1PMT5927BT3 [ONSEMI]

3.2 Watt Plastic Surface Mount POWERMITE Package; 3.2瓦塑料表面贴装封装POWERMITE
1PMT5927BT3
型号: 1PMT5927BT3
厂家: ONSEMI    ONSEMI
描述:

3.2 Watt Plastic Surface Mount POWERMITE Package
3.2瓦塑料表面贴装封装POWERMITE

二极管 齐纳二极管 测试
文件: 总8页 (文件大小:66K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1PMT5920B Series  
3.2 Watt Plastic  
Surface Mount  
POWERMITE Package  
This complete new line of 3.2 Watt Zener Diodes are offered in  
highly efficient micro miniature, space saving surface mount with its  
unique heat sink design. The POWERMITE package has the same  
thermal performance as the SMA while being 50% smaller in  
footprint area and delivering one of the lowest height profiles (1.1  
mm) in the industry. Because of its small size, it is ideal for use in  
cellular phones, portable devices, business machines and many other  
industrial/consumer applications.  
http://onsemi.com  
PLASTIC SURFACE MOUNT  
3.2 WATT ZENER DIODES  
6.2 − 47 VOLTS  
Specification Features:  
Zener Breakdown Voltage: 6.2 − 47 Volts  
DC Power Dissipation: 3.2 Watts with Tab 1 (Cathode) @ 75°C  
Low Leakage < 5 mA  
1
2
1: CATHODE  
2: ANODE  
ESD Rating of Class 3 (> 16 kV) per Human Body Model  
Low Profile − Maximum Height of 1.1 mm  
Integral Heat Sink/Locking Tabs  
1
Full Metallic Bottom Eliminates Flux Entrapment  
2
Small Footprint − Footprint Area of 8.45 mm  
2
Supplied in 12 mm Tape and Reel  
T1 = 3,000 Units per Reel  
POWERMITE  
CASE 457  
PLASTIC  
T3 = 12,000 Units per Reel  
POWERMITE is JEDEC Registered as DO−216AA  
Cathode Indicated by Polarity Band  
MARKING DIAGRAM  
Mechanical Characteristics:  
CASE: Void-free, transfer-molded, thermosetting plastic  
FINISH: All external surfaces are corrosion resistant and leads are  
readily solderable  
D
xxB  
1
2
CATHODE  
ANODE  
MOUNTING POSITION: Any  
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:  
260°C for 10 Seconds  
xxB  
xx  
= Specific Device Code  
= 20 − 41  
= (See Table Next Page)  
= Date Code  
D
ORDERING INFORMATION  
Device  
Package  
Shipping  
1PMT59xxBT1 POWERMITE 3,000/Tape & Reel  
1PMT59xxBT3 POWERMITE 12,000/Tape & Reel  
LEAD ORIENTATION IN TAPE:  
Cathode (Short) Lead to Sprocket Holes  
Semiconductor Components Industries, LLC, 2003  
1
Publication Order Number:  
July, 2003 − Rev. 0  
1PMT5920B/D  
1PMT5920B Series  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
DC Power Dissipation @ T = 25°C (Note 1)  
Derate above 25°C  
Thermal Resistance from Junction to Ambient  
°P °  
500  
4.0  
248  
°mW  
mW/°C  
°C/W  
A
D
R
q
JA  
Thermal Resistance from Junction to Lead (Anode)  
R
35  
°C/W  
q
Janode  
Maximum DC Power Dissipation (Note 2)  
Thermal Resistance from Junction to Tab (Cathode)  
°P °  
3.2  
23  
W
°C/W  
D
R
q
Jcathode  
Operating and Storage Temperature Range  
T , T  
−55 to +150  
°C  
J
stg  
1. Mounted with recommended minimum pad size, PC board FR−4.  
2. At Tab (Cathode) temperature, T = 75°C  
tab  
ELECTRICAL CHARACTERISTICS (T = 25°C unless  
I
L
otherwise noted, V = 1.5 V Max. @ I = 200 mAdc for all types)  
F
F
I
F
Symbol  
Parameter  
V
Reverse Zener Voltage @ I  
Reverse Current  
Z
ZT  
I
ZT  
V
Z
V
R
Z
I
Maximum Zener Impedance @ I  
Reverse Current  
ZT  
ZT  
V
I
V
F
R
ZT  
I
ZK  
Z
ZK  
Maximum Zener Impedance @ I  
ZK  
I
Reverse Leakage Current @ V  
Reverse Voltage  
R
R
V
R
I
F
Forward Current  
Zener Voltage Regulator  
V
F
Forward Voltage @ I  
F
ELECTRICAL CHARACTERISTICS (T = 30°C unless otherwise noted, V = 1.25 Volts @ 200 mA)  
L
F
Zener Voltage (Note 3)  
Z
ZT  
@ I  
Z @ I  
ZK ZK  
ZT  
V @ I (Volts)  
(Note 4)  
(W)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
6.5  
9.0  
10  
(Note 4)  
I
I
R
@ V  
(mA)  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
V
I
Z
ZT  
ZT  
R
R
ZK  
Device  
Marking  
Min  
5.89  
6.46  
7.12  
7.79  
8.64  
9.5  
Nom  
Max  
6.51  
7.14  
7.88  
8.61  
9.56  
10.5  
12.6  
15.75  
16.8  
18.9  
23.1  
25.2  
28.35  
31.5  
40.95  
49.35  
(mA)  
60.5  
55.1  
50  
(V)  
4.0  
(W)  
(mA)  
1.0  
Device  
1PMT5920BT1, T3  
1PMT5921BT1, T3  
1PMT5922BT1, T3  
1PMT5923BT1, T3  
1PMT5924BT1, T3  
1PMT5925BT1, T3  
1PMT5927BT1, T3  
1PMT5929BT1, T3  
1PMT5930BT1, T3  
1PMT5931BT1, T3  
1PMT5933BT1, T3  
1PMT5934BT1, T3  
1PMT5935BT1, T3  
1PMT5936BT1, T3  
1PMT5939BT1, T3  
1PMT5941BT1, T3  
20B  
21B  
22B  
23B  
24B  
25B  
27B  
29B  
30B  
31B  
33B  
34B  
35B  
36B  
39B  
41B  
6.2  
6.8  
7.5  
8.2  
9.1  
10  
12  
15  
16  
18  
22  
24  
27  
30  
39  
47  
200  
200  
400  
400  
500  
500  
550  
600  
600  
650  
650  
700  
700  
750  
900  
1000  
5.2  
1.0  
6.0  
0.5  
45.7  
41.2  
37.5  
31.2  
25  
6.5  
0.5  
7.0  
0.5  
8.0  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
11.4  
14.25  
15.2  
17.1  
20.9  
22.8  
25.65  
28.5  
37.05  
44.65  
9.1  
11.4  
12.2  
13.7  
16.7  
18.2  
20.6  
22.8  
29.7  
35.8  
23.4  
20.8  
17  
12  
17.5  
19  
15.6  
13.9  
12.5  
9.6  
23  
28  
45  
8.0  
67  
3. Zener voltage is measured with the device junction in thermal equilibrium with an ambient temperature of 25°C.  
4. Zener Impedance Derivation Z and Z are measured by dividing the AC voltage drop across the device by the AC current applied. The  
ZT  
ZK  
specified limits are for I (ac) = 0.1 I (dc) with the ac frequency = 60 Hz.  
Z
Z
http://onsemi.com  
2
1PMT5920B Series  
TYPICAL CHARACTERISTICS  
3.5  
3
100  
2.5  
2
10  
T
L
1.5  
1
1
0.5  
0
0.1  
25  
50  
75  
100  
125  
150  
175  
5
6
7
8
9
10  
11  
T, TEMPERATURE (°C)  
V , ZENER VOLTAGE (VOLTS)  
Z
Figure 1. Steady State Power Derating  
Figure 2. VZ to 10 Volts  
10  
8
100  
50  
30  
20  
V @ I  
Z
ZT  
6
4
10  
5
3
2
2
1
0
0.5  
−2  
−4  
0.3  
0.2  
0.1  
2
4
6
8
10  
12  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
V , ZENER VOLTAGE (VOLTS)  
Z
V , ZENER VOLTAGE (VOLTS)  
Z
Figure 4. Zener Voltage − To 12 Volts  
Figure 3. VZ = 12 thru 47 Volts  
200  
100  
200  
I
= 1mA  
Z(dc)  
100  
70  
V @ I  
Z
ZT  
50  
70  
50  
30  
20  
30  
20  
10  
7
10 mA  
20 mA  
5
3
2
i
= 0.1 I  
50  
Z(rms)  
Z(dc)  
10  
5
7
10  
20  
30  
70  
100  
10  
20  
30  
50  
70  
100  
200  
V , ZENER VOLTAGE (VOLTS)  
Z
V , ZENER VOLTAGE (VOLTS)  
Z
Figure 5. Zener Voltage − 14 To 47 Volts  
Figure 6. Effect of Zener Voltage  
http://onsemi.com  
3
1PMT5920B Series  
1 k  
T = 25°C  
J
500  
i
= 0.1 I  
Z(dc)  
Z(rms)  
200  
100  
50  
20  
10  
5
22 V  
2
1
12 V  
6.8 V  
50 100 200 500  
0.5  
1
2
5
10  
20  
I , ZENER TEST CURRENT (mA)  
Z
Figure 7. Effect of Zener Current  
10,000  
1000  
MEASURED @ 0 V BIAS  
MEASURED @ 50% V  
R
100  
10  
1
10  
100  
V , REVERSE ZENER VOLTAGE (VOLTS)  
Z
Figure 8. Capacitance versus Reverse  
Zener Voltage  
http://onsemi.com  
4
1PMT5920B Series  
TYPICAL SOLDER HEATING PROFILE  
For any given circuit board, there will be a group of  
The line on the graph shows the actual temperature that  
might be experienced on the surface of a test board at or  
near a central solder joint. The two profiles are based on a  
high density and a low density board. The Vitronics  
SMD310 convection/infrared reflow soldering system was  
used to generate this profile. The type of solder used was  
62/36/2 Tin Lead Silver with a melting point between  
177189°C. When this type of furnace is used for solder  
reflow work, the circuit boards and solder joints tend to  
heat first. The components on the board are then heated by  
conduction. The circuit board, because it has a large surface  
area, absorbs the thermal energy more efficiently, then  
distributes this energy to the components. Because of this  
effect, the main body of a component may be up to 30  
degrees cooler than the adjacent solder joints.  
control settings that will give the desired heat pattern. The  
operator must set temperatures for several heating zones  
and a figure for belt speed. Taken together, these control  
settings make up a heating “profile” for that particular  
circuit board. On machines controlled by a computer, the  
computer remembers these profiles from one operating  
session to the next. Figure 9 shows a typical heating profile  
for use when soldering a surface mount device to a printed  
circuit board. This profile will vary among soldering  
systems, but it is a good starting point. Factors that can  
affect the profile include the type of soldering system in  
use, density and types of components on the board, type of  
solder used, and the type of board or substrate material  
being used. This profile shows temperature versus time.  
STEP 1  
STEP 2 STEP 3  
VENT HEATING  
SOAK" ZONES 2 & 5 ZONES 3 & 6 ZONES 4 & 7  
STEP 4  
HEATING  
STEP 5  
HEATING  
STEP 6  
VENT  
STEP 7  
COOLING  
PREHEAT  
ZONE 1  
RAMP"  
RAMP"  
SOAK"  
SPIKE"  
205° TO 219°C  
PEAK AT  
SOLDER JOINT  
170°C  
200°C  
150°C  
DESIRED CURVE FOR HIGH  
MASS ASSEMBLIES  
160°C  
150°C  
SOLDER IS LIQUID FOR  
40 TO 80 SECONDS  
(DEPENDING ON  
140°C  
100°C  
MASS OF ASSEMBLY)  
100°C  
50°C  
DESIRED CURVE FOR LOW  
MASS ASSEMBLIES  
TIME (3 TO 7 MINUTES TOTAL)  
T
MAX  
Figure 9. Typical Solder Heating Profile  
http://onsemi.com  
5
1PMT5920B Series  
INFORMATION FOR USING THE POWERMITE SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the  
total design. The footprint for the semiconductor packages  
must be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.025  
0.635  
0.105  
2.67  
0.030  
0.762  
0.100  
2.54  
0.050  
1.27  
inches  
mm  
POWERMITE  
POWERMITE POWER DISSIPATION  
The power dissipation of the Powermite is a function of  
SOLDERING PRECAUTIONS  
the drain pad size. This can vary from the minimum pad  
size for soldering to a pad size given for maximum power  
dissipation. Power dissipation for a surface mount device is  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within  
a short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
determined by T  
, the maximum rated junction  
J(max)  
temperature of the die, R , the thermal resistance from  
qJA  
the device junction to ambient, and the operating  
temperature, T . Using the values provided on the data  
A
sheet for the Powermite package, P can be calculated as  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering  
method, the difference shall be a maximum of 10°C.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
follows:  
T
J(max) − TA  
Rq  
PD =  
JA  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values  
into the equation for an ambient temperature T of 25°C,  
A
one can calculate the power dissipation of the device which  
in this case is 504 milliwatts.  
150°C − 25°C  
PD =  
= 504 milliwatts  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and  
result in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied  
during cooling.  
248°C/W  
The 248°C/W for the Powermite package assumes the  
use of the recommended footprint on a glass epoxy printed  
circuit board to achieve a power dissipation of 504  
milliwatts. There are other alternatives to achieving higher  
power dissipation from the Powermite package. Another  
alternative would be to use a ceramic substrate or an  
aluminum core board such as Thermal Clad . Using a  
board material such as Thermal Clad, an aluminum core  
board, the power dissipation can be doubled using the same  
footprint.  
* * Soldering a device without preheating can cause  
excessive thermal shock and stress which can result in  
damage to the device.  
http://onsemi.com  
6
1PMT5920B Series  
OUTLINE DIMENSIONS  
1PMT5920BT3 Series − Surface Mounted  
POWERMITE  
CASE 457−04  
ISSUE D  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
F
C
−A−  
M
S
S
C
0.08 (0.003)  
T
B
J
S
MILLIMETERS  
INCHES  
MIN  
TERM. 1  
DIM MIN  
MAX  
2.05  
2.18  
1.15  
0.69  
1.00  
MAX  
0.081  
0.086  
0.045  
0.027  
0.039  
−B−  
A
B
C
D
F
1.75  
1.75  
0.85  
0.40  
0.70  
−0.05  
0.10  
3.60  
0.50  
1.20  
0.069  
0.069  
0.033  
0.016  
0.028  
K
TERM. 2  
H
J
+0.10 −0.002 +0.004  
0.25  
3.90  
0.80  
1.50  
0.004  
0.142  
0.020  
0.047  
0.010  
0.154  
0.031  
0.059  
R
K
L
L
R
S
0.50 REF  
0.019 REF  
J
D
H
M
S
S
0.08 (0.003)  
T
B
C
−T−  
http://onsemi.com  
7
1PMT5920B Series  
POWERMITE is a registered trademark of and used under a license from Microsemi Corporation.  
Thermal Clad is a trademark of the Bergquist Corporation.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make  
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800−282−9855 Toll Free USA/Canada  
1PMT5920B/D  

相关型号:

1PMT5927BT3G

3.2 Watt Plastic Surface Mount POWERMITE Package
ONSEMI

1PMT5927C

Zener Diode, 12V V(Z), 2%, 3W, Silicon, Unidirectional, DO-216AA, DO-216, 2 PIN
MICROSEMI

1PMT5927C/TR13

Zener Diode, 12V V(Z), 2%, 3W, Silicon, Unidirectional, DO-216AA
MICROSEMI

1PMT5927C/TR7

Zener Diode, 12V V(Z), 2%, 3W, Silicon, Unidirectional, DO-216AA, DO-216, 2 PIN
MICROSEMI

1PMT5927CE3

Zener Diode, 12V V(Z), 2%, 0.54W, Silicon, Unidirectional, DO-216AA, ROHS COMPLIANT, PLASTIC, DO-216, 2 PIN
MICROSEMI

1PMT5927CE3/TR13

DIODE ZENER 12V 3W DO216AA
MICROSEMI

1PMT5927D

Zener Diode, 12V V(Z), 1%, 3W, Silicon, Unidirectional, DO-216AA, DO-216, 2 PIN
MICROSEMI

1PMT5928B

3.0 WATT Zener Diodes
MICROSEMI

1PMT5928B/TR13

Zener Diode, 13V V(Z), 5%, 3W, Silicon, Unidirectional, DO-216AA, DO-216, 2 PIN
MICROSEMI

1PMT5928B/TR7

暂无描述
MICROSEMI

1PMT5928BE3

Zener Diode, 13V V(Z), 5%, 0.54W, Silicon, Unidirectional, DO-216AA, ROHS COMPLIANT, PLASTIC, DO-216, 2 PIN
MICROSEMI

1PMT5928BE3/TR13

Zener Diode, 13V V(Z), 5%, 0.54W, Silicon, Unidirectional, DO-216AA, ROHS COMPLIANT, PLASTIC, DO-216, 2 PIN
MICROSEMI