SE050B2 [NXP]

Plug & Trust Secure Element;
SE050B2
型号: SE050B2
厂家: NXP    NXP
描述:

Plug & Trust Secure Element

文件: 总30页 (文件大小:360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SE050  
Plug & Trust Secure Element  
Rev. 3.0 — 12 May 2020  
504930  
Product data sheet  
1 Introduction  
The SE050 is a ready-to-use IoT secure element solution. It provides a root of trust at the  
IC level and it gives an IoT system state-of-the-art, edge-to-cloud security capability right  
out of the box.  
SE050 allows for securely storing and provisioning credentials and performing  
cryptographic operations for security critical communication and control functions. SE050  
is versatile in IoT security use cases such as secure connection to public/private clouds,  
device-to-device authentication or protection of sensor data.  
SE050 has an independent Common Criteria EAL 6+ security certification up to OS level  
and supports both RSA & ECC asymmetric cryptographic algorithms with high key length  
and future proof ECC curves. The latest security measures protect the IC even against  
sophisticated non-invasive and invasive attack scenarios.  
The SE050 is a turnkey solution that comes with Java Card operating system and an  
applet optimized for IoT security use cases pre-installed. This is complemented by a  
comprehensive product support package, enabling fast time to market & easy design-  
in with Plug & Trust middleware for host applications, easy to use development kits,  
reference designs, and extensive documentation for product evaluation.  
The SE050 is a product platform that comes in several pin-to-pin compatible product  
variants, see [4].  
Additional information on the integration can be found in several application notes on  
www.nxp.com. Also see [3].  
1.1 SE050 use cases  
Secure connection to public/private clouds, edge computing platforms, infrastructure  
Device-to-device authentication  
Secure data protection  
Secure commissioning support  
Secure CL/MIFARE/Wi-Fi interactions  
Device ID for blockchain  
Secure key storage  
Secure provisioning of credentials  
Ecosystem protection  
1.2 SE050 target applications  
Smart Industry  
Smart Home  
Smart Cities  
Smart Supply Chains  
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
SE050  
IoT APPLET  
JCOP OS  
14443  
Host  
NFC-DEVICE (reader)  
MCU/MPU  
SENSOR  
MW  
I2C  
Plug & Trust  
14443  
I2C  
7816  
SDA SCL  
SDA  
SCL  
I2C slave  
LA LB  
CLK  
RST  
IO2: SCL  
IO:SDA  
SW I2C master  
aaa-032990  
Figure 1.ꢀSE050 solution block diagram  
Note: SE050 is designed to be used as a part of an IoT system. It works as an auxiliary  
security device attached to a host controller. The host controller communicates with  
SE050 through an I²C interface (with the host controller being the master and the SE050  
being the slave). Besides the mandatory connection to the host controller, the SE050  
device can optionally be connected to a sensor node or similar element through a  
separate I²C interface. In this case, the SE050 device is the master and the sensor node  
the slave. Lastly, SE050 has a connection for a native contactless antenna, providing a  
wireless interface to an external device like a smartphone.  
1.3 SE050 naming convention  
The following table explains the naming conventions of the commercial product name  
of the SE050 platform. Every SE050 product gets assigned a commercial name, which  
includes application specific data.  
The SE050 commercial names have the following format.  
SE05yagddd/Zrrff  
All letters are explained in Table 1 .  
Table 1.ꢀSE050 commercial name format  
Variable  
Meaning  
Values  
Description  
y
JCOP version  
Applet Config  
0
a
A
B
C
D
Configuration options with different key provisioning  
options, see [4]  
g
Temperature range  
Delivery Type  
standard operational ambient temperature  
1 = -25 °C - 85 °C ,  
1
2
2 = -40 °C - 105 °C  
ddd  
HQ1  
HX2QFN20  
mrrff  
Letters and  
numbers  
NXP internal code to identify individual configurations  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
2 / 30  
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
2 Features and benefits  
2.1 Key benefits  
Plug & Trust for fast and easy design with complete product support package  
Easy integration with different MCU & MPU platforms and OS´ (Linux, RTOS,  
Windows, Android, etc.)  
Turnkey solution ideal for system-level security without the need to write security code  
Secure credential injection for root of trust at IC level  
Secure, zero-touch connectivity to public & private clouds  
Real end-to-end security, from sensor to cloud  
Ready-to-use example code for each of the key use cases  
2.2 Key features  
The SE050 is based on NXP's Integral Security Architecture 3.0providing a secure  
and efficient protection against various security threats. The efficiency of the security  
measures is proven by a Common Criteria EAL6+ certification.  
The SE050 operates fully autonomously based on an integrated Javacard operating  
system and applet. Direct memory access is possible by the fixed functionalities of the  
applet only. With that, the content from the memory is fully isolated from the host system.  
Built on NXP Integral Security Architecture 3.0 ™  
Uses advanced 40 nm silicon foundry technology  
CC EAL 6+ certified HW and OS as environment to run NXP IoT applications,  
supporting fully encrypted communications and secured lifecycle management  
Effective protection against advanced attacks, including Power Analysis and Fault  
Attacks of various kinds  
Multiple logical and physical protection layers, including metal shielding, end-to-end  
encryption, memory encryption, tamper detection  
Support for RSA and ECC asymmetric cryptography algorithms, future proof curves  
and high key length, e.g. Brainpool, Edwards and Montgomery curves  
Support for AES and DES symmetric cryptographic algorithms for encryption and  
decryption  
HMAC, CMAC, SHA-1, SHA-224/256/384/512 operations  
Various options for key derivation functions, including HKDF, MIFARE KDF, PRF (TLS-  
PSK)  
Optional extended temperature range for industrial applications (-40 °C to +105 °C)  
Small footprint HX2QFN20 package (3x3 mm)  
Standard physical interface I2C slave (High-speed mode, 3.4 Mbps), I2C master (Fast  
mode, 400 kbps). Both can be active at the same time  
Dedicated CL wireless interface for IoT use cases simplifying configuration set-up,  
maintenance in the field and late stage configuration  
Secured user flash memory up to 50 kB for secure data or key storage  
Support for SCP03 protocol (bus encryption and encrypted credential injection) to  
securely bind the host with the secure element  
Support for applet level secure messaging channels to allow end-to-end encrypted  
communication in multi-tenant ecosystems  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
3 / 30  
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
2.3 Features in detail  
Table 2.ꢀFeature Overview  
Categories  
Subcategory  
Value  
Standards  
Security certification  
JavaCard version  
GlobalPlatform specification version  
ECC  
CC EAL6+ (HW+JCOP)  
3.0.5  
GP 2.3.1  
Cryptography  
ECDSA, ECDH, ECDHE, ECDAA,  
EdDSA  
MAC  
Hash  
HMAC, secure HMAC, CMAC  
SHA-1, SHA-224, SHA-256, SHA-384,  
SHA-512  
Key derivation  
HKDF, PBKDF2, PRF (TLS-PSK),  
CMAC (MIFARE-AES-KDF)  
AES  
AES (128, 192, 256)  
2K, 3K  
3DES  
RSA  
RSA cipher for de-/encryption (up to  
4096 bit)  
Crypto curves  
ECC  
ECC NIST (192 to 521 bit)  
Brainpool (160 to 512 bit)  
Twisted Edwards Ed25519 /  
Montgomery Curve25519  
Koblitz (192 to 256 bit)  
Barreto-Naehrig Curve 256 bit  
50 kB  
User memory  
Memory reliability  
Interfaces  
up to 100 Mio write cycles / 25 years  
High-speed mode (3.4 Mbps)  
Fast Mode (400 kbit/s)  
ISO14443-A PICC  
I2C Slave  
I2C Master  
Contactless  
Power saving modes  
Temperature  
Power-Down (with state retention)  
< 500µA  
Deep Power-Down (no state retention) <5 µA  
Standard  
-25 - 85 °C, see Naming Conventions  
Extended  
Plastic QFN  
-40 - +105 °C, see Naming Conventions  
3x3 mm (HX2QFN20)  
Packaging  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
4 / 30  
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
3 Functional description  
3.1 Functional diagram  
EdgeLock™ SE050 enablement  
Plug and Trust Middleware  
Android™, Linux, RTOS  
Linux, Windows, macOS  
Pre Integration  
to Main  
OS &  
Use Case Based Example Codes  
Android KeyMaster  
MCU, MPU  
PKCS11  
OPC-UA  
MQTT  
TLS  
Arm mbed™ TLS  
OpenSSL  
API  
EdgeLock SE050  
loT Applet  
Java Card Operating System  
Hardware  
aaa-034211  
Figure 2.ꢀSE050 functional diagram - example Open SSL  
The SE050 uses I2C as communication interface. Section 4 gives more details. The  
SE050 commands are wrapped using the Smartcard T=1 over I²C (T=1o I2C) protocol.  
The detailed documentation of the SE050 commands (see [3]) and T=1 over I2C protocol  
encapsulation is available on [1].  
In order to simplify the product usage a host library which abstracts for SE050 commands  
and T=1 over I2C protocol encapsulation is provided. The host library supporting various  
platforms is available for download including complete source code on the SE050  
website.  
SE050 IoT applet features a generic file system capable of securely storing secure  
objects and associated privilege management. All objects can either be stored in  
persistent memory or in RAM with the capability to securely export and import them to be  
stored in an externally provided storage. All secure objects feature basic file operations  
such as write, read, delete and update.  
3.1.1 Random number generator  
The SE050 IoT Applet provides random numbers using an AIS20 compliant pseudo  
random number generator (PRNG) with class DRG.3 generator initialized by a TRNG  
compliant to AIS31 class PTG.2. The PRNG is implemented according to NIST  
SP800-90A.  
3.1.2 Supported secure object types  
A secure object is an entry in the file system of SE050. Each secure object has certain  
features and capabilities. The following secure object types are available:  
Symmetric Key (AES, 3DES)  
ECC Key  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
5 / 30  
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
RSA Key  
HMAC Key  
Binary File  
User ID  
Counter  
Hash-Extend register  
3.1.2.1 Symmetric Key  
The Symmetric Key object can securely store symmetric keys of AES 128, 192 and 256  
bit, 2K3DES and 3K3DES. The following specific operations are available on symmetric  
key objects:  
Encrypt  
Decrypt  
Derive  
CMAC  
Secure Import  
3.1.2.2 ECC Key  
The ECC Key object has the ability to securely store ECC keys of the following curves  
and key sizes:  
ECC NIST curve: NIST P-192, NIST P-224, NIST P-256, NIST P-384, NIST P-521  
ECC Brainpool curve: 160 bit, 192 bit, 224 bit, 256 bit, 320 bit, 384 bit, 512 bit  
Curve25519 (Montgomery) and Bi-rationally Equivalent Twisted Edwards Curve  
ECC Koblitz curves: secp160k1, secp192k1, secp224k1, secp256k1  
ECC Barreto-Naehrig 256 bit curve  
The following operations are available on ECC key objects (not all operations are  
applicable to all curves):  
ECDSA/EdDSA Sign  
ECDSA/EdDSA Verify  
ECDH Generate Shared Secret/ECDHE  
ECDAA Sign  
ECDAA Verify  
Generate Key  
Secure Import  
3.1.2.3 RSA Key  
The RSA Key object has the ability to securely store RSA Keys up to 4096 bit. The  
following specific operations are available on RSA key objects:  
RSA Sign  
RSA Verify  
RSA Encrypt  
RSA Decrypt  
RSA Generate Key  
Secure Import  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
6 / 30  
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
3.1.2.4 HMAC Key object  
An HMAC key object allows to securely store an HMAC key. The following operations are  
supported on HMAC Key objects to compute an HMAC:  
Init  
Update  
Finalize  
3.1.2.5 Binary file objects  
Binary file objects are byte arrays of a generic type. As in a standard file system, the  
values can be accessed using read/write operations.  
3.1.2.6 Counter Objects  
Counter objects are special kinds of binary file objects with specific functionality  
interpreting the content of the file.  
The supported operations for counters are:  
Set  
Get  
Increment  
3.1.2.7 Hash-Extend register  
A hash-extend register secure object stores a hash over all data provided to that secure  
object. It therefore contains the complete history of values provided to that register since  
last reboot or since creation and can be used for attestation purposes.  
3.1.2.8 User ID secure object  
User ID secure objects can be used to create sessions based on the User ID in cases  
where multi-tenant support without cryptographic credential usage is required.  
3.1.3 Access control  
Each secure object can be linked to object specific access control policies. An access  
control policy associates a user identified by an authentication with a set of privileges  
such as read, write, …  
To scale the functionality into a broad range of ecosystems, a set of different  
authentication options is provided:  
User-ID based authentication  
Symmetric key based authentication with secure messaging  
Asymmetric key based authentication with secure messaging  
At creation of a secure object, an optional set of policies is associated with that  
secure object. Each policy assigns a set of allowed operations on that object to an  
authentication object.  
3.1.4 Sessions and multi-threading  
The SE050 IoT applet is prepared for ecosystems where multi-threading and multi-  
tenant use cases are needed on APDU level. To enable that, the applet supports 2  
simultaneous sessions that can span full secure messaging sessions, self-authenticated  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
7 / 30  
 
 
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
APDUs for tenants not requiring long-lasting sessions and on top one default session for  
single tenant use cases .  
3.1.5 Attestation and trust provisioning  
SE050 applet comes with a set of trust provisioned root credentials allowing the owner of  
the device to securely attest all generated secure keys. Next to that, a customer has the  
possibility to define own attestation keys.  
Attestation certificates signed by an attestation CA are included in certain SE050  
configurations as documented in [4].  
3.1.6 Application support  
For specific ecosystems, SE050 IoT applet has built-in crypto features to simplify the  
deployment of specific use cases such as  
MIFARE SAM functionality  
Wifi password protection  
ECC-Key and RSA-Key based cloud connectivity  
Secure Sensor readout using I2C master  
Remote attestation and trust provisioning  
Platform Configuration Registers  
3.2 Credential Storage & Memory  
Within SE050, all credentials and secure objects are stored inside a dynamic file  
structure. At creation, a user has to associate a file identifier with the object created. This  
identifier is then used in subsequent operations to access the object. The number of  
objects that can be allocated is only limited by the available memory in the system. After  
usage, objects can be deleted and the associated memory is freed up again.  
There is also the possibility to create transient objects. Transient objects have an object  
descriptor stored in non-volatile memory, but the object content is stored in RAM.  
Together with the import/export functionality of SE050, transient objects can be used  
securely store secret keys in a remote memory system.  
3.3 Ease of use configuration  
Some generic SE050 variants are offered pre-configured for ease of use and can be  
used during development phase and in the field. With this customers have all keys pre-  
injected in SE050 that are required for the main use cases as e.g. cloud onboarding. For  
more information, see: [4]  
3.4 Startup behaviour  
If a supply voltage is applied to pins Vin, Vcc within the specified supply voltage operating  
range or a RF field according to ISO/IEC 14443 is applied to antenna pins LA, LB the IC  
boots up.  
During boot the IC checks for active interface according list below (in the order of the list):  
ISO7816: If interface available for this product type, check CLK to be toggling, then wait  
for RST to be high  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
8 / 30  
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
ISO14443: If interface available for this product type, check of RF field on LA, LB  
antenna pins  
I2C: If interface available for this product type, check if both I2C_SDA, I2C_SCL pins  
are at high level (internal weak pull-up active)  
The chosen interface is the only interface the SE050 will receive commands for  
processing. To select a different interface the IC needs to be reset.  
4 Communication interfaces  
4.1 I2C Interfaces  
The SE050 has one I2C interface supporting slave and one I2C interface supporting  
master mode.  
The I2C slave interface is the main communication interface of the device and is used by  
the host controller to send arbitrary APDUs to the device. It supports clock frequencies  
up to 3.4 MHz when operated in High-Speed Mode (HS). The I2C interface is using the  
Smartcard T=1 over I2C protocol.  
The default slave address of the SE050 is configured to 0x48.  
slave address  
1
0
0
1
0
0
0
R/W  
aaa-037450  
Figure 3.ꢀSlave address  
The I2C master interface is supposed to be used with slave devices that need to be  
securely written and read. This interface features a maximum SCL clock rate of 400 kHz.  
4.1.1 Supported I2C frequencies  
The SE050 I2C slave interface supports the I2C high-speed mode with a maximum SCL  
clock of up to 3.4 MHz when clock stretching is enabled.  
In case clock stretching is disabled the maximum supported SCL clock frequency is  
1.7 MHz.  
Clock stretching is enabled by default. Clock stretching will occur for frequencies  
higher than 600 kHz. In case clock stretching is not supported by the I2C master a  
dedicated configuration with disabled clock stretching has to be used to ensure the above  
mentioned maximum clock frequency.  
The SE050 I2C master interface supports maximum 400 kHz SCL clock frequency.  
4.2 ISO7816 and ISO14443 Interface  
The SE050 supports in addition to the I2C interface ISO78161 and ISO14443-A  
Smartcard interfaces. For the ISO7816 interface SmartCard protocols T=0 and T=1 are  
1
ISO7816 is not enabled in generic SE050 configurations (see [4], AN12436) but available on customer  
request.  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
9 / 30  
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
supported. For the ISO14443 interface protocol T=CL is used. The supported resonance  
input capacitance is 56 pF. In addition one additional GPIO pad IO2 is supported.  
The RST_N pin can only be used as external reset source if the ISO7816 interface is  
enabled. If only the I2C interface is enabled the RST_N pad has no effect. If the SE050 is  
kept in reset state the current consumption is as defined for idle, see Table 12.  
5 Power-saving modes  
The device provides two power-saving operation modes. The Power-down mode (with  
state retention) and the Deep Power-down mode (no state retention). These modes are  
activated via pad ENA (Deep Power-down mode) or by the SW (Power-down mode).  
5.1 Power-down mode  
The Power-down mode has the following properties:  
All internal clocks are frozen  
CPU enters power-saving mode with program execution being stopped  
CPU registers keep their contents  
RAM keeps its contents  
The SE050 enters into Power-down mode by receiving "End of APDU session request"  
via the T=1 over I2C protocol. In Power-down mode, all internal clocks are frozen. The  
IOs hold the logical states they had at the time Power-down mode was activated.  
To exit from the Power-down mode an external interrupt edge must be triggered by a  
falling edge on I2C_SDA2.  
5.2 Deep Power-down mode  
The SE050 provides a special power-saving mode offering maximum power saving. This  
mode is activated by pulling enable PIN (ENA) to a logic zero level.  
While in Deep Power-down mode the internal power and VOUT is switched off completely  
and only the I2C pads stay supplied.  
To leave the Deep Power-down mode pad ENA has to be pulled up to to a logic „1" level.  
For usage of Deep Power-down mode the SE050 must be supplied via pin VIN and pin  
VCC needs to be supplied by pin VOUT  
.
6 Ordering information  
6.1 Ordering options  
Table 3.ꢀSE050 Ordering information  
12NC  
Type number  
SE050 Variant  
SE050A1  
Orderable part number  
SE050A1HQ1/Z01SGZ  
SE050A2HQ1/Z01SHZ  
9353 867 22472  
9353 869 84472  
SE050A1HQ1/Z01SG  
SE050A2HQ1/Z01SH  
SE050A2  
2
In case ISO7816 is enabled a reset signal on RST_N exits the Power-down mode. After wake-up from  
Power-down mode via RST_N the device is in idle mode (see Table 12)  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
10 / 30  
 
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
12NC  
Type number  
SE050 Variant  
SE050D2  
SE050B1  
Orderable part number  
SE050D2HQ1/Z01PAZ  
SE050B1HQ1/Z01SEZ  
SE050B2HQ1/Z01SFZ  
SE050C1HQ1/Z01SCZ  
SE050C2HQ1/Z01SDZ  
935401587472  
9353 869 85472  
9353 869 86472  
9353 869 87472  
9353 869 88472  
SE050D2HQ1/Z01PA  
SE050B1HQ1/Z01SE  
SE050B2HQ1/Z01SF  
SE050C1HQ1/Z01SC  
SE050C2HQ1/Z01SD  
SE050B2  
SE050C1  
SE050C2  
Table 4.ꢀSE050 Ordering information for development kit  
12NC  
Type number  
Description  
9353 832 82598  
OM-SE050ARD  
SE050 Arduino-compatible development kit ,  
SE050C configuration  
6.2 Ordering SE050 samples  
Samples can be ordered from NXP Semiconductors via nxp.com using the "Buy Direct"  
button on the product information page for SE050. Note that NXP Semiconductors  
can provide up to five pieces free of charge. Larger quantities have to be ordered  
commercially.  
6.3 Configuration  
Detailed information about the configuration and available variants of the SE050 are  
available in a separate NXP Application Note, see [4]  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
11 / 30  
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
7 Pinning information  
7.1 Pinning  
7.1.1 Pinning HX2QFN20  
terminal 1  
index area  
ISO 14443 LB  
n.c.  
1
2
3
4
5
15 VOUT  
14 ISO 7816 RST_N  
13 ISO 7816 CLK  
12 VIN  
ISO 7816 IO1  
SE050  
n.c.  
n.c.  
11 ENA  
aaa-031924  
Transparent top view  
Figure 4.ꢀPin configuration for HX2QFN20 (SOT1969-1)  
Note: Terminal 1 index area is marked on the bottom with a notch on the center pad and  
on the top with a printed dot.  
Table 5.ꢀPin description HX2QFN20  
Symbol  
Pin  
1
Description  
ISO 14443 LB  
n.c.  
ISO14443 Antenna Connection, if not used connect to VSS  
2
not connected  
ISO 7816 IO1  
3
ISO 7816 IO or I2C master SDA, if not used n.c (recommended) or connect to  
VCC  
n.c.  
4
not connected  
n.c.  
5
not connected  
n.c.  
6
not connected  
n.c.  
7
not connected  
n.c.  
8
not connected  
I2C_SDA  
I2C_SCL  
ENA  
VIN  
9
I2C slave data, if not used n.c.  
I2C slave clock, if not used n.c.  
Deep Power-down mode enable, if not used then connect to VCC  
power supply voltage input for I2C pads and ISO 7816/14443 interface and  
logic supply in case Deep Power-down mode is used  
10  
11  
12  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
12 / 30  
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
Symbol  
Pin  
Description  
ISO 7816 CLK  
ISO 7816 RST_N  
VOUT  
13  
14  
15  
ISO 7816 clock input, if not used then n.c (recommended) or connect to VCC  
ISO 7816 reset input low active, if not used then connect to Vcc or Vss  
supply voltage output to be connected with pad VCC on PCB level, if Deep  
Power-down mode is used. N. c. if not used.  
ISO 7816 IO2  
16  
ISO7816 IO2 pad or I2C master SCL. I if not used n.c (recommended) or  
connect to VOUT  
.
ISO 14443 LA  
VCC  
17  
18  
ISO14443 antenna connection, if not used then connect to VSS  
logic and ISO7816/ISO14443 interface power supply voltage input, to be  
connected with pad VOUT on PCB level, if Deep Power-down mode to be used  
VSS  
n.c.  
19  
20  
ground  
not connected  
The center pad of the IC is not connected, although it is recommended to connect it to  
ground for thermal reasons.  
Reference voltage for ISO 1816 IO1, CLK, RST is VCC; for I2C SDL and SCL reference  
voltage is VIN and for IO2 it is VOUT  
.
8 Package  
9 Marking  
SE050 is offered in HX2QFN20 package. The dimensions are 3 mm x 3 mm x 0,32 mm  
with a 0,4 mm pitch.  
Please refer to the package data sheet [2], SOT1969-1.  
Table 6.ꢀMarking codes  
Type number  
Marking code  
Sx050...  
Line A: S50  
Line B: **** (**** = 4-digit Batch code)  
Line C: nDyww  
D: RHF-2006 indicator  
n: Assembly Center  
Y: Year  
WW: Week  
10 Packing information  
10.1 Reel packing  
The SE050 product is available in tape on reel.  
Table 7.ꢀReel packing options  
Symbol  
Parameter  
7" tape on reel  
Numbers of units per reel  
HX2QFN20  
3000  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
13 / 30  
 
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
11 Electrical and timing characteristics  
The electrical interface characteristics of static (DC) and dynamic (AC) parameters for  
pads and functions used for I2C are in accordance with the NXP I2C specification (see  
[1]).  
12 Limiting values  
Table 8.ꢀLimiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to VSS (ground = 0 V).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VIN, Vcc  
supply voltage  
-0.3  
+6  
V
[1]  
VI  
input voltage  
input current  
output current  
latch-up current  
any signal pad  
-0.3  
+6  
V
II  
pad I2C_SDA, I2C_SCL  
pad I2C_SDA, I2C_SCL  
VI < 0 V or VI > VIN, Vcc  
-
-
-
10  
mA  
mA  
mA  
kV  
IO  
10  
Ilu  
100  
± 2.0  
[2]  
[3]  
[4]  
Vesd_hbm  
electrostatic discharge voltage  
(Human Body Model)  
pads VCC, VSS, RST_N,  
I2C_SDA, I2C_SCL, IO1, IO2,  
CLK  
Vesd_cdm  
electrostatic discharge voltage  
(Charge Device Model)  
pads VCC, VSS, RST_N,  
I2C_SDA, I2C_SCL, IO1, IO2,  
CLK  
± 500  
V
Ptot  
Tstg  
Total power dissipation  
Storage temperature  
-
600  
mW  
°C  
-55  
+125  
[1] Maximum supported supply voltage is 6 V. The SE050 is characterized for the specified operating supply voltage range of 1.62 V to 3.6 V. In case of  
supply voltages above 3.6 V, Deep Power-down mode current <5 µA is not guaranteed.  
[2] MIL Standard 883-D method 3015; human body model; C = 100 pF, R = 1.5 kΩ; Tamb = -40 °C to +105 °C.  
[3] JESD22-C101, JEDEC Standard Field induced charge device model test method.  
[4] Depending on appropriate thermal resistance of the package.  
13 Recommended operating conditions  
The SE050 is characterized by its specified operating supply voltage range of 1.62 V to  
3.6 V.  
Table 9.ꢀRecommended operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIN, VCC  
Supply voltage  
Nominal supply voltage 1.62  
1.8  
3.6  
V
[1]  
VI  
DC input voltage on digital inputs and  
digital I/O pads  
-
-0.3  
VCC/VIN  
V
[2]  
+0.3  
7.5  
H
Field strength  
Contactless interface  
operation  
1.5  
-40  
A/m  
°C  
Tamb  
Operating ambient temperature[3]  
+105  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
14 / 30  
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
[1] Maximum supported supply voltage is 6 V. In case of supply voltages above 3.6 V, Deep Power-down mode current <5 µA is not guaranteed.  
[2] IO1, CLK, RST has VCC as reference, SDA, SCL, IO2 and ENA has VIN as reference  
[3] All product properties and values specified within this data sheet are only valid within the operating ambient temperature range.  
1.62 V  
3.6 V  
aaa-015200_  
Maximum supported supply voltage is 6 V. In case of supply voltages above 3.6 V, Deep Power-  
down mode current <5 µA is not guaranteed.  
Figure 5.ꢀCharacteristic supply voltage operating range  
14 Characteristics  
14.1 DC characteristics  
Measurement conventions  
Testing measurements are performed at the contact pads of the device under test. All  
voltages are defined with respect to the ground contact pad VSS. All currents flowing into  
the device are considered positive.  
14.1.1 General and General Purpose I/O interface  
Table 10.ꢀElectrical DC characteristics of Input/Output: IO1/IO2. Conditions: VCC = 1.62 V to 3.6 V (see ; VSS = 0 V;  
Tamb = -40 °C to + 105 °C, unless otherwise specified  
In Table 10 VCC means for IO1 voltage on VCC pin, for IO2 voltage on VIN pin  
Maximum supported supply voltage is 6 V. In case of supply voltages above 3.6 V, Deep Power-down mode current <5 µA  
is not guaranteed.  
Symbol  
VIH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
HIGH level input voltage  
LOW level input voltage  
0.7 VCC  
-0.3  
VCC + 0.3  
0.25 VCC  
-20  
VIL  
V
IIH  
HIGH level input current in  
"weak pull-up" input mode  
0.7 VCC ≤ VI ≤ VCC  
Test conditions for the  
maximum absolute  
value: IIH(max):VI = 0.7  
VCC, VCC=VCC(max)  
μA  
IIL  
LOW level input current  
0 V ≤ VI ≤ 0.3 VCC  
;
-50  
μA  
μA  
Test conditions for the  
maximum  
absolute value:  
IIL(max):VI = 0 V, VCC  
VCC(max)  
=
[1]  
ITL  
HIGH-to-LOW transition  
input current (only "quasi-  
bidirectional" mode)  
0.3 VCC < VI ≤ VCC  
;
-250  
Test conditions for the  
maximum absolute  
value: VI = 0.5 VCC, VCC  
= VCC(max)  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
15 / 30  
 
 
 
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
II  
Input current in "weak pull-up" 0 V VI ≤ VCC; Test  
0
-50  
μA  
input mode  
conditions for the  
maximum absolute  
value: II(max):VI = 0 V,  
VCC = VCC(max)  
IILIH  
Leakage input current at input VCC < VI ≤ VCC + 0.3 V;  
voltage beyond VCC in "weak -40 °C ≤  
20  
μA  
pull-up" input mode  
Tamb ≤ +105 °C;  
Test conditions: VI = VCC  
+ 0.3  
V;  
VCC = VCC(max)Tamb  
+105 °C  
=
IILIL  
Leakage input current at input -0.3 V ≤ VI < 0 V; -40 °C  
-50  
μA  
μA  
μA  
voltage below VSS in "weak  
pull-up" input mode  
≤ Tamb  
+30 °C  
Test conditions: VI = -0.3  
V;  
VCC= VCC(max)Tamb  
+30 °C  
=
-0.3 V ≤ VI < 0 V;+30 °C  
≤ Tamb  
-1000  
+105 °C  
Test conditions: VI = -0.3  
V;  
VCC= VCC(max)Tamb  
+105 °C  
=
IILIHQ  
Leakage input current at  
input voltage beyond VCC  
(only in "quasi-bidirectional"  
mode)  
VCC < VI ≤ VCC + 0.3 V;  
-40 °C ≤  
100  
Tamb≤ +105 °C  
Test conditions: VI = VCC  
+
0.3 V;VCC = VCC(max)  
;
Tamb = +105 °C  
IILILQ  
Leakage input current at input -0.3 V ≤ VI < 0 V; -40 °C  
-120  
μA  
μA  
V
voltage below VSS (only in  
"quasi-bidirectional"  
≤ Tamb  
+30 °C  
mode)  
Test conditions: VI = -0.3  
V;  
VCC = VCC(max)Tamb  
=
+30 °C  
-0.3 V ≤ VI < 0 V;+30 °C  
≤ Tamb  
-1000  
+105 °C  
Test conditions: VI = -0.3  
V;  
VCC = VCC(max)Tamb  
=
+105 °C  
[2]  
VOH  
HIGH level output voltage  
IOH = -20 μA;  
0.7 VCC  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
16 / 30  
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOL  
LOW level output voltage  
IOL = 1.0 mA  
IOL = 0.5 mA  
0.3  
V
0.15 VCC  
[1] IO1/IO2 source a transition current when being externally driven from HIGH to LOW. This transition current (ITL) reaches its maximum value when the  
input voltage VI is approximately 0.5 VCC. Current IIL is tested at input voltage VI= 0.3 V.  
[2] External pull-up resistor 20 kΩ to VCC assumed. The worst case test condition for parameter VOH is present at minimum VCC  
.
V
I
I
I
I
I
IH1maxu  
IL1maxu  
V
CC  
0
-0.3 V  
0
V
V
IH1min  
IL1max  
I
I
ILI1maxI  
IHI1maxI  
aaa-029327  
Figure 6.ꢀInput characteristic of RST_N  
V
l
l
l
l
ILIHmax  
l
l
IHmin  
Imin  
-0.3 V 0 V  
V
V
V
ILmax  
IHmin  
CC  
V
0
+0.3 V  
CC  
l
l
l
IHmax  
ILmax  
Imax  
l
aaa-007192  
ILILmax  
Figure 7.ꢀInput characteristic of IO1/IO2  
I
I
V
I
I
ILIH1max  
I
I
I
IH1max  
IL1max  
I1max  
-0.3 V  
0
0 V  
V
V
V
+0.3 V  
CC  
IL1max  
IH1min  
V
CC  
I
I
I1min  
IL1min  
I
aaa-007191  
lLlL1max  
Figure 8.ꢀInput characteristic of CLK when the IC is not in reset  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
17 / 30  
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
I
I
V
I
I
lLIH2max  
I
I
IH2min  
I2min  
V
V
V
0 V  
-0.3 V  
0
IL2max  
IH2min  
CC  
V
+0.3 V  
CC  
I
I
I2max  
I
IH2max  
IL2max  
I
ILIL2max  
aaa-007190  
Figure 9.ꢀInput characteristic of CLK during IC reset  
14.1.2 I2C Interface  
Table 11.ꢀElectrical DC characteristics of I2C pads SDA, SCL. Conditions: VCC, VIN = 1.62 V to 3.6 V; VSS = 0 V; Tamb  
= -40 °C to + 105 °C, unless otherwise specified*  
Maximum supported supply voltage is 6 V. In case of supply voltages above 3.6 V, Deep Power-down mode current <5 µA  
is not guaranteed.  
SCL, SDA pads are in open-drain mode.  
Symbol  
VIH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
HIGH level input voltage  
LOW level input voltage  
Input hysteresis voltage  
0.7 VIN  
-0.3  
VIN + 0.3  
0.25 VIN  
VIL  
V
VHYS  
VOL(OD)  
-
0.081 V  
0
V
Low level output voltage  
(open-drain mode)  
IOL = 3.0 mA  
0.4  
V
IOL(OD)  
Low level output current  
(open-drain mode)  
VOL = 0.6 V  
VIO = 0 V  
0.6  
mA  
IWPU  
IILIH  
weak pull-up current  
-265  
-180  
0.27  
-70  
15  
µA  
µA  
Leakage input current high  
level  
VSDA = 3.6 V, VSCL = 3.6  
V
14.1.3 Power consumption  
Table 12.ꢀElectrical characteristics of IC supply voltage VCC; VSS = 0 V; Tamb = -40 °C to +105 C  
Symbol  
Supply  
VCC  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage range  
VCC = 1.62 - 3.6 V  
1.62  
1.80  
3.6  
V
operating mode: Idle mode  
operating mode: typical CPU  
no coprocessor active  
[1]  
IDD  
fCPU= 48 MHz, fMST = 96 MHz  
CPU in idle mode  
4.4  
6.5  
7
mA  
mA  
AES coprocessor active  
(AES 48 MHz)  
7.5  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
18 / 30  
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Public Key cryptography Coprocessor CPU in idle mode  
active  
14.4  
16.1  
mA  
(96 MHz)  
DES coprocessor active  
(DES 48 MHz)  
CPU in idle mode  
6.5  
7.6  
mA  
IDD (PD-  
supply current Power-down mode  
(ISO7816 clock-stop)  
VCCmin ≤ VCC ≤ VCCmax; Clock to  
input CLK stopped, Tamb= 25 °C  
430  
3
480  
5
μA  
μA  
μA  
ISO7816)  
IDDD (DPD) supply current Deep Power-down  
mode  
IDD (PD-I2C) supply current I2C Power-down mode VCCmin ≤ VCC ≤ VCCmax; Clock  
VCCmin ≤ VIN ≤ VCCmax; Tamb  
=
25 °C  
450  
500  
(I2C wake-up source)  
to input SCL stopped, Tamb=  
25 °C SDA, SCL pads in pull-up  
Typical value with VCC= 1.8 V  
[1] Maximum current consumption with concurrent AES and Public Key Cryptography 19 mA.  
14.2 AC characteristics  
Table 13.ꢀNon-volatile memory timing characteristics  
Conditions: VCC = 1.62 V to 3.6 V; VSS = 0 V; Tamb = -40 °C to +105 °C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1]  
Max Unit  
ms  
[2]  
tEEP  
tEEE  
tEEW  
tEER  
NEEC  
FLASH erase + program time  
2.3  
0.9  
1.4  
FLASH erase time  
ms  
FLASH program time  
FLASH data retention time  
ms  
Tamb = +55 °C  
25  
years  
cycles  
FLASH endurance (maximum  
number of programming cycles  
applied to the whole memory  
block performed by NXP static  
and dynamic wear leveling  
algorithm)  
20 × 106 100 ×  
106  
[1] Typical values are only referenced for information. They are subject to change without notice.  
[2] Given value specifies physical access times of FLASH memory only.  
Table 14.ꢀElectrical AC characteristics of I2C_SDA, I2C_SCL, and RST_N[1]; VCC = 1.8 V ± 10 % or 3 V ± 10 % V; VSS  
0 V; Tamb = -40 °C to + 105 °C  
=
SCL, SDA pads in open-drain mode.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input/Output: I2C_SDA, I2C_SCL in open-drain mode  
[2]  
[2]  
[2]  
trIO  
I/O Input rise time  
I/O Input fall time  
I/O Output fall time  
Input/reception mode  
Input/reception mode  
1
μs  
μs  
μs  
tfIO  
1
tfOIO  
Output/transmission mode; CL  
= 30 pF  
0.3  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
19 / 30  
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fCLK  
External clock frequency in I2C tCLKW, Tamb and VCC in their  
applications specified limits  
-
3.4  
MHz  
[3]  
[4]  
tPD  
Power down duration time (I2C CPU clock = 48 MHz  
wake-up)  
67  
97  
μs  
μs  
pF  
μs  
tWKPD  
CPIN  
tENalt  
Wake-up from power down  
duration time (I2C wake-up)  
CPU clock = 48 MHz  
Pin capacitances RST_N,  
I2C_SDA, /I2C_SCL  
Test frequency = 1 MHz;  
Tamb = 25 °C  
-
10.5  
[5]  
ENA low time and Vout, Vcc  
low time for entering deep  
power down mode  
2
Ron  
Iout  
Resistance of power switch  
Tamb=105 °C, Iload=25 mA,  
Vin=1.62 V  
1.1  
25  
Ohm  
mA  
maximum current driving  
capability of pin Vout  
Tamb=105 °C  
Inputs: RST_N (active only if ISO7816 UART interface is enabled)  
tRW  
Reset pulse width (RST_N low)  
without entering Power-down  
mode  
40  
400  
μs  
tRDSLP  
tWKP  
Reset pulse width (RST_N low)  
to enter Power-down mode  
500  
-
μs  
μs  
Wake-up time from Power-  
down mode  
fCLKmin < fCLK < fCLKmax  
8
10  
tWKPIO  
Pad LOW time for wake-up  
from Power-down mode  
level triggered ext.int.  
edge triggered ext.int.  
-
8
8
10  
10  
-
μs  
μs  
μs  
-
tWKPRST RST_N LOW time for wake-up  
from Power-down mode  
40  
CPIN  
Pin capacitances RST_N,  
I2C_SDA, /I2C_SCL  
Test frequency = 1 MHz; Tamb  
= 25 °C  
-
10.5  
pF  
[1] All appropriately marked values are typical values and only referenced for information. They are subject to change without notice.  
[2] tr is defined as rise time between 30 % and 70 % of the signal amplitude.  
tf is defined as fall time between 70 % and 30 % of the signal amplitude.  
[3] Wakeup from power down: if clock stretching disabled and I2C_SCL=400 kHz; the wakeup time will not be sufficient under the rare condition where host  
sends the first command during the time where SE is just entering power down; in this case the SE will send an R block to request retransmission from the  
host  
[4] Wakeup from power down: if clock stretching disabled and I2C_SCL=1 MHz; the wakeup time will not be sufficient to receive the first host command; the  
SE will send an R block to request retransmission from the host  
[5] Low glitches below 0.4 V on pin ENA and Vin, Vout, Vcc larger than 30 ns cause Power-On-Reset, respectively entering deep power-down mode.  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
20 / 30  
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
V
high  
70 % level  
30 % level  
0.5 V  
CLK (et al)  
DD  
V
low  
t
CLKW  
tf  
tf  
tf  
tr  
tr  
tr  
CLK  
RST  
IO  
CLK  
RST  
IO  
1/f  
CLK  
aaa-037451  
1) During AC testing the inputs RST_N, I2C_SDA, I2C_SCL are driven at 0 V to +0.3 V for a LOW  
input level and at VCC -0.3 V to VCC for a HIGH input level. Clock period and signal pulse (duty  
cycle) timing is measured at 50 % of VCC  
.
2) tr is defined as rise time between 30 % and 70 % of the signal amplitude. tf is defined as fall  
time between 70 % and 30 % of the signal amplitude.  
Figure 10.ꢀExternal clock drive and AC test timing reference points of I2C_SDA, I2C_SCL,  
and RST_N (see 1) and 2)) in open-drain mode  
Table 15.ꢀElectrical AC characteristics of IO1, IO2, CLK and RST_N (ISO7816 interface)  
Conditions: VCC = 1.8 V ± 10 % or 3 V ± 10 % V; VSS = 0 V; Tamb = -40 °C to +105 °C, unless otherwise specified. Typical  
values are only referenced for information. They are subject to change without notice.  
Symb Parameter  
ol  
Conditions  
Min  
Typ  
Max  
Unit  
Input/Output: IO1/IO2  
[1]  
[2]  
trIO  
I/O Input rise time  
Input/reception mode  
1
μs  
μs  
μs  
μs  
μs  
[3]  
[2]  
0.25 x  
tIOWx_min  
[1]  
[2]  
tfIO  
I/O Input fall time  
Input/reception mode  
1
[3]  
[2]  
0.25 x  
tIOWx_min  
[2]  
trOIO  
I/O Output rise time  
I/O Output fall time  
Output/transmission mode; CL  
= 30 pF  
0.1  
0.1  
[2]  
tfOIO  
Output/transmission mode; CL  
= 30 pF  
μs  
Inputs: CLK and RST_N  
[4]  
fCLK  
External clock frequency  
tCLKW, tamb and VCC in their  
specified limits  
0.85  
40  
11.5  
60  
MHz  
%
in ISO/IEC 7816 UART  
applications  
tCLKW  
Clock pulse width i.r.t. clock  
period (positive pulse duty  
cycle of CLK)  
[5]  
trCLK  
tfCLK  
CLK input rise time  
CLK input fall time  
[6]  
[6]  
[2]  
[6]  
[2]  
trRST  
tfRST  
RST_N input rise time  
RST_N input fall time  
400  
400  
μs  
μs  
[2]  
[7]  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
21 / 30  
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
[1] At minimum IO1 input signal HIGH or LOW level voltage pulse width of 3.2 μs. This timing specification applies to ISO7816 configurations down to a  
minimum etu duration of 16 CLK cycles at a maximum CLK frequency of 5 MHz (TA1=0x96, (Fi/Di)=(512/32)), for example.  
[2] tr is defined as rise time between 10 % and 90 % of the signal amplitude.  
[3] At minimum IO1 input signal HIGH or LOW level voltage pulse width of less than 3.2 μs. This timing specification applies to ISO7816 configurations  
beyond the conditions listed in note [2], down to a minimum etu duration of 8 CLK cycles at a maximum CLK frequency of 5 MHz (TA1=0x97, (Fi/  
Di)=(512/64)), for example. An 8 CLKs/etu @ fclk = 5 MHz configuration results in tIOWx_min = 1.6 μs, and in a time of 400 ns for trIO_max and tfIO_  
max, matching the (Fi/Di)=(512/64) speed enhancement requirements of ETSI TS 102 221.  
[4] ISO/IEC 7816 I/O applications have to supply a clock signal to input CLK in the frequency range of 1 MHz to 10 MHz nominal. A ± 15 % tolerance range  
yields the allowed limits of 0.85 MHz and 11.5 MHz.  
[5] During AC testing the inputs CLK, RST_N, and IO1 are driven at 0 V to +0.3 V for a LOW input level and at VCC − 0.3 V to VCC for a HIGH input level.  
Clock period and signal pulse (duty cycle) timing is measured at 50 % of VCC, see Figure 18.  
[6] The maximum CLK rise and fall time is 10 % of the CLK period 1/fCLK - with the following exception: In the CLK frequency range of 1 MHz to 5 MHz the  
maximum allowed CLK rise and fall time is 50 ns, if 10 % of the CLK period is shorter than 50 ns.  
[7] The ETSI TS102 221/GSM 11.1x specifications specify a maximum reset signal (RST_N) rise time and fall time of 400,000 μs, respectively.  
Note: tf is defined as fall time between 90 % and 10 % of the signal amplitude.  
Table 16.ꢀElectrical AC characteristics of LA, LB; Conditions: Tamb = -40 °C to 105 °C, unless otherwise specified  
Conditions: Tamb = -25 °C to +85 °C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Typ[1]  
Max  
Unit  
Input/Output: LA, LB  
[2]  
CLALB  
Pin capacitance LA, LB  
Bare die (SO28 empty package  
ground-off)  
[3] [4]  
[4]  
Configured for antenna input with  
56 pF capacitance  
VLA,LB = 2.1 V (rms)  
VLA,LB = 0.3 V (rms)  
54.3  
50.1  
pF  
Test frequency = 13.56 MHz;  
Tamb= 25 °C  
[2]  
[3] [4]  
[5]  
RLALB  
Configured for antenna input with  
56 pF capacitance. Test frequency  
= 13.56 MHz;  
VLA,LB = 2.1 V (rms)  
level triggered ext.int.  
0.913  
13.56  
kΩ  
Tamb= 25 °C  
fLALB  
Operating frequency LA, LB  
MHz  
[1] Typical values (± 10 %) are only referenced for information. They are subject to change without notice.  
[2] The CLALB and RLALB values stated here assume a parallel RC equivalent circuit for the chip.  
[3] The value stated here was measured at estimated start of chip operation and is comparable to the values stated in other SmartMX3 family member data  
sheets.  
[4] Measured with sine wave at LA, LB.  
[5] Parameter is valid in contactless ISO14443 compliant operation valid only.  
14.3 I2C Bus Timings  
Parameters defined in this chapter replace the parameter definitions of I2C bus, for  
specification see [4].  
SDA  
50 %  
50 %  
SCL  
50 %  
50 %  
t
t
HDr;DAT50  
HDf;DAT50  
aaa-036486  
Figure 11.ꢀI2C Bus Timings  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
22 / 30  
 
 
 
 
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
Table 17.ꢀI2C Bus Timing Specification  
Symbol  
Parameter  
Condition  
Min  
Max  
Unit  
[1]  
[2]  
[1]  
[2]  
tHDf;DAT50  
data hold time  
Fast mode  
8
ns  
50% SCL - 50% SDA level  
tHDr;DAT50  
tHDf;DAT50  
tHDr;DAT50  
data hold time  
Fast mode  
Hs mode  
Hs mode  
24  
8
ns  
ns  
ns  
50% SCL - 50% SDA level  
data hold time  
50% SCL - 50% SDA level  
data hold time  
9
50% SCL - 50% SDA level  
[1] tHDf;DAT50, as defined in Figure 11, replaces parameter tHD;DAT defined in [4]  
[2] tHDr;DAT50, as defined in Figure 11, replaces parameter tHD;DAT defined in [4]  
14.4 EMC/EMI  
EMC and EMI resistance according to IEC 61967-4.  
15 Abbreviations  
Table 18.ꢀAbbreviations  
Acronym  
AES  
APDU  
CL  
Description  
Advanced Encryption Standard  
Application Protocol Data Unit  
Contactless  
CLK  
CC  
External clock signal input contact pad  
Common Criteria  
CMAC  
CRC  
CRI  
Cipher-based MAC  
Cyclic Redundancy Check  
Cryptography Research Incorporated  
Digital Encryption Standard  
Differential Power Analysis  
Digital Signature Standard  
Evaluation Assurance Level  
Elliptic Curve Cryptography  
Electromagnetic compatibility  
Electro Magnetic Immunity  
Fast-Mode  
DES  
DPA  
DSS  
EAL  
ECC  
EMC  
EMI  
FM  
FM+  
GP  
Fast-Mode+  
Global Platform  
GPIO  
HS  
General-purpose input/output  
High-Speed-Mode  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
23 / 30  
 
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
Acronym  
HKDF  
HMAC  
HW  
Description  
HMAC-based Extract-and-Expand Key Derivation Function  
Keyed-Hash Message Authentication Code  
Hardware  
IC  
Integrated Circuit  
I2C  
Inter-Integrated Circuit  
Input/Output  
I/O  
IoT  
Internet of Things  
JCOP  
LA  
Java Card Open Platform  
ISO 14443 Antenna Pad  
ISO 14443 Antenna Pad  
Near Field Communication  
Message Authentication Code  
Microcontroller unit  
LB  
NFC  
MAC  
MCU  
MPU  
MW  
Microprocessor  
Middleware  
OS  
Operating System  
NIST  
PCB  
PKI  
National Institute for Standards and Technology  
Protocol Control Byte  
Public Key Infrastructure  
Pseudo Random Function  
Random Access Memory  
Rivest-Shamir-Adleman  
Reset  
PRF  
RAM  
RSA  
RST  
SAM  
SCL  
SDA  
SPA  
SFI  
Secure Access Module  
Serial clock  
Serial data  
Simple Power Analysis  
Single Fault Injection  
Secure Hash Algorithm  
Software  
SHA  
SW  
TLS  
VCC  
Transport Layer Security  
Supply Voltage Input  
Voltage Input  
VIN  
VOUT  
VSS  
Voltage Output  
Ground  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
24 / 30  
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
16 References  
[1] NXP SE05x T=1 Over I2C Specification User manual, document number UM11225.  
Available on NXP website  
[2] SOT1969-1; HX2QFN20; Reel packing and package information. Available on NXP  
website  
[3] SE050 IoT Applet APDU Specification, document number AN 12413. Available on  
NXP website  
[4] SE050 configurations Application Note, document number AN12436. Available on  
NXP website  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
25 / 30  
 
 
 
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
17 Revision history  
Table 19.ꢀRevision history  
Document ID  
504930  
Release date  
2020-05-12  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
504913  
Modifications  
updated: Section 7.1.1  
updated: Table 6  
updated: Section 2.3  
added Section 3.4  
added Figure 3  
added Section 14.3  
updated Section 12  
updated Section 14.1.3  
updated Section 14.2  
updated Section 14.1.2  
updated Section 13  
504913  
504912  
504911  
20190607  
20190510  
20181122  
Objective data sheet  
504912  
504911  
Objective data sheet  
Objective data sheet  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
26 / 30  
 
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
18 Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Definition  
Objective [short] data sheet  
Development  
This document contains data from the objective specification for product  
development.  
Preliminary [short] data sheet  
Product [short] data sheet  
Qualification  
Production  
This document contains data from the preliminary specification.  
This document contains the product specification.  
[1] Please consult the most recently issued document before initiating or completing a design.  
[2] The term 'short data sheet' is explained in section "Definitions".  
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple  
devices. The latest product status information is available on the Internet at URL http://www.nxp.com.  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
18.2 Definitions  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences  
of use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is  
intended for quick reference only and should not be relied upon to contain  
detailed and full information. For detailed and full information see the  
relevant full data sheet, which is available on request via the local NXP  
Semiconductors sales office. In case of any inconsistency or conflict with the  
short data sheet, the full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes  
no representation or warranty that such applications will be suitable  
for the specified use without further testing or modification. Customers  
are responsible for the design and operation of their applications and  
products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications  
and products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with  
their applications and products. NXP Semiconductors does not accept any  
liability related to any default, damage, costs or problem which is based  
on any weakness or default in the customer’s applications or products, or  
the application or use by customer’s third party customer(s). Customer is  
responsible for doing all necessary testing for the customer’s applications  
and products using NXP Semiconductors products in order to avoid a  
default of the applications and the products or of the application or use by  
customer’s third party customer(s). NXP does not accept any liability in this  
respect.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product  
is deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
18.3 Disclaimers  
Limited warranty and liability — Information in this document is believed  
to be accurate and reliable. However, NXP Semiconductors does not  
give any representations or warranties, expressed or implied, as to the  
accuracy or completeness of such information and shall have no liability  
for the consequences of use of such information. NXP Semiconductors  
takes no responsibility for the content in this document if provided by an  
information source outside of NXP Semiconductors. In no event shall NXP  
Semiconductors be liable for any indirect, incidental, punitive, special or  
consequential damages (including - without limitation - lost profits, lost  
savings, business interruption, costs related to the removal or replacement  
of any products or rework charges) whether or not such damages are based  
on tort (including negligence), warranty, breach of contract or any other  
legal theory. Notwithstanding any damages that customer might incur for  
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative  
liability towards customer for the products described herein shall be limited  
in accordance with the Terms and conditions of commercial sale of NXP  
Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those  
given in the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Right to make changes — NXP Semiconductors reserves the right to  
make changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
27 / 30  
 
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or  
the grant, conveyance or implication of any license under any copyrights,  
patents or other industrial or intellectual property rights.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
18.4 Licenses  
ICs with DPA Countermeasures functionality  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
NXP ICs containing functionality  
implementing countermeasures to  
Differential Power Analysis and Simple  
Power Analysis are produced and sold  
under applicable license from Cryptography  
Research, Inc.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor  
tested in accordance with automotive testing or application requirements.  
NXP Semiconductors accepts no liability for inclusion and/or use of non-  
automotive qualified products in automotive equipment or applications. In  
the event that customer uses the product for design-in and use in automotive  
applications to automotive specifications and standards, customer (a) shall  
use the product without NXP Semiconductors’ warranty of the product for  
such automotive applications, use and specifications, and (b) whenever  
customer uses the product for automotive applications beyond NXP  
Semiconductors’ specifications such use shall be solely at customer’s own  
risk, and (c) customer fully indemnifies NXP Semiconductors for any liability,  
damages or failed product claims resulting from customer design and use  
of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
18.5 Trademarks  
Notice: All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
MIFARE — is a trademark of NXP B.V.  
FabKey — is a trademark of NXP B.V.  
JCOP — is a trademark of NXP B.V.  
EdgeLock — is a trademark of NXP B.V.  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
28 / 30  
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
Tables  
Tab. 1.  
Tab. 2.  
Tab. 3.  
Tab. 4.  
SE050 commercial name format .......................2  
Feature Overview ..............................................4  
SE050 Ordering information ............................10  
Tab. 12. Electrical characteristics of IC supply  
voltage VCC; VSS = 0 V; Tamb = -40 °C to  
+105 C ...........................................................18  
Tab. 13. Non-volatile memory timing characteristics ..... 19  
Tab. 14. Electrical AC characteristics of I2C_SDA,  
I2C_SCL, and RST_N; VCC = 1.8 V ± 10 %  
SE050  
Ordering  
information  
for  
development kit ...............................................11  
Pin description HX2QFN20 ............................. 12  
Marking codes .................................................13  
Reel packing options .......................................13  
Limiting values ................................................ 14  
Recommended operating conditions ...............14  
Tab. 5.  
Tab. 6.  
Tab. 7.  
Tab. 8.  
Tab. 9.  
or 3 V ± 10 % V; VSS = 0 V; Tamb = -40 °C  
to + 105 °C ..................................................... 19  
Tab. 15. Electrical AC characteristics of IO1, IO2,  
CLK and RST_N (ISO7816 interface) ............. 21  
Tab. 16. Electrical AC characteristics of LA, LB;  
Conditions: Tamb = -40 °C to 105 °C, unless  
otherwise specified ..........................................22  
Tab. 17. I2C Bus Timing Specification .......................... 23  
Tab. 18. Abbreviations ...................................................23  
Tab. 19. Revision history ...............................................26  
Tab. 10. Electrical DC characteristics of Input/Output:  
IO1/IO2. Conditions: VCC = 1.62 V to 3.6 V  
(see ; VSS = 0 V; Tamb = -40 °C to + 105  
°C, unless otherwise specified ........................ 15  
Tab. 11. Electrical DC characteristics of I2C pads  
SDA, SCL. Conditions: VCC, VIN = 1.62 V  
to 3.6 V; VSS = 0 V; Tamb = -40 °C to + 105  
°C, unless otherwise specified* .......................18  
Figures  
Fig. 1.  
Fig. 2.  
SE050 solution block diagram ...........................2  
SE050 functional diagram - example Open  
SSL ....................................................................5  
Slave address ................................................... 9  
Fig. 7.  
Fig. 8.  
Input characteristic of IO1/IO2 ........................ 17  
Input characteristic of CLK when the IC is not  
in reset ............................................................ 17  
Input characteristic of CLK during IC reset ......18  
Fig. 3.  
Fig. 4.  
Fig. 9.  
Pin  
configuration  
for  
HX2QFN20  
Fig. 10. External clock drive and AC test timing  
reference points of I2C_SDA, I2C_SCL, and  
RST_N (see 1) and 2)) in open-drain mode .... 21  
Fig. 11. I2C Bus Timings ..............................................22  
(SOT1969-1) ....................................................12  
Characteristic supply voltage operating  
range ............................................................... 15  
Input characteristic of RST_N ......................... 17  
Fig. 5.  
Fig. 6.  
SE050  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3.0 — 12 May 2020  
504930  
29 / 30  
NXP Semiconductors  
SE050  
Plug & Trust Secure Element  
Contents  
1
1.1  
1.2  
1.3  
2
2.1  
2.2  
2.3  
Introduction ......................................................... 1  
14.2  
14.3  
14.4  
15  
16  
17  
AC characteristics ............................................19  
I2C Bus Timings ..............................................22  
EMC/EMI ..........................................................23  
Abbreviations .................................................... 23  
References .........................................................25  
Revision history ................................................ 26  
Legal information ..............................................27  
SE050 use cases .............................................. 1  
SE050 target applications ..................................1  
SE050 naming convention .................................2  
Features and benefits .........................................3  
Key benefits .......................................................3  
Key features ...................................................... 3  
Features in detail ...............................................4  
Functional description ........................................5  
Functional diagram ............................................ 5  
Random number generator ............................... 5  
Supported secure object types ..........................5  
Symmetric Key .................................................. 6  
ECC Key ............................................................6  
RSA Key ............................................................6  
HMAC Key object ..............................................7  
Binary file objects .............................................. 7  
Counter Objects .................................................7  
Hash-Extend register .........................................7  
User ID secure object ........................................7  
Access control ................................................... 7  
Sessions and multi-threading ............................ 7  
Attestation and trust provisioning .......................8  
Application support ............................................ 8  
Credential Storage & Memory ........................... 8  
Ease of use configuration ..................................8  
Startup behaviour .............................................. 8  
Communication interfaces ................................. 9  
I2C Interfaces .................................................... 9  
Supported I2C frequencies ................................9  
ISO7816 and ISO14443 Interface ..................... 9  
Power-saving modes ........................................ 10  
Power-down mode ...........................................10  
Deep Power-down mode .................................10  
Ordering information ........................................ 10  
Ordering options .............................................. 10  
Ordering SE050 samples ................................ 11  
Configuration ....................................................11  
Pinning information .......................................... 12  
Pinning .............................................................12  
Pinning HX2QFN20 ......................................... 12  
Package ..............................................................13  
Marking ...............................................................13  
Packing information ..........................................13  
Reel packing ....................................................13  
Electrical and timing characteristics ...............14  
Limiting values ..................................................14  
Recommended operating conditions .............. 14  
Characteristics .................................................. 15  
DC characteristics ............................................15  
General and General Purpose I/O interface .....15  
I2C Interface ....................................................18  
Power consumption ......................................... 18  
18  
3
3.1  
3.1.1  
3.1.2  
3.1.2.1  
3.1.2.2  
3.1.2.3  
3.1.2.4  
3.1.2.5  
3.1.2.6  
3.1.2.7  
3.1.2.8  
3.1.3  
3.1.4  
3.1.5  
3.1.6  
3.2  
3.3  
3.4  
4
4.1  
4.1.1  
4.2  
5
5.1  
5.2  
6
6.1  
6.2  
6.3  
7
7.1  
7.1.1  
8
9
10  
10.1  
11  
12  
13  
14  
14.1  
14.1.1  
14.1.2  
14.1.3  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section 'Legal information'.  
© NXP B.V. 2020.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 12 May 2020  
Document number: 504930  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY