TEA1504 [NXP]

GreenChip SMPS control IC; 的GreenChip开关电源控制IC
TEA1504
型号: TEA1504
厂家: NXP    NXP
描述:

GreenChip SMPS control IC
的GreenChip开关电源控制IC

开关
文件: 总20页 (文件大小:115K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TEA1504  
GreenChip SMPS control IC  
Preliminary specification  
1999 Dec 07  
Supersedes data of 1998 Mar 17  
File under Integrated Circuits, IC11  
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
FEATURES  
GENERAL DESCRIPTION  
Distinctive features  
The GreenChip TEA1504 is intended for off-line  
90 to 276 V (AC) power supply applications. It is one of a  
family of high voltage ICs integrating both analog and  
digital circuit functions for controlling a switched mode  
power supply (SMPS). Its functions include integrated high  
voltage start-up current source, voltage Pulse Width Mode  
(PWM) control, 5% accurate oscillator, band-gap derived  
reference voltages, comprehensive fault protection and  
leading edge blanking. Its high level of integration allows  
power supplies to be cost effective, compact, lightweight,  
highly efficient, more reliable, and simple to design.  
Efficient green features permit very low power operation  
modes, and an innovative on/off function allows an  
expensive mains switch to be replaced with a low-cost  
functional switch.  
High level of integration reduces the number of  
components by up to 50 compared to power supply  
using discrete components  
On/off functional switch replaces expensive mains  
switch  
Direct off-line operation (90 to 276 V AC)  
5% accurate on-chip oscillator.  
Green features  
Low power consumption in off-mode (<100 mW)  
Fast and efficient on-chip start-up current source  
Burst mode standby (<2 W) for overall improved system  
efficiency  
THE GREENCHIP FAMILY  
Low power operation mode with lower frequency  
reduces switching losses  
The GreenChip family of ICs are fully integrated with  
most common PWM functions such as error amplifier,  
oscillator, bias current generator and band-gap based  
reference voltage circuits. The high level of integration  
allows easy and cost effective power supply design.  
The ICs are made by a Philips proprietary high voltage  
BCDMOS process which produces low voltage circuit  
devices with inputs that are able to withstand up to 720 V.  
Low Overcurrent Protection (OCP) level.  
Protection features  
Demagnetization protection  
Cycle-by-cycle current limitation with programmable  
current trip level  
Overvoltage protection  
Overtemperature protection  
Safe-restart mode with reduced power for system fault  
conditions.  
Highly versatile  
Usable in buck and flyback topology  
Interfaces both primary and secondary side feedback.  
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
plastic dual in-line package; 14 leads (300 mil)  
VERSION  
TEA1504  
DIP14  
SOT27-1  
1999 Dec 07  
2
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
BLOCK DIAGRAM  
V
V
i
REF  
8
aux  
6
1
V
START-UP  
aux  
CURRENT SOURCE  
MANAGEMENT  
on/off  
TEA1504  
1 k  
14  
OOB  
5.5 V  
burst mode  
stand-by  
6 Ω  
6 Ω  
7
4
R
S
DS  
OVER  
TEMPERATURE  
PROTECTION  
Q
DRIVER  
driver  
stage  
9
CTRL  
PULSE WIDTH  
MODULATOR  
SAMPLE  
AND  
SAMPLE  
AND  
OVER CURRENT  
PROTECTION  
HOLD1  
HOLD2  
inverting  
error  
amplifier  
comparator  
5
LEADING EDGE  
BLANKING  
I
sense  
13  
DEM  
DEMAGNETIZATION  
MANAGEMENT  
OSCILLATOR  
FREQUENCY  
CONTROL  
duty cycle limiting  
signal  
NEGATIVE  
CLAMP  
11  
2
3
10  
n.c.  
12  
n.c.  
MGS569  
GND  
HVS  
n.c.  
Fig.1 Block diagram.  
1999 Dec 07  
3
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
PINNING  
SYMBOL PIN  
DESCRIPTION  
Vi  
1
start-up current source input;  
connects to MOSFET Drain supply  
HVS  
2
3
4
high voltage safety spacer  
not connected  
n.c.  
handbook, halfpage  
DRIVER  
driver output; connects to Gate of  
power MOSFET  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OOB  
DEM  
n.c.  
i
HVS  
n.c.  
Isense  
Vaux  
5
6
current sense input; connects to  
current sense resistor  
IC supply; connects to supply  
capacitor  
DRIVER  
GND  
n.c.  
TEA1504  
I
sense  
DS  
7
8
internal driver supply  
V
CTRL  
REF  
aux  
REF  
reference input; connects to  
reference resistor for setting internal  
reference currents  
8
DS  
MGS570  
CTRL  
n.c.  
9
duty cycle control input  
10 not connected  
11 ground  
GND  
n.c.  
12 not connected  
13 demagnetization signal input  
DEM  
OOB  
14 burst mode standby on/off control  
signal input  
Fig.2 Pin configuration.  
FUNCTIONAL DESCRIPTION  
Start-up current source and Vaux management  
Negligible power is dissipated by the TEA1504 after  
start-up, due to its fast and efficient start-up circuit. It has  
an accurate saw tooth oscillator whose output signal is  
compared with a voltage feedback control circuit to  
generate a pulse width modulated signal for driving the  
Gate of an external power MOSFET. The number of  
external components required for regulating the supply are  
reduced due to an innovative design implementing both  
primary and secondary side regulation. Overvoltage,  
overcurrent, overtemperature and demagnetization  
features protect the IC from system fault conditions.  
Off-mode, Burst mode standby, and a Low power  
operation mode are advanced features that greatly  
enhance the efficiency of the overall system. Off-mode,  
reduces the power consumption of the IC below 100 mW.  
Burst mode standby, reduces the power consumption of  
the system to below 2 W. Low power operation mode,  
reduces the operating frequency of the system during low  
load conditions to reduce switching losses.  
A versatile on-chip start-up current source eliminates the  
need for an external, highly dissipative trickle-charge  
circuit. See Figs 1 and 3. The start-up current source is  
supplied by rectified mains power via Vi (pin 1). It supplies  
charging current to the IC supply capacitor (Caux) and also  
supplies current to the IC control circuit  
(Vaux management) (see Istart(Vaux)L and Istart(Vaux)H in  
Chapter “Characteristics”). Once Caux is charged to its  
start-up voltage level (11 V), the oscillator starts oscillating  
and the IC starts switching the power MOSFET. Power is  
then supplied to the load via the secondary winding. Caux  
is also supplied by an auxiliary winding on the primary side  
which is coupled to the secondary winding supplying the  
output capacitor (Co). As the voltage on Co increases and  
approaches its nominal value, Caux is re-supplied with  
current by the auxiliary winding (see Fig.4). For correct  
operation, it is important that Caux starts to be re-supplied  
with current by the auxiliary winding before its voltage  
drops to the Under Voltage Lockout (UVLO) level of  
8.05 V.  
1999 Dec 07  
4
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
The start-up current source also helps to implement the  
safe-restart or ‘hiccup’ mode required during system fault  
conditions: output short-circuit, output open-circuit, and  
overvoltage. Under these fault conditions, the IC inhibits  
the normal operation of the system and stops delivering  
output power. If the output is short-circuited, Caux is no  
longer supplied by the auxiliary winding and its voltage  
drops to the UVLO level. If the output open-circuits, the  
output voltage rises to the Overvoltage Protection (OVP)  
level. The IC detects this state and stops switching the  
power MOSFET, which stops re-supplying current to Caux  
whose voltage starts to drop. Once the voltage on Caux  
drops to the UVLO level, the start-up current source  
re-activates and charges Caux to the start-up level, and the  
system begins the safe-restart mode cycle, similar to the  
normal start-up cycle.  
Figure 5 shows the relevant waveforms during safe-restart  
mode. To achieve a low ‘hiccup’ duty cycle, the current  
charging Caux during the safe-restart mode is lower than it  
is during normal start-up (see Irestart(Vaux) and Istart(Vaux)H in  
Chapter “Characteristics”). This reduces the risk, during  
an output short-circuit condition, of any physical damage  
being caused to output secondary winding devices, and of  
any breach of safety. The start-up current source is also  
important for implementing burst mode standby, explained  
in Section “Burst mode standby” (see Irestart(Vaux) in  
Chapter “Characteristics”).  
V
mains  
V
o
C
o
(1)  
V
OOB  
DEM  
n.c.  
i
14  
1
2
3
4
5
6
7
HVS  
13  
n.c.  
12  
power  
MOSFET  
GND  
n.c.  
DRIVER  
11 TEA1504  
I
sense  
10  
9
V
CTRL  
REF  
aux  
DS  
8
auxiliary  
winding  
R
C
CTRL  
R
C
R
DEM  
REF  
aux  
sense  
MGS571  
(1) Secondary earthing points are isolated from their primary earthing points.  
Fig.3 Typical flyback application.  
5
1999 Dec 07  
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
Reference  
All reference voltages are derived from a temperature  
compensated, on-chip, band-gap. The band-gap  
reference voltage is also used with an external  
resistor (RREF) connected to REF (pin 8), to generate  
accurate, temperature independent, IC internal  
(2)  
11 V  
V
Vaux  
(4)  
8.05 V  
(3)  
(1)  
V
bias currents. IREF  
=
REF[A ] .  
-------------  
RREF  
RREF also affects the frequency of the oscillator (see  
Section “Oscillator”).  
t
V
o
Sample-and-hold  
The TEA1504 uses voltage feedback with an innovative  
sample-and-hold circuit to regulate the output voltage.  
In a primary feedback configuration, the sample-and-hold  
t
circuit samples the current into DEM (pin 13), fed by RDEM  
which relates to the output voltage (Vo) during the period  
that current flows in the secondary winding.  
,
V
G
switching  
(power  
MOSFET)  
off  
aVo = IREF × RDEM + Vclamp(DEM)(pos).  
t
MGS572  
Vclamp(DEM)(pos) is specified in Chapter “Characteristics”;  
‘a’ = a constant determined by the turns ratio of the  
transformer.  
(1) Start-up current source charges Caux  
(2) Start-up voltage.  
.
The sampled current is held in the external capacitor  
(CCTRL). The PWM uses the voltage on CCTRL to set the  
operating duty cycle of the power MOSFET. When the  
TEA1504 is used in a secondary feedback configuration,  
the feedback voltage is provided by an opto-coupler.  
(3) UVLO level.  
(4) Auxiliary winding charges Caux  
.
Fig.4 Normal start-up waveforms.  
MGS647  
V
Vaux  
fault condition  
(1)  
normal operation  
t
t
V
G
(power  
MOSFET)  
switching  
off  
(1) Start-up current source charges Caux  
.
Fig.5 Safe-restart mode waveforms.  
6
1999 Dec 07  
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
Pulse width modulator  
A low driver source current has been chosen in order to  
limit the V/t at switch-on. This reduces Electro Magnetic  
Interference (EMI) and also the current spike across  
The PWM comprises an inverting error amplifier and a  
comparator (see Fig.1) which drives the power MOSFET  
with a duty cycle that is inversely proportional to the  
voltage at CTRL (pin 9). A signal from the oscillator sets a  
latch that turns on the power MOSFET. The latch is then  
reset either by the signal from the PWM or by a duty cycle  
limiting signal from the oscillator. The latch stops the  
power MOSFET from being switched incorrectly if the  
PWM output signal becomes unstable. The maximum duty  
cycle is internally set to 80%. The IC switching signals  
during normal operation are shown in Fig.7.  
Rsense  
.
Demagnetization protection  
The demagnetization protection feature ensures  
discontinuous conduction of the power supply, simplifying  
the design of feedback control and giving a faster transient  
response. It protects against saturation of the  
transformer/inductor and also protects the power supply  
components against excessive stresses at start-up, when  
all energy storage components are completely discharged.  
During a system output short-circuit fault condition, it  
provides cycle-by-cycle protection of the converter  
configuration. The demagnetization resistor (RDEM) value  
can be calculated using the formula given in Section  
“Sample-and-hold”.  
Oscillator  
The oscillator determines the switching duty cycle.  
Its ramp signal voltage is compared to the output of the  
error amplifier by the PWM. The fully integrated oscillator  
circuit works by charging and discharging an internal  
capacitor between two voltage levels to create a sawtooth  
waveform with a rising edge that is 80% of the oscillator  
period (high frequency mode). This ratio sets a maximum  
switching duty cycle of 80% for the IC. The accuracy of the  
oscillator frequency is internally set to 5%. Its frequency  
can be adjusted between 50 and 100 kHz by changing the  
value of RREF. This gives the power supply designer  
greater flexibility in the choice of system components.  
The relationship between frequency and the value of RREF  
is shown in Fig.6. The range of RREF values and the  
frequencies of foscL and foscH are specified in Chapter  
“Characteristics”.  
MGS573  
110  
55  
f
handbook, halfpage  
f
oscH  
oscL  
(kHz)  
(kHz)  
90  
45  
70  
50  
35  
25  
15  
(1)  
(2)  
Multi frequency control  
When the power supply operates at or below 19 of its peak  
power, the IC changes to low power operation mode.  
This lowers the frequency of the oscillator to reduce the  
power supply switching losses. The ratio between the high  
and the low oscillator frequency is maintained at 1 : 2.5  
(see foscL in Chapter “Characteristics”). An innovative  
design ensures that the transfer from high-to-low  
frequency and vice versa does not effect output voltage  
regulation.  
30  
10  
20  
30  
40  
R
(k)  
REF  
(1) High frequency mode.  
(2) Low frequency mode.  
Fig.6 Frequency as function of RREF value.  
Gate driver  
The driver circuit to the Gate of the power MOSFET has a  
totem-pole output stage that has current sourcing  
capability of 120 mA and a current sink capability of  
550 mA. This permits fast turn-on and turn-off of the power  
MOSFET for efficient operation. This circuit design allows  
the power supply designer to control the source and sink  
currents of the Gate driver circuit with a minimum number  
of external components.  
Negative clamp  
The negative clamp circuit ensures correct operation of  
the IC by preventing the voltage at DEM (pin 13) dropping  
below 0.45 V, during the period when the power  
MOSFET turns on and the auxiliary winding voltage goes  
negative.  
1999 Dec 07  
7
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
V
Vi  
V
Vi  
V
D
(power  
MOSFET)  
V
o
V
Vaux  
V
G
(power  
MOSFET)  
I
Vaux  
0
(1)  
V
OOB  
0
V
µC  
start-up  
sequence  
normal  
operation  
overvoltage  
protection  
output short  
circuit  
burst mode stand-by  
normal  
operation  
MGS574  
(1) All negative currents flow out of the IC.  
Fig.7 Typical waveforms.  
8
1999 Dec 07  
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
Overvoltage protection  
Figure 8 shows a flyback converter configured to use the  
on/off mode. Switch S1 connects OOB (pin 14) to either a  
voltage close to ground, or to a voltage typically greater  
than 2.5 V. The OOB voltage is detected internally by  
the IC. If VOOB is low, the IC enters the off-mode,  
consuming a current of typically 350 µA (see Ioff(Vi) in  
Chapter “Characteristics”). If VOOB is typically 2.5 V,  
the IC enters the start-up sequence and begins normal  
operation (see Vth(on/off) in Chapter “Characteristics”).  
Figure 9 shows a ‘Mains Under Voltage Lock  
The OVP circuit senses the voltage at Vaux (pin 6). If the  
output voltage exceeds the preset voltage limit, the OVP  
circuit turns off the power MOSFET preventing the  
re-supply of current to Caux. VVaux drops to the UVLO level  
and the system enters the low dissipation safe-restart  
mode described earlier. The system recovers from the  
safe-restart mode only if the OVP condition is removed.  
Overcurrent protection  
Out’ (MUVLO) circuit using 3 resistors. Assuming that R3  
is chosen to be a very high value, the IC starts operating  
Cycle-by-cycle OCP is provided by sensing the voltage  
on Rsense. The voltage on Rsense relates to the amplitude  
of the primary current, and is internally compared with a  
reference voltage using a high speed comparator.  
The comparator threshold voltage is specified as Vth(Isense)  
in the Chapter “Characteristics”.  
R1  
R2  
when: Vmains  
× V OOB[V] ; where R1 >> R2.  
-------  
This ensures that the power supply only starts working  
above a Vmains of 80 V for example. The bleeder current  
through R1 should be low (e.g. 30 µA at 300 V).  
The maximum primary (protection) current is therefore:  
V
Iprot  
=
th(Isense)[A ] .  
Burst mode standby  
--------------------------  
Rsense  
OOB (pin 14) is also used to implement the burst mode  
standby. In burst mode standby, the power supply enters  
a special low dissipation state where it typically consumes  
less than 2 W of power. Figure 9 shows a flyback  
converter using the burst mode standby function.  
The system enters burst mode standby when the  
microcontroller closes switches S2 and S3 on the  
secondary side. Switch S2 connects the output secondary  
winding to microcontroller capacitor (CµC) bypassing Co.  
When the voltage on (CµC) exceeds the zener voltage, the  
opto-coupler is activated sending a signal to OOB.  
In response to this signal, the IC stops switching and  
enters a ‘hiccup’ mode. Figure 7 shows the burst-mode  
standby signals. The hiccup mode during burst mode  
standby operation differs from the hiccup mode in  
safe-restart mode during a system fault condition.  
For safe-restart mode, the power has to be reduced.  
Burst mode standby requires sufficient power to supply the  
microcontroller. To prevent transformer rattle, the  
transformer peak current is reduced by a factor of 3.  
Burst mode standby operation continues until the  
microcontroller opens switches S2 and S3. The system  
then enters the start-up sequence and begins normal  
switching behaviour.  
If the power MOSFET current exceeds the current limit, the  
comparator changes state, turning off the power MOSFET.  
The power MOSFET is typically turned off in 210 ns  
(see td(Isense-DRIVER) in Chapter “Characteristics”).  
Having Rsense off-chip allows the power supply designer  
greater flexibility for programming the OCP threshold level.  
It also reduces the risk of an overcurrent condition being  
sensed incorrectly. When the power MOSFET turns on,  
the discharge current from the demagnetization V/t  
limiting capacitor, flows through the power MOSFET  
instead of through Rsense  
.
The Leading Edge Blanking circuit inhibits the operation of  
the OCP comparator for a short period when the power  
MOSFET turns on (see tblank(le) in Chapter  
“Characteristics”). This ensures that the power MOSFET is  
not turned off prematurely due to the false sensing of an  
overcurrent condition caused by current spikes produced  
by the discharge of primary-side snubber and parasitic  
capacitances. The tblank(le) is not fixed and tracks the  
oscillator frequency.  
Overtemperature protection  
Overtemperature protection is provided by an analog  
temperature sensing circuit which turns off the power  
MOSFET when the temperature exceeds typically 140 °C.  
On/off mode  
The on/off mode allows an expensive mains switch to be  
replaced by an in-expensive functional switch.  
1999 Dec 07  
9
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); note 1.  
SYMBOL  
PARAMETER  
DC voltage on pin Vi  
CONDITIONS  
MIN.  
MAX.  
720  
UNIT  
Vi  
measured at 200 µA  
V
V
VOOB  
IDEM  
VCTRL  
Vlsense  
IREF  
voltage on pin OOB  
current on pin DEM  
voltage on pin CTRL  
voltage on pin Isense  
current on pin REF  
voltage on pin Vaux  
voltage on pin DS  
junction temperature  
storage temperature  
electrostatic discharge  
human body model  
machine model  
0.3  
+14  
±1  
mA  
V
0.3  
0.3  
+5  
+5  
V
1  
mA  
V
VVaux  
VDS  
0.3  
0.3  
10  
40  
+18  
+18  
+140  
+150  
V
Tj  
°C  
°C  
Tstg  
Vesd  
class 1  
note 2  
note 3  
1250  
200  
V
V
Notes  
1. All voltages are referenced to GND (pin 11).  
2. Equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
3. Equivalent to discharging a 200 pF capacitor through a 0.75 mH coil.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-a)  
PARAMETER  
VALUE  
70  
UNIT  
thermal resistance from junction to ambient  
K/W  
QUALITY SPECIFICATION  
Quality specification “SNW-FQ-611 part E” is applicable.  
1999 Dec 07  
10  
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
CHARACTERISTICS  
Tj = 10 to +110 °C; VVi = 300 V; RREF = 24.9 k(0.1%); VVaux = 8.6 to 13 V. Positive currents flow into the IC.  
Negative currents flow out of the IC. All voltages are referenced to GND (pin 11).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
Start-up current source and Vaux management (pins 1 and 6)  
Vstart(Vi)(min)  
Vstart(Vaux)  
VUVLO(Vaux)  
Vhys(Vaux)  
Ii(Vi)  
minimum start-up voltage on Vi  
start-up voltage on Vaux  
100  
10.4  
7.4  
V
11  
11.6  
V
under-voltage lockout on Vaux  
hysteresis voltage on Vaux  
input current on Vi  
8.05 8.6  
V
V
start(Vaux) VUVLO(Vaux)  
2.60  
20  
2.95 3.30  
V
normal operation  
60  
100  
550  
µA  
µA  
Ioff(Vi)  
off mode current on Vi  
VOOB < 1.95 V  
150  
350  
Istart(Vaux)L  
Istart(Vaux)H  
lsup(Vaux)(oper)  
Irestart(Vaux)  
low start-up current on Vaux  
high start-up current on Vaux  
operating supply current on Vaux  
restart current on Vaux  
0 V < VVaux < 0.73 V  
0.5 V < VVaux < Vstart(Vaux)  
no load on DRIVER (pin 4)  
in OCP mode  
270 230 190 µA  
5.0  
3.0 1.0  
mA  
mA  
3.5  
3.85 4.2  
600 530 460 µA  
in burst standby mode  
lVaux = 5 mA  
2.5  
2.1 1.7  
18  
mA  
V
Vclamp(Vaux)  
clamping voltage on Vaux  
15  
Reference input (pin 8)  
Vi(REF)  
reference input voltage  
2.37  
16.9  
2.47 2.57  
24.9 33.2  
V
RREF(oper)  
operating reference resistor  
kΩ  
Oscillator  
foscL  
foscH  
δmax  
oscillator low frequency  
oscillator high frequency  
maximum duty cycle  
low power operation mode  
normal mode  
27.5  
66  
29  
70  
80  
30.5  
74  
kHz  
kHz  
%
f = foscH  
78  
82  
foscH/foscL  
ratio between oscillator high and low  
frequencies  
2.30  
2.45 2.60  
foscH  
oscillator high frequency range  
with changing RREF  
VDEM decreasing  
50  
70  
100  
kHz  
Demagnetization management (pin 13)  
Vth(DEM)  
demagnetization comparator  
threshold voltage on DEM  
50  
65  
500  
80  
mV  
ns  
tP(DEM-BUF)  
propagation delay from DEM to output  
buffer  
300  
700  
Ii(bias)(DEM)  
input bias current on DEM  
VDEM = 65 mV  
0.5(1)  
0.1(1) µA  
Vclamp(DEM)(neg) negative clamp voltage level on DEM IDEM = 500 µA  
0.45 0.35 0  
V
V
Vclamp(DEM)(pos) positive clamp voltage level on DEM  
IDEM = 100 µA  
lREF = 100 µA  
2.3  
2.6  
2.9  
Sample-and-hold (pin 13)  
Ictrl(DEM)(oper)  
Ith(sample)  
operating control current on DEM  
90  
78  
100  
83  
110  
88  
µA  
sample threshold current as % of  
Ictrl(DEM)  
%
tP(DEM-COMP)  
propagation delay from DEM to  
current comparator  
VDEM/t positive (500 V/µs) 170  
VDEM/∆t negative (10 V/µs) 20  
450  
90  
730  
160  
ns  
ns  
1999 Dec 07  
11  
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
SYMBOL  
Overvoltage protection (pin 6)  
VOVP(max) maximum OVP voltage level  
td(OVP) OVP delay time  
Isense Overcurrent protection and low power operation mode (pin 5)  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
fixed maximum level  
14.0  
350  
14.7 15.5  
V
550  
800  
ns  
tblank(le)  
leading edge blanking time  
RREF = 0.7 × RREF(nominal)  
180  
240  
415  
0.46  
150  
260  
340  
470  
340  
440  
560  
ns  
ns  
ns  
V
RREF = RREF(nominal)  
RREF = 1.3 × RREF(nominal)  
Vth(Isense)  
comparator threshold voltage on Isense at maximum current  
0.49 0.53  
td(Isense-DRIVER) delay from Isense to DRIVER  
(MOSFET off)  
at V/t = 200 mV/µs  
210  
270  
ns  
Vth(lpom)  
threshold voltage for switch-over to  
low power operation mode  
155  
165  
175  
mV  
Duty cycle control (pin 9)  
∆δ/VCTRL  
variation of duty cycle with voltage on foscH  
95  
85  
50  
75  
40  
%/V  
%/V  
V
CTRL  
foscL  
60  
VCTRL(min)  
VCTRL(max)  
IL(CTRL)  
minimum control voltage on CTRL  
maximum control voltage on CTRL  
input/output leakage current on CTRL  
2.00  
2.90  
1(1)  
2.15 2.30  
3.05 3.20  
V
+1(1)  
µA  
Overtemperature protection  
Tth(over)  
threshold overtemperature  
130  
140  
155  
°C  
On/off mode and burst mode standby (pin 14)  
Vth(on/off)  
switch-over to on/off mode threshold  
voltage  
2.3  
2.5  
2.8  
7.5  
5.5  
V
V
V
Vth(burst)(on)  
Vth(burst)(off)  
burst mode standby active threshold  
voltage  
6.5  
burst mode standby inactive threshold  
voltage  
IO(OOB)  
output current on OOB  
VOOB > 400 mV  
0.5(1)  
0.1(1) µA  
DRIVER (pin 4)  
RDSonH  
Drain/Source on-state resistance  
(output going high)  
VVaux = 8.5 V and  
VDRIVER = 6.5 V  
15  
3
22  
6
50  
15  
RDSonL  
Isource  
Isink  
Drain/Source on-state resistance  
(output going low)  
VVaux = 8.5 V and  
VDRIVER = 2 V  
source current of MOSFET  
VVaux = 8.5 V and  
VDRIVER = 2 V  
280 120 100 mA  
sink current of MOSFET  
VVaux = 8.5 V and  
VDRIVER = 2 V  
150  
400  
250  
550  
500  
900  
mA  
mA  
VVaux = 8.5 V and  
VDRIVER = 8.5 V  
Note  
1. Guaranteed by design.  
1999 Dec 07  
12  
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
APPLICATION INFORMATION  
A capacitor (CCTRL) having a low value of typically  
0.2 to 2 nF is used by the internal sample-and-hold circuit  
to regulate the primary feedback circuit. CCTRL is  
connected to CTRL (pin 9). This pin is also the input for  
the opto-coupler signal in a secondary sensing  
A converter using the TEA1504 is usually either a flyback  
or a buck converter that comprises EMI filter, full bridge  
rectifier, filter capacitor, transformer, output stage(s) and  
some snubber circuitry. Depending upon the type of  
feedback used, either an auxiliary winding (primary  
regulation) or an opto-coupler (secondary regulation) is  
used. Very few external components are used due to the  
configuration. Pin 11 is connected to ground. The primary  
side auxiliary winding is connected by resistor (RDEM  
)
to DEM (pin 13). The DEM input is also used for primary  
side regulation. Input OOB (pin 14) implements both the  
on/off and the burst mode standby functions. The supply  
connected to Vi (pin 1) is used by the internal start-up  
current source for charging capacitor Caux during start-up  
and safe-restart modes.  
high level of chip integration. A sense resistor (Rsense  
)
converts the primary current into a voltage at Isense (pin 5).  
The IC uses this voltage to set the peak current of the  
converter. An auxiliary winding supplies capacitor Caux  
which buffers the IC’s internal supply. The auxiliary  
winding is also used as part of the primary output voltage  
regulation circuit. A resistor (RREF) determines the IC’s  
reference currents into REF (pin 8).  
For additional information also see: ‘application note  
AN98011: “200 W SMPS with TEA1504”’.  
V
mains  
V
o
C
o
output on/off  
mode switch  
(1)  
V
OOB  
DEM  
n.c.  
i
14  
1
2
3
4
5
6
7
S1  
HVS  
13  
n.c.  
12  
power  
MOSFET  
GND  
n.c.  
DRIVER  
11 TEA1504  
I
sense  
10  
9
R
CTRL  
V
CTRL  
REF  
aux  
(1)  
DS  
8
auxiliary  
R
R
R
C
DEM  
REF  
aux  
sense  
winding  
MGS575  
(1) Secondary earthing points are isolated from their primary earthing points.  
Fig.8 Typical flyback configuration with secondary sensing and on/off feature.  
1999 Dec 07  
13  
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
V
mains  
V
o
R1  
R2  
C
o
S2  
(1)  
S1  
V
OOB  
DEM  
n.c.  
i
14  
1
2
3
4
5
6
7
output on/off  
mode switch  
V
µC  
HVS  
n.c.  
R3  
13  
12  
power  
MOSFET  
GND  
n.c.  
DRIVER  
11 TEA1504  
C
µC  
I
sense  
10  
9
V
R4  
CTRL  
REF  
aux  
S3  
DS  
R
CTRL  
8
(1)  
burst-mode  
stand-by on/off  
from  
auxiliary  
winding  
R
C
R
C
R
DEM  
CTRL  
REF  
aux  
sense  
microcontroller  
MGS576  
(1) Secondary earthing points are isolated from their primary earthing points.  
Fig.9 Flyback configuration with secondary sensing using the burst mode standby and on/off feature.  
1999 Dec 07  
14  
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
V
mains  
V
o
C
o
output on/off  
mode switch  
V
OOB  
DEM  
n.c.  
i
14  
1
2
3
4
5
6
7
S1  
HVS  
13  
n.c.  
12  
power  
MOSFET  
GND  
n.c.  
DRIVER  
11 TEA1504  
I
sense  
10  
9
V
CTRL  
REF  
aux  
DS  
8
R
R
C
R
DEM  
REF  
aux  
sense  
R
CTRL  
MGS577  
Fig.10 Typical buck configuration with secondary sensing.  
1999 Dec 07  
15  
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
V
mains  
V
o
C
o
output on/off  
mode switch  
V
OOB  
DEM  
n.c.  
i
14  
1
2
3
4
5
6
7
S1  
HVS  
13  
n.c.  
12  
power  
MOSFET  
GND  
n.c.  
DRIVER  
11 TEA1504  
I
sense  
10  
9
V
CTRL  
REF  
aux  
DS  
8
R
C
CTRL  
R
C
R
DEM  
REF  
aux  
sense  
MGS578  
Fig.11 Typical buck configuration with primary sensing.  
1999 Dec 07  
16  
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
PACKAGE OUTLINE  
DIP14: plastic dual in-line package; 14 leads (300 mil)  
SOT27-1  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
M
H
14  
8
pin 1 index  
E
1
7
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
Z
A
A
A
2
(1)  
(1)  
1
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
H
w
1
1
E
max.  
min.  
max.  
max.  
1.73  
1.13  
0.53  
0.38  
0.36  
0.23  
19.50  
18.55  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
2.2  
0.068  
0.044  
0.021  
0.015  
0.014  
0.009  
0.77  
0.73  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.020  
0.13  
0.087  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-03-11  
SOT27-1  
050G04  
MO-001AA  
1999 Dec 07  
17  
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
SOLDERING  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Introduction to soldering through-hole mount  
packages  
This text gives a brief insight to wave, dip and manual  
soldering. A more in-depth account of soldering ICs can be  
found in our “Data Handbook IC26; Integrated Circuit  
Packages” (document order number 9398 652 90011).  
Manual soldering  
Wave soldering is the preferred method for mounting of  
through-hole mount IC packages on a printed-circuit  
board.  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
Soldering by dipping or by solder wave  
300 and 400 °C, contact may be up to 5 seconds.  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joints for more than 5 seconds.  
The total contact time of successive solder waves must not  
exceed 5 seconds.  
Suitability of through-hole mount IC packages for dipping and wave soldering methods  
SOLDERING METHOD  
PACKAGE  
DIPPING  
WAVE  
DBS, DIP, HDIP, SDIP, SIL  
suitable  
suitable(1)  
Note  
1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
1999 Dec 07  
18  
Philips Semiconductors  
Preliminary specification  
GreenChip SMPS control IC  
TEA1504  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1999 Dec 07  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
68  
SCA  
© Philips Electronics N.V. 1999  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
295002/02/pp20  
Date of release: 1999 Dec 07  
Document order number: 9397 750 05331  

相关型号:

TEA1504N

IC SWITCHING CONTROLLER, 74 kHz SWITCHING FREQ-MAX, PDIP14, DIP-14, Switching Regulator or Controller
NXP

TEA1506

GreenChip SMPS control IC
NXP

TEA1506AP

GreenChip SMPS control IC
NXP
NXP

TEA1506AT

GreenChip SMPS control IC
NXP

TEA1506P

GreenChip SMPS control IC
NXP

TEA1506P/N1,112

TEA1506P; TEA1506AP; TEA1506T; TEA1506AT - GreenChip (tm) II SMPS control IC DIP 8-Pin
NXP

TEA1506T

GreenChip SMPS control IC
NXP

TEA1506T/N1,118

TEA1506P; TEA1506AP; TEA1506T; TEA1506AT - GreenChip (tm) II SMPS control IC SOIC 14-Pin
NXP

TEA1506T/N1,518

TEA1506P; TEA1506AP; TEA1506T; TEA1506AT - GreenChip (tm) II SMPS control IC SOIC 14-Pin
NXP

TEA1507

GreenChipII SMPS control IC
NXP

TEA1507P

GreenChipII SMPS control IC
NXP