SP5748GBK0AVKU6R [NXP]

RISC Microcontroller;
SP5748GBK0AVKU6R
型号: SP5748GBK0AVKU6R
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器 外围集成电路
文件: 总76页 (文件大小:1232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number MPC5748G  
Rev. 6, 11/2018  
NXP Semiconductors  
Data Sheet: Technical Data  
MPC5748G  
MPC5748G Microcontroller  
Data Sheet  
Features  
• Boot Assist Flash (BAF) supports internal flash  
programming via a serial link (LIN / SCI)  
• 2 x 160 MHz Power Architecture® e200Z4 Dual issue,  
32-bit CPU  
• Analog  
– Single precision floating point operations  
– 8 KB instruction cache and 4 KB data cache  
– Variable length encoding (VLE) for significant code  
density improvements  
– Two analog-to-digital converters (ADC), one 10-bit  
and one 12-bit  
– Three analogue comparators  
– Cross Trigger Unit to enable synchronization of  
ADC conversions with a timer event from the  
eMIOS or from the PIT  
• 1 x 80 MHz Power Architecture® e200Z2 Single issue,  
32-bit CPU  
– Using variable length encoding (VLE) for  
significant code size footprint reduction  
• Communication  
– Four Deserial Peripheral Interface (DSPI)  
– Six Serial Peripheral interface (SPI)  
– 18 serial communication interface (LIN) modules  
– Eight enhanced FlexCAN3 with FD support  
– Four inter-IC communication interface (IIC)  
– One USB OTG Controller (USB_0) and One USB  
SPH Controller (USB_1) with ULPI Interface.  
– ENET complex (10/100 Ethernet) that supports  
Multi queue with AVB support, 1588, and MII/  
RMII  
• End to end ECC  
– All bus masters, for example, cores generate single  
error correction, double error detection (SECDED)  
code for every bus transaction  
– SECDED covers 64-bit data and 29-bit address  
• Memory interfaces  
– 6 MB on-chip flash supported with the flash  
controller  
– 3 x flash page buffers (3 port flash controller)  
– 768 KB on-chip SRAM across three RAM ports  
– 2 x ENET with L2 switch  
– Secure Digital Hardware Controller (uSDHC)  
– Dual-channel FlexRay Controller  
• Clock interfaces  
– 8-40 MHz external crystal (FXOSC)  
– 16 MHz IRC (FIRC)  
– 128 KHz IRC (SIRC)  
– 32 KHz external crystal (SXOSC)  
– Clock Monitor Unit (CMU)  
– Frequency modulated phase-locked loop (FMPLL)  
– Real Time Counter (RTC)  
• Audio  
– 3 x Synchronous Audio Interface (SAI)  
– Fractional clock dividers (FCD) operating in  
conjunction with the SAIs  
• Configurable I/O domains supporting FLEXCAN,  
LINFlex, Ethernet, USB, MLB, uSDHC and general  
I/O  
• 2x System Memory Protection Unit (SMPU) each with  
16 region descriptors and 16-byte region granularity  
• Supports wake-up from low power modes via the  
WKPU controller  
• 16 Semaphores to manage access to shared resource  
• On-chip voltage regulator (VREG)  
• Interrupt controller (INTC) capable of routing  
interrupts to any CPU  
• Debug functionality  
– e200Z2 core:NDI per IEEE-ISTO 5001-2008  
• Multiple crossbar switch architecture for concurrent  
access to peripherals, flash, and RAM from multiple  
bus masters  
Class3+  
– e200Z4 core(s): NDI per IEEE-ISTO 5001-2008  
Class 3+  
• 32-channels eDMA controller with multiple transfer  
request sources using DMAMUX  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
• Timer  
– 16 Periodic Interrupt Timers (PITs)  
– Three System Timer Module (STM)  
– Four Software WatchDog Timers (SWT)  
– 96 Configurable Enhanced Modular Input Output Subsystem (eMIOS) channels  
• Device/board boundary Scan testing supported with per Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1) and  
1149.7 (cJTAG)  
• Security  
– Hardware Security Module (HSMv2)  
– Password and Device Security (PASS and TDM) supporting advanced censorship and life-cycle management  
– One Fault Collection and Control Unit (FCCU) to collect faults and issue interrupts  
• Functional Safety  
– ISO26262 ASIL compliance  
• Multiple operating modes  
– Includes enhanced low power operation  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
2
NXP Semiconductors  
Table of Contents  
1
2
3
Block diagram.................................................................................... 4  
6.3.5 Flash memory AC timing specifications................... 40  
6.3.6 Flash read wait state and address pipeline control  
settings ......................................................................41  
Family comparison.............................................................................4  
Ordering parts.....................................................................................9  
3.1 Determining valid orderable parts ..........................................9  
3.2 Ordering Information ............................................................. 9  
General............................................................................................... 10  
4.1 Absolute maximum ratings..................................................... 10  
4.2 Recommended operating conditions....................................... 11  
4.3 Voltage regulator electrical characteristics............................. 13  
4.4 Voltage monitor electrical characteristics...............................16  
4.5 Supply current characteristics................................................. 18  
4.6 Electrostatic discharge (ESD) characteristics......................... 21  
4.7 Electromagnetic Compatibility (EMC) specifications............ 22  
I/O parameters....................................................................................22  
5.1 AC specifications @ 3.3 V Range...........................................22  
5.2 DC electrical specifications @ 3.3V Range............................23  
5.3 AC specifications @ 5 V Range..............................................24  
5.4 DC electrical specifications @ 5 V Range..............................25  
5.5 Reset pad electrical characteristics..........................................26  
5.6 PORST electrical specifications..............................................28  
Peripheral operating requirements and behaviours............................28  
6.1 Analog..................................................................................... 28  
6.1.1 ADC electrical specifications....................................28  
6.1.2 Analog Comparator (CMP) electrical specifications 32  
6.2 Clocks and PLL interfaces modules........................................33  
6.2.1 Main oscillator electrical characteristics................... 33  
6.2.2 32 kHz Oscillator electrical specifications ...............35  
6.2.3 16 MHz RC Oscillator electrical specifications........ 35  
6.2.4 128 KHz Internal RC oscillator Electrical  
6.4 Communication interfaces.......................................................41  
6.4.1 DSPI timing...............................................................41  
6.4.2 FlexRay electrical specifications...............................47  
4
6.4.2.1  
6.4.2.2  
6.4.2.3  
6.4.2.4  
FlexRay timing...................................... 47  
TxEN......................................................48  
TxD........................................................49  
RxD........................................................50  
6.4.3 uSDHC specifications............................................... 51  
6.4.4 Ethernet switching specifications..............................52  
6.4.5 MediaLB (MLB) electrical specifications.................54  
5
6.4.5.1  
6.4.5.2  
MLB 3-pin interface DC characteristics54  
MLB 3-pin interface electrical  
specifications......................................... 54  
6.4.6 USB electrical specifications.....................................56  
6.4.6.1  
6.4.6.2  
USB electrical specifications.................56  
ULPI timing specifications....................56  
6.4.7 SAI electrical specifications .....................................58  
6.5 Debug specifications............................................................... 60  
6.5.1 JTAG interface timing ..............................................60  
6.5.2 Nexus timing............................................................. 62  
6.5.3 WKPU/NMI timing...................................................64  
6.5.4 External interrupt timing (IRQ pin)...........................65  
Thermal attributes.............................................................................. 65  
7.1 Thermal attributes................................................................... 65  
Dimensions.........................................................................................67  
8.1 Obtaining package dimensions ...............................................67  
Pinouts................................................................................................68  
9.1 Package pinouts and signal descriptions................................. 68  
6
7
8
9
specifications ............................................................ 36  
6.2.5 PLL electrical specifications .................................... 36  
6.3 Memory interfaces...................................................................37  
6.3.1 Flash memory program and erase specifications.......37  
6.3.2 Flash memory Array Integrity and Margin Read  
10 Reset sequence................................................................................... 68  
10.1 Reset sequence duration..........................................................68  
10.2 BAF execution duration.......................................................... 68  
10.3 Reset sequence description......................................................69  
11 Revision History.................................................................................71  
specifications............................................................. 38  
6.3.3 Flash memory module life specifications..................39  
6.3.4 Data retention vs program/erase cycles.....................39  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
3
Block diagram  
1 Block diagram  
System bus masters  
80 MHz e200z2  
160 MHz e200z4  
160 MHz e200z4  
uSDHC  
MLB150  
HSM  
Ethernet(ENET)  
Ethernet Switch  
64-bit AHB  
E2 E-ECC  
Nexus 3+  
System  
3 x STM  
8 KB i-cache 4 KB d-cache  
WKPU  
BAF  
eDMA  
Flexray  
SPFP-APU  
E2 E-ECC  
Nexus 3+  
PMC  
HS_USBSPH HS_USBOTG  
64-bit AHB  
FMPLL  
16 MHz FIRC  
RTC/API  
DEBUG/  
JTAG  
4 x SWTs  
16 x SEMA4  
16 x PIT-RTI  
FCCU  
PASS  
SSCM  
64-bit data  
E2 E-ECC  
SMPU  
3 x DSMC  
2 x DSMC  
32 KHz  
SXOSC  
MC_CGM,  
MC_PCU,  
MC_ME,  
Peripheral  
Flash  
3xRAM  
E2 E-ECC  
bridge  
Low power  
unit interface  
MC_RGM  
E2 E-ECC  
E2 E-ECC  
3 x SA-PF buffers  
Triple ported  
64-bit wide RAM  
256 KB array  
256 KB array  
256 KB array  
128 KHz  
SIRC  
SIUL  
8–40 MHz  
FXOSC  
STCU  
(MBIST/  
LBIST)  
6 MB array (inc EEE)  
2 x MEMU  
CMU  
TDM  
Peripheral clusters  
Padkeeper  
support  
80 ch 10-bit ADC0 64 ch 12-bit ADC1 1 x FlexCAN(PN)  
1x 18 LinFlex  
(mix int and ext)  
(mix int and ext)  
7 x FlexCAN  
Register  
protection  
LPU_CTL  
2
C
4 x I  
3 x analog  
4 x DSPI  
6 x SPI  
3 x SAI  
3 x FCD  
comparator (CMP)  
3 x eMIOS + BCTU  
3-core INTC  
DMA and  
2 x chmux  
1 x CRC  
*All FlexCANs optionally  
support CAN FD  
Figure 1. MPC5748G block diagram  
2 Family comparison  
The following table provides a summary of the different members of the MPC5748G  
family and their proposed features. This information is intended to provide an  
understanding of the range of functionality offered by this family. For full details of all of  
the family derivatives please contact your marketing representative.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
4
NXP Semiconductors  
Family comparison  
NOTE  
All optional features (Flash memory, RAM, Peripherals) start  
with lowest peripheral number (for example: STM_0) or  
memory address and end at the highest available peripheral  
number or memory address (for example: MPC574xC have 2  
STM, ending with STM_1).  
Table 1. MPC5748G Family Comparison1  
Feature  
MPC5747C  
e200z4  
MPC5748C  
e200z4  
MPC5746G  
e200z4  
MPC5747G  
e200z4  
MPC5748G  
e200z4  
CPUs  
e200z2  
e200z2  
e200z4  
e200z4  
e200z4  
e200z2  
e200z2  
e200z2  
FPU  
e200z4  
e200z4  
e200z4  
e200z4  
e200z4  
e200z4  
e200z4  
e200z4  
Maximum  
Operating  
Frequency2  
160MHz (z4)  
80MHz (z2)  
160MHz (z4)  
80MHz (z2)  
160MHz (z4)  
160MHz (z4)  
80MHz (z2)  
3 MB  
160MHz (z4)  
160MHz (z4)  
80MHz (z2)  
4 MB  
160MHz (z4)  
160MHz (z4)  
80MHz (z2)  
6 MB  
Flash memory  
EEPROM support  
RAM  
4 MB  
6 MB  
32 KB to 128 KB emulated  
512 KB  
32 KB to 192 KB emulated  
768 KB  
ECC  
End to End  
SMPU  
SMPU_0: 12 entry, SMPU_1: 12 entry  
SMPU_0: 16 entry, SMPU_1: 16 entry  
32 channels  
DMA  
10-bit ADC  
48 Standard channels  
32 External channels  
16 Precision channels  
16 Standard channels  
32 External channels  
3
12-bit ADC  
AnalogComparator  
BCTU  
1
SWT  
2
2
43  
3
STM  
PIT-RTI  
16 channels PIT  
1 channels RTI  
Yes  
RTC/API  
Total Timer I/O4  
96 channels  
16-bits  
LINFlexD  
FlexCAN  
DSPI/SPI  
1 M/S, 15 M  
1 M/S, 17 M  
8 with optional CAN FD support  
4 x DSPI  
6 x SPI  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
5
Family comparison  
Table 1. MPC5748G Family Comparison1 (continued)  
Feature  
I2C  
MPC5747C  
MPC5748C  
MPC5746G  
4
MPC5747G  
MPC5748G  
SAI/I2S  
FXOSC  
SXOSC  
FIRC  
3
8 - 40 MHz  
32 KHz  
16 MHz  
128 KHz  
Yes  
SIRC  
FMPLL  
LPU  
Yes  
FlexRay 2.1 (dual  
channel)  
Yes, 128 MB  
MLB150  
USB 2.0 SPH  
USB 2.0 OTG  
SDHC  
0
0
0
1
1
1
1
Ethernet (RMII, MII  
+ 1588, Muti queue  
AVB support)  
Up to 2  
3 Port L2 Ethernet  
Switch  
Optional  
CRC  
MEMU  
1
2
STCU  
1
Optional  
Yes  
HSM-v2 (security)  
Censorship  
FCCU  
1
Safety level  
User MBIST  
User LBIST  
Specific functions ASIL-B certifiable  
Yes  
Yes  
Yes  
I/O Retention in  
Standby  
GPI  
17 (176 LQFP-EP), 18 (256 BGA), 18 (324 BGA)  
GPIO  
Debug  
129 (176 LQFP-EP), 178 (256 BGA), 246 (324 BGA)  
JTAGC,  
cJTAG  
Nexus  
Z4 N3+  
Z2 N3+  
Packages  
176 LQFP-EP  
256 BGA, 324 BGA  
1. Feature set dependent on selected peripheral multiplexing, table shows example. Peripheral availability is package  
dependent.  
2. Based on 125°C ambient operating temperature and subject to full device characterisation.  
3. Additional SWT included when HSM option selected  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
6
NXP Semiconductors  
Family comparison  
4. Refer device datasheet and reference manual for information on to timer channel configuration and functions.  
Table 2. MPC5748G Family Comparison - NVM Memory Map 1  
Start Address  
End Address  
Flash block  
RWW  
MPC5746  
MPC5747  
MPC5748  
0x01000000  
0x0103FFFF  
256 KB code  
Flash block 0  
6
available  
available  
available  
0x01040000  
0x01080000  
0x010C0000  
0x01100000  
0x01140000  
0x01180000  
0x011C0000  
0x01200000  
0x01240000  
0x01280000  
0x012C0000  
0x01300000  
0x01340000  
0x01380000  
0x013C0000  
0x01400000  
0x01440000  
0x01480000  
0x14C0000  
0x01500000  
0x01540000  
0x0107FFFF  
0x010BFFFF  
0x010FFFFF  
0x0113FFFF  
0x0117FFFF  
0x011BFFFF  
0x011FFFFF  
0x0123FFFF  
0x0127FFFF  
0x012BFFFF  
0x012FFFFF  
0x0133FFFF  
0x0137FFFF  
0x013BFFFF  
0x013FFFFF  
0x0143FFFF  
0x0147FFFF  
0x014BFFFF  
0x014FFFFF  
0x0153FFFF  
0x0157FFFF  
256 KB code  
Flash block 1  
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
8
8
8
9
9
9
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
256 KB code  
Flash block 2  
256 KB code  
Flash block3  
available  
available  
256 KB code  
Flash block 4  
available  
available  
256 KB code  
Flash block 5  
available  
available  
256 KB code  
Flash block 6  
available  
available  
256 KB code  
Flash block 7  
available  
available  
256 KB code  
Flash block 8  
available  
available  
256 KB code  
Flash block 9  
available  
available  
256 KB code  
Flash block 10  
not available  
not available  
not available  
not available  
not available  
not available  
not available  
not available  
not available  
not available  
not available  
not available  
available  
256 KB code  
flash block 11  
available  
256 KB code  
flash block 12  
available  
256 KB code  
flash block 13  
available  
256 KB code  
flash block 14  
not available  
not available  
not available  
not available  
not available  
not available  
not available  
not available  
256 KB code  
flash block 15  
256 KB code  
flash block 16  
256 KB code  
flash block 17  
256 KB code  
flash block 18  
256 KB code  
flash block 19  
256 KB code  
flash block 20  
256 KB code  
flash block 21  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
7
Family comparison  
Table 3. MPC5748G Family Comparison - NVM Memory Map 2  
Start Address  
End Address  
Flash block  
RWW  
MPC5747C  
MPC5748C  
MPC5746G  
MPC5747G  
MPC5748G  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
available  
0x00F90000  
0x00F94000  
0x00F98000  
0x00F9C000  
0x00FA0000  
0x00FA4000  
0x00FA8000  
0x00FAC000  
0x00FB0000  
0x00FB8000  
0x00FC0000  
0x00FC8000  
0x00FD0000  
0x00FD8000  
0x00FE0000  
0x00FF0000  
0x00F93FFF  
0x00F97FFF  
0x00F9BFFF  
0x00F9FFFF  
0x00FA3FFF  
0x00FA7FFF  
0x00FABFFF  
0x00FAFFFF  
0x00FB7FFF  
0x00FBFFFF  
0x00FC7FFF  
0x00FCFFFF  
0x00FD7FFF  
0x00FDFFFF  
0x00FEFFFF  
0x00FFFFFF  
16 KB data Flash  
16 KB data Flash  
16 KB data Flash  
16 KB data Flash  
16 KB data Flash  
16 KB data Flash  
16 KB data Flash  
16 KB data Flash  
32 KB data Flash  
32 KB data flash  
32 KB data flash  
32 KB data flash  
32 KB data flash  
32 KB data flash  
64 KB data flash  
64 KB data flash  
2
2
2
2
3
3
3
3
2
3
0
0
1
1
0
1
available  
available  
available  
available  
available  
available  
available  
available  
not available  
not available  
available  
available  
available  
available  
available  
available  
Table 4. MPC5748G Family Comparison - RAM Memory Map  
Start Address  
End Address  
Allocated size [KB]  
MPC5747C  
MPC5748C  
MPC5746G  
MPC5747G  
MPC5748G  
available  
0x40000000  
0x40002000  
0x40010000  
0x40020000  
0x40040000  
0x40080000  
0x40001FFF  
0x4000FFFF  
0x4001FFFF  
0x4003FFFF  
0x4007FFFF  
0x400BFFFF  
8
available  
available  
56  
available  
64  
available  
available  
128  
256  
256  
available  
available  
available  
available  
not available  
available  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
8
NXP Semiconductors  
Ordering parts  
3 Ordering parts  
3.1 Determining valid orderable parts  
To determine the orderable part numbers for this device, go to www.nxp.com and  
perform a part number search for the following device number: MPC5748G .  
3.2 Ordering Information  
R
6
P
PC  
57  
4
8
G
S
K0  
M
MJ  
Example Code  
Qualification Status  
Power Architecture  
Automotive Platform  
Core Version  
Flash Size (core dependent)  
Product  
Optional fields  
Fab and mask indicator  
Temperature spec.  
Package Code  
CPU Frequency  
R = Tape & Reel (blank if Tray)  
Product Version  
Package Code  
Qualification Status  
KU = 176 LQFP EP  
MJ = 256 MAPBGA  
MN = 324 MAPBGA  
C = Body Control Feature Set  
G = Gateway Feature Set  
P = Engineering samples  
S = Automotive qualified  
Optional fields  
PC = Power Architecture  
CPU Frequency  
2 = Each z4 operates up to 120  
MHz  
Blank = Feature not available  
Automotive Platform  
S = HSM (Security Module)  
F = CAN FD  
57 = Power Architecture in 55nm  
6 = Each z4 operates up to 160  
MHz  
B = Both HSM and CAN FD  
T = HSM and 2nd Ethernet  
G = CAN FD and 2nd Ethernet  
Core Version  
Shipping Method  
R = Tape and reel  
Blank = Tray  
4 = e200z4 Core Version (highest  
core version in the case of multiple  
cores)  
H = HSM, CAN FD, and 2nd Eternet  
Fab and mask version indicator  
K=TSMC Fab  
#=Version of maskset  
0=0N65H  
1=1N81M  
0A=0N78S  
Temperature spec.  
C = -40.C to +85.C Ta  
V = -40.C to +105.C Ta  
M = -40.C to +125.C Ta  
Flash Memory Size  
6 = 3 MB  
7 = 4 MB  
8 = 6 MB  
,
Note: Not all part number combinations are available as production product  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
9
General  
4 General  
4.1 Absolute maximum ratings  
NOTE  
Functional operating conditions appear in the DC electrical  
characteristics. Absolute maximum ratings are stress ratings  
only, and functional operation at the maximum values is not  
guaranteed. See footnotes in Table 5 for specific conditions  
Stress beyond the listed maximum values may affect device  
reliability or cause permanent damage to the device.  
Table 5. Absolute maximum ratings  
Symbol  
Parameter  
Conditions1  
Min  
Max  
Unit  
VDD_HV_A, VDD_HV_B  
,
3.3 V - 5. 5V input/output supply voltage  
–0.3  
6.0  
V
2
VDD_HV_C  
3, 4  
VDD_HV_FLA  
3.3 V flash supply voltage (when supplying  
from an external source in bypass mode)  
–0.3  
3.63  
V
5
VDD_LP_DEC  
Decoupling pin for low power regulators6  
3.3 V / 5.0 V ADC1 high reference voltage  
3.3 V to 5.5V ADC supply voltage  
–0.3  
–0.3  
–0.3  
1.32  
6
V
V
V
7
VDD_HV_ADC1_REF  
VDD_HV_ADC0  
VDD_HV_ADC1  
VSS_HV_ADC0  
VSS_HV_ADC1  
6.0  
3.3V to 5.5V ADC supply ground  
–0.1  
0.1  
V
8, 9, 10, 11  
VDD_LV  
Core logic supply voltage  
–0.3  
–0.3  
1.32  
V
V
VINA  
Voltage on analog pin with respect to  
Min (VDD_HV_x,  
ground (VSS_HV  
)
VDD_HV_ADCx  
VDD_ADCx_REF  
+0.3  
,
)
VIN  
Voltage on any digital pin with respect to  
ground (VSS_HV  
Relative to  
–0.3  
VDD_HV_x + 0.3  
V
)
VDD_HV_A  
VDD_HV_B  
,
,
VDD_HV_C  
IINJPAD  
IINJSUM  
Tramp  
Injected input current on any pin during  
overload condition  
Always  
–5  
5
mA  
mA  
Absolute sum of all injected input currents  
during overload condition  
–50  
50  
Supply ramp rate  
0.5 V / min  
-40  
100V/ms  
125  
°C  
°C  
12  
TA  
Ambient temperature  
Storage temperature  
TSTG  
–55  
165  
1. All voltages are referred to VSS_HV unless otherwise specified  
2. VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
10  
NXP Semiconductors  
General  
3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V  
4. VDD_HV_FLA must be disconnected from ANY power sources when VDD_HV_A = 5V  
5. This pin should be decoupled with low ESR 1 µF capacitor.  
6. Not available for input voltage, only for decoupling internal regulators  
7. 10-bit ADC does not have dedicated reference and its reference is double bonded to 10-bit ADC supply(VDD_HV_ADC0).  
8. Allowed 1.45 – 1.5 V for 60 seconds cumulative time at maximum TJ = 150 °C, remaining time as defined in footnotes 10  
and 11.  
9. Allowed 1.38 – 1.45 V– for 10 hours cumulative time at maximum TJ = 150 °C, remaining time as defined in footnote 11.  
10. 1.32 – 1.38 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.326 V at  
maximum TJ = 150 °C.  
11. If HVD on core supply (VHVD_LV_x) is enabled, it will generate a reset when supply goes above threshold.  
12. TJ=150°C. Assumes TA=125°C  
• Assumes maximum θJA. SeeThermal attributes  
4.2 Recommended operating conditions  
The following table describes the operating conditions for the device, and for which all  
specifications in the data sheet are valid, except where explicitly noted. The device  
operating conditions must not be exceeded in order to guarantee proper operation and  
reliability. The ranges in this table are design targets and actual data may vary in the  
given range.  
NOTE  
• For normal device operations, all supplies must be within  
operating range corresponding to the range mentioned in  
following tables. This is required even if some of the  
features are not used.  
• If VDD_HV_A is in 5.0V range, VDD_HV_FLA should be  
externally supplied using a 3.3V source. If VDD_HV_A is  
in 3.3V range, VDD_HV_FLA should be shorted to  
VDD_HV_A.  
• VDD_HV_A, VDD_HV_B and VDD_HV_C are all  
independent supplies and can each be set to 3.3V or 5V.  
The following tables: 'Recommended operating conditions  
(VDD_HV_x = 3.3 V)' and table 'Recommended operating  
conditions (VDD_HV_x = 5 V)' specify their ranges when  
configured in 3.3V or 5V respectively.  
Table 6. Recommended operating conditions (VDD_HV_x = 3.3 V)  
Symbol  
VDD_HV_A  
VDD_HV_B  
VDD_HV_C  
VDD_HV_FLA  
Parameter  
Conditions1  
Min2  
Max  
Unit  
HV IO supply voltage  
3.15  
3.6  
V
3
HV flash supply voltage  
3.15  
3.6  
V
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
11  
General  
Table 6. Recommended operating conditions (VDD_HV_x = 3.3 V) (continued)  
Symbol  
Parameter  
Conditions1  
Min2  
Max  
5.5  
Unit  
V
VDD_HV_ADC1_REF HV ADC1 high reference voltage  
3.0  
VDD_HV_ADC0  
VDD_HV_ADC1  
HV ADC supply voltage  
HV ADC supply ground  
max(VDD_H  
V_A,VDD_H  
V_B,VDD_H  
V_C) - 0.05  
3.6  
V
VSS_HV_ADC0  
VSS_HV_ADC1  
-0.1  
0.1  
V
4
VDD_LV  
Core supply voltage  
1.2  
3.15  
-3.0  
1.32  
3.6  
V
V
5, 6  
VIN1_CMP_REF  
IINJPAD  
Analog Comparator DAC reference voltage  
Injected input current on any pin during  
overload condition  
3.0  
mA  
TA  
TJ  
Ambient temperature under bias  
fCPU ≤ 160  
MHz  
–40  
–40  
125  
150  
°C  
°C  
Junction temperature under bias  
1. All voltages are referred to VSS_HV unless otherwise specified  
2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the  
point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.  
3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V  
4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be  
left floating.  
5. VIN1_CMP_REF ≤ VDD_HV_A  
6. This supply is shorted VDD_HV_A on lower packages.  
NOTE  
If VDD_HV_A is in 5V range, it is necessary to use internal  
Flash supply 3.3V regulator. VDD_HV_FLA should not be  
supplied externally and should only have decoupling capacitor.  
Table 7. Recommended operating conditions (VDD_HV_x = 5 V)  
Symbol  
VDD_HV_A  
VDD_HV_B  
VDD_HV_C  
VDD_HV_FLA  
Parameter  
Conditions 1  
Min2  
Max  
Unit  
HV IO supply voltage  
4.5  
5.5  
V
3
HV flash supply voltage  
3.15  
3.15  
3.6  
5.5  
5.5  
V
V
V
VDD_HV_ADC1_REF HV ADC1 high reference voltage  
VDD_HV_ADC0  
HV ADC supply voltage  
max(VDD_H  
V_A,VDD_H  
V_B,VDD_H  
V_C) - 0.05  
VDD_HV_ADC1  
VSS_HV_ADC0  
VSS_HV_ADC1  
HV ADC supply ground  
Core supply voltage  
-0.1  
0.1  
V
V
4
VDD_LV  
1.2  
1.32  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
12  
NXP Semiconductors  
General  
Table 7. Recommended operating conditions (VDD_HV_x = 5 V) (continued)  
Symbol  
VIN1_CMP_REF  
IINJPAD  
Parameter  
Conditions 1  
Min2  
3.15  
-3.0  
Max  
5.5  
Unit  
V
5
Analog Comparator DAC reference voltage  
Injected input current on any pin during  
overload condition  
3.0  
mA  
TA  
TJ  
Ambient temperature under bias  
fCPU ≤ 160  
MHz  
–40  
–40  
125  
150  
°C  
°C  
Junction temperature under bias  
1. All voltages are referred to VSS_HV unless otherwise specified  
2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the  
point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.  
3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally.This pin is decoupled with Cflash_reg  
.
4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be  
left floating  
5. This supply is shorted VDD_HV_A on lower packages.  
4.3 Voltage regulator electrical characteristics  
The voltage regulator is composed of the following blocks:  
• Choice of generating supply voltage for the core area.  
• Control of external NPN ballast transistor  
• Connecting an external 1.25 V (nominal) supply directly without the NPN ballast  
• Internal generation of the 3.3 V flash supply when device connected in 5V  
applications  
• External bypass of the 3.3 V flash regulator when device connected in 3.3V  
applications  
• Low voltage detector - low threshold (LVD_IO_A_LO) for VDD_HV_IO_A supply  
• Low voltage detector - high threshold (LVD_IO_A_Hi) for VDD_HV_IO_A supply  
• Various low voltage detectors (LVD_LV_x)  
• High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)  
• Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)  
• Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)  
The following bipolar transistors1 are supported, depending on the device performance  
requirements. As a minimum the following must be considered when determining the  
most appropriate solution to maintain the device under its maximum power dissipation  
capability: current, ambient temperature, mounting pad area, duty cycle and frequency for  
Idd, collector voltage, etc  
1. BCP56, MCP68 and MJD31are guaranteed ballasts.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
13  
General  
LPPREG  
VDD_LP_DEC  
VDD_HV_BALLAST  
ULPPREG  
CLP/ULPREG  
VRC_CTRL  
VSS_HV  
FPREG  
C
BE_FPREG  
Flash  
voltage  
regulator  
VDD_HV_FLA  
V
DD_LV  
CFLASH_REG  
CFP_REG  
VSS_HV  
VSS_HV  
DEVICE  
Figure 2. Voltage regulator capacitance connection  
Table 8. Voltage regulator electrical specifications  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1
Cfp_reg  
External decoupling / stability  
capacitor  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
1.32  
2.22  
3
µF  
Combined ESR of external  
capacitor  
0.001  
0.8  
1
0.03  
1.4  
Ohm  
µF  
Clp/ulp_reg External decoupling / stability  
capacitor for internal low power  
regulators  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
Combined ESR of external  
capacitor  
0.001  
0.1  
Ohm  
nF  
3
Cbe_fpreg  
Capacitor in parallel to base-  
emitter  
BCP68 and BCP56  
MJD31  
3.3  
4.7  
2.2  
4
Cflash_reg  
External decoupling / stability  
capacitor for internal Flash  
regulators  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
1.32  
3
µF  
Combined ESR of external  
capacitor  
0.001  
0.03  
Ohm  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
14  
NXP Semiconductors  
General  
Table 8. Voltage regulator electrical specifications (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CHV_VDD_A  
VDD_HV_A supply capacitor  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
1
µF  
CHV_VDD_B  
VDD_HV_B supply capacitor5  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
1
1
µF  
µF  
µF  
µF  
V
CHV_VDD_C VDD_HV_C supply capacitor5  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
CHV_ADC0 HV ADC supply decoupling  
capacitances  
CHV_ADC1  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
1
6
CHV_ADR  
HV ADC SAR reference supply  
decoupling capacitances  
Min, max values shall be granted  
with respect to tolerance, voltage,  
temperature, and aging  
variations.  
0.47  
2.25  
VDD_HV_BALL FPREG Ballast collector supply  
When collector of NPN ballast is  
directly supplied by an on board  
supply source (not shared with  
VDD_HV_A supply pin) without  
any series resistance, that is,  
RC_BALLAST less than 0.01 Ohm.  
5.5  
7
voltage  
AST  
RC_BALLAST Series resistor on collector of  
FPREG ballast  
When VDD_HV_BALLAST is  
shorted to VDD_HV_A on the  
board  
0.1  
Ohm  
tSU  
Start-up time after main supply  
stabilization  
Cfp_reg = 3 μF  
74  
μs  
µs  
tramp  
Load current transient  
Iload from 15% to 55%  
Cfp_reg = 3 µF  
1.0  
1. Split capacitance on each pair VDD_LV pin should sum up to a total value of Cfp_reg  
2. Typical values will vary over temperature, voltage, tolerance, drift, but total variation must not exceed minimum and  
maximum values.  
3. Ceramic X7R or X5R type with capacitance-temperature characteristics +/-15% of -55 degC to +125degC is  
recommended. The tolerance +/-20% is acceptable.  
4. It is required to minimize the board parasitic inductance from decoupling capacitor to VDD_HV_FLA pin and the routing  
inductance should be less than 1nH.  
5.  
1. For VDD_HV_A, VDD_HV_B, and VDD_HV_C, 1µf on each side of the chip  
a. 0.1 µf close to each VDD/VSS pin pair.  
b. 10 µf near for each power supply source  
c. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation  
mode, this amount of capacitance will need to be subtracted from the total capacitance required by the  
regulator for e.g., as specified by CFP_REG parameter.  
2. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this  
amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as  
specified by CFP_REG parameter  
6. Only applicable to ADC1  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
15  
General  
7. In external ballast configuration the following must be ensured during power-up and power-down (Note: If VDD_HV_BALLAST  
is supplied from the same source as VDD_HV_A this condition is implicitly met):  
• During power-up, VDD_HV_BALLAST must have met the min spec of 2.25V before VDD_HV_A reaches the  
POR_HV_RISE min of 2.75V.  
• During power-down, VDD_HV_BALLAST must not drop below the min spec of 2.25V until VDD_HV_A is below  
POR_HV_FALL min of 2.7V.  
NOTE  
For a typical configuration using an external ballast transistor  
with separate supply for VDD_HV_A and the ballast collector,  
a bulk storage capacitor (as defined in Table 8) is required on  
VDD_HV_A close to the device pins to ensure a stable supply  
voltage.  
Extra care must be taken if the VDD_HV_A supply is also  
being used to power the external ballast transistor or the device  
is running in internal regulation mode. In these modes, the  
inrush current on device Power Up or on exit from Low Power  
Modes is significant and may cause the VDD_HV_A voltage to  
drop resulting in an LVD reset event. To avoid this, the board  
layout should be optimized to reduce common trace resistance  
or additional capacitance at the ballast transistor collector (or  
VDD_HV_A pins in the case of internal regulation mode) is  
required. NXP recommends that customers simulate the  
external voltage supply circuitry.  
In all circumstances, the voltage on VDD_HV_A must be  
maintained within the specified operating range (see  
Recommended operating conditions) to prevent LVD events.  
4.4 Voltage monitor electrical characteristics  
Table 9. Voltage monitor electrical characteristics  
Symbol  
Parameter  
State Conditions  
Configuration  
Threshold  
Typ Max  
Unit  
V
Powe Mas  
Reset Type  
Min  
r Up 1  
k
Opt  
VPOR_LV  
LV supply  
power on  
reset detector  
Fall  
Untrimmed  
Trimmed  
Yes  
No  
POR  
0.930 0.979 1.028  
0.959 0.979 0.999  
0.980 1.029 1.078  
1.009 1.029 1.049  
V
V
V
V
Rise  
Untrimmed  
Trimmed  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
16  
NXP Semiconductors  
General  
Table 9. Voltage monitor electrical characteristics (continued)  
Symbol  
Parameter  
State Conditions  
Configuration  
Threshold  
Typ Max  
Unit  
V
Powe Mas  
Reset Type  
Min  
r Up 1  
k
Opt  
VHVD_LV_cold  
LV supply high Fall  
voltage  
Untrimmed  
Trimmed  
No  
Yes Functional  
Disabled at Start  
1.325 1.345 1.375  
Disabled at Start  
V
monitoring,  
detecting at  
Rise  
Untrimmed  
Trimmed  
the device pin  
1.345 1.365 1.395  
1.080 1.120 1.160  
1.125 1.143 1.160  
1.100 1.140 1.180  
1.145 1.163 1.180  
V
V
V
V
V
VLVD_LV_PD2_hot  
VLVD_LV_PD1_hot  
VLVD_LV_PD0_hot  
VPOR_HV  
LV supply low Fall  
voltage  
Untrimmed  
Trimmed  
Yes  
Yes  
Yes  
No  
No  
No  
POR  
POR  
POR  
monitoring,  
Rise  
Untrimmed  
Trimmed  
detecting in  
the PD2 core  
(hot) area  
LV supply low Fall  
voltage  
Untrimmed  
Trimmed  
1.080 1.120 1.160  
1.114 1.137 1.160  
1.100 1.140 1.180  
1.134 1.157 1.180  
V
V
V
V
monitoring,  
Rise  
Untrimmed  
Trimmed  
detecting in  
the PD1 core  
(hot) area  
LV supply low Fall  
voltage  
Untrimmed  
Trimmed  
1.080 1.120 1.160  
1.114 1.137 1.160  
1.100 1.140 1.180  
1.134 1.157 1.180  
V
V
V
V
monitoring,  
Rise  
Untrimmed  
Trimmed  
detecting in  
the PD0 core  
(hot) area  
HV supply  
power on  
reset detector  
Fall  
Untrimmed  
Untrimmed  
Yes  
Yes  
No  
No  
POR  
POR  
2.700 2.850 3.000  
2.750 2.900 3.050  
V
V
Rise  
, 2  
VLVD_IO_A_LO  
HV IO_A  
supply low  
voltage  
monitoring -  
low range  
Fall  
Untrimmed  
Trimmed  
Untrimmed  
Trimmed  
Trimmed  
2.750 2.923 3.095  
2.978 3.039 3.100  
2.780 2.953 3.125  
3.008 3.069 3.130  
Disabled at Start  
V
V
V
V
Rise  
Fall  
2
VLVD_IO_A_HI  
HV IO_A  
No  
No  
Yes Functional  
Yes Functional  
supply low  
voltage  
monitoring -  
high range  
4.060 4.151 4.240  
Disabled at Start  
V
V
V
V
Rise  
Trimmed  
4.115 4.201 4.3  
Disabled at Start  
VLVD_LV_PD2_cold  
LV supply low Fall  
voltage  
Untrimmed  
Trimmed  
1.14  
Disabled at Start  
1.16 1.178 1.195  
1.158 1.175  
monitoring,  
detecting at  
Rise  
Untrimmed  
Trimmed  
the device pin  
1. All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the  
minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active  
will always generate a POR reset.  
2. There is no voltage monitoring on the VDD_HV_ADC0, VDD_HV_ADC1, VDD_HV_B and VDD_HV_C I/O segments. For applications  
requiring monitoring of these segments, either connect these to VDD_HV_A at the PCB level or monitor externally.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
17  
General  
4.5 Supply current characteristics  
Current consumption data is given in the following table. These specifications are design  
targets and are subject to change per device characterization.  
NOTE  
The ballast must be chosen in accordance with the ballast  
transistor supplier operating conditions and recommendations.  
Table 10. Current consumption characteristics  
Symbol  
IDD_FULL  
2, 3  
Parameter  
Conditions1  
LV supply + HV supply + HV Flash supply +  
2 x HV ADC supplies  
Ta = 85°C  
Min Typ  
219  
Max Unit  
RUN Full Mode  
Operating current  
292  
mA  
VDD_LV = 1.25 V  
VDD_HV_A = 5.5V  
SYS_CLK = 160MHz  
Ta = 105°C  
230  
249  
183  
328  
400  
260  
mA  
mA  
mA  
Ta = 125 °C  
IDD_GWY  
5, 6  
RUN Gateway  
Mode Operating  
current  
LV supply + HV supply + HV Flash supply + 2 x HV  
ADC supplies  
Ta = 85°C  
VDD_LV = 1.25 V  
VDD_HV_A = 5.5V  
SYS_CLK = 160MHz  
Ta = 105°C  
196  
215  
294  
348  
223  
mA  
mA  
mA  
Ta = 125°C4  
IDD_BODY_1  
7, 8  
RUN Body Mode LV supply + HV supply + HV Flash supply + 2 x HV  
Profile Operating ADC supplies  
149  
current  
Ta = 85 °C  
VDD_LV = 1.25 V  
VDD_HV_A = 5.5V  
SYS_CLK = 120MHz  
Ta = 105 °C  
158  
175  
270  
310  
174  
mA  
mA  
mA  
Ta = 125°C 4  
IDD_BODY_29, 10 RUN Body Mode LV supply + HV supply + HV Flash supply + 2 x HV  
Profile Operating ADC supplies  
105  
current  
Ta = 85 °C  
VDD_LV = 1.25 V  
VDD_HV_A = 5.5V  
SYS_CLK = 80MHz  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
18  
NXP Semiconductors  
General  
Table 10. Current consumption characteristics (continued)  
Symbol  
Parameter  
Conditions1  
Min Typ  
Max Unit  
Ta = 105 °C  
Ta = 125 °C 4  
114  
131  
11  
206  
277  
mA  
mA  
mA  
IDD_STOP  
STOP mode  
Ta = 25 °C  
Operating current  
VDD_LV = 1.25 V  
Ta = 85 °C  
19.8  
29  
105  
145  
160  
400  
VDD_LV = 1.25 V  
Ta = 105 °C  
VDD_LV = 1.25 V  
Ta = 125 °C 4  
VDD_LV = 1.25 V  
Ta = 25 °C  
45  
11, 12  
IDD_HV_ADC_REF  
ADC REF  
Operating current  
200  
µA  
mA  
mA  
2 ADCs operating at 80 MHz  
VDD_HV_ADC_REF = 3.6 V  
Ta = 125 °C 4  
200  
1
400  
2
2 ADCs operating at 80 MHz  
VDD_HV_ADC_REF = 5.5 V  
Ta = 25 °C  
12  
IDD_HV_ADCx  
ADC HV  
Operating current  
ADC operating at 80 MHz  
VDD_HV_ADC = 3.6 V  
Ta = 125 °C 4  
1.2  
40  
2
ADC operating at 80 MHz  
VDD_HV_ADC = 5.5 V  
Ta = 125 °C 4  
IDD_HV_FLASH  
Flash Operating  
current during  
read access  
45  
3.3 V supplies  
x MHz frequency  
1. The content of the Conditions column identifies the components that draw the specific current.  
2. ALL Modules enabled at maximum frequency: 2 x e200Z4 @160 MHz, e200Z2 at 80 MHz, Platform @160MHz, DMA  
(SRAM to SRAM), all SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM  
reading from flash at regular intervals (500 pll clock cycles), ENET0 transmitting, MLB transmitting, FlexRay transmitting,  
USB-SPH transmitting (USB-OTG only clocked), 2 x I2C transmitting (rest clocked), 1 x SAI transmitting (rest clocked),  
ADC0 converting using BCTU triggers triggered through PIT (other ADC clocked), RTC running, 3 x STM running, 2 x  
DSPI transmitting (rest clocked), 2 x SPI transmitting (rest clocked), 4 x CAN state machines working(rest clocked), 9 x  
LINFlexD transmitting (rest clocked), 1 x eMIOS clocked (used OPWFMB mode) (Others clock gated), SDHC,3 x CMP  
only clocked, FIRC, SIRC, FXOSC, SXOSC, PLL running. All others modules clock gated if not specifically mentioned. I/O  
supply current excluded.  
3. Recommended Transistors:MJD31 @ 85°C, 105°C and 125°C.  
4. Tj=150°C. Assumes Ta=125°C  
• Assumes maximum θJA. SeeThermal attributes  
5. Enabled Modules in Gateway mode: 2 x e200Z4 @160 MHz (Instruction and Data cache enabled), Platform @160MHz,  
e200Z2 at 80 MHz(Instruction cache enabled), all SRAMs accessed in parallel, Flash access(prefetch is disabled while  
buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), ENET0 transmitting, MLB  
transmitting, FlexRay transmitting, USB-SPH Transmitting, USB-OTG clocked, 2 x I2C transmitting, (2 x I2C clock gated),  
1 x SAI transmitting (2 x SAI clock gated), ADC0 converting in continuous mode (ADC1 clock gated), PIT clocked, RTC  
clocked, 3 x STM clocked, 2 x DSPI transmitting(Other DSPS clock gated), 2 x SPI transmitting(Other SPIs clock gated), 4  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
19  
General  
x FlexCAN state machines clocked(other FLEXCAN clock gated), 4 x LINFlexD transmitting (Other clock gated), 1x eMIOS  
clocked(used OPWFMB mode) (Others clock gated), FIRC, SIRC, FXOSC, SXOSC, PLL running, BCTU, DMAMUX,  
ACMP clock gated. All others modules clock gated if not specifically mentioned. I/O supply current excluded  
6. Recommended Transistors:MJD31@85°C, 105°C and 125°C.  
7. Enabled Modules in Body mode enabled at maximum frequency: 2 x e200Z4 @120Mhz(Instruction and Data cache  
enabled),Platform@120MHz, SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled),  
HSM reading from flash at regular intervals(500 pll clock cycles), DMA (SRAM to SRAM), ADC0 converting using BCTU  
triggers which are triggered through PIT(ADC1 clocked), RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(others  
DSPIs clocked), 2 x SPI transmitting(others clocked), 4 x FlexCAN state machines working(others clocked), 9xLINFlexD  
transmitting (others clocked), 1xeMIOS operational (used OPWFMB mode) (others clocked), FIRC, SIRC, FXOSC,  
SXOSC, PLL running, MEMU, FCCU, SIUL, SDHC,CMP clocked, e200Z2, ENET, MLB, SAI, I2C, FlexRay, USB clock  
gated. All others modules clock gated if not specifically mentioned I/O supply current excluded  
8. Recommended Transistors:BCP56, BCP68 or MJD31@85°C, BCP56, BCP68 or MJD31@105°C and MJD31@125°C.  
9. Enabled Modules in Body mode enabled at maximum frequency:2 x e200Z4 @80Mhz(Instruction and Data cache  
enabled),Platform@80MHz, SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled),  
HSM reading from flash at regular intervals(500 pll clock cycles), DMA (SRAM to SRAM), ADC0 converting using BCTU  
triggers which are triggered through PIT(ADC1 clocked), RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(others  
DSPIs clocked), 2 x SPI transmitting(others clocked), 4 x FlexCAN state machines working(others clocked), 9xLINFlexD  
transmitting (others clocked), 1xeMIOS operational (used OPWFMB mode) (others clocked), FIRC, SIRC, FXOSC,  
SXOSC, PLL running, MEMU, FCCU, SIUL, SDHC,CMP clocked, e200Z2, ENET, MLB, SAI, I2C, FlexRay, USB clock  
gated. All others modules clock gated if not specifically mentioned I/O supply current excluded  
10. Recommended Transistors:BCP56, BCP68 or MJD31@85°C, 105°C and 125°C  
11. Internal structures hold the input voltage less than VDD_HV_ADC_REF + 1.0 V on all pads powered by VDDA supplies, if the  
maximum injection current specification is met (3 mA for all pins) and VDDA is within the operating voltage specifications.  
12. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.  
Table 11. Low Power Unit (LPU) Current consumption characteristics  
Symbol  
Parameter  
Conditions1  
Min Typ  
Max Unit  
LPU_RUN  
with 256K RAM,  
but only one RAM  
being accessed  
Ta = 25 °C  
8.9  
mA  
SYS_CLK = 16MHz  
ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF  
Ta = 25 °C  
10.2  
SYS_CLK = 16MHz  
ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON  
Ta = 85 °C  
12.5  
14.5  
16  
22  
24  
26  
Ta = 105 °C  
Ta = 125 °C , 2  
SYS_CLK = 16MHz  
ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON  
LPU_STOP  
with 256K RAM  
Ta = 25 °C  
Ta = 85 °C  
Ta = 105 °C  
Ta = 125 °C 2  
0.535  
0.72  
1
mA  
6
8
1.6  
10.6  
1. The content of the Conditions column identifies the components that draw the specific current.  
2. Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal  
attributes  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
20  
NXP Semiconductors  
General  
Table 12. STANDBY Current consumption characteristics  
Symbol  
Parameter  
Conditions1  
Ta = 25 °C  
Ta = 85 °C  
Ta = 105 °C  
Ta = 125 °C  
Ta = 25 °C  
Ta = 85 °C  
Ta = 105 °C  
Ta = 125 °C  
Ta = 25 °C  
Ta = 85 °C  
Ta = 105 °C  
Ta = 125 °C  
Ta = 25 °C  
Ta = 85 °C  
Ta = 105 °C  
Ta = 125 °C  
Ta = 25 °C  
Min Typ Max Unit  
STANDBY0  
STANDBY with  
8K RAM  
71  
µA  
µA  
µA  
µA  
µA  
175  
800  
338 1725  
750 2775  
STANDBY1  
STANDBY2  
STANDBY3  
STANDBY3  
STANDBY with  
64K RAM  
72  
176  
815  
350 1775  
825 3000  
STANDBY with  
128K RAM  
75  
182  
830  
366 1825  
900 3250  
STANDBY with  
256K RAM  
80  
197  
860  
400 1875  
975 3500  
FIRC ON  
500  
1. The content of the Conditions column identifies the components that draw the specific current.  
NOTE  
For the Precision channel Analog inputs, SIUL2_MSCRn[PUS]  
must be configured to 0 before entering STANDBY. An  
increase in current would be observed when  
SIUL2_MSCRn[PUS] is configured to be 1, irrespective of the  
state of IBE or PUE. The current numbers would increase  
irrespective of whether the pad is pulled low/high externally.  
4.6 Electrostatic discharge (ESD) characteristics  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n + 1) supply pin). This  
test conforms to the AEC-Q100-002/-003/-011 standard.  
NOTE  
A device will be defined as a failure if after exposure to ESD  
pulses the device no longer meets the device specification  
requirements. Complete DC parametric and functional testing  
shall be performed per applicable device specification at room  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
21  
I/O parameters  
temperature followed by hot temperature, unless specified  
otherwise in the device specification.  
Table 13. ESD ratings  
Symbol  
Parameter  
Electrostatic discharge  
(Human Body Model)  
Conditions1  
Class  
Max value2  
Unit  
VESD(HBM)  
TA = 25 °C  
H1C  
2000  
V
conforming to AEC-  
Q100-002  
VESD(CDM)  
Electrostatic discharge  
(Charged Device Model)  
TA = 25 °C  
C3A  
500  
V
conforming to AEC-  
Q100-011  
750 (corners)  
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.  
2. Data based on characterization results, not tested in production.  
4.7 Electromagnetic Compatibility (EMC) specifications  
EMC measurements to IC-level IEC standards are available from NXP on request.  
5 I/O parameters  
5.1 AC specifications @ 3.3 V Range  
Table 14. Functional Pad AC Specifications @ 3.3 V Range  
Symbol  
Prop. Delay (ns)1  
Rise/Fall Edge (ns)  
Drive Load  
(pF)  
SIUL2_MSCRn[SRC 1:0]  
L>H/H>L  
Min  
Max  
6/6  
Min  
Max  
1.9/1.5  
3.25/3  
12/12  
3.9/3.5  
1.1  
MSB,LSB  
pad_sr_hv  
(output)  
25  
50  
11  
2.5/2.5  
6.4/5  
8.25/7.5  
19.5/19.5  
8/8  
0.8/0.6  
3.5/2.5  
0.55/0.5  
0.035  
1/1  
200  
2.2/2.5  
0.090  
2.9/3.5  
11/8  
25  
10  
1.1  
asymmetry2  
12.5/11  
35/31  
45/45  
65/65  
75/75  
100/100  
2/2  
7/6  
50  
7.7/5  
25/21  
25/25  
30/30  
40/40  
51/51  
0.5/0.5  
200  
8.3/9.6  
13.5/15  
13/13  
21/22  
4/3.5  
50  
01  
003  
NA  
6.3/6.2  
6.8/6  
200  
50  
11/11  
200  
pad_i_hv/  
pad_sr_hv  
0.5  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
22  
NXP Semiconductors  
I/O parameters  
Table 14. Functional Pad AC Specifications @ 3.3 V Range  
Symbol  
Prop. Delay (ns)1  
Rise/Fall Edge (ns)  
Drive Load  
(pF)  
SIUL2_MSCRn[SRC 1:0]  
L>H/H>L  
Min  
Max  
Min  
Max  
MSB,LSB  
(input)4  
1. As measured from 50% of core side input to Voh/Vol of the output  
2. This row specifies the min and max asymmetry between both the prop delay and the edge rates for a given PVT and 25pF  
load. Required for the Flexray spec.  
3. Slew rate control modes  
4. Input slope = 2ns  
NOTE  
The specification given above is based on simulation data into  
an ideal lumped capacitor. Customer should use IBIS models  
for their specific board/loading conditions to simulate the  
expected signal integrity and edge rates of their system.  
NOTE  
The specification given above is measured between 20% / 80%.  
5.2 DC electrical specifications @ 3.3V Range  
Table 15. DC electrical specifications @ 3.3V Range  
Symbol  
Parameter  
Value  
Unit  
Min  
1.08  
3.15  
Max  
1.32  
3.63  
VDD  
LV (core) Supply Voltage  
V
V
V
VDD_HV_x  
Vih (pad_i_hv)  
I/O Supply Voltage  
pad_i_hv Input Buffer High Voltage  
0.72*VDD_HV_ VDD_HV_x +  
0.3  
x
Vil (pad_i_hv)  
Vhys (pad_i_hv)  
Vih_hys  
Vil_hys  
pad_i_hv Input Buffer Low Voltage  
pad_i_hv Input Buffer Hysteresis  
VSS_LV - 0.3 0.45*VDD_HV_  
x
V
V
V
V
V
V
V
0.11*VDD_HV_  
x
CMOS Input Buffer High Voltage (with hysteresis  
enabled)  
0.67*VDD_HV_ VDD_HV_x +  
x
0.3  
CMOS Input Buffer Low Voltage (with hysteresis  
enabled)  
VSS_LV - 0.3 0.35*VDD_HV_  
x
Vih  
CMOS Input Buffer High Voltage (with hysteresis  
disabled)  
0.57 *  
VDD_HV_x  
VDD_HV_x +  
0.3  
Vil  
CMOS Input Buffer Low Voltage (with hysteresis  
disabled)  
VSS_LV - 0.3  
0.4 *  
VDD_HV_x  
Vhys  
CMOS Input Buffer Hysteresis  
0.09 *  
VDD_HV_x  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
23  
I/O parameters  
Symbol  
Table 15. DC electrical specifications @ 3.3V Range (continued)  
Parameter  
Value  
Unit  
Min  
Max  
Pull_IIH (pad_i_hv) Weak Pullup Current Low  
Pull_IIH (pad_i_hv) Weak Pullup Current High  
Pull_IIL (pad_i_hv) Weak Pulldown Current2 Low  
Pull_IIL (pad_i_hv) Weak Pulldown Current1 High  
15  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
55  
28  
85  
Pull_Ioh  
Pull_Iol  
Iinact_d  
Voh  
Weak Pullup Current3  
Weak Pulldown Current4  
15  
15  
50  
50  
Digital Pad Input Leakage Current (weak pull inactive)  
Output High Voltage5  
-2.5  
2.5  
0.8 *VDD_HV_x  
Vol  
Output Low Voltage6  
0.2 *VDD_HV_x  
V
Output Low Voltage7  
0.1 *VDD_HV_x  
Ioh_f  
Iol_f  
Full drive Ioh8 (SIUL2_MSCRn[SRC 1:0]= 11)  
Full drive Iol8 (SIUL2_MSCRn[SRC 1:0]= 11)  
Half drive Ioh8 (SIUL2_MSCRn[SRC 1:0]= 10)  
Half drive Iol8 (SIUL2_MSCRn[SRC 1:0]= 10)  
18  
21  
70  
120  
35  
mA  
mA  
mA  
mA  
Ioh_h  
Iol_h  
9
10.5  
60  
1. Measured when pad=0.69*VDD_HV_x  
2. Measured when pad=0.49*VDD_HV_x  
3. Measured when pad = 0 V  
4. Measured when pad = VDD_HV_x  
5. Measured when pad is sourcing 2 mA  
6. Measured when pad is sinking 2 mA  
7. Measured when pad is sinking 1.5 mA  
8. Ioh/Iol is derived from spice simulations. These values are NOT guaranteed by test.  
5.3 AC specifications @ 5 V Range  
Table 16. Functional Pad AC Specifications @ 5 V Range  
Symbol  
Prop. Delay (ns)1  
Rise/Fall Edge (ns)  
Drive Load (pF)  
SIUL2_MSCRn[SRC 1:0]  
L>H/H>L  
Min  
Max  
4.5/4.5  
6/6  
Min  
Max  
1.3/1.2  
2.5/2  
9/9  
MSB,LSB  
pad_sr_hv  
(output)  
25  
50  
11  
13/13  
5.25/5.25  
9/8  
200  
25  
3/2  
10  
5/4  
50  
22/22  
27/27  
40/40  
40/40  
18/16  
13/13  
24/24  
24/24  
200  
50  
012  
002  
200  
50  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
24  
NXP Semiconductors  
I/O parameters  
Table 16. Functional Pad AC Specifications @ 5 V Range (continued)  
Symbol  
Prop. Delay (ns)1  
Rise/Fall Edge (ns)  
Drive Load (pF)  
SIUL2_MSCRn[SRC 1:0]  
L>H/H>L  
Min  
Max  
65/65  
1.5/1.5  
Min  
Max  
40/40  
0.5/0.5  
MSB,LSB  
200  
0.5  
pad_i_hv/  
pad_sr_hv  
NA  
(input)  
1. As measured from 50% of core side input to Voh/Vol of the output  
2. Slew rate control modes  
NOTE  
The above specification is based on simulation data into an  
ideal lumped capacitor. Customer should use IBIS models for  
their specific board/loading conditions to simulate the expected  
signal integrity and edge rates of their system.  
NOTE  
The above specification is measured between 20% / 80%.  
5.4 DC electrical specifications @ 5 V Range  
Table 17. DC electrical specifications @ 5 V Range  
Symbol  
Parameter  
Value  
Unit  
Min  
1.08  
4.5  
Max  
1.32  
5.5  
VDD_LV  
VDD_HV_x  
Vih (pad_i_hv)  
LV (core) Supply Voltage  
V
V
V
I/O Supply Voltage  
pad_i_hv Input Buffer High Voltage  
0.7*VDD_HV_x VDD_HV_x +  
0.3  
Vil (pad_i_hv)  
pad_i_hv Input Buffer Low Voltage  
pad_i_hv Input Buffer Hysteresis  
VSS_LV- 0.3 0.45*VDD_HV_  
x
V
V
V
V
V
V
Vhys (pad_i_hv)  
0.09*VDD_HV_  
x
Vih  
Vil  
CMOS Input Buffer High Voltage (with hysteresis  
disabled)  
0.55 *  
VDD_HV_x  
VDD_HV_x +  
0.3  
CMOS Input Buffer Low Voltage (with hysteresis  
disabled)  
VSS_LV - 0.3  
0.4 *  
VDD_HV_x  
Vhys  
Vih_hys  
CMOS Input Buffer Hysteresis  
0.09 *  
VDD_HV_x  
CMOS Input Buffer High Voltage (with hysteresis  
enabled)  
0.65*  
VDD_HV_x  
VDD_HV_x +  
0.3  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
25  
I/O parameters  
Table 17. DC electrical specifications @ 5 V Range (continued)  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Vil_hys  
CMOS Input Buffer Low Voltage (with hysteresis  
enabled)  
VSS_LV - 0.3 0.35*VDD_HV_  
x
V
Pull_IIH (pad_i_hv) Weak Pullup Current Low  
Pull_IIH (pad_i_hv) Weak Pullup Current High  
Pull_IIL (pad_i_hv) Weak Pulldown Current2 Low  
Pull_IIL (pad_i_hv) Weak Pulldown Current1 High  
23  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
82  
40  
130  
Pull_Ioh  
Pull_Iol  
Iinact_d  
Voh  
Weak Pullup Current3  
Weak Pulldown Current4  
30  
30  
80  
80  
2.5  
Digital Pad Input Leakage Current (weak pull inactive)  
Output High Voltage5  
-2.5  
0.8 *  
VDD_HV_x  
Vol  
Output Low Voltage6  
Output Low Voltage7  
0.2 *  
VDD_HV_x  
V
0.1*VDD_HV_x  
Ioh_f  
Iol_f  
Full drive Ioh8 (SIUL2_MSCRn[SRC 1:0]= 11)  
Full drive Iol8 (SIUL2_MSCRn[SRC 1:0]= 11)  
Half drive Ioh8 (SIUL2_MSCRn[SRC 1:0]= 10)  
Half drive Iol8 (SIUL2_MSCRn[SRC 1:0]= 10)  
38  
48  
19  
24  
132  
220  
66  
mA  
mA  
mA  
mA  
Ioh_h  
Iol_h  
110  
1. Measured when pad=0.69*VDD_HV_x  
2. Measured when pad=0.49*VDD_HV_x  
3. Measured when pad = 0 V  
4. Measured when pad = VDD_HV_x  
5. Measured when pad is sourcing 2 mA  
6. Measured when pad is sinking 2 mA  
7. Measured when pad is sinking 1.5 mA  
8. Ioh/Iol is derived from spice simulations. These values are NOT guaranteed by test.  
5.5 Reset pad electrical characteristics  
The device implements a dedicated bidirectional RESET pin.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
26  
NXP Semiconductors  
I/O parameters  
V
DD_HV_
A
V
DDMIN  
PORST  
V
IH  
V
IL  
device reset forced by PORST  
device start-up phase  
Figure 3. Start-up reset requirements  
VPORST  
hw_rst  
‘1’  
V
DD_HV_
A
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
Figure 4. Noise filtering on reset signal  
Table 18. Functional reset pad electrical specifications  
Symbol  
Parameter  
Conditions  
Value  
Unit  
Min  
2.0  
Typ  
Max  
VIH  
Input high level TTL (Schmitt Trigger)  
VDD_HV_A  
+0.4  
V
VIL  
Input low level TTL (Schmitt Trigger)  
Input hysteresis TTL (Schmitt Trigger)  
–0.4  
300  
0.8  
V
VHYS  
mV  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
27  
Peripheral operating requirements and behaviours  
Table 18. Functional reset pad electrical specifications (continued)  
Symbol  
Parameter  
Conditions  
Value  
Unit  
Min  
Typ  
Max  
VDD_POR  
IOL_R  
Minimum supply for strong pull-down  
activation  
Strong pull-down current 1  
1.2  
V
Device under power-on reset  
VDD_HV_IO= V DD_POR  
VOL = 0.35*VDD_HV_IO  
Device under power-on reset  
3.0 V < VDD_HV_IO < 5.5 V  
VOL = 0.35*VDD_HV_IO  
0.2  
11  
mA  
mA  
WFRST  
RESET input filtered pulse  
500  
ns  
ns  
µA  
WNFRST  
RESET input not filtered pulse  
Weak pull-up current absolute value  
2000  
23  
|IWPU  
|
RESET pin VIN = VDD  
82  
1. Strong pull-down is active on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for RESET.  
5.6 PORST electrical specifications  
Table 19. PORST electrical specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Typ  
Max  
WFPORST  
WNFPORST  
VIH  
PORST input filtered pulse  
PORST input not filtered pulse  
Input high level  
200  
ns  
1000  
ns  
V
0.65 x VDD_HV_A  
0.35 x VDD_HV_A  
VIL  
Input low level  
V
6 Peripheral operating requirements and behaviours  
6.1 Analog  
6.1.1 ADC electrical specifications  
The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-  
Digital Converter.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
28  
NXP Semiconductors  
Analog  
Offset Error OSE Gain Error GE  
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
1 LSB ideal =(VrefH-VrefL)/ 4096 =  
3.3V/ 4096 = 0.806 mV  
Total Unadjusted Error  
TUE = +/- 6 LSB = +/- 4.84mV  
code out7  
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer  
curve  
(5)  
4
3
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
4089 4090 4091 4092 4093 4094 4095  
Vin(A) (LSBideal  
)
Offset Error OSE  
Figure 5. ADC characteristics and error definitions  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
29  
Analog  
6.1.1.1 Input equivalent circuit and ADC conversion characteristics  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD_IO  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
S
F
L
SW1  
AD  
C
V
C
C
P1  
C
S
A
F
P2  
R
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance  
Sampling Switch Impedance  
S
F
F
L
R
C
R
R
R
C
C
SW1  
AD  
P
Pin Capacitance (two contributions, C and C  
Sampling Capacitance  
)
P1  
P2  
S
Figure 6. Input equivalent circuit  
NOTE  
The ADC performance specifications are not guaranteed if two  
ADCs simultaneously sample the same shared channel.  
Table 20. ADC conversion characteristics (for 12-bit)  
Symbol  
Parameter  
Conditions  
Min  
Typ1  
Max  
Unit  
fCK  
ADC Clock frequency (depends on —  
ADC configuration) (The duty cycle  
depends on AD_CK2 frequency)  
15.2  
80  
80  
MHz  
fs  
Sampling frequency  
Sample time3  
80 MHz  
1.00  
MHz  
ns  
tsample  
80 MHz@ 100 ohm source  
impedance  
250  
tconv  
Conversion time4  
80 MHz  
80 MHz  
700  
1.55  
ns  
µs  
ttotal_conv  
Total Conversion time tsample +  
tconv (for standard and extended  
channels)  
Total Conversion time tsample  
tconv (for precision channels)  
+
1
CS  
ADC input sampling capacitance  
ADC input pin capacitance 1  
ADC input pin capacitance 2  
3
5
5
pF  
pF  
pF  
kΩ  
Ω
6
CP1  
6
CP2  
0.8  
0.3  
875  
6
RSW1  
Internal resistance of analog  
source  
VREF range = 4.5 to 5.5 V  
VREF range = 3.15 to 3.6 V  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
30  
NXP Semiconductors  
Analog  
Table 20. ADC conversion characteristics (for 12-bit) (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ1  
Max  
Unit  
6
RAD  
Internal resistance of analog  
source  
825  
Ω
INL  
INL  
Integral non-linearity (precise  
channel)  
–2  
–3  
2
3
LSB  
LSB  
Integral non-linearity (standard  
channel)  
DNL  
OFS  
GNE  
Differential non-linearity  
Offset error  
–1  
–6  
–4  
1
6
LSB  
LSB  
LSB  
nA  
Gain error  
4
ADC Analog Pad Max leakage (precision channel)  
(pad going to one  
150 °C  
150 °C  
250  
2500  
250  
5
Max leakage (standard channel)  
nA  
ADC)  
Max leakage (standard channel)  
105 °C TA  
5
nA  
Max positive/negative injection  
–5  
–6  
mA  
LSB  
LSB  
LSB  
LSB  
µs  
TUEprecision channels Total unadjusted error for precision Without current injection  
+/-4  
+/-5  
+/-6  
+/-8  
6
channels  
With current injection  
TUEstandard/extended Total unadjusted error for standard/ Without current injection  
–8  
8
extended channels  
With current injection7  
channels  
trecovery  
STOP mode to Run mode recovery  
time  
< 1  
1. Active ADC input, VinA < [min(ADC_VrefH, ADC_ADV, VDD_HV_IOx)]. VDD_HV_IOx refers to I/O segment supply  
voltage. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute  
maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' for required  
relation between IO_supply_A,B,C and ADC_Supply.  
2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral  
clock based on register configuration in the ADC.  
3. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tsample. After the end of the  
sample time tsample, changes of the analog input voltage have no effect on the conversion result. Values for the sample  
clock tsample depend on programming.  
4. This parameter does not include the sample time tsample, but only the time for determining the digital result and the time to  
load the result register with the conversion result.  
5. Apart from tsample and tconv, few cycles are used up in ADC digital interface and hence the overall throughput from the  
ADC is lower.  
6. See Figure 2.  
7. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being  
performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum  
voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here  
NOTE  
The ADC input pins sit across all three I/O segments,  
VDD_HV_A, VDD_HV_B and VDD_HV_C.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
31  
Analog  
6.1.2 Analog Comparator (CMP) electrical specifications  
Table 21. Comparator and 6-bit DAC electrical specifications  
Symbol  
IDDHS  
IDDLS  
Description  
Min.  
Typ.  
Max.  
250  
11  
Unit  
μA  
μA  
V
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
5
VAIN  
VSS  
VIN1_CMP_RE  
F
VAIO  
VH  
Analog input offset voltage 1  
Analog comparator hysteresis 2  
• CR0[HYSTCTR] = 00  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
-42  
42  
mV  
1
25  
50  
mV  
mV  
mV  
mV  
20  
40  
60  
70  
105  
tDHS  
tDLS  
Propagation Delay, High Speed Mode (Full Swing) 1, 3  
Propagation Delay, Low power Mode (Full Swing) 1, 3  
5
250  
21  
ns  
μs  
μs  
Analog comparator initialization delay, High speed  
mode4  
4
Analog comparator initialization delay, Low speed  
mode 4  
100  
μs  
IDAC6b  
6-bit DAC current adder (when enabled)  
3.3V Reference Voltage  
6
9
μA  
μA  
LSB5  
5V Reference Voltage  
10  
16  
0.5  
0.8  
INL  
6-bit DAC integral non-linearity  
6-bit DAC differential non-linearity  
–0.5  
–0.8  
DNL  
LSB  
1. Measured with hysteresis mode of 00  
2. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD_HV_A-0.6V  
3. Full swing = VIH, VIL  
4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,  
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.  
5. 1 LSB = Vreference/64  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
32  
NXP Semiconductors  
Clocks and PLL interfaces modules  
6.2 Clocks and PLL interfaces modules  
6.2.1 Main oscillator electrical characteristics  
This device provides a driver for oscillator in pierce configuration with amplitude  
control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this  
way the EMI. Other benefits arises by reducing the power consumption. This Loop  
Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of  
traces between crystal and MCU.  
An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also  
available in case of parasitic capacitances and cannot be reduced by using crystal with  
high equivalent series resistance. For this mode, a special care needs to be taken  
regarding the serial resistance used to avoid the crystal overdrive.  
Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For  
EXT Wave, the drive is disabled and an external source of clock within CMOS level  
based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240  
Kohms resistor and the feedback resistor remains active connecting XTAL through  
EXTAL by 1M resistor.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
33  
Clocks and PLL interfaces modules  
Figure 7. Oscillator connections scheme  
Table 22. Main oscillator electrical characteristics  
Symbol  
fXOSCHS  
Parameter  
Mode  
Conditions  
Min  
Typ  
Max  
Unit  
Oscillator  
frequency  
FSP/LCP  
8
40  
MHz  
gmXOSCHS  
Driver  
Transconduct  
ance  
LCP  
FSP  
23  
33  
mA/V  
VXOSCHS  
Oscillation  
Amplitude  
LCP  
8 MHz  
1.0  
1.0  
0.8  
2
VPP  
ms  
16 MHz  
40 MHz  
8 MHz  
TXOSCHSSU  
Startup time  
FSP/LCP  
FSP  
16 MHz  
40 MHz  
8 MHz  
1
0.5  
2.2  
2.2  
3.2  
Oscillator  
Analog Circuit  
supply current  
mA  
16 MHz  
40 MHz  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
34  
NXP Semiconductors  
Clocks and PLL interfaces modules  
Table 22. Main oscillator electrical characteristics (continued)  
Symbol  
Parameter  
Mode  
Conditions  
8 MHz  
Min  
Typ  
Max  
Unit  
LCP  
141  
252  
518  
uA  
16 MHz  
40 MHz  
VIH  
VIL  
Input High  
level CMOS  
Schmitt trigger  
EXT Wave  
Oscillator  
supply=3.3  
1.95  
V
V
Input low level EXT Wave  
CMOS  
Oscillator  
supply=3.3  
1.25  
Schmitt trigger  
6.2.2 32 kHz Oscillator electrical specifications  
Table 23. 32 kHz oscillator electrical specifications  
Symbol  
fosc_lo  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Oscillator crystal  
or resonator  
frequency  
32  
40  
2
KHz  
tcst  
Crystal Start-up  
Time1, 2  
s
1. This parameter is characterized before qualification rather than 100% tested.  
2. Proper PC board layout procedures must be followed to achieve specifications.  
6.2.3 16 MHz RC Oscillator electrical specifications  
Table 24. 16 MHz RC Oscillator electrical specifications  
Symbol  
Parameter  
Conditions  
Value  
Typ  
16  
Unit  
Min  
Max  
FTarget  
PTA  
IRC target frequency  
5
MHz  
%
IRC frequency variation after trimming  
Startup time  
-5  
Tstartup  
TSTJIT  
TLTJIT  
1.5  
1.5  
0.2  
us  
%
Cycle to cycle jitter  
Long term jitter  
%
NOTE  
The above start up time of 1 us is equivalent to 16 cycles of 16  
MHz.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
35  
Clocks and PLL interfaces modules  
6.2.4 128 KHz Internal RC oscillator Electrical specifications  
Table 25. 128 KHz Internal RC oscillator electrical specifications  
Symbol  
Parameter  
Condition  
Calibrated  
Min  
Typ  
Max  
Unit  
1
Foscu  
Oscillator  
frequency  
119  
128  
136.5  
600  
18  
KHz  
Temperature  
dependence  
ppm/C  
%/V  
Supply  
dependence  
Supply current  
Clock running  
Clock stopped  
2.75  
200  
µA  
nA  
1. Vdd=1.2 V, 1.32V, Ta=-40 C, 125 C  
6.2.5 PLL electrical specifications  
Table 26. PLL electrical specifications  
Parameter  
Input Frequency  
Min  
Typ  
Max  
Unit  
MHz  
Comments  
8
40  
VCO Frequency Range  
Duty Cycle at pllclkout  
600  
48%  
1280  
52%  
MHz  
This specification is guaranteed  
at PLL IP boundary  
Period Jitter  
TIE  
See Table 27  
See Table 27  
ps  
NON SSCG mode  
at 960 M Integrated over 1MHz  
offset not valid in SSCG mode  
Modulation Depth (Center Spread) +/- 0.25%  
Modulation Frequency  
+/- 3.0%  
32  
KHz  
µs  
Lock Time  
60  
Calibration mode  
Table 27. Jitter calculation  
Type of jitter  
Jitter due to  
Supply  
Jitter due to  
Jitter due to  
Fractional Mode  
JSSCG (ps) 3  
1 Sigma  
Total Period Jitter (ps)  
Fractional Mode  
Random  
Jitter JRJ  
(ps) 4  
2
Noise (ps)  
(ps) JSDM  
1
JSN  
Period Jitter  
60 ps  
3% of pllclkout1,2  
Modulation depth  
0.1% of  
+/-(JSN+JSDM+JSSCG+N[4]  
pllclkout1,2  
×JRJ)  
Long Term Jitter  
(Integer Mode)  
40  
+/-(N x JRJ  
)
)
Long Term jitter  
100  
+/-(N x JRJ  
(Fractional Mode)  
1. This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value  
is valid for inductor value of 5nH or less each on VDD_LV and VSS_LV.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
36  
NXP Semiconductors  
Memory interfaces  
2. This jitter component is added when the PLL is working in the fractional mode.  
3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0.  
4. The value of N is dependent on the accuracy requirement of the application. See Percentage of sample exceeding  
specified value of jitter table  
Table 28. Percentage of sample exceeding specified value of jitter  
N
Percentage of samples exceeding specified value of jitter  
(%)  
1
2
3
4
5
6
7
31.73  
4.55  
0.27  
6.30 × 1e-03  
5.63 × 1e-05  
2.00 × 1e-07  
2.82 × 1e-10  
6.3 Memory interfaces  
6.3.1 Flash memory program and erase specifications  
NOTE  
All timing, voltage, and current numbers specified in this  
section are defined for a single embedded flash memory within  
an SoC, and represent average currents for given supplies and  
operations.  
Table 29 shows the estimated Program/Erase times.  
Table 29. Flash memory program and erase specifications  
Symbol  
Characteristic1  
Typ2  
Factory  
Field Update  
Unit  
Programming3, 4  
Initial  
Max  
Initial  
Max, Full  
Temp  
Typical  
End of  
Life5  
Lifetime Max6  
20°C ≤TA -40°C ≤TJ -40°C ≤TJ ≤ 1,000 ≤ 250,000  
≤30°C ≤150°C ≤150°C cycles cycles  
tdwpgm  
Doubleword (64 bits) program time 43  
100 150 55 500  
μs  
tppgm  
Page (256 bits) program time  
73  
200  
800  
300  
108  
396  
500  
μs  
μs  
tqppgm  
Quad-page (1024 bits) program  
time  
268  
1,200  
2,000  
t16kers  
16 KB Block erase time  
168  
34  
290  
45  
320  
50  
250  
40  
1,000  
1,000  
ms  
ms  
t16kpgm  
16 KB Block program time  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
37  
Memory interfaces  
Table 29. Flash memory program and erase specifications (continued)  
Symbol  
Characteristic1  
Typ2  
Factory  
Field Update  
Unit  
Programming3, 4  
Initial  
Max  
Initial  
Max, Full  
Temp  
Typical  
End of  
Life5  
Lifetime Max6  
20°C ≤TA -40°C ≤TJ -40°C ≤TJ ≤ 1,000 ≤ 250,000  
≤30°C  
≤150°C  
≤150°C  
cycles  
1,200  
1,200  
1,600  
1,600  
4,000  
4,000  
cycles  
t32kers  
t32kpgm  
t64kers  
32 KB Block erase time  
32 KB Block program time  
64 KB Block erase time  
64 KB Block program time  
256 KB Block erase time  
256 KB Block program time  
217  
360  
390  
310  
ms  
ms  
ms  
ms  
ms  
ms  
69  
100  
110  
90  
315  
138  
884  
552  
490  
590  
420  
170  
1,080  
650  
t64kpgm  
t256kers  
t256kpgm  
180  
210  
1,520  
720  
2,030  
880  
1. Program times are actual hardware programming times and do not include software overhead. Block program times  
assume quad-page programming.  
2. Typical program and erase times represent the median performance and assume nominal supply values and operation at  
25 °C. Typical program and erase times may be used for throughput calculations.  
3. Conditions: ≤ 150 cycles, nominal voltage.  
4. Plant Programing times provide guidance for timeout limits used in the factory.  
5. Typical End of Life program and erase times represent the median performance and assume nominal supply values.  
Typical End of Life program and erase values may be used for throughput calculations.  
6. Conditions: -40°C ≤ TJ ≤ 150°C, full spec voltage.  
6.3.2 Flash memory Array Integrity and Margin Read specifications  
Table 30. Flash memory Array Integrity and Margin Read specifications  
Symbol  
Characteristic  
Min  
Typical  
Max  
Units  
tai16kseq  
Array Integrity time for sequential sequence on 16 KB block.  
512 x  
Tperiod x  
Nread  
tai32kseq  
Array Integrity time for sequential sequence on 32 KB block.  
Array Integrity time for sequential sequence on 64 KB block.  
Array Integrity time for sequential sequence on 256 KB block.  
1024 x  
Tperiod x  
Nread  
tai64kseq  
2048 x  
Tperiod x  
Nread  
8192 x  
Tperiod x  
Nread  
tai256kseq  
tmr16kseq  
tmr32kseq  
tmr64kseq  
tmr256kseq  
Margin Read time for sequential sequence on 16 KB block.  
Margin Read time for sequential sequence on 32 KB block.  
Margin Read time for sequential sequence on 64 KB block.  
Margin Read time for sequential sequence on 256 KB block.  
73.81  
128.43  
237.65  
893.01  
110.7  
192.6  
μs  
μs  
μs  
μs  
356.5  
1,339.5  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
38  
NXP Semiconductors  
Memory interfaces  
6.3.3 Flash memory module life specifications  
Table 31. Flash memory module life specifications  
Symbol  
Characteristic  
Conditions  
Min  
Typical  
Units  
P/E  
Array P/E  
cycles  
Number of program/erase cycles per block  
for 16 KB, 32 KB and 64 KB blocks.  
250,000  
cycles  
Number of program/erase cycles per block  
for 256 KB blocks.  
1,000  
250,000  
P/E  
cycles  
Data  
retention  
Minimum data retention.  
Blocks with 0 - 1,000 P/E 50  
cycles.  
Years  
Years  
Years  
Blocks with 100,000 P/E  
cycles.  
20  
Blocks with 250,000 P/E  
cycles.  
10  
6.3.4 Data retention vs program/erase cycles  
Graphically, Data Retention versus Program/Erase Cycles can be represented by the  
following figure. The spec window represents qualified limits. The extrapolated dotted  
line demonstrates technology capability, however is beyond the qualification limits.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
39  
Memory interfaces  
6.3.5 Flash memory AC timing specifications  
Table 32. Flash memory AC timing specifications  
Symbol  
Characteristic  
Min  
Typical  
Max  
Units  
tpsus  
Time from setting the MCR-PSUS bit until MCR-DONE bit is set  
to a 1.  
9.4  
11.5  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
tesus  
Time from setting the MCR-ESUS bit until MCR-DONE bit is set  
to a 1.  
16  
20.8  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
tres  
Time from clearing the MCR-ESUS or PSUS bit with EHV = 1  
until DONE goes low.  
16  
100  
ns  
ns  
μs  
tdone  
tdones  
Time from 0 to 1 transition on the MCR-EHV bit initiating a  
program/erase until the MCR-DONE bit is cleared.  
5
Time from 1 to 0 transition on the MCR-EHV bit aborting a  
program/erase until the MCR-DONE bit is set to a 1.  
20.8  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
tdrcv  
Time to recover once exiting low power mode.  
16  
45  
μs  
plus seven  
system  
clock  
plus seven  
system  
clock  
periods.  
periods  
taistart  
Time from 0 to 1 transition of UT0-AIE initiating a Margin Read  
or Array Integrity until the UT0-AID bit is cleared. This time also  
applies to the resuming from a suspend or breakpoint by  
clearing AISUS or clearing NAIBP  
5
ns  
ns  
taistop  
Time from 1 to 0 transition of UT0-AIE initiating an Array  
Integrity abort until the UT0-AID bit is set. This time also applies  
to the UT0-AISUS to UT0-AID setting in the event of a Array  
Integrity suspend request.  
80  
plus fifteen  
system  
clock  
periods  
tmrstop  
Time from 1 to 0 transition of UT0-AIE initiating a Margin Read  
abort until the UT0-AID bit is set. This time also applies to the  
UT0-AISUS to UT0-AID setting in the event of a Margin Read  
suspend request.  
10.36  
20.42  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
40  
NXP Semiconductors  
Communication interfaces  
6.3.6 Flash read wait state and address pipeline control settings  
The following table describes the recommended RWSC and APC settings at various  
operating frequencies based on specified intrinsic flash access times of the flash module  
controller array at 125 °C.  
Table 33. Flash Read Wait State and Address Pipeline Control Combinations  
Flash frequency  
0 MHz < fFlash <= 33 MHz  
33 MHz < fFlash <= 100 MHz  
100 MHz < fFlash <= 133 MHz  
133 MHz < fFlash <= 160 MHz  
RWSC setting  
APC setting  
0
2
3
4
0
1
1
1
6.4 Communication interfaces  
6.4.1 DSPI timing  
Table 34. DSPI electrical specifications  
No  
Symbol  
Parameter  
Conditions  
High Speed Mode1  
low Speed mode  
Unit  
Min  
25  
Max  
Min  
50  
Max  
1
tSCK  
DSPI cycle  
time  
Master  
Slave (MTFE = 0)  
ns  
40  
60  
2
3
4
5
6
7
8
9
tCSC  
tASC  
tSDC  
tA  
PCS to SCK  
delay  
16  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
After SCK  
delay  
16  
SCK duty  
cycle  
tSCK/2 - 10  
tSCK/2 + 10  
Slave access SS active to SOUT  
time valid  
13  
13  
40  
10  
tDIS  
Slave SOUT SS inactive to SOUT  
disable time  
High-Z or invalid  
tPCSC  
tPASC  
tSUI  
PCSx to  
PCSS time  
PCSS to  
PCSx time  
Data setup  
time for  
inputs  
Master (MTFE = 0)  
Slave  
NA  
2
20  
2
82  
Master (MTFE = 1,  
CPHA = 0)  
15  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
41  
Communication interfaces  
Table 34. DSPI electrical specifications (continued)  
No  
Symbol  
Parameter  
Conditions  
High Speed Mode1  
low Speed mode  
Unit  
Min  
Max  
Min  
Max  
Master (MTFE = 1,  
CPHA = 1)  
15  
20  
10  
tHI  
Data hold  
time for  
inputs  
Master (MTFE = 0)  
Slave  
NA  
4
–5  
4
112  
ns  
Master (MTFE = 1,  
CPHA = 0)  
0
Master (MTFE = 1,  
CPHA = 1)  
0
-5  
11  
12  
tSUO  
Data valid  
(after SCK  
edge)  
Master (MTFE = 0)  
Slave  
NA  
15  
4
4
ns  
ns  
23  
162  
Master (MTFE = 1,  
CPHA = 0)  
Master (MTFE = 1,  
CPHA = 1)  
4
4
tHO  
Data hold  
time for  
outputs  
Master (MTFE = 0)  
NA  
–2  
Slave  
4
6
102  
Master (MTFE = 1,  
CPHA = 0)  
-2  
Master (MTFE = 1,  
CPHA = 1)  
–2  
–2  
1. Only one {SIN,SOUT and SCK} group per DSPI/SPI will support high frequency mode. See Table 3.  
2. SMPL_PTR should be set to 1  
NOTE  
Restriction For High Speed modes  
• DSPI2, DSPI3, SPI1 and SPI2 will support 40MHz Master  
mode SCK  
• DSPI2, DSPI3, SPI1 and SPI2 will support 25MHz Slave  
SCK frequency  
• Only one {SIN,SOUT and SCK} group per DSPI/SPI will  
support high frequency mode. See Table 36.  
• For Master mode MTFE will be 1 for high speed mode  
• For high speed slaves, their master have to be in MTFE=1  
mode or should be able to support 15ns tSUO delay  
NOTE  
For numbers shown in the following figures, see Table 34  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
42  
NXP Semiconductors  
Communication interfaces  
Table 35. Continuous SCK timing  
Spec  
Characteristics  
Pad Drive/Load  
Value  
Min  
100 ns  
-
Max  
tSCK  
SCK cycle timing  
PCS valid after SCK  
PCS valid after SCK  
strong/50 pF  
strong/50 pF  
strong/50 pF  
-
15 ns  
-
-
-
-4 ns  
Table 36. DSPI high speed mode I/Os  
DSPI  
High speed SCK  
GPIO[78]  
High speed SIN  
GPIO[76]  
High speed SOUT  
DSPI2  
DSPI3  
SPI1  
GPIO[77]  
GPIO[100]  
GPIO[173]  
GPIO[79]  
GPIO[101]  
GPIO[175]  
GPIO[110]  
GPIO[98]  
GPIO[176]  
GPIO[111]  
SPI2  
2
3
PCSx  
1
4
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
10  
9
Last Data  
SIN  
First Data  
Data  
12  
11  
First Data  
Data  
Last Data  
SOUT  
Figure 8. DSPI classic SPI timing — master, CPHA = 0  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
43  
Communication interfaces  
PCSx  
SCK Output  
(CPOL=0)  
10  
SCK Output  
(CPOL=1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Figure 9. DSPI classic SPI timing — master, CPHA = 1  
3
2
SS  
1
4
SCK Input  
(CPOL=0)  
4
SCK Input  
(CPOL=1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Figure 10. DSPI classic SPI timing — slave, CPHA = 0  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
44  
NXP Semiconductors  
Communication interfaces  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Figure 11. DSPI classic SPI timing — slave, CPHA = 1  
3
PCSx  
4
1
2
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
9
10  
SIN  
First Data  
12  
Last Data  
Last Data  
Data  
11  
SOUT  
First Data  
Data  
Figure 12. DSPI modified transfer format timing — master, CPHA = 0  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
45  
Communication interfaces  
PCSx  
SCK Output  
(CPOL=0)  
SCK Output  
(CPOL=1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Figure 13. DSPI modified transfer format timing — master, CPHA = 1  
3
2
SS  
1
SCK Input  
(CPOL=0)  
4
4
SCK Input  
(CPOL=1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Figure 14. DSPI modified transfer format timing – slave, CPHA = 0  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
46  
NXP Semiconductors  
FlexRay electrical specifications  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Figure 15. DSPI modified transfer format timing — slave, CPHA = 1  
8
7
PCSS  
PCSx  
Figure 16. DSPI PCS strobe (PCSS) timing  
6.4.2 FlexRay electrical specifications  
6.4.2.1 FlexRay timing  
This section provides the FlexRay Interface timing characteristics for the input and output  
signals. It should be noted that these are recommended numbers as per the FlexRay EPL  
v3.0 specification, and subject to change per the final timing analysis of the device.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
47  
FlexRay electrical specifications  
6.4.2.2 TxEN  
TxEN  
80 %  
20 %  
dCCTxEN  
dCCTxEN  
FALL  
RISE  
Figure 17. TxEN signal  
Table 37. TxEN output characteristics1  
Name  
Description  
Min  
Max  
Unit  
ns  
dCCTxENRISE25  
dCCTxENFALL25  
dCCTxEN01  
Rise time of TxEN signal at CC  
Fall time of TxEN signal at CC  
9
9
ns  
Sum of delay between Clk to Q of the last FF and the final  
output buffer, rising edge  
25  
ns  
dCCTxEN10  
Sum of delay between Clk to Q of the last FF and the final  
output buffer, falling edge  
25  
ns  
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, + 10%, TJ = –40 °C / 150 °C, TxEN pin load maximum 25 pF  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
48  
NXP Semiconductors  
FlexRay electrical specifications  
PE_Clk  
TxEN  
dCCTxEN  
dCCTxEN  
10  
01  
Figure 18. TxEN signal propagation delays  
6.4.2.3 TxD  
TxD  
dCCTxD  
50%  
80 %  
50 %  
20 %  
dCCTxD  
dCCTxD  
RISE  
FALL  
Figure 19. TxD Signal  
Table 38. TxD output characteristics  
Name  
Description1  
Min  
Max  
Unit  
dCCTxAsym  
Asymmetry of sending CC @ 25 pF load (=dCCTxD50% - 100  
ns)  
–2.45  
2.45  
ns  
dCCTxDRISE25+dCCTx Sum of Rise and Fall time of TxD signal at the output  
DFALL25  
92  
ns  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
49  
FlexRay electrical specifications  
Table 38. TxD output characteristics (continued)  
Name  
Description1  
Min  
Max  
Unit  
dCCTxD01  
Sum of delay between Clk to Q of the last FF and the final  
output buffer, rising edge  
25  
ns  
dCCTxD10  
Sum of delay between Clk to Q of the last FF and the final  
output buffer, falling edge  
25  
ns  
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, + 10%, TJ = –40 °C / 150 °C, TxD pin load maximum 25 pF.  
2. For 3.3 V 10% operation, this specification is 10 ns.  
PE_Clk*  
TxD  
dCCTxD  
10  
dCCTxD  
01  
*FlexRay Protocol Engine Clock  
Figure 20. TxD Signal propagation delays  
6.4.2.4 RxD  
Table 39. RxD input characteristic  
Name  
Description1  
Min  
Max  
Unit  
C_CCRxD  
Input capacitance on  
RxD pin  
7
pF  
uCCLogic_1  
uCCLogic_0  
dCCRxD01  
Threshold for detecting  
logic high  
35  
30  
70  
65  
10  
%
%
ns  
Threshold for detecting  
logic low  
Sum of delay from  
actual input to the D  
input of the first FF,  
rising edge  
dCCRxD10  
Sum of delay from  
actual input to the D  
input of the first FF,  
falling edge  
10  
ns  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
50  
NXP Semiconductors  
FlexRay electrical specifications  
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, + 10%, TJ = –40 oC / 150 oC.  
6.4.3 uSDHC specifications  
Table 40. uSDHC switching specifications  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Card input clock  
Clock frequency (Identification mode)  
SD1  
fpp  
fpp  
fpp  
fpp  
fOD  
tWL  
tWH  
tTLH  
tTHL  
0
0
400  
25  
40  
20  
40  
3
kHz  
MHz  
MHz  
MHz  
MHz  
ns  
Clock frequency (SD\SDIO full speed)  
Clock frequency (SD\SDIO high speed)  
Clock frequency (MMC full speed)  
Clock frequency (MMC full speed)  
Clock low time  
0
0
0
SD2  
SD3  
SD4  
SD5  
7
Clock high time  
7
ns  
Clock rise time  
ns  
Clock fall time  
3
ns  
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SDHC output delay (output valid) -5 6.5  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SD6  
tOD  
ns  
SD7  
SD8  
tISU  
tIH  
SDHC input setup time  
SDHC input hold time  
5
0
ns  
ns  
SD3  
SD6  
SD2  
SD1  
SDHC_CLK  
Output SDHC_CMD  
Output SDHC_DAT[3:0]  
Input SDHC_CMD  
SD7  
SD8  
Input SDHC_DAT[3:0]  
Figure 21. uSDHC timing  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
51  
FlexRay electrical specifications  
6.4.4 Ethernet switching specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
6.4.4.1 MII signal switching specifications  
The following timing specs meet the requirements for MII style interfaces for a range of  
transceiver devices.  
NOTE  
ENET0 supports the following xMII interfaces: MII, MII_Lite  
and RMII. ENET1 supports the following xMII interfaces:  
MII_Lite.  
NOTE  
It is only possible to use ENET0 and ENET1 simultaneously  
when both are configured for MII_Lite.  
NOTE  
In certain pinout configurations ENET1 MII-Lite signals can be  
across multiple VDD_HV_A/B/C domains. If these  
configuration are used, VDD_HV IO domains need to be at the  
same voltage (for example: 3.3V)  
Table 41. MII signal switching specifications  
Symbol  
Description  
Min.  
Max.  
25  
Unit  
MHz  
RXCLK frequency  
RXCLK pulse width high  
MII1  
35%  
65%  
RXCLK  
period  
RXCLK  
period  
ns  
MII2  
RXCLK pulse width low  
35%  
65%  
MII3  
MII4  
RXD[3:0], RXDV, RXER to RXCLK setup  
RXCLK to RXD[3:0], RXDV, RXER hold  
TXCLK frequency  
5
5
ns  
25  
MHz  
MII5  
TXCLK pulse width high  
35%  
65%  
TXCLK  
period  
TXCLK  
period  
ns  
MII6  
TXCLK pulse width low  
35%  
65%  
MII7  
MII8  
TXCLK to TXD[3:0], TXEN, TXER invalid  
TXCLK to TXD[3:0], TXEN, TXER valid  
2
25  
ns  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
52  
NXP Semiconductors  
FlexRay electrical specifications  
MII6  
MII5  
MII7  
TXCLK (input)  
TXD[n:0]  
TXEN  
MII8  
Valid data  
Valid data  
Valid data  
TXER  
Figure 22. RMII/MII transmit signal timing diagram  
MII2  
MII1  
RXCLK (input)  
RXD[n:0]  
RXDV  
MII3  
MII4  
Valid data  
Valid data  
Valid data  
RXER  
Figure 23. RMII/MII receive signal timing diagram  
6.4.4.2 RMII signal switching specifications  
The following timing specs meet the requirements for RMII style interfaces for a range of  
transceiver devices.  
Table 42. RMII signal switching specifications  
Num  
Description  
Min.  
Max.  
50  
Unit  
EXTAL frequency (RMII input clock RMII_CLK)  
RMII_CLK pulse width high  
MHz  
RMII1  
35%  
65%  
RMII_CLK  
period  
RMII2  
RMII_CLK pulse width low  
35%  
65%  
RMII_CLK  
period  
RMII3  
RMII4  
RMII7  
RMII8  
RXD[1:0], CRS_DV, RXER to RMII_CLK setup  
RMII_CLK to RXD[1:0], CRS_DV, RXER hold  
RMII_CLK to TXD[1:0], TXEN invalid  
4
2
15  
ns  
ns  
ns  
ns  
4
RMII_CLK to TXD[1:0], TXEN valid  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
53  
MediaLB (MLB) electrical specifications  
Connecting two MPC5748G MCUs via ENET without a PHY  
To connect two MPC5748G MCUs for an application together through ENET without a  
PHY, the following steps should be followed:  
1. MCU #1 ENET_0 should be connected to MCU #2 ENET_0  
2. MCU #1 ENET_1 should be connected to MCU #2 ENET_1  
This ensures conformity to ENET set-up and hold times. Note that the MPC5748G  
datasheet quotes worst case set-up and hold times when connecting MCU #1 ENET_0 to  
MCU #2 ENET_1.  
6.4.5 MediaLB (MLB) electrical specifications  
6.4.5.1 MLB 3-pin interface DC characteristics  
The section lists the MLB 3-pin interface electrical characteristics.  
Table 43. MediaLB 3-Pin Interface Electrical DC Specifications  
Parameter  
Maximum input voltage  
Low level input threshold  
High level input threshold  
Low level output threshold  
High level output threshold  
Input leakage current  
Symbol  
Test Conditions  
Min  
Max  
3.6  
Unit  
V
V
V
V
V
VIL  
0.7  
VIH  
VOL  
VOH  
See Note1  
1.8  
IOL = –6 mA  
IOH = –6 mA  
0 < Vin < VDD  
0.4  
2.0  
10  
μA  
IL  
1. Higher VIH thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated  
and assumed by the customer.  
6.4.5.2 MLB 3-pin interface electrical specifications  
This section describes the timing electrical information of the MLB module.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
54  
NXP Semiconductors  
MediaLB (MLB) electrical specifications  
Figure 24. MediaLB 3-Pin Timing  
Ground = 0.0 V; Load Capacitance = 60 pF, input transition= 1 ns ; MediaLB speed =  
256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold  
as listed below; unless otherwise noted.  
Table 44. MLB 3-Pin 256/512 Fs Timing Parameters  
Parameter  
Symbol  
Min  
Max  
25.6  
Unit  
MHz  
Comment  
MLBCLK operating frequency  
fmck  
11.264  
256xFs at 44.0 kHz,  
512xFs at 50.0 kHz  
MLBCLK rise time  
MLBCLK fall time  
MLBCLK low time1  
tmck  
tmck  
tmck  
r
f
l
3
ns  
ns  
ns  
VIL to V  
IH  
3
VIH to V  
IL  
30  
14  
30  
14  
1
256xFs  
512xFs  
256xFs  
512xFs  
MLBCLK high time  
tmck  
h
ns  
MLBSIG/MLBDAT receiver input setup to  
MLBCLK falling  
tdsmcf  
tdhmcf  
tmcfdz  
tmdzh  
ns  
ns  
ns  
ns  
MLBSIG/MLBDAT receiver input hold from  
MLBCLK low  
tmcfdz  
2
MLBSIG/MLBDAT output valid from  
MLBCLK low  
0
4
tmck  
l
Bus output hold from MLBCLK low  
2
1. MLBCLK low/high time includes the pluse width variation.  
2. The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final  
driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the  
maximum load capacitance listed.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
55  
USB electrical specifications  
Ground = 0.0 V; Load Capacitance = 40 pF, input transition= 1 ns; MediaLB speed =  
1024 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as  
listed below; unless otherwise noted.  
Table 45. MLB 3-Pin 1024 Fs Timing Parameters  
Parameter  
Symbol  
Min  
45.056  
-
Max  
Unit  
MHz  
Comment  
MLBCLK Operating Frequency1  
fmck  
-
1024 x fs at 44.0 kHz  
51.2  
1
MHz  
ns  
1024 x fs at 50.0 kHz  
MLBCLK rise time  
MLBCLK fall time  
MLBCLK low time  
MLBCLK high time  
fmckr  
fmckf  
tmckl  
tmckh  
tdsmcf  
VIL to VIH  
1
ns  
VIH to VIL  
6.1  
9.3  
1
ns  
2
2
ns  
MLBSIG/MLBDAT receiver input  
setup to MLBCLK falling  
ns  
MLBSIG/MLBDAT receiver input hold tdhmcf  
from MLBCLK low  
tmcfdz  
ns  
ns  
ns  
MLBSIG/MLBDAT output valid from  
MLBCLK low  
tmcfdz  
0
2
tmckl  
3
3
Bus Hold from MLBCLK low  
tmdzh  
1. The controller can shut off MLBCLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a  
runt pulse can occur on MLBCLK.  
2. MLBCLK low/high time includes the pluse width variation.  
3. The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final  
driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the  
maximum load capacitance listed.  
6.4.6 USB electrical specifications  
6.4.6.1 USB electrical specifications  
The USB electricals for the USB On-the-Go module conform to the standards  
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date  
standards, visit http://www.usb.org.  
6.4.6.2 ULPI timing specifications  
The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin  
Interface. Control and data timing requirements for the ULPI pins are given in the  
following table. These timings apply to synchronous mode only. All timings are  
measured with respect to the clock as seen at the USB_CLKIN pin.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
56  
NXP Semiconductors  
USB electrical specifications  
Table 46. ULPI timing specifications  
Num  
Description  
Min.  
Typ.  
Max.  
Unit  
USB_CLKIN  
operating  
60  
MHz  
frequency  
USB_CLKIN duty  
cycle  
5
50  
16.67  
9.5  
%
ns  
ns  
ns  
ns  
ns  
U1  
U2  
U3  
U4  
U5  
USB_CLKIN clock  
period  
Input setup (control  
and data)  
Input hold (control  
and data)  
1
Output valid  
(control and data)  
1
Output hold (control  
and data)  
U1  
USB_CLKIN  
U2  
U3  
ULPI_DIR/ULPI_NXT  
(control input)  
ULPI_DATAn (input)  
U5  
U4  
ULPI_STP  
(control output)  
ULPI_DATAn (output)  
Figure 25. ULPI timing diagram  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
57  
USB electrical specifications  
6.4.7 SAI electrical specifications  
All timing requirements are specified relative to the clock period or to the minimum  
allowed clock period of a device  
Table 47. Master mode SAI Timing  
no  
Parameter  
Value  
Unit  
Min  
2.7  
Max  
3.6  
-
Operating Voltage  
V
S1  
S2  
SAI_MCLK cycle time  
SAI_MCLK pulse width high/low  
40  
ns  
45%  
55%  
MCLK  
period  
S3  
SAI_BCLK cycle time  
80  
-
BCLK  
period  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
SAI_BCLK pulse width high/low  
45%  
55%  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SAI_BCLK to SAI_FS output valid  
SAI_BCLK to SAI_FS output invalid  
SAI_BCLK to SAI_TXD valid  
-
0
15  
-
-
15  
-
SAI_BCLK to SAI_TXD invalid  
0
SAI_RXD/SAI_FS input setup before SAI_BCLK  
SAI_RXD/SAI_FS input hold after SAI_BCLK  
28  
0
-
-
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
58  
NXP Semiconductors  
USB electrical specifications  
Figure 26. Master mode SAI Timing  
Table 48. Slave mode SAI Timing  
No  
Parameter  
Value  
Unit  
Min  
2.7  
80  
45%  
10  
2
Max  
Operating Voltage  
3.6  
V
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
SAI_BCLK cycle time (input)  
-
ns  
SAI_BCLK pulse width high/low (input)  
SAI_FS input setup before SAI_BCLK  
SAI_FS input hold after SAI_BCLK  
SAI_BCLK to SAI_TXD/SAI_FS output valid  
SAI_BCLK to SAI_TXD/SAI_FS output invalid  
SAI_RXD setup before SAI_BCLK  
SAI_RXD hold after SAI_BCLK  
55%  
BCLK period  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
-
28  
-
0
10  
2
-
-
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
59  
Debug specifications  
Figure 27. Slave mode SAI Timing  
6.5 Debug specifications  
6.5.1 JTAG interface timing  
Table 49. JTAG pin AC electrical characteristics 1  
#
1
Symbol  
tJCYC  
Characteristic  
Min  
62.5  
40  
5
Max  
Unit  
ns  
%
TCK Cycle Time 2  
2
tJDC  
TCK Clock Pulse Width  
TCK Rise and Fall Times (40% - 70%)  
60  
3
tTCKRISE  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
tTMSS, tTDIS TMS, TDI Data Setup Time  
tTMSH, tTDIH TMS, TDI Data Hold Time  
5
5
203  
6
tTDOV  
tTDOI  
TCK Low to TDO Data Valid  
0
7
TCK Low to TDO Data Invalid  
TCK Low to TDO High Impedance  
TCK Falling Edge to Output Valid  
8
tTDOHZ  
tBSDV  
tBSDVZ  
15  
6004  
11  
12  
TCK Falling Edge to Output Valid out of High  
Impedance  
600  
13  
14  
15  
tBSDHZ  
tBSDST  
tBSDHT  
TCK Falling Edge to Output High Impedance  
Boundary Scan Input Valid to TCK Rising Edge  
TCK Rising Edge to Boundary Scan Input Invalid  
15  
15  
600  
ns  
ns  
ns  
1. These specifications apply to JTAG boundary scan only.  
2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions.  
Refer to pad specification for allowed transition frequency  
3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.  
4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
60  
NXP Semiconductors  
Debug specifications  
TCK  
2
3
3
2
1
Figure 28. JTAG test clock input timing  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 29. JTAG test access port timing  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
61  
Debug specifications  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 30. JTAG boundary scan timing  
6.5.2 Nexus timing  
Table 50. Nexus debug port timing 1  
No.  
Symbol  
Parameter  
Condition  
s
Min  
Max  
Unit  
1
2
3
4
5
6
7
8
tMCYC  
tMDC  
tMDOV  
tEVTIPW  
MCKO Cycle Time  
15.6  
40  
–0.1  
4
60  
0.25  
ns  
%
MCKO Duty Cycle  
MCKO Low to MDO, MSEO, EVTO Data Valid2  
tMCYC  
tTCYC  
tMCYC  
ns  
EVTI Pulse Width  
tEVTOPW EVTO Pulse Width  
1
tTCYC  
tTDC  
TCK Cycle Time3  
62.5  
40  
8
TCK Duty Cycle  
60  
%
tNTDIS  
,
TDI, TMS Data Setup Time  
ns  
tNTMSS  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
62  
NXP Semiconductors  
Debug specifications  
Table 50. Nexus debug port timing 1 (continued)  
No.  
Symbol  
Parameter  
Condition  
s
Min  
5
Max  
Unit  
ns  
9
tNTDIH  
,
TDI, TMS Data Hold Time  
TCK Low to TDO/RDY Data Valid  
tNTMSH  
10  
tJOV  
0
25  
ns  
1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured  
from 50% of MCKO and 50% of the respective signal.  
2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.  
3. The system clock frequency needs to be four times faster than the TCK frequency.  
1
2
MCKO  
3
MDO  
MSEO  
EVTO  
Output Data Valid  
5
Figure 31. Nexus output timing  
4
EVTI  
Figure 32. Nexus EVTI Input Pulse Width  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
63  
Debug specifications  
6
7
TCK  
8
9
TMS, TDI  
10  
TDO/RDY  
Figure 33. Nexus TDI, TMS, TDO timing  
6.5.3 WKPU/NMI timing  
Table 51. WKPU/NMI glitch filter  
No.  
1
Symbol  
Parameter  
Min  
Typ  
Max  
20  
Unit  
ns  
WFNMI  
NMI pulse width that is rejected  
NMI pulse width that is passed  
2
WNFNMI  
D
400  
ns  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
64  
NXP Semiconductors  
Thermal attributes  
6.5.4 External interrupt timing (IRQ pin)  
Table 52. External interrupt timing specifications  
No.  
1
Symbol  
tIPWL  
Parameter  
Conditions  
Min  
3
Max  
Unit  
tCYC  
tCYC  
tCYC  
IRQ pulse width low  
IRQ pulse width high  
IRQ edge to edge time  
2
tIPWH  
3
3
tICYC  
6
These values applies when IRQ pins are configured for rising edge or falling edge events,  
but not both.  
IRQ  
1
2
3
Figure 34. External interrupt timing  
7 Thermal attributes  
7.1 Thermal attributes  
Board  
type  
Symbol  
Description  
176LQFP  
45.5  
Unit  
Notes  
Single-layer RθJA  
(1s)  
Thermal resistance, junction to ambient (natural  
convection)  
°C/W  
1, 2  
Four-layer  
(2s2p)  
RθJA  
Thermal resistance, junction to ambient (natural  
convection)  
23.1  
°C/W  
°C/W  
°C/W  
1, 2, 3  
1,3  
Single-layer RθJMA  
(1s)  
Thermal resistance, junction to ambient (200 ft./min. 34.8  
air speed)  
Four-layer  
(2s2p)  
RθJMA  
Thermal resistance, junction to ambient (200 ft./min. 16  
air speed)  
1,3  
RθJB  
Thermal resistance, junction to board  
Thermal resistance, junction to case top  
Thermal resistance, junction to case bottom  
9.4  
9.5  
0.2  
°C/W  
°C/W  
°C/W  
4
5
6
RθJCtop  
RθJCbotttom  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
65  
Thermal attributes  
Board  
type  
Symbol  
Description  
176LQFP  
Unit  
Notes  
ΨJT  
Thermal characterization parameter, junction to  
package top  
0.2  
°C/W  
7
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any  
interface resistance.  
7. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
Board  
type  
Symbol  
Description  
324  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
Notes  
MAPBGA  
Single-  
layer (1s)  
RθJA  
Thermal resistance, junction to ambient (natural  
convection)  
25.5  
19.0  
18.1  
14.8  
1, 2  
1,23  
1, 3  
1,3  
Four-layer RθJA  
(2s2p)  
Thermal resistance, junction to ambient (natural  
convection)  
Single-  
layer (1s)  
RθJMA  
Thermal resistance, junction to ambient (200 ft./  
min. air speed)  
Four-layer RθJMA  
(2s2p)  
Thermal resistance, junction to ambient (200 ft./  
min. air speed)  
RθJB  
RθJC  
ΨJT  
Thermal resistance, junction to board  
Thermal resistance, junction to case  
10.4  
8.4  
°C/W  
°C/W  
°C/W  
4
5
6
Thermal characterization parameter, junction to  
package top natural convection)  
0.45  
ΨJB  
Thermal characterization parameter, junction to  
package top natural convection)  
2.65  
°C/W  
7
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.,  
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
3. Per JEDEC JESD51-6 with the board horizontal  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction  
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is  
written as Psi-JB.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
66  
NXP Semiconductors  
Dimensions  
Notes  
Board  
type  
Symbol  
Description  
256  
MAPBGA  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
Single-  
layer (1s)  
RθJA  
Thermal resistance, junction to ambient (natural 39.5  
convection)  
1, 2  
1,23  
1,3  
Four-layer RθJA  
(2s2p)  
Thermal resistance, junction to ambient (natural 22.9  
convection)  
Single-  
layer (1s)  
RθJMA  
Thermal resistance, junction to ambient (200 ft./ 28.5  
min. air speed)  
Four-layer RθJMA  
(2s2p)  
Thermal resistance, junction to ambient (200 ft./ 18.3  
min. air speed)  
1,3  
RθJB  
RθJC  
ΨJT  
Thermal resistance, junction to board  
Thermal resistance, junction to case  
9.5  
5.8  
0.2  
°C/W  
°C/W  
°C/W  
4
5
6
Thermal characterization parameter, junction to  
package top outside center (natural convection)  
ΨJB  
Thermal characterization parameter, junction to  
package bottom outside center (natural  
convection)  
6.4  
°C/W  
7
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.,  
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
3. Per JEDEC JESD51-6 with the board horizontal  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction  
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is  
written as Psi-JB.  
8 Dimensions  
8.1 Obtaining package dimensions  
Package dimensions are provided in package drawing.  
To find a package drawing, go to www.nxp.com and perform a keyword search for the  
drawing’s document number:  
Package  
NXP Document Number  
176-pin LQFP-EP  
256 MAPBGA  
324 MAPBGA  
98ASA00673D  
98ASA00346D  
98ASA10582D  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
67  
Pinouts  
9 Pinouts  
9.1 Package pinouts and signal descriptions  
For package pinouts and signal descriptions, refer to the Reference Manual.  
10 Reset sequence  
This section describes different reset sequences and details the duration for which the  
device remains in reset condition in each of those conditions.  
10.1 Reset sequence duration  
Table 53 specifies the minimum and the maximum reset sequence duration for the five  
different reset sequences described in Reset sequence description.  
Table 53. RESET sequences  
No. Symbol  
Parameter  
TReset  
Min Typ 1 Max  
5.730 7.796  
0.111 0.182  
5.729 7.793  
0.110 0.179  
0.007 0.009  
Unit  
1
2
3
4
5
TDRB  
TDR  
Destructive Reset Sequence, BIST enabled  
Destructive Reset Sequence, BIST disabled  
ms  
ms  
ms  
ms  
ms  
TERLB External Reset Sequence Long, Unsecure Boot  
TFRL  
TFRS  
Functional Reset Sequence Long, Unsecure Boot  
Functional Reset Sequence Short, Unsecure Boot  
1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by  
an external reset generator.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
68  
NXP Semiconductors  
Reset sequence  
10.2 BAF execution duration  
Following table specifies the typical BAF execution time in case BAF boot header is  
present at first location (Typical) and last location (worst case). Total Boot time is the  
sum of reset sequence duration and BAF execution time.  
Table 54. BAF execution duration  
BAF execution  
duration  
Min  
Typ  
Max  
Unit  
BAF execution time  
(boot header at first  
location)  
-
-
200  
320  
-
-
μs  
μs  
BAF execution time  
(boot header at last  
location)  
10.3 Reset sequence description  
The figures in this section show the internal states of the device during the five different  
reset sequences. The dotted lines in the figures indicate the starting point and the end  
point for which the duration is specified in Table 53.  
With the beginning of DRUN mode, the first instruction is fetched and executed. At this  
point, application execution starts and the internal reset sequence is finished.  
The following figures show the internal states of the device during the execution of the  
reset sequence and the possible states of the RESET_B signal pin.  
NOTE  
RESET_B is a bidirectional pin. The voltage level on this pin  
can either be driven low by an external reset generator or by the  
device internal reset circuitry. A high level on this pin can only  
be generated by an external pullup resistor which is strong  
enough to overdrive the weak internal pulldown resistor. The  
rising edge on RESET_B in the following figures indicates the  
time when the device stops driving it low. The reset sequence  
durations given in Table 53 are applicable only if the internal  
reset sequence is not prolonged by an external reset generator  
keeping RESET_B asserted low beyond the last Phase3.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
69  
Reset sequence  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE0  
PHASE1,2  
PHASE3  
BIST  
PHASE1,2  
PHASE3  
DRUN  
BAF+  
Flash  
Init  
Device  
Config  
Establish  
IRC and  
PWR  
Flash  
Init  
Device  
Config  
Self  
Test  
Setup  
Application  
MBIST  
LBIST  
Ex ecut ion  
T
< T  
< T  
RESET DRB, max  
DRB, min  
Figure 35. Destructive reset sequence, BIST enabled  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE0  
PHASE1,2  
PHASE3  
DRUN  
BAF+  
Establish  
IRC and  
PWR  
Flash  
Init  
Device  
Config  
Application  
Execution  
T
< T  
< T  
RESET DR, max  
DR, min  
Figure 36. Destructive reset sequence, BIST disabled  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE1,2  
PHASE3  
BIST  
PHASE1,2  
PHASE3  
DRUN  
BAF+  
Flash  
Init  
Device  
Config  
Flash  
Init  
Device  
Config  
Self  
Test  
Setup  
Application  
MBIST  
LBIST  
Execut ion  
T
< T  
RESET  
< T  
ERLB, max  
ERLB, min  
Figure 37. External reset sequence long, BIST enabled  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE1,2  
PHASE3  
DRUN  
BAF+  
Application  
Ex ecut ion  
Flash  
Init  
Device  
Config  
T
< T  
< T  
RESET FRL, max  
FRL, min  
Figure 38. Functional reset sequence long  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
70  
NXP Semiconductors  
Revision History  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE3  
DRUN  
BAF+  
Application  
Execution  
T
< T  
< T  
RESET FRS, max  
FRS, min  
Figure 39. Functional reset sequence short  
The reset sequences shown in Figure 38 and Figure 39 are triggered by functional reset  
events. RESET_B is driven low during these two reset sequences only if the  
corresponding functional reset source (which triggered the reset sequence) was enabled to  
drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE  
register in the device reference manual for more information.  
11 Revision History  
The following table provides a revision history for this document.  
Table 55. Revision History  
Rev. No.  
Date  
Substantial Changes  
1
14 March 2013  
16 May 2013  
22 May 2014  
Initial Release  
1.1  
2
Updated Pinouts section  
• Removed Category (SR, CC, P, T, D, B) column from all the table of the Datasheet  
• Revised the feature list.  
• Revised Introduction section to remove classification information.  
• Updated optional information in the ordering information figure.  
• Revised Absolute maximum rating section:  
• Removed category column from table  
• Added footnote at Ta  
• Revised Recommended operating conditions section  
• Added notes  
• Updated table: Recommended operating conditions (VDD_HV_x = 3.3 V)  
• Updated table: Recommended operating conditions (VDD_HV_x = 5 V)  
• Revised Voltage regulator electrical characteristics  
• Updated text describing bipolar transistors  
• Updated figure: Voltage regulator capacitance connection  
• Updated table: Voltage regulator electrical specifications  
• Removed Brownout information  
• Revised Voltage monitor electrical characteristics table  
• Revised Supply current characteristics section  
• Updated table: Current consumption characteristics  
• Updated table: Low Power Unit (LPU) Current consumption characteristics  
• STANDBY Current consumption characteristics  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
71  
Revision History  
Rev. No.  
Table 55. Revision History (continued)  
Date  
Substantial Changes  
• Revised Electromagnetic Interference (EMI) characteristics section  
• Revised DC electrical specifications @ 3.3V Range table for naming convections.  
• Revised DC electrical specifications @ 5 V Range table for naming conventions  
• Deleted MLB 6-pin Electrical Specifications  
• Removed PORST characteristics from Functional reset pad electrical characteristics  
table  
• Added section PORST electrical characteristics  
• Revised Input impedance and ADC accuracy section to remove SNR, THD, SINAD,  
ENOB,  
• Revised 32 kHz oscillator electrical specifications table to remove 'Vpp' row.  
• Updated 16 MHz RC Oscillator electrical specifications table for statuptime, cycle to  
cycle jitter, and lonf term jitter  
• Updated 128 KHz Internal RC oscillator electrical specifications table.  
• Updated PLL electrical specifications table  
• Added Jitter Calculation table  
• Added Percentage of Sample exceeding specified value of jitter table  
• Revised Memory interfaces section  
• Revised Communication interfaces section  
• Updated note  
• Added Continuous SCK timing table  
• Added DSPI high speed mode I/Os table  
• Updated input transition value in section MLB 3-pin interface electrical specifications  
• Deleted MLB 6-pin interface DC characteristics section  
• Deleted MLB 6-pin interface AC characteristics section  
• Updated JTAG pin AC electrical characteristics table  
• Revised table under Thermal attributes section  
• Updated Obtaining package dimensions section for Freescale Document numbers  
3
12 May 2015  
• Editorial updates throughout the sections  
• Renamed '176 LQFP' package to '176 LQFP-EP'  
• Added following sections:  
• Block diagram  
• Family comparison  
• Ordering Information  
• In table: Absolute maximum ratings as follows:  
• Removed row for symbol: 'VSS_HV  
'
• Added symbol: 'VDD_LV  
'
• Updated 'Max' column for symbol 'VINA  
• Added footnote to 'Conditions' column  
• Removed footnote from 'Max' column  
'
• In section: Recommended operating conditions  
• Added opening text: ''The following table describes the operating conditions ... "  
• Added note: "VDD_HV_A, VDD_HV_B and VDD_HV_C are all ... "  
• In table: Recommended operating conditions (VDD_HV_x = 3.3 V)  
• Added footnote to 'Conditions' cloumn  
• Updated footnote for 'Min' column  
• Removed footnote from symbols 'VDD_HV_A', 'VDD_HV_B', and 'VDD_HV_C  
• Removed row for symbol: 'VSS_HV  
• Updated 'Parameter' column for symbol 'VDD_HV_FLA', 'VDD_HV_ADC1_REF',  
'VDD_LV  
• Updated 'Min' column for symbol 'VDD_HV_ADC0' and 'VDD_HV_ADC1  
• Updated 'Parameter' 'Min' 'Max' column for symbol 'VSS_HV_ADC0' and  
'VSS_HV_ADC1  
• Added footnote to symbol 'VDD_LV  
'
'
'
'
'
'
• Removed footnote from symbol 'VIN1_CMP_REF  
'
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
72  
NXP Semiconductors  
Revision History  
Table 55. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• Removed row for symbol 'VSS_LV  
• Removed footnote from 'Max' column of symbols 'VDD_HV_ADC0' and  
'VDD_HV_ADC1  
'
'
• In section: Recommended operating conditions  
• In table: Recommended operating conditions (VDD_HV_x = 5 V)  
• Added footnote to 'Conditions' cloumn  
• Updated footnote for 'Min' column  
• Removed footnote from symbols 'VDD_HV_A', 'VDD_HV_B', and 'VDD_HV_C  
'
• Removed row for symbol: 'VSS_HV  
• Updated 'Parameter' column for symbol 'VDD_HV_ADC1_REF  
'VDD_HV_ADC1_REF', 'VDD_LV  
• Updated 'Min' columnn of symbol 'VDD_HV_ADC0' and 'VDD_HV_ADC1  
• Updated 'Parameter', 'Min' 'Max' column for symbol 'VSS_HV_ADC0' and  
'VSS_HV_ADC1  
• Added footnote to symbol 'VDD_LV  
• Removed row for symbol 'VSS_LV  
'
'
'
'
'
'
'
• Added row for symbol 'VIN1_CMP_REF' and corresponding footnotes to the  
symbol  
• In section: Voltage regulator electrical characteristics  
• In table: Voltage regulator electrical specifications  
• Added note to symbol 'Cbe_fpreg'  
• In section: Voltage monitor electrical characteristics  
• In table: Voltage monitor electrical characteristics  
• Updated column 'Parameter', 'Min' and 'Max' (of fall/rise trimmed condition)  
for symbol 'VHVD_LV_cold' and 'VLVD_IO_A_HI'  
• Updated column 'Parameter', 'Min' and 'Typ' (of fall/rise trimmed condition)  
for symbol) 'VLVD_LV_PD2_hot', 'VLVD_LV_PD2_cold LV  
• Updated column 'Parameter' for symbol 'VLVD_LV_PD0_hot  
• Updated column 'Typ' and 'Max' (of fall/rise trimmed condition) for symbol)  
'VLVD_FLASH  
• Updated footnote on symbol 'VLVD_IO_A_LO' and 'VLVD_IO_A_HI'  
'
'
'
• In section: Supply current characteristics  
• In table: Current consumption characteristics  
• Updated column 'Typ' for symbol 'IDD_FULL' for temperature 85, 105, 125  
• Updated column 'Typ' for symbol 'IDD_GWY' for temperature 85, 105, 125 and  
column 'Max' for temperature 105  
• Updated column 'Typ' for symbol 'IDD_BODY1' for temperature 85, 105, 125  
• Updated column 'Typ' for symbol 'IDD_BODY2' for temperature 85, 105, 125  
and 'Max' for temperature 125  
• Added 'Typ' value for temperature 25 for symbol 'IDD_STOP  
'
• Updated column 'Typ' and 'Max' for symbol 'IDD_STOP' for temperature 85,  
105, 125  
• In table: Low Power Unit (LPU) Current consumption characteristics  
• Updated column 'Typ' for symbol 'LPU_RUN' for tempeature 25 and 125  
• Added 'Typ' and 'Max' value for temperature 85 and 105 for symbol  
'LPU_RUN'  
• Updated column 'Typ' for symbol 'LPU_STOP' for tempeature 25 and 125  
• Added 'Typ' and 'Max' value for temperature 85 and 105 for symbol  
'LPU_STOP'  
• In table: STANDBY Current consumption characteristics  
• Updated to have one STANDBY  
• In section: I/O parameters  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
73  
Revision History  
Rev. No.  
Table 55. Revision History (continued)  
Date  
Substantial Changes  
• In table: Functional Pad AC Specifications @ 3.3 V Range  
• Updated values for symbol 'pad_sr_hv (output)'  
• In table: DC electrical specifications @ 3.3V Range  
• Updtaed values for VDD_HV_x, Vih, Vhys  
• Added Vih (pad_i_hv), Vil (pad_i_hv), Vhys (pad_i_hv), Vih_hys, Vil_hys  
• In table: Functional Pad AC Specifications @ 5 V Range  
• Updated values for symbol 'pad_sr_hv (output)'  
• In table DC electrical specifications @ 5 V Range  
• Added Vih (pad_i_hv), Vil (pad_i_hv), Vhys (pad_i_hv), Vih_hys, Vil_hys  
• In section: PORST electrical specifications  
• In table: PORST electrical specifications  
• Updated 'Min' value for WNFPORST  
• Corrected 'Unit' for VIH and VIL  
• In section: Peripheral operating requirements and behaviours  
• Revised table: ADC conversion characteristics (for 12-bit) and ADC conversion  
characteristics (for 10-bit)  
• In section: Analogue Comparator (CMP) electrical specifications  
• In table: Comparator and 6-bit DAC electrical specifications  
• Updated 'Max' value of IDDLS  
• Updated 'Min' and 'Max' for VAIO and DNL  
• Updated 'Descripton' 'Min' 'Max' od VH  
• Updated row for tDHS  
• Added row for tDLS  
• Removed row for VCMPOh and VCMPOl  
• In section: Clocks and PLL interfaces modules  
• Revised table: Main oscillator electrical characteristics  
• In table: 16 MHz RC Oscillator electrical specifications  
• Updated 'Max' of Tstartup  
• In table: 128 KHz Internal RC oscillator electrical specifications  
• Removed Uncaliberated 'Condition' for Fosc  
• Updated 'Min' and 'Max' of Caliberated Fosc  
• Updated 'Temperature dependence' and 'Supply dependence'  
• In table: PLL electrical specifications  
• Removed Input Clock Low Level, Input Clock High Level, Power  
consumption, Regulator Maximum Output Current, Analog Supply, Digital  
Supply (VDD_LV), Modulation Depth (Down Spread), PLL reset assertion  
time, and Power Consumption  
• Removed 'Typ' value of Duty Cycle at pllclkout  
• Removed 'Min' from calibration mode of Lock Time  
• In table: Jitter calculation  
• Added 1 Sigma Random Jitter value for Long term jitter  
• In section Flash read wait state and address pipeline control settings  
• Revised table: Flash Read Wait State and Address Pipeline Control  
• Removed section: On-chip peripherals  
• Added section: 'Reset sequence'  
Rev4  
Feb 10 2017  
• Added VDD_HV_BALLAST footnote in Voltage regulator electrical characteristics  
• Added Note to clarify In-Rush current and pin capacitance in Voltage regulator electrical  
characteristics  
• Updated SIUL2_MSCRn[SRC 1:0]=11@25pF max value; SIUL2_MSCRn[SRC  
1:0]=11@50pF min value; SIUL2_MSCRn[SRC 1:0]=10@25pF min and max values in  
AC specifications @ 3.3 V Range  
Table continues on the next page...  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
74  
NXP Semiconductors  
Revision History  
Table 55. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• Updated VIH min and VIL max values in Main oscillator electrical characteristics  
• Replaced ipp_sre[1:0] by SIUL2_MSCRn[SRC 1:0] in AC specifications @ 3.3 V Range,  
DC electrical specifications @ 3.3V Range  
• Functional reset sequence short, unsecure boot corrected Reset sequence duration  
• Added NVM memory map and RAM memory map Family comparison  
• Added BAF execution duration section BAF execution duration  
• Supply names (VDD_LV, VSS_LV replace dvss, avss, dvdd, avdd) corrected in Jitter  
calculation table PLL electrical specifications  
• Updated Ordering information: Fab and Mask version indicator  
• Updated tpsus typical and max values Flash memory AC timing specifications  
• Added Notes on IBIS models use in AC specifications @3.3 V Range AC specifications  
@ 3.3 V Range  
• Updated Vol value in DC electrical specifications @ 3.3V Range DC electrical  
specifications @ 3.3V Range  
• Added Notes on IBIS models in Functional Pad AC Specifications @ 5 V Range AC  
specifications @ 5 V Range  
• Updated Vol values in DC electrical specifications @5V Range DC electrical  
specifications @ 5 V Range  
• Updated IDD Current values Supply current characteristics  
• Updated STANDBY current consumption with FIRC ON Supply current characteristics  
• Thermal numbers update for 256MAPBGA Thermal attributes  
• POR_HV Trim values removed Voltage monitor electrical characteristics  
• ADC analog pad leakage for 105 C added ADC electrical specifications  
• IDD STANDBY0, 1, 2 and 3 added Supply current characteristics  
Rev5  
Rev6  
July 31 2017  
Nov 23 2018  
• Updated Standby2 value to 125 C in Standby current consumption characteristics  
• Corrected typo in Note from "case" to "cause" Voltage regulator electrical characteristics  
• Updated propagation delay from 14 to 21 in ACMP electrical specifications  
• Added text "Connecting two MPC5748G MCUs.......connecting MCU #1 ENET_0 to  
MCU #2 ENET_1" under "RMII signal switching specifications" section in Ethernet  
switching specifications.  
• Removed the footnote "Max power supply ramp rate is 500 V / ms" from Table 17 and  
Table 15.  
• Changed "VDD_HV_A" to "VDD_HV_IO" and changed the condition from "VDD_HV_A  
VDD_POR" to "3.0 V < VDD_HV_IO < 5.5 V" in Table 18.  
• Added footnote to VDD_LV in Table 5.  
=
• Corrected the number of SMPU descriptors from 32 to 16 in Features and table  
"MPC5748G Family Comparison" in Family comparison.  
• Updated the second bullet point from "If VDD_HV_A is in 3.3V range......should be  
shorted to VDD_HV_A" to "If VDD_HV_A is in 5.0V range.......should be shorted to  
VDD_HV_A " in Recommended operating conditions.  
• Added footnote in "High Speed Mode" column and for Parameter "DSPI cycle time"  
changed the Condition from "Master (MTFE=0)" to "Master" in DSPI timing.  
• Added 32 and 64 KB flash blocks in Table 3.  
• Added note "For the Precision channel Analog inputs...pulled low/high externally" in  
Supply current characteristics.  
• Changed Powerup to POR under the column "Reset Type" in table Voltage monitor  
electrical characteristics in Voltage monitor electrical characteristics.  
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018  
NXP Semiconductors  
75  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including “typicals,” must be validated for each customer application  
by customerʼs technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS  
are trademarks of NXP B.V. All other product or service names are the property of their respective  
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,  
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,  
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,  
ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of  
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered  
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the  
Power and Power.org logos and related marks are trademarks and service marks licensed by  
Power.org.  
© 2013–2018 NXP B.V.  
Document Number MPC5748G  
Revision 6, 11/2018  

相关型号:

SP5748KG

2.4GHz Very Low Phase Noise PLL
MITEL

SP5748KGMP1S

2.4GHz Very Low Phase Noise PLL
MITEL

SP5748KGMP1T

2.4GHz Very Low Phase Noise PLL
MITEL

SP574B

12-Bit Sampling A/D Converters
SIPEX

SP574BA

12-Bit Sampling A/D Converters
SIPEX

SP574BAP

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, PDIP28, 0.600 INCH, PLASTIC, DIP-28
SIPEX

SP574BB

12-Bit Sampling A/D Converters
SIPEX

SP574BBL

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, PQCC28, PLASTIC, LCC-28
SIPEX

SP574BBN

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, PDIP28, 0.300 INCH, PLASTIC, DIP-28
SIPEX

SP574BBP

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, PDIP28, 0.600 INCH, PLASTIC, DIP-28
SIPEX

SP574BJ

12-Bit Sampling A/D Converters
SIPEX

SP574BJL

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, PQCC28, PLASTIC, LCC-28
SIPEX