SIMXRT8RT10601DAE6A [NXP]

i.MX RT1010 Crossover Processors Data Sheet for Consumer Products;
SIMXRT8RT10601DAE6A
型号: SIMXRT8RT10601DAE6A
厂家: NXP    NXP
描述:

i.MX RT1010 Crossover Processors Data Sheet for Consumer Products

文件: 总65页 (文件大小:1256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: IMXRT1010CEC  
Rev. 0, 09/2019  
NXP Semiconductors  
Data Sheet: Technical Data  
MIMXRT1011DAE5A  
i.MX RT1010 Crossover  
Processors Data Sheet  
for Consumer Products  
Package Information  
Plastic Package  
80-Pin LQFP, 12 x 12 mm, 0.5 mm pitch  
Ordering Information  
See Table 1 on page 4  
1 i.MX RT1010 introduction  
The i.MX RT1010 is a member of i.MX RT real-time  
1. i.MX RT1010 introduction . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 4  
2. Architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1. Special signal considerations . . . . . . . . . . . . . . . 12  
3.2. Recommended connections for unused analog  
®
®
processor family based on the Arm Cortex -M7 core,  
which operates at speeds up to 500 MHz to provide high  
CPU performance and best real-time response.  
The i.MX RT1010 processor has 128 KB on-chip RAM,  
which can be flexibly configured as TCM or  
interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 15  
4.2. System power and clocks . . . . . . . . . . . . . . . . . . 21  
4.3. I/O parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.4. System modules . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.5. External memory interface . . . . . . . . . . . . . . . . . 34  
4.6. Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
4.7. Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
4.8. Communication interfaces . . . . . . . . . . . . . . . . . . 49  
4.9. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 55  
5.1. Boot mode configuration pins . . . . . . . . . . . . . . . 55  
5.2. Boot device interface allocation . . . . . . . . . . . . . . 55  
6. Package information and contact assignments . . . . . . . 57  
6.1. 12 x 12 mm package information . . . . . . . . . . . . 57  
7. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
general-purpose on-chip RAM. The i.MX RT1010  
integrates advanced power management module with  
DCDC and LDO that reduces complexity of external  
power supply and simplifies power sequencing. The  
i.MX RT1010 also provides various memory interfaces,  
including Quad SPI, and a wide range of connectivity  
interfaces, including UART, SPI, I2C, and USB; for  
connecting peripherals including WLAN, Bluetooth™,  
and GPS. The i.MX RT1010 also has rich audio features,  
including SPDIF and I2S audio interface. Various analog  
IP integration, including ADC, temperature sensor, and  
etc.  
NXP reserves the right to change the production detail specifications as may be required  
to permit improvements in the design of its products.  
i.MX RT1010 introduction  
The i.MX RT1010 is specifically useful for applications, such as:  
Audio  
Industrial  
Motor Control  
Home Appliance  
IoT  
1.1  
Features  
The i.MX RT1010 processors are based on Arm Cortex-M7 MPCore™ Platform, which has the  
following features:  
®
®
Supports single Arm Cortex -M7 with:  
— 16 KB L1 Instruction Cache  
— 8 KB L1 Data Cache  
— Full featured Floating Point Unit (FPU) with support of the VFPv5 architecture  
— Support the Armv7-M Thumb instruction set, defined in the ARM v7-M architecture  
Integrated MPU, up to 16 individual protection regions  
Up to 128 KB I-TCM and D-TCM in total  
Up to 500 MHz frequency  
®
Cortex M7 CoreSight™ components integration for debug  
Frequency of the core, as per Table 9, "Operating ranges," on page 16.  
The SoC-level memory system consists of the following additional components:  
— Boot ROM (64 KB)  
— On-chip RAM (128 KB)  
– Configurable RAM size up to 128 KB shared with CM7 TCM  
External memory interfaces:  
— SPI NOR FLASH  
— Single/Dual channel Quad SPI FLASH with XIP support and on-the-fly decryption  
— Octal flash  
Timers and PWMs:  
— Two General Programmable Timers (GPT)  
– 4-channel generic 32-bit resolution timer for each  
– Each support standard capture and compare operation  
— Periodical Interrupt Timer (PIT)  
– Generic 32-bit resolution timer  
– Periodical interrupt generation  
— FlexPWM  
– Up to 4 submodules  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
2
NXP Semiconductors  
i.MX RT1010 introduction  
– 16-bit resolution PWM suitable for Motor Control applications  
Each i.MX RT1010 processor enables the following interfaces to external devices (some of them are  
muxed and not available simultaneously):  
Audio:  
— SPDIF input and output  
— Two synchronous audio interface (SAI) modules, which support I2S, AC97, TDM, and  
codec/DSP interfaces  
— MQS interface for medium quality audio via GPIO pads  
Connectivity:  
— One USB 2.0 OTG controller with integrated PHY interface  
— Four universal asynchronous receiver/transmitter (UART) modules  
— Two I2C modules  
— Two SPI modules  
GPIO and Pin Multiplexing:  
— General-purpose input/output (GPIO) modules with interrupt capability  
— Input/output multiplexing controller (IOMUXC) to provide centralized pad control  
— 44 GPIOs for 80-pin LQFP package  
— FlexIO  
The i.MX RT1010 processors integrate advanced power management unit and controllers:  
Full PMIC integration, including on-chip DCDC and LDOs  
Temperature sensor with programmable trim points  
GPC hardware power management controller  
The i.MX RT1010 processors support the following system debug:  
®
®-  
Arm Cortex M7 CoreSight debug and trace architecture  
Trace Port Interface Unit (TPIU) to support off-chip real-time trace  
1
Support for 5-pin JTAG and SWD debug interfaces  
Security functions are enabled and accelerated by the following hardware:  
High Assurance Boot (HAB)  
Data Co-Processor (DCP):  
— AES-128, ECB, and CBC mode  
— SHA-1 and SHA-256  
— CRC-32  
FlexSPI with On-The-Fly AES Decryption (OTFAD)  
— AES-128, CTR mode  
— On-the-fly QSPI Flash decryption  
True random number generation (TRNG)  
1. SWD is the default debug interface.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
3
i.MX RT1010 introduction  
Secure Non-Volatile Storage (SNVS)  
— Secure real-time clock (RTC)  
— Zero Master Key (ZMK)  
Secure JTAG Controller (SJC)  
NOTE  
The actual feature set depends on the part numbers as described in Table 1.  
Functions such as connectivity interfaces, and security features are not  
offered on all derivatives.  
1.2  
Ordering information  
Table 1 provides orderable part numbers covered by this data sheet.  
Table 1. Ordering information  
Junction  
Temperature  
Tj (C)  
Part Number  
Features  
Package  
MIMXRT1011DAE5A  
• 500 MHz, consumer  
• SPI x2  
12 x 12 mm 80-pin LQFP, 0.5 0 to 95  
grade for general  
purpose  
• KPP  
• ADC x1  
mm pitch  
• DMA  
• FlexSPI  
• Boot ROM (64KB)  
• On-chip RAM  
(128KB)  
• USB OTG x1  
• SAI x2  
• FLEXIO  
• GPIO  
• HAB/DCP/OTFAD  
• TRNG  
• SNVS  
• SPDIF x1  
• MQS x1  
• SJC  
• DCDC  
• GPT x2  
• PWM x1  
• 4-channel PIT  
• WDOG x4  
• UART x4  
• I2C x2  
Temperature sensor  
GPC hardware power  
management  
controller  
Figure 1 describes the part number nomenclature so that characteristics of a specific part number can be  
identified (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The  
primary characteristic which describes which data sheet applies to a specific part is the temperature grade  
(junction) field.  
Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field  
and matching it to the proper data sheet. If there are any questions, visit the web page nxp.com/IMXRT or  
contact an NXP representative for details.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
4
NXP Semiconductors  
i.MX RT1010 introduction  
M
IMX X X  
@
##  
%
+
VV  
$
A
Silicon Rev  
A
Qualification Level  
M
A0  
A
Prototype Samples  
Mass Production  
Special  
P
M
S
Frequency  
400 MHz  
500 MHz  
600 MHz  
700 MHz  
800 MHz  
1000 MHz  
$
4
5
6
7
8
A
Part # series  
XX  
i.MX RT  
RT  
@
Family  
First Generation RT family  
Reserved  
1
2
3
4
5
6
7
8
VV  
Package Type  
80-pin LQFP, 12 x 12 mm, 0.5 mm pitch  
AE  
Sub-Family  
##  
Temperature  
Consumer: 0 to + 95 °C  
Industrial: -40 to +105 °C  
+
D
C
01  
02  
05  
06  
RT1010  
RT1020  
RT1050  
RT1060  
Tie  
1
%
Standard Feature General Purpose  
Enhanced Feature  
5
Figure 1. Part number nomenclature—i.MX RT1010  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
5
Architectural overview  
2 Architectural overview  
The following subsections provide an architectural overview of the i.MX RT1010 processor system.  
2.1  
Block diagram  
1
Figure 2 shows the functional modules in the i.MX RT1010 processor system .  
CPU Platform  
System Control  
Connectivity  
ARM Cortex-M7  
Security JTAG  
UART x4  
16 KB I-cache  
FPU  
8 KB D-cache  
4 x 4 Keypad  
I2C x2  
PLL / OSC  
NVIC  
MPU  
RTC and Reset  
HSGPIO  
128K I-TCM and D-TCM  
SPI x2  
Embedded DMA  
IOMUX  
FlexIO  
External Memory  
Dual-Channel Quad-SPI  
Octal/Hyper Flash/RAM  
GPIO  
GP Timer x3  
FlexPWM x1  
Watch Dog x4  
I2S / SAI x2  
FlexSPI with on-the-fly AES decryption  
SPDIF Tx/Rx  
MQS  
Security  
HAB  
Power Management  
USB2.0 OTG with PHY x1  
DCDC  
Ciphers  
RNG  
LDO  
Internal Memory  
Temp Monitor  
128 KB SRAM shared with TCM  
Secure RTC  
eFuse  
ADC  
64 KB ROM  
ADC (15-ch) x1  
.
Figure 2. i.MX RT1010 system block diagram  
1. Some modules shown in this block diagram are not offered on all derivatives. See Table 1 for details.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
6
NXP Semiconductors  
Modules list  
3 Modules list  
The i.MX RT1010 processors contain a variety of digital and analog modules. Table 2 describes these  
modules in alphabetical order.  
Table 2. i.MX RT1010 modules list  
Block mnemonic  
Block name  
Subsystem  
Analog  
Brief description  
ADC1  
Analog to Digital  
Converter  
The ADC is a 12-bit general purpose analog to digital  
converter.  
ADC_ETC  
AOI  
ADC External Trigger  
Control  
Analog  
The ADC_ETC enables multiple users to share an ADC  
module in a Time-Division-Multiplexing (TDM) way.  
And-Or-Inverter  
Cross Trigger  
The AOI provides a universal boolean function  
generator with using a four team sum of products  
expression, for each product term containing true or  
complement values of the four selected inputs (A, B, C,  
D).  
Arm  
Arm Platform  
Arm  
The Arm Core Platform includes 1x Cortex-M7 core. It  
also includes associated sub-blocks, such as Nested  
Vectored Interrupt Controller (NVIC), Floating-Point  
Unit (FPU), Memory Protection Unit (MPU), and  
CoreSight debug modules.  
CCM  
GPC  
SRC  
Clock Control Module,  
General Power  
Controller, System Reset  
Controller  
Clocks, Resets, and These modules are responsible for clock and reset  
Power Control  
distribution in the system, and also for the system  
power management.  
CSU  
DAP  
Central Security Unit  
Security  
The Central Security Unit (CSU) is responsible for  
setting comprehensive security policy within the i.MX  
RT1010 platform.  
Debug Access Port  
System Control  
Peripherals  
The DAP provides real-time access for the debugger  
without halting the core to:  
• System memory and peripheral registers  
• All debug configuration registers  
The DAP also provides debugger access to JTAG scan  
chains. The DAP module is internal to the Cortex-M7  
Core Platform.  
DCDC  
DCDC Converter  
Analog  
The DCDC module is used for generating power supply  
for core logic. Main features are:  
• Adjustable high efficiency regulator  
• Supports 3.3 V input voltage  
• Supports nominal run and low power standby modes  
• Supports at 0.9 ~ 1.3 V output in run mode  
• Supports at 0.9 ~ 1.0 V output in standby mode  
• Over current and over voltage detection  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
7
Modules list  
Table 2. i.MX RT1010 modules list (continued)  
Block mnemonic  
Block name  
Subsystem  
Brief description  
eDMA  
enhanced Direct Memory System Control  
There is an enhanced DMA (eDMA) engine and  
DMA_MUX.  
Access  
Peripherals  
• The eDMA is a 16-channel DMA engine, which is  
capable of performing complex data transfers with  
minimal intervention from a host processor.  
• The DMA_MUX is capable of multiplexing up to 128  
DMA request sources to the 16 DMA channels of  
eDMA.  
EWM  
External Watchdog  
Monitor  
Timer Peripherals  
The EWM modules is designed to monitor external  
circuits, as well as the software flow. This provides a  
back-up mechanism to the internal WDOG that can  
reset the system. The EWM differs from the internal  
WDOG in that it does not reset the system. The EWM,  
if allowed to time-out, provides an independent trigger  
pin that when asserted resets or places an external  
circuit into a safe mode.  
FlexIO1  
Flexible Input/output  
Connectivity and  
Communications  
The FlexIO is capable of supporting a wide range of  
protocols including, but not limited to: UART, I2C, SPI,  
I2S, camera interface, display interface, PWM  
waveform generation, etc. The module can remain  
functional when the chip is in a low power mode  
provided the clock it is using remain active.  
FlexPWM1  
FlexRAM  
Pulse Width Modulation Timer Peripherals  
The pulse-width modulator (PWM) contains four PWM  
sub-modules, each of which is set up to control a single  
half-bridge power stage. Fault channel support is  
provided. The PWM module can generate various  
switching patterns, including highly sophisticated  
waveforms.  
RAM  
Memories  
The i.MX RT1010 has 128 KB of on-chip RAM which  
could be flexible allocated to I-TCM, D-TCM, and  
on-chip RAM (OCRAM) in a 32 KB granularity. The  
FlexRAM is the manager of the 128 KB on-chip RAM  
array. Major functions of this blocks are: interfacing to  
I-TCM and D-TCM of Arm core and OCRAM controller;  
dynamic RAM arrays allocation for I-TCM, D-TCM, and  
OCRAM.  
FlexSPI  
Quad Serial Peripheral  
Interface  
Connectivity and  
Communications  
FlexSPI acts as an interface to one or two external  
serial flash devices, each with up to four bidirectional  
data lines.  
GPIO1  
GPIO2  
GPIO5  
General Purpose I/O  
Modules  
System Control  
Peripherals  
Used for general purpose input/output to external ICs.  
Each GPIO module supports up to 32 bits of I/O.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
8
Modules list  
Table 2. i.MX RT1010 modules list (continued)  
Block mnemonic  
Block name  
General Purpose Timer  
Subsystem  
Brief description  
GPT1  
GPT2  
Timer Peripherals  
Each GPT is a 32-bit “free-running” or “set and forget”  
mode timer with programmable prescaler and compare  
and capture register. A timer counter value can be  
captured using an external event and can be configured  
to trigger a capture event on either the leading or trailing  
edges of an input pulse. When the timer is configured to  
operate in “set and forget” mode, it is capable of  
providing precise interrupts at regular intervals with  
minimal processor intervention. The counter has output  
compare logic to provide the status and interrupt at  
comparison. This timer can be configured to run either  
on an external clock or on an internal clock.  
KPP  
Keypad Port  
Human Machine  
Interfaces  
The KPP is a 16-bit peripheral that can be used as a  
keypad matrix interface or as general purpose  
input/output (I/O). It supports 8 x 8 external key pad  
matrix. Main features are:  
• Multiple-key detection  
• Long key-press detection  
• Standby key-press detection  
• Supports a 2-point and 3-point contact key matrix  
LPI2C1  
LPI2C2  
Low Power  
Inter-integrated Circuit  
Connectivity and  
Communications  
The LPI2C is a low power Inter-Integrated Circuit (I2C)  
module that supports an efficient interface to an I2C bus  
as a master.  
The I2C provides a method of communication between  
a number of external devices. More detailed  
information, see Section 4.8.2, "LPI2C module timing  
parameters".  
LPSPI1  
LPSPI2  
Low Power Serial  
Peripheral Interface  
Connectivity and  
Communications  
The LPSPI is a low power Serial Peripheral Interface  
(SPI) module that support an efficient interface to an  
SPI bus as a master and/or a slave.  
• It can continue operating while the chip is in stop  
mode, if an appropriate clock is available.  
• Designed for low CPU overhead, with DMA off  
loading of FIFO register access.  
LPUART1  
LPUART2  
LPUART3  
LPUART4  
UART Interface  
Connectivity  
Peripherals  
Each of the UART modules support the following serial  
data transmit/receive protocols and configurations:  
• 7- bit or 8-bit data words, 1 or 2 stop bits,  
programmable parity (even, odd or none)  
• Programmable baud rates up to 5 Mbps.  
OTFAD  
PIT  
On-the-Fly AES  
Decryption  
Security  
OTFAD co-works with FlexSPI to provide superior  
cryptographic decryption capabilities without  
compromising system performance.  
Periodical Interrupt Timer Timer Peripherals  
The PIT features 32-bit counter timer, programmable  
count modules, clock division, interrupt generation, and  
a slave mode to synchronize count enable for multiple  
PITs.  
MQS  
Medium Quality Sound  
Multimedia  
Peripherals  
MQS is used to generate 2-channel medium quality  
PWM-like audio via two standard digital GPIO pins.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
9
Modules list  
Table 2. i.MX RT1010 modules list (continued)  
Block mnemonic  
Block name  
Subsystem  
Brief description  
The ROMCP acts as an interface between the Arm  
ROMCP  
ROM Controller with  
Patch  
Memories and  
Memory Controllers advanced high-performance bus and the ROM. The  
on-chip ROM is only used by the Cortex-M7 core during  
boot up. Size of the ROM is 64 KB.  
RTC OSC  
RTWDOG  
Real Time Clock  
Oscillator  
Clock Sources and The RTC OSC provides the clock source for the  
Control  
Real-Time Clock module. The RTC OSC module, in  
conjunction with an external crystal, generates a 32.678  
kHz reference clock for the RTC.  
Watch Dog  
Timer Peripherals  
The RTWDG module is a high reliability independent  
timer that is available for system to use. It provides a  
safety feature to ensure software is executing as  
planned and the CPU is not stuck in an infinite loop or  
executing unintended code. If the WDOG module is not  
serviced (refreshed) within a certain period, it resets the  
MCU. Windowed refresh mode is supported as well.  
SAI1  
SAI3  
Synchronous Audio  
Interface  
Multimedia  
Peripherals  
The SAI module provides a synchronous audio  
interface (SAI) that supports full duplex serial interfaces  
with frame synchronization, such as I2S, AC97, TDM,  
and codec/DSP interfaces.  
SA-TRNG  
SJC  
StandaloneTrueRandom Security  
Number Generator  
The SA-TRNG is hardware accelerator that generates  
a 512-bit entropy as needed by an entropy consuming  
module or by other post processing functions.  
Secure JTAG Controller System Control  
Peripherals  
The SJC provides JTAG interface, which complies with  
JTAG TAP standards, to internal logic. The i.MX  
RT1010 processors use JTAG port for production,  
testing, and system debugging. In addition, the SJC  
provides BSR (Boundary Scan Register) standard,  
which complies with IEEE1149.1 and IEEE1149.6.  
The JTAG port is accessible during platform initial  
laboratory bring-up, for manufacturing tests and  
troubleshooting, as well as for software debugging by  
authorized entities. The i.MX RT1010 SJC incorporates  
three security modes for protecting against  
unauthorized accesses. Modes are selected through  
eFUSE configuration.  
SNVS  
Secure Non-Volatile  
Storage  
Security  
Secure Non-Volatile Storage, including Secure Real  
Time Clock, Security State Machine, and Master Key  
Control.  
SPDIF  
Sony Philips Digital  
Interconnect Format  
Multimedia  
Peripherals  
A standard audio file transfer format, developed jointly  
by the Sony and Phillips corporations. It has Transmitter  
and Receiver functionality.  
Temp Monitor  
Temperature Monitor  
Analog  
The temperature sensor implements a temperature  
sensor/conversion function based on a  
temperature-dependent voltage to time conversion.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
10  
Modules list  
Table 2. i.MX RT1010 modules list (continued)  
Block name Subsystem Brief description  
Universal Serial Bus 2.0 Connectivity USB 2.0 (USB OTG1) contains:  
Block mnemonic  
USB 2.0  
Peripherals  
• One high-speed OTG 2.0 module with integrated HS  
USB PHY  
• Support eight Transmit (TX) and eight Receive (RX)  
endpoints, including endpoint 0  
WDOG1  
WDOG2  
WDOG3  
Watch Dog  
Cross BAR  
Timer Peripherals  
The Watch Dog Timer supports two comparison points  
during each counting period. Each of the comparison  
points is configurable to evoke an interrupt to the Arm  
core, and a second point evokes an external event on  
the WDOG line.  
XBAR  
Cross Trigger  
Each crossbar switch is an array of muxes with shared  
inputs. Each mux output provides one output of the  
crossbar. The number of inputs and the number of  
muxes/outputs are user configurable and registers are  
provided to select which of the shared inputs are routed  
to each output.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
11  
Modules list  
3.1  
Special signal considerations  
Table 3 lists special signal considerations for the i.MX RT1010 processors. The signal names are listed in  
alphabetical order.  
The package contact assignments can be found in Section 6, "Package information and contact  
assignments".” Signal descriptions are provided in the i.MX RT1010 Reference Manual  
(IMXRT1010RM).  
Table 3. Special signal considerations  
Signal name  
Remarks  
DCDC_PSWITCH  
PAD is in DCDC_IN domain and connected the ground to bypass DCDC.  
To enable DCDC function, assert to DCDC_IN with at least 1 ms delay for DCDC_IN rising edge.  
RTC_XTALI/RTC_XTALO If the user wishes to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz  
crystal, (100 kESR, 10 pF load) should be connected between RTC_XTALI and RTC_XTALO.  
Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal  
load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to  
account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but  
relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO  
to either power or ground (>100 M). This will debias the amplifier and cause a reduction of  
startup margin. Typically RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V.  
If it is desired to feed an external low frequency clock into RTC_XTALI, the RTC_XTALO pin must  
remain unconnected or driven with a complimentary signal. The logic level of this forcing clock  
should not exceed VDD_SNVS_CAP level and the frequency should be <100 kHz under typical  
conditions.  
In case when high accuracy real time clock are not required, system may use internal low  
frequency ring oscillator. It is recommended to connect RTC_XTALI to GND and keep  
RTC_XTALO unconnected.  
XTALI/XTALO  
A 24.0 MHz crystal should be connected between XTALI and XTALO. External load capacitance  
value depends on the typical load capacitance of crystal used and PCB design.  
The crystal must be rated for a maximum drive level of 250 W. An ESR (equivalent series  
resistance) of typical 80 is recommended. NXP SDK software requires 24 MHz on  
XTALI/XTALO.  
The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this  
case, XTALO must be directly driven by the external oscillator and XTALI mounted with 18 pF  
capacitor. The logic level of this forcing clock cannot exceed NVCC_PLL level.  
If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter  
requirements. See OSC24M chapter and relevant interface specifications chapters for details.  
If driving the chip with an external clock source, then a 24 MHz oscillator can be driven in one of  
three configurations using a nominal 1.1 V source.  
• A single ended external clock source can be used to overdrive the output of the amplifier  
(XTALO). Since the oscillation sensing amplifier is differential, the XTALI pin should be  
externally floating and capacitively loaded. The combination of the internal biasing resistor and  
the external capacitor will filter the signal applied to the XTALO pin and develop a rough  
reference for the sensing amplifier to compare.  
• A single ended external clock source can be used to drive XTALI. In this configuration, XTALO  
should be left externally unconnected.  
• A differential external clock source can be used to drive both XTALI and XTALO.  
Generally, second configuration is anticipated to be the most used configuration, but all three  
configurations may be utilized.  
GPANAIO  
This signal is reserved for NXP manufacturing use only. This output must remain unconnected.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
12  
NXP Semiconductors  
Modules list  
Table 3. Special signal considerations (continued)  
Remarks  
Signal name  
JTAG_nnnn  
The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However,  
if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is  
followed. For example, do not use an external pull down on an input that has on-chip pull-up.  
JTAG_TDO is configured with a keeper circuit such that the non-connected condition is eliminated  
if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and  
should be avoided.  
JTAG_MOD is referenced as SJC_MOD in the i.MX RT1010 reference manual. Both names refer  
to the same signal. JTAG_MOD must be externally connected to GND for normal operation.  
Termination to GND through an external pull-down resistor (such as 1 k) is allowed. JTAG_MOD  
set to hi configures the JTAG interface to mode compliant with IEEE1149.1 standard. JTAG_MOD  
set to low configures the JTAG interface for common SW debug adding all the system TAPs to the  
chain.  
NC  
These signals are No Connect (NC) and should be disconnected by the user.  
POR_B  
This cold reset negative logic input resets all modules and logic in the IC.  
May be used in addition to internally generated power on reset signal (logical AND, both internal  
and external signals are considered active low).  
ONOFF  
ONOFF can be configured in debounce, off to on time, and max time-out configurations. The  
debounce and off to on time configurations supports 0, 50, 100, and 500 ms. Debounce is used to  
generate the power off interrupt. While in the ON state, if ONOFF button is pressed longer than  
the debounce time, the power off interrupt is generated. Off to on time supports the time it takes  
to request power on after a configured button press time has been reached. While in the OFF  
state, if ONOFF button is pressed longer than the off to on time, the state will transition from OFF  
to ON. Max time-out configuration supports 5, 10, 15 seconds, and disable. Max time-out  
configuration supports the time it takes to request power down after ONOFF button has been  
pressed for the defined time.  
TEST_MODE  
TEST_MODE is for NXP factory use. The user must tie this pin directly to GND.  
Table 4. JTAG controller interface summary  
JTAG  
I/O type  
On-chip termination  
100 kpull-down  
JTAG_TCK  
JTAG_TMS  
JTAG_TDI  
Input  
Input  
47 kpull-up  
47 kpull-up  
Keeper  
Input  
JTAG_TDO  
JTAG_TRSTB  
JTAG_MOD  
3-state output  
Input  
47 kpull-up  
100 kpull-down  
Input  
3.2  
Recommended connections for unused analog interfaces  
Table 5 shows the recommended connections for unused analog interfaces.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
13  
Modules list  
Module  
Table 5. Recommended connections for unused analog interfaces  
Pad name  
Recommendations  
if unused  
USB  
ADC  
USB_OTG1_CHD_B, USB_OTG1_DN, USB_OTG1_DP, USB_OTG1_VBUS  
VDDA_ADC_3P3  
Not connected  
VDDA_ADC_3P3  
must be powered  
even if the ADC is  
not used.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
14  
Electrical characteristics  
4 Electrical characteristics  
This section provides the device and module-level electrical characteristics for the i.MX RT1010  
processors.  
4.1  
Chip-level conditions  
This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference  
to the individual tables and sections.  
Table 6. i.MX RT1010 chip-Level conditions  
For these characteristics  
Topic appears  
Absolute maximum ratings  
Thermal resistance  
on page 15  
on page 16  
on page 16  
on page 18  
on page 18  
on page 20  
on page 20  
Operating ranges  
External clock sources  
Maximum supply currents  
Low power mode supply currents  
USB PHY current consumption  
4.1.1  
Absolute maximum ratings  
CAUTION  
Stress beyond those listed under Table 7 may cause permanent damage to the device. These are stress  
ratings only. Functional operation of the device at these or any other conditions beyond those indicated  
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated  
conditions for extended periods may affect device reliability.  
Table 7 shows the absolute maximum operating ratings.  
Table 7. Absolute maximum ratings  
Parameter Description  
Core supplies input voltage  
Symbol  
VDD_SOC_IN  
Min  
Max  
Unit  
-0.3  
-0.3  
-0.3  
-0.3  
1.6  
3.7  
3.6  
3.6  
V
V
V
V
VDD_HIGH_IN supply voltage  
Power for DCDC  
VDD_HIGH_IN  
DCDC_IN  
Supply input voltage to Secure Non-Volatile Storage VDD_SNVS_IN  
and Real Time Clock  
USB VBUS supply  
USB_OTG1_VBUS  
VDDA_ADC  
5.5  
3.6  
3.6  
V
V
V
Supply for 12-bit ADC  
-0.3  
-0.3  
IO supply for GPIO bank (3.3 V mode)  
NVCC_GPIO  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
15  
Electrical characteristics  
Table 7. Absolute maximum ratings (continued)  
ESD Damage Immunity:  
Vesd  
Human Body Model (HBM)  
Charge Device Model (CDM)  
1000  
500  
V
Input/Output Voltage range  
Storage Temperature range  
Vin/Vout  
-0.5  
-40  
OVDD + 0.31  
150  
V
TSTORAGE  
o C  
1
OVDD is the I/O supply voltage.  
4.1.2  
Thermal resistance  
Following sections provide the thermal resistance data.  
4.1.2.1 Package thermal characteristics  
Table 8 displays the 12 x 12 mm LQFP package thermal resistance data.  
Table 8. 12 x 12 mm package thermal resistance data  
Rating  
Board type1  
JESD51-9, 2s2p  
Symbol  
RJA  
Value  
Unit  
Junction to Ambient  
46.5  
oC/W  
Thermal Resistance2  
Junction to Package Top  
Thermal Resistance2  
JESD51-9, 2s2p  
JT  
2.0  
oC/W  
oC/W  
Junction to Case Thermal Resistance3  
JESD51-9, 1s  
RJC  
22.1  
1
Thermal test board meets JEDEC specification for this package (JESD51-9)  
2
Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is  
solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not  
meant to predict the performance of a package in an application-specific environment.  
3
Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature refers to the mold surface  
temperature at the package top side dead centre.  
4.1.3  
Operating ranges  
Table 9 provides the operating ranges of the i.MX RT1010 processors. For details on the chip's power  
structure, see the “Power Management Unit (PMU)” chapter of the i.MX RT1010 Reference Manual  
(IMXRT1010RM).  
Table 9. Operating ranges  
Parameter  
Description  
Operating  
Conditions  
Symbol  
Min  
Typ Max1 Unit  
Comment  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
16  
Electrical characteristics  
Table 9. Operating ranges (continued)  
Run Mode  
VDD_SOC_IN  
VDD_SOC_IN  
Overdrive  
1.25  
1.15  
1.3  
1.3  
V
V
M7 core at 396  
MHz  
M7 core at 132  
MHz  
1.15  
0.925  
1.15  
1.3  
1.3  
1.3  
M7 core at 24  
MHz  
IDLE Mode  
VDD_SOC_IN  
M7 core  
V
operation at 396  
MHz or below  
SUSPEND (DSM) VDD_SOC_IN  
Mode  
0.925  
1.3  
V
V
Refer to Table 12 Low power mode  
current and power consumption  
SNVS Mode  
VDD_SOC_IN  
0
1.3  
3.6  
3.6  
Power for DCDC DCDC_IN  
3.0  
3.0  
3.3  
VDD_HIGH  
VDD_HIGH_IN2  
V
V
Must match the range of voltages  
that the rechargeable backup  
battery supports.  
internal regulator  
Backup battery  
supply range  
VDD_SNVS_IN3  
2.40  
3.6  
Can be combined with  
VDDHIGH_IN, if the system does  
not require keeping real time and  
other data on OFF state.  
USB supply  
voltages  
USB_OTG1_VBUS —  
4.40  
3.0  
5.5  
3.6  
V
V
A/D converter  
VDDA_ADC_3P3  
3.3  
VDDA_ADC_3P3 must be  
powered even if the ADC is not  
used.  
VDDA_ADC_3P3 cannot be  
powered when the other SoC  
supplies (except VDD_SNVS_IN)  
are off.  
Temperature Operating Ranges  
Junction  
temperature  
Tj  
Standard  
Commercial  
0
95  
oC  
See the application note, i.MX  
RT1010 Product Lifetime Usage  
Estimates for information on  
product lifetime (power-on years)  
for this processor.  
1
2
3
Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set  
point = (Vmin + the supply tolerance). This result in an optimized power/speed ratio.  
Applying the maximum voltage results in shorten lifetime. 3.6 V usage limited to < 1% of the use profile. Reset of profile limited  
to below 3.49 V.  
In setting VDD_SNVS_IN voltage with regards to Charging Currents and RTC, refer to the i.MX RT1010 Hardware  
Development Guide (IMXRT1010HDG).  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
17  
Electrical characteristics  
4.1.4  
External clock sources  
Each i.MX RT1010 processor has two external input system clocks: a low frequency (RTC_XTALI) and  
a high frequency (XTALI).  
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,  
power-down real time clock operation, slow system and watch-dog counters. The clock input can be  
connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is  
an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important.  
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other  
peripherals. The system clock input can be connected to either external oscillator or a crystal using internal  
oscillator amplifier.  
Table 10 shows the interface frequency requirements.  
Table 10. External input clock frequency  
Parameter Description  
Symbol  
Min  
Typ  
Max  
Unit  
RTC_XTALI Oscillator1,2  
XTALI Oscillator2,4  
fckil  
fxtal  
32.7683/32.0  
24  
kHz  
MHz  
1
External oscillator or a crystal with internal oscillator amplifier.  
2
The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware  
Development Guide for i.MX RT1010 Crossover Processors (IMXRT1010HDG).  
3
4
Recommended nominal frequency 32.768 kHz.  
External oscillator or a fundamental frequency crystal with internal oscillator amplifier.  
The typical values shown in Table 10 are required for use with NXP SDK to ensure precise time keeping  
and USB operation. For RTC_XTALI operation, two clock sources are available.  
External crystal oscillator with on-chip support circuit:  
— At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit  
switches over to the crystal oscillator automatically.  
— Higher accuracy than ring oscillator  
— If no external crystal is present, then the ring oscillator is utilized  
The decision of choosing a clock source should be taken based on real-time clock use and precision  
time-out.  
4.1.5  
Maximum supply currents  
The data shown in Table 11 represent a use case designed specifically to show the maximum current  
consumption possible. All cores are running at the defined maximum frequency and are limited to L1  
cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited  
practical use case, if at all, and be limited to an extremely low duty cycle unless the intention was to  
specifically show the worst case power consumption.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
18  
NXP Semiconductors  
Electrical characteristics  
See the i.MX RT1010 Power Consumption Measurement Application Note for more details on typical  
power consumption under various use case definitions.  
Table 11. Maximum supply currents  
Power Rail  
Conditions  
Max Current  
Unit  
DCDC_IN  
Max power for chip at 125 oC  
Include internal loading in analog  
200  
75  
mA  
mA  
A  
VDD_HIGH_IN  
VDD_SNVS_IN  
57.5  
25  
USB_OTG1_VBUS  
VDDA_ADC_3P3  
25 mA for each active USB interface  
mA  
mA  
3.3 V power supply for 12-bit ADC, 600 34.5  
A typical, 750 A max, for each ADC.  
100 Ohm max loading for touch panel,  
cause 33 mA current.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
19  
Electrical characteristics  
4.1.6  
Low power mode supply currents  
Table 12 shows the current core consumption (not including I/O) of i.MX RT1010 processors in selected  
low power modes.  
Table 12. Low power mode current and power consumption  
Mode  
Test Conditions  
Supply  
Typical1  
2.09  
Units  
mA  
SYSTEM IDLE  
• SOC_VDD_IN set to 1.1 V for SOG and ARM  
• CPU in WFI, CPU clock gated  
• 24 MHz XTAL is ON  
• System PLL is active, other PLLs are power down  
• Peripheral clock gated, but remain powered  
DCDC_IN (3.3 V)  
VDD_HIGH_IN (3.3 V)  
VDD_SNVS_IN (3.3 V)  
Total  
6.58  
0.019  
28.67  
0.778  
0.245  
0.042  
3.51  
0.10  
0.02  
0.015  
0.45  
0
mW  
mA  
LOW POWER IDLE  
• SOC_VDD_IN set to Weak mode  
• CPU in Power Gate mode  
• All PLLs are power down  
• 24 MHz XTAL is off, 24 MHz RCOSC used as  
clock source  
DCDC_IN (3.3 V)  
VDD_HIGH_IN (3.3 V)  
VDD_SNVS_IN (3.3 V)  
Total  
mW  
mA  
• Peripheral are powered off  
SUSPEND  
(DSM)  
• SOC_VDD_IN is shut off  
• CPU in Power Gate mode  
• All PLLs are power down  
• 24 MHz XTAL is off, 24 MHz RCOSC is off  
• All clocks are shut off, except 32 kHz RTC  
• Peripheral are powered off  
DCDC_IN (3.3 V)  
VDD_HIGH_IN (3.3 V)  
VDD_SNVS_IN (3.3 V)  
Total  
mW  
mA  
SNVS (RTC)  
• All SOC digital logic, analog module are shut off DCDC_IN (0 V)  
• 32 kHz RTC is alive  
VDD_HIGH_IN (0 V)  
0
VDD_SNVS_IN (3.3 V)  
Total  
0.015  
0.05  
mW  
1
The typical values shown here are for information only and are not guaranteed. These values are average values measured  
on a typical process wafer at 25oC.  
4.1.7  
USB PHY current consumption  
Power down mode  
4.1.7.1  
In power down mode, everything is powered down, including the USB VBUS valid detectors in typical  
condition. Table 13 shows the USB interface current consumption in power down mode.  
Table 13. USB PHY current consumption in power down mode  
VDD_USB_CAP (3.0 V)  
5.1 A  
VDD_HIGH_CAP (2.5 V)  
1.7 A  
NVCC_PLL (1.1 V)  
< 0.5 A  
Current  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
20  
Electrical characteristics  
NOTE  
The currents on the VDD_HIGH_CAP and VDD_USB_CAP were  
identified to be the voltage divider circuits in the USB-specific level  
shifters.  
4.2  
System power and clocks  
This section provide the information about the system power and clocks.  
4.2.1  
Power supplies requirements and restrictions  
The system design must comply with power-up sequence, power-down sequence, and steady state  
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation  
from these sequences may result in the following situations:  
Excessive current during power-up phase  
Prevention of the device from booting  
Irreversible damage to the processor (worst-case scenario)  
Power On  
Run Mode <-> Standby Mode  
Run Mode <-> SNVS Mode  
TSNVSDly  
VDD_SNVS_IN  
VDD_SNVS_CAP  
DCDC_IN  
VDD_HIGH_CAP  
NVCC_PLL  
POR_B  
PMIC_ON_REQ  
PMIC_STBY_REQ  
DCDC_PSWITCH  
ON_OFF  
TStbyExt  
1ms  
1ms  
VDD_SOC_IN  
DCDC_OK  
TDCDCSetup  
DCDC_LP power rail  
DCDC_IN power rail  
VDD_SNVS_IN power rail  
VDD_SNVS_CAP power rail  
Signal Floating  
VDD_SOC power rail  
VDDA_2P5_CAP power rail  
VDDA_1P1_CAP power rail  
LEGEND  
Signal in VDD_SOC power  
domain  
Signal in DCDC_IN power  
domain  
Signal in VDD_SNVS_CAP  
power domain  
Figure 3. Power sequence  
4.2.1.1  
Power-up sequence  
The below restrictions must be followed:  
VDD_SNVS_IN supply must be turned on before any other power supply or be connected  
(shorted) with VDD_HIGH_IN supply.  
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other  
supply is switched on.  
When internal DCDC is enabled, external delay circuit is required to delay the  
“DCDC_PSWITCH” signal at least 1 ms after DCDC_IN is stable.  
POR_B should be held low during the entire power up sequence.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
21  
Electrical characteristics  
NOTE  
The POR_B input (if used) must be immediately asserted at power-up and  
remain asserted until after the last power rail reaches its working voltage. In  
the absence of an external reset feeding the POR_B input, the internal POR  
module takes control. It is recommended to reset IC. See the i.MX RT1010  
Reference Manual (IMXRT1010RM) for further details and to ensure that  
all necessary requirements are being met.  
NOTE  
Need to ensure that there is no back voltage (leakage) from any supply on  
the board towards the 3.3 V supply (for example, from the external  
components that use the 3.3 V supply).  
NOTE  
USB_OTG1_VBUS and VDDA_ADC_3P3 are not part of the power  
supply sequence and may be powered at any time.  
4.2.1.2  
Power-down sequence  
The following restrictions must be followed:  
VDD_SNVS_IN supply must be turned off after any other power supply or be connected (shorted)  
with VDD_HIGH_IN supply.  
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is removed after any other supply  
is switched off.  
4.2.1.3  
Power supplies usage  
All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF.  
This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O  
power supply of each pin, see “Power Rail” columns in pin list tables of Section 6, "Package information  
and contact assignments".”  
4.2.2  
Integrated LDO voltage regulator parameters  
Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins  
named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use  
only and should not be used to power any external circuitry. See the i.MX RT1010 Reference Manual  
(IMXRT1010RM) for details on the power tree scheme.  
NOTE  
The *_CAP signals should not be powered externally. These signals are  
intended for internal LDO operation only.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
22  
NXP Semiconductors  
Electrical characteristics  
4.2.2.1  
Digital regulators (LDO_SNVS)  
There are one digital LDO regulator (“Digital”, because of the logic loads that they drive, not because of  
their construction). The advantages of the regulator is to reduce the input supply variation because of its  
input supply ripple rejection and its on-die trimming. This translates into more stable voltage for the  
on-chip logics.  
The regulator has two basic modes:  
Power Gate. The regulation FET is switched fully off limiting the current draw from the supply.  
The analog part of the regulator is powered down here limiting the power consumption.  
Analog regulation mode. The regulation FET is controlled such that the output voltage of the  
regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV  
steps.  
For additional information, see the i.MX RT1010 Reference Manual (IMXRT1010RM).  
4.2.2.2  
Regulators for analog modules  
LDO_1P1  
4.2.2.2.1  
The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see  
Table 9 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0 V  
to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the USB Phy, and PLLs. A  
programmable brown-out detector is included in the regulator that can be used by the system to determine  
when the load capability of the regulator is being exceeded to take the necessary steps. Current-limiting  
can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can  
also be enabled for systems requiring this feature.  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX RT1010 Crossover Processors (IMXRT1010HDG).  
For additional information, see the i.MX RT1010 Reference Manual (IMXRT1010RM).  
4.2.2.2.2  
LDO_2P5  
The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see  
Table 9 for minimum and maximum input requirements). Typical Programming Operating Range is 2.25 V  
to 2.75 V with the nominal default setting as 2.5 V. LDO_2P5 supplies the USB PHY, E-fuse module, and  
PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to  
determine when the load capability of the regulator is being exceeded, to take the necessary steps.  
Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed.  
Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased  
low-precision weak-regulator is included that can be enabled for applications needing to keep the output  
voltage alive during low-power modes where the main regulator driver and its associated global bandgap  
reference module are disabled. The output of the weak-regulator is not programmable and is a function of  
the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output  
is 2.525 V and its output impedance is approximately 40 .  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
23  
Electrical characteristics  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX RT1010 Crossover Processors (IMXRT1010HDG).  
For additional information, see the i.MX RT1010 Reference Manual (IMXRT1010RM).  
4.2.2.2.3  
LDO_USB  
The LDO_USB module implements a programmable linear-regulator function from the USB VUSB  
voltages (4.4 V–5.5 V) to produce a nominal 3.0 V output voltage. A programmable brown-out detector  
is included in the regulator that can be used by the system to determine when the load capability of the  
regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows  
the user to select to run the regulator from either USB VBUS supply, when both are present. If only one  
of the USB VBUS voltages is present, then, the regulator automatically selects this supply. Current limit  
is also included to help the system meet in-rush current targets.  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX RT1010 Crossover Processors (IMXRT1010HDG).  
For additional information, see the i.MX RT1010 Reference Manual (IMXRT1010RM).  
4.2.2.2.4  
DCDC  
DCDC can be configured to operate on power-save mode when the load current is less than 50 mA. During  
the power-save mode, the converter operates with reduced switching frequency in PFM mode and with a  
minimum quiescent current to maintain high efficiency.  
DCDC can detect the peak current in the P-channel switch. When the peak current exceeds the threshold,  
DCDC will give an alert signal, and the threshold can be configured. By this way, DCDC can roughly  
detect the current loading.  
DCDC also includes the following protection functions:  
Over current protection. In run mode, DCDC shuts down when detecting abnormal large current in  
the P-type power switch. In power save mode, DCDC stop charging inductor when detecting large  
current in the P-type power switch. The threshold is also different in run mode and in power save  
mode: the former is 1 A–2A, and the latter is 200 mA–250 mA.  
Over voltage protection. DCDC shuts down when detecting the output voltage is too high.  
Low voltage detection. DCDC shuts down when detecting the input voltage is too low.  
NOTE  
It is recommended that using the internal DCDC as core supply for cost  
solution.  
If the DCDC bypass mode is used, it is not recommended to switch back to  
the internal DCDC mode.  
For additional information, see the i.MX RT1010 Reference Manual (IMXRT1010RM).  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
24  
NXP Semiconductors  
Electrical characteristics  
4.2.3  
PLL’s electrical characteristics  
This section provides PLL electrical characteristics.  
4.2.3.1  
Audio PLL’s electrical parameters  
Table 14. Audio PLL’s electrical parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
650 MHz ~1.3 GHz  
24 MHz  
< 11250 reference cycles  
4.2.3.2  
System PLL  
Table 15. System PLL’s electrical parameters  
Parameter  
Value  
Value  
Value  
Clock output range  
Reference clock  
Lock time  
528 MHz PLL output  
24 MHz  
< 11250 reference cycles  
4.2.3.3  
Ethernet PLL  
Table 16. Ethernet PLL’s electrical parameters  
Parameter  
Clock output range  
Reference clock  
Lock time  
1 GHz  
24 MHz  
< 11250 reference cycles  
4.2.3.4  
USB PLL  
Table 17. USB PLL’s electrical parameters  
Parameter  
Clock output range  
Reference clock  
Lock time  
480 MHz PLL output  
24 MHz  
< 383 reference cycles  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
25  
Electrical characteristics  
4.2.4  
On-chip oscillators  
4.2.4.1  
OSC24M  
This block implements an amplifier that when combined with a suitable quartz crystal and external load  
capacitors implement an oscillator. The oscillator is powered from NVCC_PLL.  
The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight  
forward biased-inverter implementation is used.  
4.2.4.2  
OSC32K  
This block implements an amplifier that when combined with a suitable quartz crystal and external load  
capacitors implement a low power oscillator. It also implements a power mux such that it can be powered  
from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes  
power from VDD_HIGH_IN when that supply is available and transitions to the backup battery when  
VDD_HIGH_IN is lost.  
In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 K  
will automatically switch to a crude internal ring oscillator. The frequency range of this block is  
approximately 10–45 kHz. It highly depends on the process, voltage, and temperature.  
The OSC32k runs from VDD_SNVS_CAP supply, which comes from the  
VDD_HIGH_IN/VDD_SNVS_IN. The target battery is a ~3 V coin cell. Proper choice of coin cell type  
is necessary for chosen VDD_HIGH_IN range. Appropriate series resistor (Rs) must be used when  
connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For  
example, for Panasonic ML621:  
Average Discharge Voltage is 2.5 V  
Maximum Charge Current is 0.6 mA  
For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k.  
Table 18. OSC32K main characteristics  
Min  
Typ  
Max Comments  
Fosc  
32.768 KHz  
This frequency is nominal and determined mainly by the crystal selected.  
32.0 K would work as well.  
Current consumption  
4 A  
The 4 A is the consumption of the oscillator alone (OSC32k). Total supply  
consumption will depend on what the digital portion of the RTC consumes.  
The ring oscillator consumes 1 A when ring oscillator is inactive, 20 A  
when the ring oscillator is running. Another 1.5 A is drawn from vdd_rtc in  
the power_detect block. So, the total current is 6.5 A on vdd_rtc when the  
ring oscillator is not running.  
Bias resistor  
14 M  
This integrated bias resistor sets the amplifier into a high gain state. Any  
leakage through the ESD network, external board leakage, or even a  
scope probe that is significant relative to this value will debias the amp. The  
debiasing will result in low gain, and will impact the circuit's ability to start  
up and maintain oscillations.  
Crystal Properties  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
26  
Electrical characteristics  
Table 18. OSC32K main characteristics  
Max Comments  
Min  
Typ  
10 pF  
Cload  
Usually crystals can be purchased tuned for different Cloads. This Cload  
value is typically 1/2 of the capacitances realized on the PCB on either side  
of the quartz. A higher Cload will decrease oscillation margin, but  
increases current oscillating through the crystal.  
ESR  
50 k  
100 kEquivalent series resistance of the crystal. Choosing a crystal with a higher  
value will decrease the oscillating margin.  
4.3  
I/O parameters  
This section provide parameters on I/O interfaces.  
4.3.1  
I/O DC parameters  
This section includes the DC parameters of the following I/O types:  
XTALI and RTC_XTALI (Clock Inputs) DC Parameters  
General Purpose I/O (GPIO)  
NOTE  
The term ‘NVCC_XXXXin this section refers to the associated supply rail  
of an input or output.  
Figure 4. Circuit for parameters Voh and Vol for I/O cells  
4.3.1.1  
XTALI and RTC_XTALI (clock inputs) DC parameters  
Table 19 shows the DC parameters for the clock inputs.  
1
Table 19. XTALI and RTC_XTALI DC parameters  
Symbol Test Conditions Min  
Parameter  
Max  
Unit  
XTALI high-level DC input voltage  
XTALI low-level DC input voltage  
Vih  
Vil  
0.8 x NVCC_PLL  
0
NVCC_PLL  
0.2  
V
V
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
27  
Electrical characteristics  
1
Table 19. XTALI and RTC_XTALI DC parameters (continued)  
Parameter  
Symbol Test Conditions  
Min  
Max  
Unit  
RTC_XTALI high-level DC input voltage  
Vih  
Vil  
0.8 x NVCC_PLL  
0
NVCC_PLL  
0.2  
V
V
RTC_XTALI low-level DC input voltage  
1
The DC parameters are for external clock input only.  
4.3.1.2  
Single voltage general purpose I/O (GPIO) DC parameters  
Table 20 shows DC parameters for GPIO pads. The parameters in Table 20 are guaranteed per the  
operating ranges in Table 9, unless otherwise noted.  
Table 20. Single voltage GPIO DC parameters  
Parameter  
Symbol  
VOH  
Test Conditions  
Min  
Max  
Units  
High-level output voltage1  
Ioh= -0.1mA (ipp_dse=001,010) NVCC_XXXX -  
V
Ioh= -1mA  
(ipp_dse=011,100,101,110,111)  
0.2  
Low-level output voltage1  
VOL  
Iol= 0.1mA (ipp_dse=001,010)  
Iol= 1mA  
0.2  
V
(ipp_dse=011,100,101,110,111)  
High-Level input voltage1,2  
Low-Level input voltage1,2  
VIH  
VIL  
0.7 x  
NVCC_XXXX  
NVCC_XXXX  
V
0
0.3 x  
V
NVCC_XXXX  
Input Hysteresis  
(NVCC_XXXX=3.3V)  
VHYS_High NVCC_XXXX=3.3V  
VDD  
250  
mV  
mV  
mV  
Schmitt trigger VT+2,3  
Schmitt trigger VT-2,3  
VTH+  
0.5 x  
NVCC_XXXX  
VTH-  
0.5 x  
NVCC_XXXX  
Pull-up resistor (22_kPU)  
Pull-up resistor (22_kPU)  
Pull-up resistor (47_kPU)  
Pull-up resistor (47_kPU)  
Pull-up resistor (100_kPU)  
Pull-up resistor (100_kPU)  
RPU_22K  
RPU_22K  
RPU_47K  
RPU_47K  
Vin=0V  
-1  
212  
1
A  
A  
A  
A  
A  
A  
A  
A  
A  
k  
Vin=NVCC_XXXX  
Vin=0V  
100  
1
Vin=NVCC_XXXX  
RPU_100K Vin=0V  
48  
1
RPU_100K Vin=NVCC_XXXX  
Pull-down resistor (100_kPD) RPD_100K Vin=NVCC_XXXX  
Pull-down resistor (100_kPD) RPD_100K Vin=0V  
48  
1
Input current (no PU/PD)  
Keeper Circuit Resistance  
IIN  
VI = 0, VI = NVCC_XXXX  
1
R_Keeper  
VI =0.3 x NVCC_XXXX, VI = 0.7 105  
x NVCC_XXXX  
175  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
28  
Electrical characteristics  
1
Overshoot and undershoot conditions (transitions above NVCC_XXXX and below GND) on switching pads must be held  
below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/  
undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line  
termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage  
to the device.  
2
3
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.  
Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.  
4.3.2  
I/O AC parameters  
This section includes the AC parameters of the following I/O types:  
General Purpose I/O (GPIO)  
Figure 5 shows load circuit for output, and Figure 6 show the output transition time waveform.  
From Output  
Under Test  
Test Point  
CL  
CL includes package, probe and fixture capacitance  
Figure 5. Load circuit for output  
OVDD  
0 V  
80%  
20%  
80%  
20%  
tr  
Output (at pad)  
tf  
Figure 6. Output transition time waveform  
4.3.2.1  
General purpose I/O AC parameters  
The I/O AC parameters for GPIO are presented in the Table 21, respectively. Note that the fast or slow I/O  
behavior is determined by the appropriate control bits in the IOMUXC control registers.  
Table 21. General purpose I/O AC parameters 3.3 V mode  
Parameter  
Symbol  
Test condition  
Min  
Typ  
Max  
Unit  
Output Pad Transition Times, rise/fall tr, tf  
(Max Drive, ipp_dse=101)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
1.70/1.79  
1.06/1.15  
Output Pad Transition Times, rise/fall tr, tf  
(High Drive, ipp_dse=011)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
2.35/2.43  
1.74/1.77  
ns  
Output Pad Transition Times, rise/fall tr, tf  
(Medium Drive, ipp_dse=010)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.13/3.29  
2.46/2.60  
Output Pad Transition Times, rise/fall tr, tf  
(Low Drive. ipp_dse=001)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
5.14/5.57  
4.77/5.15  
ns  
ns  
Input Transition Times1  
trm  
25  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
29  
Electrical characteristics  
1
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.  
4.4  
System modules  
This section contains the timing and electrical parameters for the modules in the i.MX RT1010 processor.  
4.4.1  
Reset timings parameters  
Figure 7 shows the reset timing and Table 22 lists the timing parameters.  
POR_B  
(Input)  
CC1  
Figure 7. Reset timing diagram  
Table 22. Reset timing parameters  
ID  
CC1  
Parameter  
Min Max  
Unit  
Duration of POR_B to be qualified as valid.  
1
RTC_XTALI cycle  
4.4.2  
WDOG reset timing parameters  
Figure 8 shows the WDOG reset timing and Table 23 lists the timing parameters.  
WDOGn_B  
(Output)  
CC3  
Figure 8. WDOGn_B timing diagram  
Table 23. WDOGn_B timing parameters  
ID  
CC3  
Parameter  
Duration of WDOGn_B Assertion  
Min  
Max  
Unit  
1
RTC_XTALI cycle  
NOTE  
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or  
approximately 30 s.  
NOTE  
WDOGn_B output signals (for each one of the Watchdog modules) do not  
have dedicated pins, but are muxed out through the IOMUX. See the IOMUX  
manual for detailed information.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
30  
NXP Semiconductors  
Electrical characteristics  
4.4.3  
Secure JTAG Controller (SJC) timing parameters  
Figure 9 depicts the SJC test clock input timing. Figure 10 depicts the SJC boundary scan timing.  
Figure 11 depicts the SJC test access port. Signal parameters are listed in Table 24.  
SJ1  
SJ2  
SJ2  
JTAG_TCK  
(Input)  
VM  
VM  
VIH  
VIL  
SJ3  
SJ3  
Figure 9. Test clock input timing diagram  
JTAG_TCK  
(Input)  
VIH  
SJ5  
VIL  
SJ4  
Input Data Valid  
Data  
Inputs  
SJ6  
Data  
Outputs  
Output Data Valid  
SJ7  
SJ6  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 10. Boundary secure (JTAG) timing diagram  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
31  
Electrical characteristics  
JTAG_TCK  
(Input)  
VIH  
SJ9  
VIL  
SJ8  
Input Data Valid  
JTAG_TDI  
JTAG_TMS  
(Input)  
SJ10  
SJ11  
SJ10  
JTAG_TDO  
(Output)  
Output Data Valid  
JTAG_TDO  
(Output)  
JTAG_TDO  
(Output)  
Output Data Valid  
Figure 11. Test access port timing diagram  
JTAG_TCK  
(Input)  
SJ13  
JTAG_TRST_B  
(Input)  
SJ12  
Figure 12. JTAG_TRST_B timing diagram  
Table 24. JTAG timing  
All frequencies  
Min Max  
ID  
Parameter1,2  
Unit  
1
SJ0  
JTAG_TCK frequency of operation 1/(3•TDC  
)
0.001  
45  
22.5  
22  
3
MHz  
SJ1  
SJ2  
SJ3  
SJ4  
SJ5  
SJ6  
SJ7  
SJ8  
JTAG_TCK cycle time in crystal mode  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
JTAG_TCK clock pulse width measured at VM  
JTAG_TCK rise and fall times  
Boundary scan input data set-up time  
Boundary scan input data hold time  
JTAG_TCK low to output data valid  
JTAG_TCK low to output high impedance  
JTAG_TMS, JTAG_TDI data set-up time  
5
40  
40  
24  
5
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
32  
Electrical characteristics  
Table 24. JTAG timing (continued)  
Parameter1,2  
All frequencies  
Min Max  
ID  
Unit  
SJ9  
JTAG_TMS, JTAG_TDI data hold time  
JTAG_TCK low to JTAG_TDO data valid  
JTAG_TCK low to JTAG_TDO high impedance  
JTAG_TRST_B assert time  
25  
44  
44  
ns  
SJ10  
SJ11  
SJ12  
SJ13  
ns  
ns  
ns  
ns  
100  
40  
JTAG_TRST_B set-up time to JTAG_TCK low  
= target frequency of SJC  
1
T
DC  
2
VM = mid-point voltage  
4.4.4  
Debug trace timing specifications  
Table 25. Debug trace operating behaviors  
Symbol  
Description  
Min  
Max  
Unit  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
ARM_TRACE_CLK frequency of operation  
ARM_TRACE_CLK period  
Low pulse width  
1/T1  
6
70  
1
MHz  
s  
ns  
High pulse width  
6
ns  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
ns  
1
ns  
ns  
Data hold  
0.7  
ns  
!2-?42!#%?#,+  
4ꢀ  
T6  
T4  
4ꢂ  
4ꢁ  
Figure 13. ARM_TRACE_CLK specifications  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
33  
Electrical characteristics  
ARM_TRACE_CLK  
ARM_TRACE0-3  
T7  
T8  
T7  
T8  
Figure 14. Trace data specifications  
4.4.5  
Power mode transition operating behaviors  
Table 26 shows the power mode transition operating behaviors.  
1
Table 26. Power mode transition operating behaviors  
Core, memory  
frequency (MHz)  
Description  
System clock  
Min.  
Typ.2  
Max.  
Unit  
SUSPEND to RUN3  
ENET PLL  
0, 0 ->500, 500  
532.04  
s  
1
2
3
Typical value is the average value of total test.  
The temperature is at 25oC.  
The code runs in the ITCM.  
4.5  
External memory interface  
The following sections provide information about external memory interfaces.  
4.5.1  
FlexSPI parameters  
Measurements are with a load 15 pf and input slew rate of 1 V/ns.  
4.5.1.1  
FlexSPI input/read timing  
There are three sources for the internal sample clock for FlexSPI read data:  
Dummy read strobe generated by FlexSPI controller and looped back internally  
(FlexSPIn_MCR0[RXCLKSRC] = 0x0)  
Dummy read strobe generated by FlexSPI controller and looped back through the  
DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1)  
Read strobe provided by memory device and input from DQS pad  
(FlexSPIn_MCR0[RXCLKSRC] = 0x3)  
The following sections describe input signal timing for each of these four internal sample clock sources.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
34  
NXP Semiconductors  
Electrical characteristics  
4.5.1.1.1  
SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
Table 27. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
8.67  
0
60  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
ns  
Table 28. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X1  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
2
133  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
1
ns  
SCK  
SIO[0:7]  
TIS  
TIH  
TIS  
TIH  
Internal Sample Clock  
Figure 15. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0, 0X1  
NOTE  
Timing shown is based on the memory generating read data on the SCK  
falling edge, and FlexSPI controller sampling read data on the falling edge.  
4.5.1.1.2  
SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3  
There are two cases when the memory provides both read data and the read strobe in SDR mode:  
A1Memory generates both read data and read strobe on SCK rising edge (or falling  
edge)  
A2Memory generates read data on SCK falling edge and generates read strobe on  
SCK rising edgeSCK rising edge  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
35  
Electrical characteristics  
Table 29. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A1)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Frequency of operation  
-2  
133  
2
MHz  
ns  
TSCKD  
Time from SCK to data valid  
Time from SCK to DQS  
TSCKDQS  
ns  
TSCKD - TSCKDQS  
Time delta between TSCKD and TSCKDQS  
ns  
SCK  
TSCKD  
TSCKD  
SIO[0:7]  
TSCKDQS  
TSCKDQS  
DQS  
Figure 16. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (Case A1)  
NOTE  
Timing shown is based on the memory generating read data and read strobe  
on the SCK rising edge. The FlexSPI controller samples read data on the  
DQS falling edge.  
Table 30. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A2)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Frequency of operation  
-2  
133  
2
MHz  
ns  
TSCKD  
Time from SCK to data valid  
Time from SCK to DQS  
TSCKDQS  
ns  
TSCKD - TSCKDQS  
Time delta between TSCKD and TSCKDQS  
ns  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
36  
Electrical characteristics  
SCK  
TSCKD  
TSCKD  
TSCKD  
SIO[0:7]  
TSCKDQS  
TSCKDQS  
TSCKDQS  
DQS  
Internal Sample Clock  
Figure 17. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (Case A2)  
NOTE  
Timing shown is based on the memory generating read data on the SCK  
falling edge and read strobe on the SCK rising edge. The FlexSPI controller  
samples read data on a half cycle delayed DQS falling edge.  
4.5.1.1.3  
DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
Table 31. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
8.67  
0
30  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
ns  
Table 32. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
2
66  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
1
ns  
SCLK  
TIS  
TIH  
TIS  
TIH  
SIO[0:7]  
Internal Sample Clock  
Figure 18. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
37  
Electrical characteristics  
4.5.1.1.4  
DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3  
There are two cases when the memory provides both read data and the read strobe in DDR mode:  
B1Memory generates both read data and read strobe on SCK edge  
B2Memory generates read data on SCK edge and generates read strobe on SCK2  
edge  
Table 33. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case B1)  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
-1  
133  
1
MHz  
ns  
TSCKD  
Time from SCK to data valid  
Time from SCK to DQS  
TSCKDQS  
ns  
TSCKD - TSCKDQS  
Time delta between TSCKD and TSCKDQS  
ns  
SCK  
TSCKD  
SIO[0:7]  
TSCKDQS  
DQS  
Figure 19. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case B1)  
Table 34. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case B2)  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
-1  
133  
1
MHz  
ns  
TSCKD  
Time from SCK to data valid  
TSCKD - TSCKDQS  
Time delta between TSCKD and TSCKDQS  
ns  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
38  
Electrical characteristics  
SCK  
SIO[0:7]  
SCK2  
TSCKD  
TSCK2DQS  
DQS  
Figure 20. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case B2)  
4.5.1.2  
FlexSPI output/write timing  
The following sections describe output signal timing for the FlexSPI controller including control signals  
and data outputs.  
4.5.1.2.1  
SDR mode  
Table 35. FlexSPI output timing in SDR mode  
Symbol  
Parameter  
Min  
Max  
Unit  
Frequency of operation  
SCK clock period  
6.0  
1331  
MHz  
ns  
Tck  
TDVO  
TDHO  
TCSS  
TCSH  
Output data valid time  
Output data hold time  
Chip select output setup time  
Chip select output hold time  
1
ns  
-1  
ns  
3 x TCK -1  
3 x TCK + 2  
ns  
ns  
1
The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing  
specifications.  
NOTE  
TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1  
register, the default values are shown above. Please refer to the i.MX  
RT1010 Reference Manual (IMXRT1010RM) for more details.  
SCK  
TCSH  
T
CSS  
T
CK  
CS  
TDVO  
TDVO  
SIO[0:7]  
TDHO  
TDHO  
Figure 21. FlexSPI output timing in SDR mode  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
39  
Electrical characteristics  
4.5.1.2.2  
DDR mode  
Table 36. FlexSPI output timing in DDR mode  
Symbol  
Parameter  
Frequency of operation1  
Min  
Max  
Unit  
133  
MHz  
ns  
Tck  
SCK clock period (FlexSPIn_MCR0[RXCLKSRC] = 0x0)  
Output data valid time  
6.0  
TDVO  
TDHO  
TCSS  
TCSH  
2.2  
ns  
Output data hold time  
0.8  
ns  
Chip select output setup time  
Chip select output hold time  
3 x TCK / 2 - 0.7  
3 x TCK / 2 + 0.8  
ns  
ns  
1
The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing  
specifications.  
NOTE  
TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1  
register, the default values are shown above. Please refer to the i.MX  
RT1010 Reference Manual (IMXRT1010RM) for more details.  
SCK  
T
CSS  
T
CK  
TCSH  
CS  
TDVO  
TDVO  
SIO[0:7]  
TDHO  
TDHO  
Figure 22. FlexSPI output timing in DDR mode  
4.6  
Audio  
This section provide information about SAI/I2S and SPDIF.  
4.6.1  
SAI/I2S switching specifications  
This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes.  
All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP]  
= 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock  
and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal  
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
40  
NXP Semiconductors  
Electrical characteristics  
Table 37. Master mode SAI timing  
Characteristic Min  
Num  
Max  
Unit  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
SAI_MCLK cycle time  
2 x tsys  
40%  
4 x tsys  
40%  
ns  
SAI_MCLK pulse width high/low  
SAI_BCLK cycle time  
60%  
MCLK period  
ns  
SAI_BCLK pulse width high/low  
SAI_BCLK to SAI_FS output valid  
SAI_BCLK to SAI_FS output invalid  
SAI_BCLK to SAI_TXD valid  
60%  
15  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
0
15  
SAI_BCLK to SAI_TXD invalid  
SAI_RXD/SAI_FS input setup before SAI_BCLK  
SAI_RXD/SAI_FS input hold after SAI_BCLK  
0
15  
0
Figure 23. SAI timing—master modes  
Table 38. Slave mode SAI timing  
Num  
Characteristic  
SAI_BCLK cycle time (input)  
Min  
4 x tsys  
Max  
Unit  
S11  
S12  
S13  
S14  
S15  
S16  
ns  
SAI_BCLK pulse width high/low (input)  
SAI_FS input setup before SAI_BCLK  
SAI_FA input hold after SAI_BCLK  
40%  
10  
2
60%  
BCLK period  
ns  
ns  
ns  
ns  
SAI_BCLK to SAI_TXD/SAI_FS output valid  
SAI_BCLK to SAI_TXD/SAI_FS output invalid  
0
20  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
41  
Electrical characteristics  
Num  
Table 38. Slave mode SAI timing  
Characteristic Min  
Max  
Unit  
S17  
S18  
SAI_RXD setup before SAI_BCLK  
SAI_RXD hold after SAI_BCLK  
10  
2
ns  
ns  
Figure 24. SAI timing—slave modes  
4.6.2  
SPDIF timing parameters  
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When  
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.  
Table 39 and Figure 25 and Figure 26 show SPDIF timing parameters for the Sony/Philips Digital  
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for  
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.  
Table 39. SPDIF timing parameters  
Timing parameter range  
Characteristics  
Symbol  
Unit  
Min  
Max  
SPDIF_IN Skew: asynchronous inputs, no specs apply  
0.7  
ns  
ns  
SPDIF_OUT output (Load = 50pf)  
• Skew  
• Transition rising  
• Transition falling  
1.5  
24.2  
31.3  
SPDIF_OUT1 output (Load = 30pf)  
• Skew  
• Transition rising  
ns  
ns  
1.5  
13.6  
18.0  
• Transition falling  
Modulating Rx clock (SPDIF_SR_CLK) period  
srckp  
40.0  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
42  
Electrical characteristics  
Table 39. SPDIF timing parameters (continued)  
Timing parameter range  
Min Max  
Characteristics  
Symbol  
Unit  
SPDIF_SR_CLK high period  
srckph  
srckpl  
stclkp  
stclkph  
stclkpl  
16.0  
16.0  
40.0  
16.0  
16.0  
ns  
ns  
ns  
ns  
ns  
SPDIF_SR_CLK low period  
Modulating Tx clock (SPDIF_ST_CLK) period  
SPDIF_ST_CLK high period  
SPDIF_ST_CLK low period  
srckp  
srckpl  
VM  
srckph  
VM  
SPDIF_SR_CLK  
(Output)  
Figure 25. SPDIF_SR_CLK timing diagram  
stclkp  
stclkpl  
VM  
stclkph  
VM  
SPDIF_ST_CLK  
(Input)  
Figure 26. SPDIF_ST_CLK timing diagram  
4.7  
Analog  
The following sections provide information about analog interfaces.  
4.7.1  
DCDC  
Table 40 introduces the DCDC electrical specification.  
Table 40. DCDC electrical specifications  
Buck mode only, one output  
3.3 V  
Mode  
Notes  
Input voltage  
Output voltage  
Max loading  
± 10%  
1.1 V  
Configurable 0.8 ~ 1.575 with 25 mV one step  
500 mA  
Loading in low power modes  
Efficiency  
200 A ~ 30 mA  
90% max  
@150 mA  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
43  
Electrical characteristics  
Mode  
Table 40. DCDC electrical specifications (continued)  
Buck mode only, one output  
Notes  
Low power mode  
Run mode  
Open loop mode  
Ripple is about 15 mV  
Configurable by register  
• Always continuous mode  
• Support discontinuous mode  
Inductor  
4.7 H  
33 F  
1.6 V  
Capacitor  
Over voltage protection  
Detect VDDSOC, when the voltage is higher  
than 1.6 V, shutdown DCDC.  
Over Current protection  
Low battery detection  
1 A  
Detect the peak current  
• Run mode: when the current is larger than  
1 A, shutdown DCDC.  
• Stop mode: when the current is larger than  
250 mA, stop charging the inductor.  
2.6 V  
Detect the battery, when battery is lower than  
2.6 V, shutdown DCDC.  
4.7.2  
A/D converter  
This section introduces information about A/D converter.  
4.7.2.1  
12-bit ADC electrical characteristics  
The section provide information about 12-bit ADC electrical characteristics.  
4.7.2.1.1  
12-bit ADC operating conditions  
Table 41. 12-bit ADC operating conditions  
Typ1  
Characteristic  
Conditions  
Absolute  
Symb  
Min  
Max  
Unit  
Comment  
Supply voltage  
VDDA  
3.0  
-
3.6  
V
Delta to VDD  
(VDD-VDDA)2  
VDDA  
-100  
0
100  
mV  
Ground voltage  
Delta to VSS  
VSSAD  
-100  
0
100  
mV  
(VSS-VSSAD)  
Ref Voltage High  
Ref Voltage Low  
Input Voltage  
VDDA  
VSS  
1.13  
VSS  
VSS  
VDDA  
VSS  
VDDA  
VSS  
VDDA  
2
V
V
VADIN  
CADIN  
RADIN  
V
Input Capacitance  
Input Resistance  
8/10/12 bit modes  
ADLPC=0, ADHSC=1  
ADLPC=0, ADHSC=0  
ADLPC=1, ADHSC=0  
1.5  
5
pF  
7
kohms  
kohms  
kohms  
12.5  
25  
15  
30  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
44  
Electrical characteristics  
Table 41. 12-bit ADC operating conditions (continued)  
Characteristic  
Conditions  
Symb  
RAS  
Min  
Typ1  
Max  
Unit  
kohms  
Comment  
Analog Source  
Resistance  
12 bit mode fADCK  
40MHz ADLSMP=0,  
=
1
Tsamp=150  
ns  
ADSTS=10, ADHSC=1  
RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum  
Sample Time vs RAS  
ADC Conversion Clock ADLPC=0, ADHSC=1  
fADCK  
4
4
4
40  
30  
20  
MHz  
MHz  
MHz  
Frequency  
12 bit mode  
ADLPC=0, ADHSC=0  
12 bit mode  
ADLPC=1, ADHSC=0  
12 bit mode  
1
2
Typical values assume VDDAD = 3.0 V, Temp = 25°C, fADCK=20 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
DC potential differences  
Figure 27. 12-bit ADC input impedance equivalency diagram  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
45  
Electrical characteristics  
12-bit ADC characteristics  
Table 42. 12-bit ADC characteristics (V  
= V  
, V  
= V  
)
SSAD  
REFH  
DDA  
REFL  
Characteristic  
Conditions1  
Symb  
IDDA  
Min  
Typ2  
Max  
Unit  
Comment  
Supply Current  
ADLPC=1,  
ADHSC=0  
250  
350  
400  
0.01  
µA  
ADLSMP= 0,ADSTS  
= 10, ADCO = 1  
ADLPC=0,  
ADHSC=0  
ADLPC=0,  
ADHSC=1  
Supply Current  
Stop, Reset, Module IDDA  
Off  
0.8  
µA  
ADC Asynchronous  
Clock Source  
ADHSC=0  
ADHSC=1  
fADACK  
10  
20  
2
MHz  
tADACK = 1/fADACK  
Sample Cycles  
ADLSMP=0,  
ADSTS=00  
Csamp  
cycles  
ADLSMP=0,  
ADSTS=01  
4
ADLSMP=0,  
ADSTS=10  
6
ADLSMP=0,  
ADSTS=11  
8
ADLSMP=1,  
ADSTS=00  
12  
16  
20  
24  
ADLSMP=1,  
ADSTS=01  
ADLSMP=1,  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
46  
Electrical characteristics  
) (continued)  
Table 42. 12-bit ADC characteristics (V  
= V  
, V  
= V  
REFL SSAD  
REFH  
DDA  
Characteristic  
Conditions1  
Symb  
Cconv  
Min  
Typ2  
Max  
Unit  
cycles  
Comment  
Conversion Cycles  
ADLSMP=0  
28  
30  
32  
34  
38  
42  
46  
50  
ADSTS=00  
ADLSMP=0  
ADSTS=01  
ADLSMP=0  
ADSTS=10  
ADLSMP=0  
ADSTS=11  
ADLSMP=1  
ADSTS=00  
ADLSMP=1  
ADSTS=01  
ADLSMP=1  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
Conversion Time  
ADLSMP=0  
ADSTS=00  
Tconv  
0.7  
µs  
Fadc = 40 MHz  
ADLSMP=0  
ADSTS=01  
0.75  
0.8  
ADLSMP=0  
ADSTS=10  
ADLSMP=0  
ADSTS=11  
0.85  
0.95  
1.05  
1.15  
1.25  
ADLSMP=1  
ADSTS=00  
ADLSMP=1  
ADSTS=01  
ADLSMP=1  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
Total Unadjusted  
Error  
12 bit mode  
10 bit mode  
8 bit mode  
TUE  
DNL  
3.4  
1.5  
1.2  
LSB  
1 LSB =  
(VREFH  
VREFL)/2  
N
AVGE = 1, AVGS = 11  
AVGE = 1, AVGS = 11  
-
Differential  
Non-Linearity  
12 bit mode  
10bit mode  
8 bit mode  
0.76  
0.36  
0.14  
LSB  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
47  
Electrical characteristics  
Table 42. 12-bit ADC characteristics (V  
= V  
, V  
= V  
) (continued)  
Unit Comment  
REFH  
DDA  
REFL  
SSAD  
Characteristic  
Conditions1  
Symb  
INL  
Min  
Typ2  
2.78  
Max  
Integral Non-Linearity 12 bit mode  
10bit mode  
LSB  
AVGE = 1, AVGS = 11  
AVGE = 1, AVGS = 11  
AVGE = 1, AVGS = 11  
0.61  
8 bit mode  
0.14  
Zero-Scale Error  
Full-Scale Error  
12 bit mode  
10bit mode  
8 bit mode  
12 bit mode  
10bit mode  
8 bit mode  
EZS  
-1.14  
-0.25  
-0.19  
-1.06  
-0.03  
-0.02  
10.7  
LSB  
LSB  
EFS  
Effective Number of 12 bit mode  
Bits  
ENOB  
SINAD  
10.1  
Bits  
dB  
AVGE = 1, AVGS = 11  
AVGE = 1, AVGS = 11  
Signal to Noise plus See ENOB  
Distortion  
SINAD = 6.02 x ENOB + 1.76  
1
2
All accuracy numbers assume the ADC is calibrated with VREFH=VDDAD  
Typical values assume VDDAD = 3.0 V, Temp = 25°C, Fadck=20 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
NOTE  
The ADC electrical spec is met with the calibration enabled configuration.  
Figure 28. Minimum Sample Time Vs Ras (Cas = 2 pF)  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
48  
NXP Semiconductors  
Electrical characteristics  
Figure 29. Minimum Sample Time Vs Ras (Cas = 5 pF)  
Figure 30. Minimum Sample Time Vs Ras (Cas = 10 pF)  
4.8  
Communication interfaces  
The following sections provide the information about communication interfaces.  
4.8.1  
LPSPI timing parameters  
The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and  
slave operations. Many of the transfer attributes are programmable. The following tables provide timing  
characteristics for classic LPSPI timing modes.  
All timing is shown with respect to 20% V and 80% V thresholds, unless noted, as well as input  
DD  
DD  
signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
49  
Electrical characteristics  
Table 43. LPSPI Master mode timing  
Number  
Symbol  
Description  
Frequency of operation  
Min.  
Max.  
Units  
Note  
1
1
2
3
4
5
6
7
8
9
fSCK  
tSCK  
tLead  
tLag  
tWSCK  
tSU  
fperiph / 2  
MHz  
µs  
2
SCK period  
2 x tperiph  
8
Enable lead time  
1
tperiph  
tperiph  
ns  
Enable lag time  
1
Clock (SCK) high or low time  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SCK edge)  
Data hold time (outputs)  
tSCK / 2 - 3  
10  
2
ns  
tHI  
ns  
tV  
0
ns  
tHO  
ns  
1
2
Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be  
guaranteed this limit is not exceeded.  
tperiph = 1000 / fperiph  
1
PCS  
(OUTPUT)  
3
2
4
SCK  
(CPOL=0)  
(OUTPUT)  
5
5
SCK  
(CPOL=1)  
(OUTPUT)  
6
7
SIN  
(INPUT)  
2
LSB IN  
BIT 6 . . . 1  
8
MSB IN  
9
SOUT  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 31. LPSPI Master mode timing (CPHA = 0)  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
50  
Electrical characteristics  
1
PCS  
(OUTPUT)  
2
4
3
SCK  
(CPOL=0)  
(OUTPUT)  
5
5
SCK  
(CPOL=1)  
(OUTPUT)  
6
7
SIN  
(INPUT)  
MSB IN2  
BIT 6 . . . 1  
LSB IN  
9
8
MASTER MSB OUT2  
SOUT  
(OUTPUT)  
PORT DATA  
BIT 6 . . . 1  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 32. LPSPI Master mode timing (CPHA = 1)  
s
Table 44. LPSPI Slave mode timing  
Number  
Symbol  
Description  
Frequency of operation  
Min.  
Max.  
Units  
Note  
1
1
2
fSCK  
tSCK  
tLead  
tLag  
tWSCK  
tSU  
0
fperiph / 2  
MHz  
µs  
2
SCK period  
2 x tperiph  
3
Enable lead time  
1
tperiph  
tperiph  
ns  
4
Enable lag time  
1
5
Clock (SCK) high or low time  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
tSCK / 2 - 5  
6
2.7  
3.8  
0
ns  
7
tHI  
ns  
3
8
ta  
tperiph  
tperiph  
14.5  
ns  
4
9
tdis  
Slave MISO disable time  
Data valid (after SCK edge)  
Data hold time (outputs)  
ns  
10  
11  
tV  
ns  
tHO  
ns  
1
Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be  
guaranteed this limit is not exceeded.  
2
3
4
tperiph = 1000 / fperiph  
Time to data active from high-impedance state  
Hold time to high-impedance state  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
51  
Electrical characteristics  
PCS  
(INPUT)  
2
4
SCK  
(CPOL=0)  
(INPUT)  
5
5
3
SCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
SEE  
NOTE  
SIN  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
note  
6
SOUT  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 33. LPSPI Slave mode timing (CPHA = 0)  
PCS  
(INPUT)  
4
2
3
SCK  
(CPOL=0)  
(INPUT)  
5
5
SCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
see  
SIN  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE MSB OUT  
SLAVE LSB OUT  
LSB IN  
note  
(OUTPUT)  
8
6
7
SOUT  
(INPUT)  
MSB IN  
NOTE: Not defined  
Figure 34. LPSPI Slave mode timing (CPHA = 1)  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
52  
Electrical characteristics  
4.8.2  
LPI2C module timing parameters  
This section describes the timing parameters of the LPI2C module.  
Table 45. LPI2C module timing parameters  
Symbol  
Description  
Standard mode (Sm)  
Min  
Max  
100  
Unit  
Notes  
1, 2  
fSCL  
SCL clock frequency  
0
0
0
0
0
kHz  
Fast mode (Fm)  
400  
Fast mode Plus (Fm+)  
Ultra Fast mode (UFm)  
High speed mode (Hs-mode)  
1000  
5000  
3400  
1
Hs-mode is only supported in slave mode.  
See General switching specifications.  
2
4.8.3  
LPUART electrical specifications  
Please refer to Section 4.3.2.1, "General purpose I/O AC parameters".  
4.8.4  
USB PHY parameters  
This section describes the USB-OTG PHY parameters.  
The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision  
2.0 OTG with the following amendments.  
USB ENGINEERING CHANGE NOTICE  
— Title: 5V Short Circuit Withstand Requirement Change  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000  
USB ENGINEERING CHANGE NOTICE  
— Title: Pull-up/Pull-down resistors  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: Suspend Current Limit Changes  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: USB 2.0 Phase Locked SOFs  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification  
— Revision 2.0 plus errata and ecn June 4, 2010  
Battery Charging Specification (available from USB-IF)  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
53  
Electrical characteristics  
— Revision 1.2, December 7, 2010  
— Portable device only  
4.9  
Timers  
This section provide information on timers.  
4.9.1  
Pulse Width Modulator (PWM) characteristics  
This section describes the electrical information of the PWM.  
Table 46. PWM timing parameters  
Parameter  
Symbo  
Min  
Typ  
Max  
Unit  
PWM Clock Frequency  
Power-up Time  
132  
MHz  
tpu  
25  
s  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
54  
Boot mode configuration  
5 Boot mode configuration  
This section provides information on boot mode configuration pins allocation and boot devices interfaces  
allocation.  
5.1  
Boot mode configuration pins  
Table 47 provides boot options, functionality, fuse values, and associated pins. Several input pins are also  
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.  
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an  
unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX RT1010  
Fuse Map document and the System Boot chapter in i.MX RT1010 Reference Manual (IMXRT1010RM).  
Table 47. Fuses and associated pins used for boot  
Pad  
GPIO_SD_04  
Default setting on reset  
eFuse name  
Details  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
src.BOOT_MODE[0]  
src.BOOT_MODE[1]  
src.BT_CFG[0]  
GPIO_SD_03  
GPIO_SD_02  
GPIO_SD_01  
GPIO_SD_00  
Boot Options, Pin value overrides fuse  
settings for BT_FUSE_SEL = ‘0’.  
Signal Configuration as Fuse Override  
Input at Power Up.  
src.BT_CFG[1]  
src.BT_CFG[2]  
These are special I/O lines that control  
the boot up configuration during  
product development. In production,  
the boot configuration can be  
controlled by fuses.  
5.2  
Boot device interface allocation  
The following tables list the interfaces that can be used by the boot process in accordance with the specific  
boot mode configuration. The tables also describe the interface’s specific modes and IOMUXC allocation,  
which are configured during boot when appropriate.  
Table 48. Boot through FlexSPI  
PAD Name  
IO Function  
flexspi.B_DATA[3]  
Mux Mode  
Comments  
GPIO_SD_04  
GPIO_SD_02  
GPIO_SD_01  
GPIO_SD_03  
GPIO_SD_13  
GPIO_00  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
flexspi.B_DATA[2]  
flexspi.B_DATA[1]  
flexspi.B_DATA[0]  
flexspi.B_SCLK  
flexspi.B_DQS  
GPIO_SD_00  
GPIO_SD_12  
GPIO_SD_06  
flexspi.B_SS0_B  
flexspi.A_DQS  
flexspi.A_SS0_B  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
55  
Boot mode configuration  
PAD Name  
Table 48. Boot through FlexSPI (continued)  
IO Function Mux Mode  
flexspi.A_SS1_B  
Comments  
GPIO_SD_05  
GPIO_SD_10  
GPIO_SD_09  
GPIO_SD_07  
GPIO_SD_08  
GPIO_SD_11  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
flexspi.A_SCLK  
flexspi.A_DATA[0]  
flexspi.A_DATA[1]  
flexspi.A_DATA[2]  
flexspi.A_DATA[3]  
Table 49. FlexSPI reset  
PAD Name  
IO Function  
Mux Mode  
Mux Mode  
Comments  
Comments  
GPIO_13  
gpiomux.IO[13]  
ALT 5  
Table 50. Boot through UART1  
IO Function  
PAD Name  
GPIO_10  
GPIO_09  
GPIO_08  
GPIO_07  
lpuart1.TX  
ALT 0  
lpuart1.RX  
ALT 0  
ALT 6  
ALT 6  
lpuart1.CTS_B  
lpuart1.RTS_B  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
56  
Package information and contact assignments  
6 Package information and contact assignments  
This section includes the contact assignment information and mechanical package drawing.  
6.1  
12 x 12 mm package information  
12 x 12 mm, 0.5 mm pitch, ball matrix  
6.1.1  
Figure 35 shows the top, bottom, and side views of the 12 x 12 mm LQFP package.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
57  
Package information and contact assignments  
Figure 35. 12 x 12 mm LQFP, case x package top and side views  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
58  
Package information and contact assignments  
6.1.2  
12 x 12 mm supplies contact assignments and functional contact  
assignments  
Table 51 shows the device connection list for ground, sense, and reference contact signals.  
Table 51. 12 x 12 mm supplies contact Assignment  
Supply Rail Name  
Pin(s) Position(s)  
Remark  
DCDC_IN  
18  
DCDC_IN_Q  
DCDC_GND  
DCDC_LP  
17  
20  
19  
DCDC_PSWITCH  
NGND_KEL0  
15  
34  
NVCC_GPIO  
7, 50, 63, 71  
NVCC_PLL  
40  
VDDA_ADC_3P3  
VDD_HIGH_CAP  
VDD_HIGH_IN  
VDD_SNVS_CAP  
VDD_SNVS_IN  
VDD_SOC_IN  
VDD_USB_CAP  
VSS  
42  
35  
39  
26  
25  
14, 53, 77  
31  
16, 54, 30, 78  
41  
VSSA_ADC_3P3  
Table 52 shows an alpha-sorted list of functional contact assignments for the 12 x 12 mm package.  
Table 52. 12 x 12 mm functional contact assignments  
Default setting  
on Reset  
Default Setting  
12 x 12  
Pin  
Power  
Group  
Pin  
Type  
Pin Name  
Default  
Mode  
Default  
Input/  
Input/  
Output  
Value  
Value  
Function  
Output  
13  
12  
11  
10  
NVCC_GPIO Digital  
GPIO  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
GPIOMUX_IO00  
GPIOMUX_IO01  
GPIOMUX_IO02  
GPIOMUX_IO03  
Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
100K PD  
GPIO_00  
NVCC_GPIO Digital  
GPIO  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
GPIO_01  
GPIO_02  
GPIO_03  
NVCC_GPIO Digital  
GPIO  
NVCC_GPIO Digital  
GPIO  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
59  
Package information and contact assignments  
Table 52. 12 x 12 mm functional contact assignments (continued)  
9
NVCC_GPIO Digital  
GPIO  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 7  
Alt 7  
Alt 7  
GPIOMUX_IO04  
GPIOMUX_IO05  
GPIOMUX_IO06  
GPIOMUX_IO07  
GPIOMUX_IO08  
GPIOMUX_IO09  
GPIOMUX_IO10  
GPIOMUX_IO11  
GPIOMUX_IO12  
GPIOMUX_IO13  
GPIOMUX_IO14  
GPIOMUX_IO15  
GPIOMUX_IO16  
GPIOMUX_IO17  
GPIOMUX_IO18  
GPIOMUX_IO19  
GPIOMUX_IO20  
GPIOMUX_IO21  
JTAG_TRSTB  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
GPIO_04  
8
NVCC_GPIO Digital  
GPIO  
GPIO_05  
6
NVCC_GPIO Digital  
GPIO  
GPIO_06  
5
NVCC_GPIO Digital  
GPIO  
GPIO_07  
4
NVCC_GPIO Digital  
GPIO  
GPIO_08  
3
NVCC_GPIO Digital  
GPIO  
GPIO_09  
2
NVCC_GPIO Digital  
GPIO  
GPIO_10  
1
NVCC_GPIO Digital  
GPIO  
GPIO_11  
80  
79  
60  
59  
58  
57  
56  
55  
52  
51  
49  
48  
47  
NVCC_GPIO Digital  
GPIO  
GPIO_12  
NVCC_GPIO Digital  
GPIO  
GPIO_13  
NVCC_GPIO Digital  
GPIO  
GPIO_AD_00  
GPIO_AD_01  
GPIO_AD_02  
GPIO_AD_03  
GPIO_AD_04  
GPIO_AD_05  
GPIO_AD_06  
GPIO_AD_07  
GPIO_AD_08  
GPIO_AD_09  
GPIO_AD_10  
NVCC_GPIO Digital  
GPIO  
NVCC_GPIO Digital  
GPIO  
NVCC_GPIO Digital  
GPIO  
NVCC_GPIO Digital  
GPIO  
Keeper Output1 Keeper  
NVCC_GPIO Digital  
GPIO  
Keeper Input  
Keeper Input  
Keeper Input  
47K PU Input  
Keeper Input  
47K PU Input  
Keeper  
Keeper  
Keeper  
47K PU  
Keeper  
47K PU  
NVCC_GPIO Digital  
GPIO  
NVCC_GPIO Digital  
GPIO  
NVCC_GPIO Digital  
GPIO  
NVCC_GPIO Digital  
GPIO  
JTAG_TDO  
NVCC_GPIO Digital  
GPIO  
JTAG_TDI  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
60  
Package information and contact assignments  
Table 52. 12 x 12 mm functional contact assignments (continued)  
46  
45  
44  
43  
76  
75  
74  
73  
72  
70  
69  
68  
67  
66  
65  
64  
62  
61  
21  
24  
22  
NVCC_GPIO Digital  
GPIO  
Alt 7  
Alt 7  
Alt 7  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 6  
Alt 6  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 5  
Alt 0  
Alt 0  
Alt 0  
JTAG_MOD  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100K PD Input  
100K PD Input  
47K PU Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
100K PD Input  
100K PD Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
Keeper Input  
100K PU Input  
100K PD  
100K PD  
47K PU  
Keeper  
GPIO_AD_11  
GPIO_AD_12  
GPIO_AD_13  
GPIO_AD_14  
GPIO_SD_00  
GPIO_SD_01  
GPIO_SD_02  
GPIO_SD_03  
GPIO_SD_04  
GPIO_SD_05  
GPIO_SD_06  
GPIO_SD_07  
GPIO_SD_08  
GPIO_SD_09  
GPIO_SD_10  
GPIO_SD_11  
GPIO_SD_12  
GPIO_SD_13  
ONOFF  
NVCC_GPIO Digital  
GPIO  
JTAG_TCK  
NVCC_GPIO Digital  
GPIO  
JTAG_TMS  
NVCC_GPIO Digital  
GPIO  
GPIOMUX_IO28  
GPIO2_IO00  
GPIO2_IO01  
GPIO2_IO02  
NVCC_GPIO Digital  
GPIO  
100K PD  
100K PD  
100K PD  
100K PD  
100K PD  
Keeper  
NVCC_GPIO Digital  
GPIO  
NVCC_GPIO Digital  
GPIO  
NVCC_GPIO Digital  
GPIO  
SRC_BOOT_MOD Input  
E1  
NVCC_GPIO Digital  
GPIO  
SRC_BOOT_MOD Input  
E0  
NVCC_GPIO Digital  
GPIO  
GPIO2_IO05  
GPIO2_IO06  
GPIO2_IO07  
GPIO2_IO08  
GPIO2_IO09  
GPIO2_IO10  
GPIO2_IO11  
GPIO2_IO12  
GPIO2_IO13  
SRC_RESET_B  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
NVCC_GPIO Digital  
GPIO  
Keeper  
NVCC_GPIO Digital  
GPIO  
Keeper  
NVCC_GPIO Digital  
GPIO  
Keeper  
NVCC_GPIO Digital  
GPIO  
Keeper  
NVCC_GPIO Digital  
GPIO  
Keeper  
NVCC_GPIO Digital  
GPIO  
Keeper  
NVCC_GPIO Digital  
GPIO  
Keeper  
NVCC_GPIO Digital  
GPIO  
100K PD  
100K PU  
VDD_SNVS_I Digital  
N
GPIO  
VDD_SNVS_I Digital  
SNVS_PMIC_ON_ Output 100K PU Output 100K PU  
REQ  
PMIC_ON_REQ  
POR_B  
N
GPIO  
VDD_SNVS_I Digital  
SRC_POR_B  
Input  
100K PU Input  
100K PU  
N
GPIO  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
61  
Package information and contact assignments  
Table 52. 12 x 12 mm functional contact assignments (continued)  
27  
28  
23  
RTC_XTALI  
RTC_XTALO  
TEST_MODE  
VDD_SNVS_I Digital  
N
Alt 0  
TCU_TEST_MOD Input  
E
100K PD Input  
100K PD  
GPIO  
36  
USB_OTG1_CH  
D_B  
32  
33  
29  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG1_VB  
US  
37  
38  
XTALI  
XTALO  
1
This pin output is in a high level until the system reset is complete.  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
62  
Package information and contact assignments  
6.1.3  
12 x 12 mm package pin assignments  
Figure 36 shows the pin assignments of the 12 x 12 mm package.  
1
GPIO_11  
GPIO_10  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
GPIO_AD_00  
2
GPIO_AD_01  
3
GPIO_09  
GPIO_AD_02  
4
GPIO_08  
GPIO_AD_03  
5
GPIO_07  
GPIO_AD_04  
6
GPIO_06  
GPIO_AD_05  
7
NVCC_GPIO  
GPIO_05  
VSS  
8
VDD_SOC_IN  
GPIO_AD_06  
9
GPIO_04  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GPIO_03  
GPIO_AD_07  
GPIO_02  
NVCC_GPIO  
GPIO_01  
GPIO_AD_08  
GPIO_00  
GPIO_AD_09  
VDD_SOC_IN / DCDC_SENSE  
DCDC_PSWITCH  
VSS  
GPIO_AD_10  
GPIO_AD_11  
GPIO_AD_12  
DCDC_IN_Q  
DCDC_IN  
GPIO_AD_13  
GPIO_AD_14  
DCDC_LP  
VDDA_ADC_3P3 / ADC_VREFH  
VSSA_ADC_3P3 / ADC_VREFL  
DCDC_GND  
Figure 36. The pin assignments of the 12 x 12 mm package  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
63  
Revision history  
7 Revision history  
Table 53 provides a revision history for this data sheet.  
Table 53. i.MX RT1010 data sheet document revision history  
Rev.  
Number  
Date  
Substantive Change(s)  
Rev. 0  
09/2019 • Initial version  
i.MX RT1010 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 09/2019  
NXP Semiconductors  
64  
Information in this document is provided solely to enable system and software implementers to  
use NXP products. There are no express or implied copyright licenses granted hereunder to  
design or fabricate any integrated circuits based on the information in this document. NXP  
reserves the right to make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products  
for any particular purpose, nor does NXP assume any liability arising out of the application or  
use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be provided in  
NXP data sheets and/or specifications can and do vary in different applications, and actual  
performance may vary over time. All operating parameters, including “typicals” must be  
validated for each customer application by customer‚ customer’s technical experts. NXP does  
not convey any license under its patent rights nor the rights of others. NXP sells products  
pursuant to standard terms and conditions of sale, which can be found at the following address:  
nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to  
unidentified vulnerabilities. Customers are responsible for the design and operation of their  
applications and products to reduce the effect of these vulnerabilities on customer’s applications  
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers  
should implement appropriate design and operating safeguards to minimize the risks  
associated with their applications and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFAREDESFire, MIFAREPLUS, MIFAREFLEX, MANTIS, MIFAREULTRALIGHT,  
MIFARE4MOBILE,MIGLO,NTAG,ROADLINK,SMARTLX,SMARTMX,STARPLUG,TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,  
SafeAssure, the SafeAssure logo, StarCore, StarCore, Symphony, VortiQa, Vybrid, Airfast,  
BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS,  
Tower, TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of  
NXP B.V. All other product or service names are the property of their respective owners. AMBA,  
Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,  
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,  
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,  
ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm  
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be  
protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.  
Oracle and Java are registered trademarks of Oracle and/or its affiliates.The Power Architecture  
and Power.org word marks and the Power and Power.org logos and related marks are  
trademarks and service marks licensed by Power.org.  
Document Number: IMXRT1010CEC  
© 2019 NXP B.V.  
Rev. 0  
09/2019  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX