1N6387RL4 [ONSEMI]

1500W, BIDIRECTIONAL, SILICON, TVS DIODE, PLASTIC, CASE 41A-04, 2 PIN;
1N6387RL4
型号: 1N6387RL4
厂家: ONSEMI    ONSEMI
描述:

1500W, BIDIRECTIONAL, SILICON, TVS DIODE, PLASTIC, CASE 41A-04, 2 PIN

电视
文件: 总6页 (文件大小:188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1N6382 − 1N6389 Series  
(ICTE−10C − ICTE−36C,  
MPTE−8C − MPTE−45C)  
1500 Watt Peak Power  
MosorbZener Transient  
Voltage Suppressors  
Bidirectional*  
http://onsemi.com  
Mosorb devices are designed to protect voltage sensitive  
components from high voltage, highenergy transients. They have  
excellent clamping capability, high surge capability, low zener  
impedance and fast response time. These devices are  
ON Semiconductor’s exclusive, cost-effective, highly reliable  
Surmeticaxial leaded package and are ideally-suited for use in  
communication systems, numerical controls, process controls,  
medical equipment, business machines, power supplies and many  
other industrial/consumer applications, to protect CMOS, MOS and  
Bipolar integrated circuits.  
AXIAL LEAD  
CASE 41A  
PLASTIC  
Specification Features:  
Working Peak Reverse Voltage Range 8 V to 45 V  
Peak Power 1500 Watts @ 1 ms  
ESD Rating of Class 3 (>16 KV) per Human Body Model  
Maximum Clamp Voltage @ Peak Pulse Current  
Low Leakage < 5 mA Above 10 V  
L
MPTE  
xxC  
1N  
63xx  
YYWW  
L
Response Time is Typically < 1 ns  
ICTE  
xxC  
YYWW  
Mechanical Characteristics:  
CASE: Void-free, transfer-molded, thermosetting plastic  
FINISH: All external surfaces are corrosion resistant and leads are  
readily solderable  
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:  
230°C, 1/16from the case for 10 seconds  
POLARITY: Cathode band does not imply polarity  
MOUNTING POSITION: Any  
L = Assembly Location  
MPTExxC = ON Device Code  
ICTExxC = ON Device Code  
1N63xx = JEDEC Device Code  
YY = Year  
WW = Work Week  
MAXIMUM RATINGS  
ORDERING INFORMATION  
Rating  
Symbol  
Value  
Unit  
Device  
Package  
Shipping  
500 Units/Box  
Peak Power Dissipation (Note 1)  
P
PK  
1500  
Watts  
MPTExxC  
Axial Lead  
@ T 25°C  
L
MPTExxCRL4  
Axial Lead 1500/Tape & Reel  
Steady State Power Dissipation  
P
D
5.0  
Watts  
@ T 75°C, Lead Length = 3/8″  
L
ICTExxC*  
Axial Lead  
500 Units/Box  
Derated above T = 75°C  
20  
20  
mW/°C  
°C/W  
°C  
L
ICTExxCRL4  
Axial Lead 1500/Tape & Reel  
Thermal Resistance, JunctiontoLead  
R
q
JL  
Operating and Storage  
Temperature Range  
T , T  
J
65 to  
+175  
stg  
1N63xx  
Axial Lead  
500 Units/Box  
1N63xxRL4  
Axial Lead 1500/Tape & Reel  
1. Nonrepetitive current pulse per Figure 4 and derated above T = 25°C  
A
per Figure 2.  
*ICTE10C Not Available in 500 Units/Box  
*Please see 1N6373 – 1N6381 (ICTE5 ICTE36, MPTE5 MPTE45)  
for Unidirectional Devices  
© Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
1N6382/D  
August, 2006 Rev. 3  
 
1N6382 1N6389 Series (ICTE10C ICTE36C, MPTE8C MPTE45C)  
ELECTRICAL CHARACTERISTICS  
(T = 25°C unless otherwise noted)  
A
I
I
PP  
Symbol  
Parameter  
I
Maximum Reverse Peak Pulse Current  
PP  
I
T
I
V V  
R
BR RWM  
V
Clamping Voltage @ I  
V
C
C
PP  
V
I
R
T
V
V
V
V
RWM  
Working Peak Reverse Voltage  
RWM BR C  
I
I
R
Maximum Reverse Leakage Current @ V  
RWM  
V
BR  
Breakdown Voltage @ I  
T
I
PP  
I
T
Test Current  
BiDirectional TVS  
QV  
Maximum Temperature Variation of V  
BR  
BR  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Breakdown Voltage  
V
C
@ I (Note 4)  
V (Volts) (Note 4)  
C
PP  
V
RWM  
I
R
@
JEDEC  
Device  
(ON Device)  
V
(Note 3) (Volts)  
@ I  
V
I
PP  
(Note 2)  
V
QV  
BR  
T
C
RWM  
BR  
Device  
Marking  
@ I  
@ I  
PP  
PP  
(Volts)  
(mA)  
25  
Min  
Nom  
Max  
(mA)  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
(Volts)  
(A)  
100  
90  
70  
60  
50  
40  
23  
19  
(mV/°C)  
8.0  
12  
= 1 A  
11.3  
13.7  
16.1  
20.1  
24.2  
29.8  
50.6  
63.3  
= 10 A  
11.5  
14.1  
16.5  
20.6  
25.2  
32  
1N6382  
(MPTE8C)  
1N6382  
MPTE8C  
8.0  
10  
12  
15  
18  
22  
36  
45  
9.4  
15  
1N6383  
1N6383  
(MPTE10C) MPTE10C  
1N6384 1N6384  
(MPTE12C) MPTE12C  
1N6385 1N6385  
(MPTE15C) MPTE15C  
1N6386 1N6386  
(MPTE18C) MPTE18C  
1N6387 1N6387  
(MPTE22C) MPTE22C  
1N6388 1N6388  
(MPTE36C) MPTE36C  
1N6389 1N6389  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
11.7  
14.1  
17.6  
21.2  
25.9  
42.4  
52.9  
16.7  
21.2  
25  
14  
18  
30  
21  
37.5  
65.2  
78.9  
26  
54.3  
70  
50  
(MPTE45C) MPTE45C  
60  
ICTE10C* ICTE10C*  
10  
12  
2.0  
2.0  
11.7  
14.1  
1.0  
1.0  
16.7  
21.2  
90  
70  
13.7  
16.1  
14.1  
16.5  
8.0  
12  
ICTE12C  
ICTE12C  
ICTE15C  
ICTE18C  
ICTE22C  
ICTE36C  
ICTE15C  
ICTE18C  
ICTE22C  
ICTE36C  
15  
18  
22  
36  
2.0  
2.0  
2.0  
2.0  
17.6  
21.2  
25.9  
42.4  
1.0  
1.0  
1.0  
1.0  
25  
30  
37.5  
65.2  
60  
50  
40  
23  
20.1  
24.2  
29.8  
50.6  
20.6  
25.2  
32  
14  
18  
21  
26  
54.3  
NOTES:  
2. A transient suppressor is normally selected according to the maximum working peak reverse voltage (V  
), which should be equal to  
RWM  
or greater than the dc or continuous peak operating voltage level.  
3. V measured at pulse test current I at an ambient temperature of 25°C and minimum voltage in V is to be controlled.  
BR  
T
BR  
4. Surge current waveform per Figure 4 and derate per Figures 1 and 2.  
*Not Available in the 500 Units/Box.  
http://onsemi.com  
2
 
1N6382 1N6389 Series (ICTE10C ICTE36C, MPTE8C MPTE45C)  
100  
NONREPETITIVE  
PULSE WAVEFORM  
SHOWN IN FIGURE 5  
100  
80  
60  
10  
40  
20  
0
1
0.1ꢀms  
1ꢀms  
10ꢀms  
100 ms  
1 ms  
10 ms  
0
25  
50  
75  
100 125 150 175 200  
T , AMBIENT TEMPERATURE (°C)  
A
t , PULSE WIDTH  
P
Figure 1. Pulse Rating Curve  
Figure 2. Pulse Derating Curve  
PULSE WIDTH (t ) IS DEFINED AS  
P
THAT POINT WHERE THE PEAK  
CURRENT DECAYS TO 50% OF I  
t 10 ms  
r
3/8″  
.
PP  
PEAK VALUE − I  
PP  
100  
50  
0
3/8″  
5
4
3
I
PP  
HALF VALUE −  
2
2
t
P
1
0
0
1
2
t, TIME (ms)  
3
4
0
25  
50  
75  
100 125 150 175  
200  
T , LEAD TEMPERATURE (°C)  
L
Figure 3. Steady State Power Derating  
Figure 4. Pulse Waveform  
http://onsemi.com  
3
 
1N6382 1N6389 Series (ICTE10C ICTE36C, MPTE8C MPTE45C)  
1N6373, ICTE-5, MPTE-5,  
through  
1.5KE6.8CA  
through  
1N6389, ICTE-45, C, MPTE-45, C  
1.5KE200CA  
1000  
500  
1000  
500  
V
ꢀ=ꢀ6.8 to 13ꢀV  
V
ꢀ=ꢀ6.0 to 11.7ꢀV  
BR(NOM)  
BR(MIN)  
T ꢀ=ꢀ25°C  
P
T ꢀ=ꢀ25°C  
L
t ꢀ=ꢀ10ꢀms  
P
L
t ꢀ=ꢀ10ꢀms  
19ꢀV  
21.2ꢀV  
20ꢀV  
24ꢀV  
43ꢀV  
75ꢀV  
42.4ꢀV  
200  
100  
50  
200  
100  
50  
20  
20  
180ꢀV  
120ꢀV  
10  
5
10  
5
2
1
2
1
0.3  
0.5 0.7  
1
2
3
5
7
10  
20 30  
(VOLTS)  
0.3  
0.5 0.7  
1
2
3
5
7
10  
20 30  
DV , INSTANTANEOUS INCREASE IN V ABOVE V  
BR  
DV , INSTANTANEOUS INCREASE IN V ABOVE V (VOLTS)  
BR(NOM)  
BR  
BR(NOM)  
BR  
BR  
Figure 5. Dynamic Impedance  
1
0.7  
0.5  
0.3  
0.2  
PULSE WIDTH  
10 ms  
0.1  
0.07  
0.05  
1 ms  
0.03  
0.02  
100 ms  
10 ms  
0.01  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50 100  
D, DUTY CYCLE (%)  
Figure 6. Typical Derating Factor for Duty Cycle  
http://onsemi.com  
4
 
1N6382 1N6389 Series (ICTE10C ICTE36C, MPTE8C MPTE45C)  
APPLICATION NOTES  
RESPONSE TIME  
circuit layout, minimum lead lengths and placing the  
suppressor device as close as possible to the equipment or  
components to be protected will minimize this overshoot.  
In most applications, the transient suppressor device is  
placed in parallel with the equipment or component to be  
protected. In this situation, there is a time delay associated  
with the capacitance of the device and an overshoot  
condition associated with the inductance of the device and  
the inductance of the connection method. The capacitance  
effect is of minor importance in the parallel protection  
scheme because it only produces a time delay in the  
transition from the operating voltage to the clamp voltage as  
shown in Figure 7.  
The inductive effects in the device are due to actual  
turn-on time (time required for the device to go from zero  
current to full current) and lead inductance. This inductive  
effect produces an overshoot in the voltage across the  
equipment or component being protected as shown in  
Figure 8. Minimizing this overshoot is very important in the  
application, since the main purpose for adding a transient  
suppressor is to clamp voltage spikes. These devices have  
excellent response time, typically in the picosecond range  
and negligible inductance. However, external inductive  
effects could produce unacceptable overshoot. Proper  
Some input impedance represented by Z is essential to  
in  
prevent overstress of the protection device. This impedance  
should be as high as possible, without restricting the circuit  
operation.  
DUTY CYCLE DERATING  
The data of Figure 1 applies for non-repetitive conditions  
and at a lead temperature of 25°C. If the duty cycle increases,  
the peak power must be reduced as indicated by the curves  
of Figure 6. Average power must be derated as the lead or  
ambient temperature rises above 25°C. The average power  
derating curve normally given on data sheets may be  
normalized and used for this purpose.  
At first glance the derating curves of Figure 6 appear to be  
in error as the 10 ms pulse has a higher derating factor than  
the 10 ms pulse. However, when the derating factor for a  
given pulse of Figure 6 is multiplied by the peak power value  
of Figure 1 for the same pulse, the results follow the  
expected trend.  
TYPICAL PROTECTION CIRCUIT  
Z
in  
LOAD  
V
in  
V
L
V (TRANSIENT)  
in  
OVERSHOOT DUE TO  
INDUCTIVE EFFECTS  
V
V
V (TRANSIENT)  
in  
V
L
V
L
V
in  
t
d
t = TIME DELAY DUE TO CAPACITIVE EFFECT  
D
t
t
Figure 7.  
Figure 8.  
http://onsemi.com  
5
 
1N6382 1N6389 Series (ICTE10C ICTE36C, MPTE8C MPTE45C)  
OUTLINE DIMENSIONS  
Transient Voltage Suppressors Axial Leaded  
1500 Watt Peak Power Mosorb  
MOSORB  
CASE 41A04  
ISSUE D  
B
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
D
3. LEAD FINISH AND DIAMETER UNCONTROLLED  
IN DIMENSION P.  
4. 041A−01 THRU 041A−03 OBSOLETE, NEW  
STANDARD 041A−04.  
K
INCHES  
DIM MIN MAX  
MILLIMETERS  
P
MIN  
8.50  
4.80  
0.96  
25.40  
−−−  
MAX  
9.50  
5.30  
1.06  
−−−  
A
B
D
K
P
0.335  
0.189  
0.038  
1.000  
−−−  
0.374  
0.209  
0.042  
−−−  
P
A
0.050  
1.27  
K
Mosorb and Surmetic are trademarks of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
1N6382/D  

相关型号:

1N6387TR

Trans Voltage Suppressor Diode, 1500W, 22V V(RWM), Bidirectional, 1 Element, Silicon, PLASTIC, CASE 1, 2 PIN
MICROSEMI

1N6387TRE3

Trans Voltage Suppressor Diode, 22V V(RWM), Unidirectional,
MICROSEMI

1N6388

Zener Transient Voltage Suppressors Unidirectional and Bidirectional
MOTOROLA

1N6388

GLASS PASSIVATED JUNCTION TRANSIENT VOLTAGE SUPPRESSOR
MDE

1N6388

TRANSIENT VOLTAGE SUPPRESSOR
NJSEMI

1N6388

Zener Transient Voltage Suppressors Unidirectional and Bidirectional
FREESCALE

1N6388E3

Trans Voltage Suppressor Diode, 1500W, 36V V(RWM), Bidirectional, 1 Element, Silicon, ROHS COMPLIANT, PLASTIC, CASE 1, 2 PIN
MICROSEMI

1N6388E3TR

Trans Voltage Suppressor Diode, 1500W, 36V V(RWM), Bidirectional, 1 Element, Silicon, ROHS COMPLIANT, PLASTIC, CASE 1, 2 PIN
MICROSEMI

1N6388TRE3

Trans Voltage Suppressor Diode, 36V V(RWM), Unidirectional,
MICROSEMI

1N6389

Zener Transient Voltage Suppressors Unidirectional and Bidirectional
MOTOROLA

1N6389

GLASS PASSIVATED JUNCTION TRANSIENT VOLTAGE SUPPRESSOR
MDE

1N6389

STANDOFF VOLTAGE - 5.0 TO 45.0V, 1500 WATT PEAK POWER
NJSEMI