SSTUH32865 [NXP]

1.8 V 28-bit high output drive 1:2 registered buffer with parity for DDR2 RDIMM applications; 1.8 V 28位高输出驱动1 :带奇偶校验的DDR2 RDIMM应用2寄存缓冲器
SSTUH32865
型号: SSTUH32865
厂家: NXP    NXP
描述:

1.8 V 28-bit high output drive 1:2 registered buffer with parity for DDR2 RDIMM applications
1.8 V 28位高输出驱动1 :带奇偶校验的DDR2 RDIMM应用2寄存缓冲器

驱动 双倍数据速率
文件: 总28页 (文件大小:143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SSTUH32865  
1.8 V 28-bit high output drive 1:2 registered buffer with parity  
for DDR2 RDIMM applications  
Rev. 01 — 11 March 2005  
Product data sheet  
1. General description  
The SSTUH32865 is a 1.8 V 28-bit high output drive 1:2 register specifically designed for  
use on two rank by four (2R × 4) and similar high-density Double Data Rate 2 (DDR2)  
memory modules. It is similar in function to the JEDEC-standard 14-bit DDR2 register, but  
integrates the functionality of the normally required two registers in a single package,  
thereby freeing up board real-estate and facilitating routing to accommodate high-density  
Dual In-line Memory Module (DIMM) designs.  
The SSTUH32865 also integrates a parity function, which accepts a parity bit from the  
memory controller, compares it with the data received on the D-inputs and indicates  
whether a parity error has occurred on its open-drain PTYERR pin (active LOW).  
The SSTUH32865 is packaged in a 160-ball, 12 × 18 grid, 0.65 mm ball pitch, thin profile  
fine-pitch ball grid array (TFBGA) package, which—while requiring a minimum  
9 mm × 13 mm of board space—allows for adequate signal routing and escape using  
conventional card technology.  
The SSTUH32865 is identical to SSTU32865 in function and performance, with  
higher-drive outputs optimized to drive heavy load nets (such as stacked DRAMs) while  
maintaining speed and signal integrity.  
2. Features  
28-bit data register supporting DDR2  
Higher output drive strength version of SSTU32865 optimized for high-capacitive load  
nets  
Fully compliant to JEDEC standard JESD82-9  
Supports 2 rank by 4 DIMM density by integrating equivalent functionality of two  
JEDEC-standard DDR2 registers (that is, 2 × SSTU32864 or 2 × SSTU32866)  
Parity checking function across 22 input data bits  
Parity out signal  
Controlled output impedance drivers enable optimal signal integrity and speed  
Exceeds JESD82-9 speed performance (1.8 ns max. single-bit switching propagation  
delay, 2.0 ns max. mass-switching)  
Supports up to 450 MHz clock frequency of operation  
Optimized pinout for high-density DDR2 module design  
Chip-selects minimize power consumption by gating data outputs from changing state  
Supports Stub Series Terminated Logic SSTL_18 data inputs  
Differential clock (CK and CK) inputs  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
Supports Low Voltage Complementary Metal Oxide Silicon (LVCMOS) switching levels  
on the control and RESET inputs  
Single 1.8 V supply operation  
Available in 160-ball 9 mm × 13 mm, 0.65 mm ball pitch TFBGA package  
3. Applications  
High-density (for example, 2 rank by 4) DDR2 registered DIMMs  
DDR2 Registered DIMMs (RDIMM) desiring parity checking functionality  
Stacked or planar high-DRAM count registered DIMMs  
4. Ordering information  
Table 1:  
Ordering information  
Solder process  
Type number  
Package  
Name  
Description  
Version  
SSTUH32865ET/G Pb-free (SnAgCu solder ball TFBGA160 plastic thin fine-pitch ball grid array package; SOT802-1  
compound) 160 balls; body 9 × 13 × 0.8 mm  
SSTUH32865ET  
SnPb solder ball compound TFBGA160 plastic thin fine-pitch ball grid array package; SOT802-1  
160 balls; body 9 × 13 × 0.8 mm  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
2 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
5. Functional diagram  
(CS ACTIVE)  
VREF  
SSTUH32865  
PARITY  
D
Q
Q
Q
Q
Q
Q
Q
GENERATOR  
AND  
CHECKER  
PARIN  
22  
PTYERR  
R
Q0A  
Q0B  
D
R
D0  
Q21A  
Q21B  
D
R
D21  
QCS0A  
QCS0B  
DCS0  
D
R
CSGATEEN  
DCS1  
QCS1A  
QCS1B  
D
R
QCKE0A,  
QCKE1A  
DCKE0,  
2
DCKE1  
2
2
D
R
QCKE0B,  
QCKE1B  
QODT0A,  
QODT1A  
DODT0,  
2
DODT1  
D
R
QODT0B,  
QODT1B  
RESET  
002aab111  
CK  
CK  
Fig 1. Functional diagram of SSTUH32865  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
3 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
6. Pinning information  
6.1 Pinning  
SSTUH32865ET/G  
SSTUH32865ET  
ball A1  
index area  
2
4
6
8
10 12  
9 11  
1
3
5
7
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
002aab112  
Transparent top view  
Fig 2. Pin configuration for TFBGA160  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
4 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
1
VREF  
D1  
2
n.c.  
3
4
5
6
7
8
9
10  
11  
12  
A
B
C
D
E
F
PARIN  
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
QCKE1A QCKE0A  
QCKE1B QCKE0B  
Q21A  
Q21B  
Q19A  
Q19B  
Q18A  
Q18B  
Q17B  
Q17A  
D2  
QODT0B QODT0A  
QODT1B QODT1A  
D3  
D4  
D6  
D5  
VDDL  
VDDL  
VDDL  
VDDL  
VDDL  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDL  
GND  
GND  
VDDL  
VDDL  
VDDL  
n.c.  
n.c.  
GND  
GND  
GND  
GND  
Q20B  
Q16B  
Q1B  
Q20A  
Q16A  
Q1A  
D7  
D8  
VDDL  
VDDR  
D11  
D9  
VDDR  
VDDR  
GND  
VDDR  
VDDR  
GND  
D18  
D12  
D15  
DCS0  
DCS1  
D14  
D10  
D16  
D21  
D20  
DODT0  
DCKE1  
m.c.l.  
Q2B  
Q2A  
G
H
J
CSGATEEN  
CK  
Q5B  
Q5A  
VDDR  
GND  
VDDR  
GND  
QCS0B  
QCS1B  
Q6B  
QCS0A  
QCS1A  
Q6A  
CK  
VDDL  
GND  
K
L
RESET  
D0  
VDDR  
GND  
VDDR  
GND  
GND  
Q10B  
Q9B  
Q10A  
Q9A  
M
N
P
R
T
D17  
VDDL  
GND  
VDDR  
VDDR  
GND  
VDDR  
GND  
D19  
VDDL  
VDDL  
VDDR  
GND  
Q11B  
Q15B  
Q14B  
Q0B  
Q11A  
Q15A  
Q14A  
Q8B  
D13  
GND  
GND  
DODT1  
DCKE0  
VREF  
m.c.l.  
m.c.l.  
PTYERR  
n.c.  
m.c.h.  
m.c.h.  
Q3B  
Q3A  
Q12B  
Q12A  
Q7B  
Q7A  
Q4B  
Q4A  
Q13B  
Q13A  
U
V
Q0A  
Q8A  
002aab011  
160-ball, 12 × 18 grid; top view.  
An empty cell indicates no ball is populated at that grid point.  
n.c. denotes a no-connect (ball present but not connected to the die).  
m.c.l. denotes a pin that must be connected LOW.  
m.c.h. denotes a pin that must be connected HIGH.  
Fig 3. Ball mapping  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
5 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
6.2 Pin description  
Table 2:  
Pin description  
Symbol  
Pin  
Type  
Description  
Ungated inputs  
DCKE0, DCKE1  
DODT0, DODT1  
U1, U2  
T2, T1  
SSTL_18  
DRAM function pins not associated with Chip Select.  
Chip Select gated inputs  
D0 to D21  
M1, B1, B2, C1, C2, D2, D1, SSTL_18  
E1, E2, F2, M2, F1, G2, R1,  
L2, H2, N2, N1, G1, P1, R2,  
P2  
DRAM inputs, re-driven only when Chip Select is LOW.  
Chip Select inputs  
DCS0, DCS1  
J2, K2  
SSTL_18  
DRAM Chip Select signals. These pins initiate DRAM  
address/command decodes, and as such at least one will  
be LOW when a valid address/command is present. The  
register can be programmed to re-drive all D-inputs only  
(CSGATEEN = HIGH) when at least one Chip Select  
input is LOW.  
Re-driven outputs  
Q0A to Q21A  
V11, F12, G12, V6, V9, H12, SSTL_18  
L12, V8, V12, N12, M12,  
P12, V7, V10, T12, R12,  
Outputs of the register, valid after the specified clock  
count and immediately following a rising edge of the  
clock.  
E12, A12, A10, A9, D12, A8  
Q0B to Q21B  
U11, F11, G11, U6, U9,  
H11, L11, U8, U12, N11,  
M11, P11, U7, U10, T11,  
R11, E11, A11, B10, B9,  
D11, B8  
QCS0A, QDS1A,  
QCS0B, QCS1B  
J12, K12, J11, K11  
QCKE0A, QCKE1A, A7, A6, B7, B6  
QCKE0B, QCKE1B  
QODT0A, QODT1A, B12, C12, B11, C11  
QODT0B, QODT1B  
Parity input  
PARIN  
A3  
U4  
SSTL_18  
Parity input for the D0 to D21 inputs. Arrives one clock  
cycle after the corresponding data input.  
Parity error  
PTYERR  
open drain When LOW, this output indicates that a parity error was  
identified associated with the address and/or command  
inputs. PTYERR will be active for two clock cycles, and  
delayed by an additional clock cycle for compatibility with  
final parity out timing on the industry-standard DDR2  
register with parity (in JEDEC definition).  
Program inputs  
CSGATEEN  
H1  
1.8 V  
LVCMOS  
Chip Select Gate Enable. When HIGH, the D0 to D21  
inputs will be latched only when at least one Chip Select  
input is LOW during the rising edge of the clock. When  
LOW, the D0 to D21 inputs will be latched and redriven  
on every rising edge of the clock.  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
6 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
Table 2:  
Symbol  
Pin description …continued  
Pin  
Type  
Description  
Clock inputs  
CK, CK  
J1, K1  
SSTL_18  
Differential master clock input pair to the register. The  
register operation is triggered by a rising edge on the  
positive clock input (CK).  
Miscellaneous inputs  
m.c.l.  
U3, V2, V3  
U5, V5  
L1  
Must be connected to a logic LOW  
Must be connected to a logic HIGH.  
m.c.h.  
RESET  
1.8 V  
LVCMOS  
Asynchronous reset input. When LOW, it causes a reset  
of the internal latches, thereby forcing the outputs LOW.  
RESET also resets the PTYERR signal.  
VREF  
VDDL  
VDDR  
GND  
A1, V1  
0.9 V  
nominal  
Input reference voltage for the SSTL_18 inputs. Two pins  
(internally tied together) are used for increased reliability.  
D4, E4, E6, F4, G4, H4, K4,  
K5, N4, N5, P5, P6, R5, R6  
power supply voltage  
power supply voltage  
ground  
E7, F8, F9, G8, G9, J8, J9,  
L8, L9, N8, N9, P7, P8  
D5, D8, D9, E5, E8, E9, F5,  
G5, H5, H8, H9, J4, J5, K8,  
K9, L4, L5, M4, M5, M8, M9,  
P4, P9, R4, R7, R8, R9  
n.c.  
A2, A4, A5, B3, B4, B5, D6,  
D7, V4  
ball present but not connected to die  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
7 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
7. Functional description  
7.1 Function table  
Table 3:  
RESET  
Function table (each flip-flop)  
Inputs  
Outputs[1]  
DCS0  
DCS1  
CSGATEEN  
CK  
CK  
Dn, DODTn,  
DCKEn  
Qn  
QCS0 QCS1 QODTn,  
QCKEn  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
X
L
L
H
L
L
L
L
L
H
X
H
L
L
X
L or H  
L or H  
X
Q0  
L
Q0  
L
Q0  
H
Q0  
L
L
H
H
H
L
X
L
L
X
H
H
L
H
H
L
X
L or H  
L or H  
X
Q0  
L
Q0  
H
Q0  
L
Q0  
L
H
H
H
H
H
H
H
H
H
X
L
L
X
H
H
H
L
H
L
X
L or H  
L or H  
X
Q0  
L
Q0  
H
Q0  
H
Q0  
L
H
H
H
H
H
H
L
L
L
L or H  
L or H  
H
H
H
H
H
L
X
Q0  
Q0  
Q0  
Q0  
L
Q0  
H
Q0  
H
Q0  
L
H
L
H
H
H
X
H
H
H
L or H  
L or H  
Q0  
L
Q0  
L
Q0  
L
X or  
X or  
X or floating  
X or  
X or  
X or floating  
floating  
floating  
floating  
floating  
[1] Q0 is the previous state of the associated output.  
Table 4:  
RESET  
Parity and standby function table  
Inputs  
Output  
PTYERR[2] [3]  
DCS0  
DCS1  
CK  
CK  
of inputs = H  
PARIN[1]  
(D0 to D21)  
H
H
H
H
H
H
H
H
H
H
L
L
L
H
H
H
H
L
even  
odd  
L
H
L
L
L
even  
odd  
H
L
L
H
H
H
H
H
H
H
X
even  
odd  
L
H
L
L
L
L
even  
odd  
H
L
L
H
H
H
X
X
X
X
PTYERR0  
PTYERR0  
H
L or H  
L or H  
X
X or floating X or floating X or floating X or floating  
X or floating  
X or floating  
[1] PARIN arrives one clock cycle after the data to which it applies. All Dn inputs must be driven to a known state for parity to be calculated  
correctly.  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
8 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
[2] This condition assumes PTYERR is HIGH at the crossing of CK going HIGH and CK going LOW. If PTYERR is LOW, it stays latched  
LOW for two clock cycles or until RESET is driven LOW.  
CSGATEEN is ‘don’t care’ for PTYERR.  
[3] PTYERR0 is the previous state of output PTYERR.  
7.2 Functional information  
This 28-bit 1:2 registered buffer with parity is designed for 1.7 V to 1.9 V VDD operation.  
All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The  
control inputs are LVCMOS. All outputs are 1.8 V CMOS drivers that have been optimized  
to drive the DDR2 DIMM load.  
The SSTUH32865 operates from a differential clock (CK and CK). Data are registered at  
the crossing of CK going HIGH, and CK going LOW.  
The device supports low-power standby operation. When the reset input (RESET) is LOW,  
the differential input receivers are disabled, and undriven (floating) data, clock and  
reference voltage (VREF) inputs are allowed. In addition, when RESET is LOW all registers  
are reset, and all outputs except PTYERR are forced LOW. The LVCMOS RESET input  
must always be held at a valid logic HIGH or LOW level.  
To ensure defined outputs from the register before a stable clock has been supplied,  
RESET must be held in the LOW state during power-up.  
In the DDR2 RDIMM application, RESET is specified to be completely asynchronous with  
respect to CK and CK. Therefore, no timing relationship can be guaranteed between the  
two. When entering reset, the register will be cleared and the data outputs will be driven  
LOW quickly, relative to the time to disable the differential input receivers. However, when  
coming out of reset, the register will become active quickly, relative to the time to enable  
the differential input receivers. As long as the data inputs are LOW, and the clock is stable  
during the time from the LOW-to-HIGH transition of RESET until the input receivers are  
fully enabled, the design of the SSTUH32865 ensures that the outputs remain LOW, thus  
ensuring no glitches on the output.  
The device monitors both DCS0 and DCS1 inputs and will gate the Qn outputs from  
changing states when both DCS0 and DCS1 are HIGH. If either DCS0 or DCS1 input is  
LOW, the Qn outputs will function normally. The RESET input has priority over the DCS0  
and DCS1 control and will force the Qn outputs LOW and the PTYERR output HIGH. If the  
DCSn-control functionality is not desired, then the CSGATEEN input can be hardwired to  
ground, in which case, the setup-time requirement for DCSn would be the same as for the  
other Dn data inputs.  
The SSTUH32865 includes a parity checking function. The SSTUH32865 accepts a parity  
bit from the memory controller at its input pin PARIN, compares it with the data received  
on the Dn inputs (with either DCS0 or DCS1 active) and indicates whether a parity error  
has occurred on its open-drain PTYERR pin (active LOW).  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
9 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
7.3 Functional differences to SSTU32864  
The SSTUH32865 for its basic register functionality, signal definition and performance is  
based upon the industry-standard SSTU32864, but provides key operational features  
which differ (at least in part) from the industry-standard register in the following aspects:  
7.3.1 Chip Select (CS) gating of key inputs (DCS0, DCS1, CSGATEEN)  
As a means to reduce device power, the internal latches will only be updated when one or  
both of the CS inputs are active (LOW) and CSGATEEN HIGH at the rising edge of the  
clock. The 22 ‘Chip-Select-gated’ input signals associated with this function include  
addresses (ADDR0 to ADDR15, BA0 to BA2), and RAS, CAS, WE, with the remaining  
signals (CS, CKE, ODT) continuously re-driven at the rising edge of every clock as they  
are independent of CS. The CS gating function can be disabled by tying CSGATEEN  
LOW, enabling all internal latches to be updated on every rising edge of the clock.  
Table 5:  
Mode  
Chip Select gating mode  
Signal name  
CSGATEEN  
HIGH  
Description  
Gating  
Registers only re-drive signals to the DRAMs when  
Chip Select inputs are LOW.  
Non-gating  
CSGATEEN  
LOW  
Registers always re-drive signals on every clock cycle,  
independent of the state of the Chip Select inputs.  
7.3.2 Parity error checking and reporting  
The SSTUH32865 incorporates a parity function, whereby the signal received on input pin  
PARIN is received as parity to the register, one clock cycle later than the CS-gated inputs.  
The received parity bit is then compared to the parity calculated across these same inputs  
by the register parity logic to verify that the information has not been corrupted. The 22  
CS-gated input signals will be latched and re-driven on the first clock, and any error will be  
reported one clock cycle later via the PTYERR output pin (driven LOW for two consecutive  
clock cycles). PTYERR is an open-drain output, allowing multiple modules to share a  
common signal pin for reporting the occurrence of a parity error during a valid command  
cycle (coincident with the re-driven signals). This output is driven LOW for two consecutive  
clock cycles to allow the memory controller sufficient time to sense and capture the error  
even. A LOW state on PTYERR indicates that a parity error has occurred.  
7.3.3 Reset (RESET)  
Similar to the RESET pin on the industry-standard SSTU32864, this pin is used to clear all  
internal latches and all outputs will be driven LOW quickly except the PTYERR output,  
which will be floated (and will normally default HIGH by their external pull-up).  
7.3.4 Power-up sequence  
The reset function for the SSTUH32865 is similar to that of the SSTU32864 except that  
the PTYERR signal is also cleared and will be held clear (HIGH) for three consecutive  
clock cycles.  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
10 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
RESET  
DCSn  
CK  
m
m + 1  
m + 2  
m + 3  
m + 4  
CK  
t
ACT  
t
t
h
su  
(1)  
Dn  
t
, t  
PDM PDMSS  
CK to Q  
Qn  
t
t
h
su  
PARIN  
t
t
, t  
PHL PLH  
PHL  
CK to PTYERR  
CK to PTYERR  
PTYERR  
002aaa983  
HIGH, LOW, or Don't care  
HIGH or LOW  
(1) After RESET is switched from LOW to HIGH, all data and PARIN input signals must be set and held LOW for a minimum  
time of tACT(max) to avoid false error.  
Fig 4. RESET switches from LOW to HIGH  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
11 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
RESET  
DCSn  
CK  
m
m + 1  
m + 2  
m + 3  
m + 4  
CK  
t
t
h
su  
(1)  
Dn  
t
, t  
PDM PDMSS  
CK to Q  
Qn  
t
su  
t
h
PARIN  
t
, t  
PHL PLH  
CK to PTYERR  
PTYERR  
002aaa984  
Output signal is dependent  
on the prior unknown event  
Unknown input event  
HIGH or LOW  
Fig 5. RESET being held HIGH  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
12 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
RESET  
DCSn  
t
INACT  
(1)  
CK  
(1)  
CK  
(1)  
Dn  
t
RPHL  
RESET to Q  
Qn  
(1)  
PARIN  
t
RPLH  
RESET to PTYERR  
PTYERR  
002aaa985  
HIGH, LOW, or Don't care  
HIGH or LOW  
(1) After RESET is switched from HIGH to LOW, all data and clock input signals must be set and held at valid logic levels (not  
floating) for a minimum time of tINACT(max)  
.
Fig 6. RESET switches from HIGH to LOW  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
13 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
22  
22  
Dn  
QnA  
QnB  
D
Q
D
D
PTYERR  
D
LATCHING AND  
RESET FUNCTION  
(1)  
PARIN  
CLOCK  
002aaa417  
(1) This function holds the error for two cycles. For details, see Section 7 “Functional description” and Figure 4 “RESET  
switches from LOW to HIGH”.  
Fig 7. Parity logic diagram  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
14 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
8. Limiting values  
Table 6:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
VI  
Parameter  
Conditions  
Min  
Max  
Unit  
V
supply voltage  
0.5  
+2.5  
[2]  
[2]  
receiver input voltage  
driver output voltage  
input clamp current  
output clamp current  
continuous output current  
0.5  
+2.5  
V
VO  
0.5  
VDD + 0.5  
50  
V
IIK  
VI < 0 V or VI > VDD  
VO < 0 V or VO > VDD  
0 V < VO < VDD  
-
-
-
-
mA  
mA  
mA  
mA  
IOK  
±50  
IO  
±50  
ICCC  
continuous current through  
each VDD or GND pin  
±100  
Tstg  
storage temperature  
65  
+150  
-
°C  
Vesd  
electrostatic discharge  
voltage  
Human Body Model (HBM); 1.5 k;  
100 pF  
2
kV  
Machine Model (MM); 0 ; 200 pF  
200  
-
V
[1] Stresses beyond those listed under ‘absolute maximum ratings’ may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under ‘recommended operating  
conditions’ is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
[2] The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
9. Recommended operating conditions  
Table 7:  
Symbol  
VDD  
Recommended operating conditions  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
supply voltage  
1.7  
-
1.9  
VREF  
VTT  
reference voltage  
0.49 × VDD  
0.50 × VDD 0.51 × VDD  
V
termination voltage  
VREF 40 mV  
VREF  
VREF + 40 mV  
V
VI  
input voltage  
0
-
-
-
-
-
-
-
-
VDD  
-
V
[1]  
[1]  
[1]  
[1]  
[2]  
[2]  
VIH(AC)  
VIL(AC)  
VIH(DC)  
VIL(DC)  
VIH  
AC HIGH-level input voltage  
AC LOW-level input voltage  
DC HIGH-level input voltage  
DC LOW-level input voltage  
HIGH-level input voltage  
LOW-level input voltage  
data inputs (Dn)  
data inputs (Dn)  
data inputs (Dn)  
data inputs (Dn)  
RESET  
VREF + 250 mV  
V
-
VREF 250 mV  
V
VREF + 125 mV  
-
V
-
VREF 125 mV  
-
V
0.65 × VDD  
V
VIL  
RESET  
-
0.35 × VDD  
V
VICR  
common mode input voltage  
range  
CK, CK  
0.675  
1.125  
V
VID  
IOH  
IOL  
differential input voltage  
HIGH-level output current  
LOW-level output current  
CK, CK  
600  
-
-
-
-
-
mV  
mA  
mA  
°C  
-
12  
12  
+70  
-
Tamb  
operating ambient temperature  
in free air  
0
[1] The differential inputs must not be floating, unless RESET is LOW.  
[2] The RESET input of the device must be held at valid logic levels (not floating) to ensure proper device operation.  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
15 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
10. Characteristics  
Table 8:  
Characteristics  
Over recommended operating conditions, unless otherwise noted.  
Symbol  
VOH  
VOL  
Parameter  
Conditions  
Min  
Typ  
Max  
-
Unit  
V
HIGH-level output voltage  
LOW-level output voltage  
input current  
IOH = 12 mA; VDD = 1.7 V  
IOL = 12 mA; VDD = 1.7 V  
all inputs; VI = VDD or GND;  
1.2  
-
-
-
-
-
0.5  
±5  
V
II  
µA  
VDD = 1.9 V  
IDD  
static standby current  
static operating current  
RESET = GND; VDD = 1.9 V  
-
-
-
-
100  
40  
µA  
RESET = VDD; VDD = 1.9 V;  
VI = VIH(AC) or VIL(AC)  
mA  
IDDD  
dynamic operating current per MHz, RESET = VDD  
;
-
16  
-
µA  
µA  
clock only  
VI = VIH(AC) or VIL(AC); CK and CK  
switching at 50 % duty cycle.  
IO = 0 mA; VDD = 1.8 V  
dynamic operating current per MHz, RESET = VDD  
;
-
19  
-
per each data input  
VI = VIH(AC) or VIL(AC); CK and CK  
switching at 50 % duty cycle. One  
data input switching at half clock  
frequency, 50 % duty cycle.  
IO = 0 mA; VDD = 1.8 V  
Ci  
input capacitance, data inputs  
input capacitance, CK and CK  
VI = VREF ± 250 mV; VDD = 1.8 V  
2.5  
2
-
-
3.5  
3
pF  
pF  
VICR = 0.9 V; VID = 600 mV;  
VDD = 1.8 V  
input capacitance, RESET  
VI = VDD or GND; VDD = 1.8 V  
3
-
5
pF  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
16 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
Table 9:  
Timing requirements  
Over recommended operating conditions, unless otherwise noted.  
Symbol  
fclock  
Parameter  
Conditions  
Min  
Typ  
Max  
450  
-
Unit  
MHz  
ns  
clock frequency  
-
-
-
tW  
pulse duration, CK, CK HIGH or  
LOW  
1
[1] [2]  
[1] [3]  
tACT  
tINACT  
tsu  
differential inputs active time  
differential inputs inactive time  
setup time, Chip Select  
-
-
-
-
10  
15  
-
ns  
ns  
ns  
-
DCS0, DCS1 valid before  
clock switching  
0.7  
setup time, Data  
Dn valid before clock  
switching  
0.5  
-
-
ns  
setup time, PARIN  
hold time  
PARIN before CK and CK  
0.5  
0.5  
-
-
-
-
ns  
ns  
th  
input to remain valid after  
clock switching  
hold time, PARIN  
PARIN after CK and CK  
0.5  
-
-
ns  
[1] This parameter is not necessarily production tested.  
[2] Data inputs must be active below a minimum time of tACT(max) after RESET is taken HIGH.  
[3] Data and clock inputs must be held at valid levels (not floating) a minimum time of tINACT(max) after RESET is taken LOW.  
Table 10: Switching characteristics  
Over recommended operating conditions, unless otherwise noted.  
Symbol  
fMAX  
tPDM  
tLH  
Parameter  
Conditions  
Min  
450  
1.41  
1.2  
1
Typ  
Max  
-
Unit  
MHz  
ns  
maximum input clock frequency  
propagation delay  
-
-
-
-
-
-
[1]  
CK and CK to output  
CK and CK to PTYERR  
CK and CK to PTYERR  
from RESET to PTYERR  
CK and CK to output  
1.8  
3
LOW-to-HIGH delay  
ns  
tHL  
HIGH-to-LOW delay  
3
ns  
tPLH  
LOW-to-HIGH propagation delay  
-
3
ns  
[1] [2]  
tPDMSS  
propagation delay, simultaneous  
switching  
-
2.0  
ns  
tPHL  
propagation delay  
RESET to output  
-
-
3
ns  
[1] Includes 350 ps of test-load transmission line delay.  
[2] This parameter is not necessarily production tested.  
Table 11: Output edge rates  
Over recommended operating conditions, unless otherwise noted.  
Symbol  
dV/dt_r  
dV/dt_f  
dV/dt_∆  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V/ns  
V/ns  
V/ns  
rising edge slew rate  
falling edge slew rate  
1
1
-
-
-
-
4
4
1
absolute difference between dV/dt_r  
and dV/dt_f  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
17 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
11. Test information  
11.1 Test circuit  
All input pulses are supplied by generators having the following characteristics: Pulse  
Repetition Rate (PRR) 10 MHz; Z0 = 50 ; input slew rate = 1 V/ns ± 20 %, unless  
otherwise specified.  
The outputs are measured one at a time with one transition per measurement.  
V
DD  
DUT  
R
= 1000  
= 1000 Ω  
L
T
= 50 Ω  
T
= 350 ps, 50 Ω  
L
L
CK  
CK  
CK inputs  
OUT  
(1)  
= 45 pF  
C
L
R
L
test point  
R
L
= 100 Ω  
002aab113  
test point  
(1) CL includes probe and jig capacitance.  
Fig 8. Load circuit  
LVCMOS  
V
DD  
RESET  
V
/2  
DD  
V
/2  
DD  
0 V  
t
t
ACT  
INACT  
90 %  
(1)  
DD  
I
10 %  
002aaa372  
(1) IDD tested with clock and data inputs held at VDD or GND, and IO = 0 mA.  
Fig 9. Voltage and current waveforms; inputs active and inactive times  
t
W
V
V
IH  
IL  
V
input  
V
V
ICR  
ID  
ICR  
002aaa373  
VID = 600 mV  
VIH = VREF + 250 mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.  
VIL = VREF 250 mV (AC voltage levels) for differential inputs. VIL = GND for LVCMOS inputs.  
Fig 10. Voltage waveforms; pulse duration  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
18 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
CK  
V
V
ICR  
ID  
CK  
t
t
h
su  
V
V
IH  
IL  
input  
V
REF  
V
REF  
002aaa374  
VID = 600 mV  
VREF = VDD/2  
VIH = VREF + 250 mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.  
VIL = VREF 250 mV (AC voltage levels) for differential inputs. VIL = GND for LVCMOS inputs.  
Fig 11. Voltage waveforms; setup and hold times  
CK  
V
V
V
ICR  
ICR  
i(p-p)  
CK  
t
t
PHL  
PLH  
V
V
OH  
OL  
V
output  
TT  
002aaa375  
tPLH and tPHL are the same as tPD  
.
Fig 12. Voltage waveforms; propagation delay times (clock to output)  
LVCMOS  
V
V
V
V
IH  
RESET  
V
/2  
DD  
IL  
t
PHL  
OH  
OL  
output  
V
TT  
002aaa376  
tPLH and tPHL are the same as tPD  
.
VIH = VREF + 250 mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.  
VIL = VREF 250 mV (AC voltage levels) for differential inputs. VIL = GND for LVCMOS inputs.  
Fig 13. Voltage waveforms; propagation delay times (reset to output)  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
19 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
11.2 Output slew rate measurement  
VDD = 1.8 V ± 0.1 V.  
All input pulses are supplied by generators having the following characteristics:  
PRR 10 MHz; Z0 = 50 ; input slew rate = 1 V/ns ± 20 %, unless otherwise specified.  
V
DD  
R
DUT  
= 50 Ω  
L
OUT  
test point  
002aab117  
(1)  
= 15 pF  
C
L
(1) CL includes probe and jig capacitance.  
Fig 14. Load circuit, HIGH-to-LOW slew measurement  
output  
V
OH  
80 %  
dv_f  
20 %  
V
OL  
dt_f  
002aaa378  
Fig 15. Voltage waveforms, HIGH-to-LOW slew rate measurement  
DUT  
OUT  
test point  
(1)  
= 15 pF  
C
L
R
L
= 50 Ω  
002aab118  
(1) CL includes probe and jig capacitance.  
Fig 16. Load circuit, LOW-to-HIGH slew measurement  
dt_r  
V
V
OH  
80 %  
dv_r  
20 %  
output  
OL  
002aaa380  
Fig 17. Voltage waveforms, LOW-to-HIGH slew rate measurement  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
20 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
11.3 Error output load circuit and voltage measurement  
VDD = 1.8 V ± 0.1 V.  
All input pulses are supplied by generators having the following characteristics:  
PRR 10 MHz; Z0 = 50 ; input slew rate = 1 V/ns ± 20 %, unless otherwise specified.  
V
DD  
R
DUT  
= 1 kΩ  
L
OUT  
test point  
002aaa500  
(1)  
= 10 pF  
C
L
(1) CL includes probe and jig capacitance.  
Fig 18. Load circuit, error output measurements  
LVCMOS  
V
CC  
RESET  
V
/2  
CC  
0 V  
t
PLH  
V
OH  
0.15 V  
output  
waveform 2  
0 V  
002aaa501  
Fig 19. Voltage waveforms, open-drain output LOW-to-HIGH transition time with respect to  
RESET input  
timing  
inputs  
V
i(p-p)  
V
V
ICR  
ICR  
t
HL  
V
V
CC  
OL  
output  
waveform 1  
V
/2  
CC  
002aaa502  
Fig 20. Voltage waveforms, open-drain output HIGH-to-LOW transition time with respect  
to clock inputs  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
21 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
timing  
inputs  
V
V
i(p-p)  
V
ICR  
ICR  
t
LH  
V
OH  
output  
waveform 2  
0.15 V  
0 V  
002aaa503  
Fig 21. Voltage waveforms, open-drain output LOW-to-HIGH transition time with respect to  
clock inputs  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
22 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
12. Package outline  
TFBGA160: plastic thin fine-pitch ball grid array package; 160 balls; body 9 x 13 x 0.8 mm  
SOT802-1  
D
B
A
ball A1  
index area  
A
A
2
E
1
A
detail X  
C
e
1
v M  
w M  
C
C
A
B
e
b
y
y
C
1
1/2e  
V
U
T
P
R
N
e
M
K
H
L
J
e
2
1/2e  
G
E
C
A
F
D
B
ball A1  
index area  
1
3
5
7
9
11  
2
4
6
8
10  
12  
X
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
A
b
D
E
e
e
e
v
w
y
y
1
1
2
1
2
max.  
0.35 0.85 0.45  
0.25 0.75 0.35  
9.1  
8.9  
13.1  
12.9  
mm  
1.2  
0.65 7.15 11.05 0.15 0.08  
0.1  
0.1  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
03-01-29  
SOT802-1  
- - -  
- - -  
- - -  
Fig 22. Package outline SOT802-1 (TFBGA160)  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
23 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
13. Soldering  
13.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
13.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
13.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
24 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
13.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
13.5 Package related soldering information  
Table 12: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
25 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
14. Revision history  
Table 13: Revision history  
Document ID  
Release date Data sheet status  
20050311 Product data sheet  
Change notice Doc. number  
9397 750 14136  
Supersedes  
SSTUH32865_1  
-
-
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
26 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
15. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
16. Definitions  
17. Disclaimers  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
18. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14136  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 11 March 2005  
27 of 28  
SSTUH32865  
Philips Semiconductors  
1.8 V high output drive DDR registered buffer with parity  
19. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
7
Functional description . . . . . . . . . . . . . . . . . . . 8  
Function table . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional information . . . . . . . . . . . . . . . . . . . 9  
Functional differences to SSTU32864 . . . . . . 10  
Chip Select (CS) gating of key inputs (DCS0,  
DCS1, CSGATEEN) . . . . . . . . . . . . . . . . . . . . 10  
Parity error checking and reporting. . . . . . . . . 10  
Reset (RESET). . . . . . . . . . . . . . . . . . . . . . . . 10  
Power-up sequence . . . . . . . . . . . . . . . . . . . . 10  
7.1  
7.2  
7.3  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 15  
Recommended operating conditions. . . . . . . 15  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 16  
9
10  
11  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 18  
Test circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Output slew rate measurement. . . . . . . . . . . . 20  
Error output load circuit and voltage  
11.1  
11.2  
11.3  
measurement . . . . . . . . . . . . . . . . . . . . . . . . . 21  
12  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 23  
13  
13.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 24  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 24  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 25  
Package related soldering information . . . . . . 25  
13.2  
13.3  
13.4  
13.5  
14  
15  
16  
17  
18  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 26  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 27  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Contact information . . . . . . . . . . . . . . . . . . . . 27  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 11 March 2005  
Document number: 9397 750 14136  
Published in The Netherlands  

相关型号:

SSTUH32865ET

1.8 V 28-bit high output drive 1:2 registered buffer with parity for DDR2 RDIMM applications
NXP

SSTUH32865ET,518

SSTUH32865 - 1.8 V 28-bit high output drive 1:2 registered buffer with parity for DDR2 RDIMM applications BGA 160-Pin
NXP

SSTUH32865ET,551

SSTUH32865 - 1.8 V 28-bit high output drive 1:2 registered buffer with parity for DDR2 RDIMM applications BGA 160-Pin
NXP

SSTUH32865ET/G

1.8 V 28-bit high output drive 1:2 registered buffer with parity for DDR2 RDIMM applications
NXP

SSTUH32865ET/G,551

SSTUH32865 - 1.8 V 28-bit high output drive 1:2 registered buffer with parity for DDR2 RDIMM applications BGA 160-Pin
NXP

SSTUH32866

1.8 V high output drive 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2 RDIMM applications
NXP

SSTUH32866EC

1.8 V high output drive 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2 RDIMM applications
NXP

SSTUH32866EC/G

1.8 V high output drive 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2 RDIMM applications
NXP

SSTUM32865

1.8 V 28-bit 1 : 2 registered buffer with parity for DDR2-800 RDIMM applications
NXP

SSTUM32865EG

1.8 V 28-bit 1 : 2 registered buffer with parity for DDR2-800 RDIMM applications
NXP

SSTUM32865ES

1.8 V 28-bit 1 : 2 registered buffer with parity for DDR2-800 RDIMM applications
NXP

SSTUM32865ET

1.8 V 28-bit 1 : 2 registered buffer with parity for DDR2-800 RDIMM applications
NXP