V  
V
+ 0.15 V  
− 0.15 V  
V
+ 0.15 V  
− 0.15 V  
x
OL  
OL  
OL  
V
y
V
OH  
V
OH  
V
OH  
V
CC  
6V or V × 2  
CC  
OPEN  
R
L
PULSE  
GENERATOR  
GND  
DUT  
R
T
C
L
R
L
TEST  
SWITCH  
t
t
, t  
Open  
PLH PHL  
, t  
6 V at V = 3.3 ±0.3 V;  
CC  
× 2 at V = 2.5 ±0.2 V; 1.8 V ±0.15 V  
PZL PLZ  
V
CC  
CC  
t
, t  
GND  
PZH PHZ  
C = 30pF or equivalent (Includes jig and probe capacitance)  
L
R = 500W or equivalent  
L
R = Z  
of pulse generator (typically 50W)  
T
OUT  
Figure 5. Test Circuit  
http://onsemi.com  
6
74VCXH16245  
V
IH  
Vm  
Vm  
An, Bn  
Bn, An  
0V  
t
t
PHL  
PLH  
V
OH  
OL  
Vm  
Vm  
V
WAVEFORM 3 − PROPAGATION DELAYS  
= t = 2.0ns, 10% to 90%; f = 1MHz; t = 500ns  
t
R
F
W
V
IH  
Vm  
Vm  
OEn, T/Rn  
0V  
t
t
PHZ  
PZH  
V
OH  
Vy  
Vm  
Vm  
An, Bn  
An, Bn  
0V  
t
t
PLZ  
PZL  
V  
CC  
Vx  
V
OL  
WAVEFORM 4 − OUTPUT ENABLE AND DISABLE TIMES  
= t = 2.0ns, 10% to 90%; f = 1MHz; t = 500ns  
t
R
F
W
Figure 6. AC Waveforms  
V
CC  
3.3V ±0.3 V  
2.7 V  
Symbol  
V
IH  
2.7 V  
2.7 V  
V
m
1.5 V  
1.5 V  
V
V
+ 0.3 V  
− 0.3 V  
V
+ 0.3 V  
x
OL  
OL  
V
y
V
OH  
V
OH  
− 0.3 V  
V
CC  
6V or V × 2  
CC  
OPEN  
GND  
R
L
PULSE  
GENERATOR  
DUT  
R
T
C
L
R
L
TEST  
SWITCH  
t
t
, t  
Open  
PLH PHL  
, t  
6 V at V = 3.3 ±0.3V;  
CC  
× 2 at V = 2.5 ±0.2 V; 1.8 ±0.15 V  
PZL PLZ  
V
CC  
CC  
t
, t  
GND  
PZH PHZ  
C = 50pF or equivalent (Includes jig and probe capacitance)  
L
R = 500W or equivalent  
L
R = Z  
of pulse generator (typically 50W)  
T
OUT  
Figure 7. Test Circuit  
http://onsemi.com  
7
74VCXH16245  
PACKAGE DIMENSIONS  
TSSOP  
DT SUFFIX  
CASE 1201−01  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
48X K REF  
K
K1  
M
S
S
V
0.12 (0.005)  
T U  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS OR GATE  
BURRS. MOLD FLASH OR GATE BURRS  
SHALL NOT EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN  
EXCESS OF THE K DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
J
J1  
48  
25  
SECTION N−N  
B
−U−  
L
5. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
6. DIMENSIONS A AND B ARE TO BE  
DETERMINED AT DATUM PLANE −W−.  
N
1
24  
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
12.60  
6.20 0.236  
1.10 −−−  
0.15 0.002  
0.75 0.020  
MIN  
0.488  
MAX  
0.496  
0.244  
0.043  
0.006  
0.030  
A
B
C
12.40  
6.00  
−−−  
A
−V−  
PIN 1  
IDENT.  
N
D
F
0.05  
0.50  
M
F
G
H
0.50 BSC  
0.0197 BSC  
0.37  
0.09  
0.09  
0.17  
0.17  
7.95  
0
−−−  
0.015  
−−−  
0.008  
0.006  
0.011  
0.009  
0.325  
8
0.25 (0.010)  
DETAIL E  
J
J1  
K
K1  
L
M
0.20 0.004  
0.16 0.004  
0.27 0.007  
0.23 0.007  
8.25 0.313  
D
C
8
0
_
_
_
_
−W−  
0.076 (0.003)  
DETAIL E  
−T−  
SEATING  
PLANE  
H
G
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
74VCXH16245/D  

相关型号:

74VCXH16245/D

Low-Voltage 1.8/2.5/3.3V 16-Bit Transceiver
ETC

74VCXH16245DT

Low-Voltage 1.8/2.5/3.3V 16-Bit Transceiver
ONSEMI

74VCXH16245DTR

Low-Voltage 1.8/2.5/3.3V 16-Bit Transceiver
ONSEMI

74VCXH16245DTRG

Low-Voltage 1.8/2.5/3.3V 16-Bit Transceiver
ONSEMI

74VCXH16245T

Dual 8-bit Bus Transceiver
ETC

74VCXH16245TTR

Bus Transceiver
ETC

74VCXH1632245

16-BIT DUAL SUPPLY BUS TRANSCEIVER LEVEL TRANSLATOR WITH A SIDE SERIES RESISTOR
STMICROELECTR

74VCXH1632245LBR

16-BIT DUAL SUPPLY BUS TRANSCEIVER LEVEL TRANSLATOR WITH A SIDE SERIES RESISTOR
STMICROELECTR

74VCXH1632245TBR

16-BIT DUAL SUPPLY BUS TRANSCEIVER LEVEL TRANSLATOR WITH A SIDE SERIES RESISTOR
STMICROELECTR

74VCXH1632245TTR

16-BIT DUAL SUPPLY BUS TRANSCEIVER LEVEL TRANSLATOR WITH A SIDE SERIES RESISTOR
STMICROELECTR

74VCXH16373

Low Voltage 16-Bit Transparent Latch with Bushold
FAIRCHILD

74VCXH16373

Low−Voltage 1.8/2.5/3.3 V 16−Bit Transparent Latch
ONSEMI