PPC5777MK0MVA8B [NXP]

Three main CPUs, single issue, 32-bit CPU core complexes;
PPC5777MK0MVA8B
型号: PPC5777MK0MVA8B
厂家: NXP    NXP
描述:

Three main CPUs, single issue, 32-bit CPU core complexes

文件: 总168页 (文件大小:1592K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
Document Number: MPC5777M  
Rev. 6, 06/2016  
MPC5777M  
416 TEPBGA  
27mm x 27 mm  
512 TEPBGA  
MPC5777M Microcontroller  
Data Sheet  
25 mm x 25 mm  
• Three main CPUs, single issue, 32-bit CPU core complexes  
(e200z7), one of which is a dedicated lockstep core.  
– Dual phase-locked loops with stable clock domain for  
peripherals and FM modulation domain for  
computational shell  
®
– Power Architecture embedded specification  
compliance  
• Dual crossbar switch architecture for concurrent access to  
peripherals, flash, or RAM from multiple bus masters with  
end-to-end ECC  
• Hardware Security Module (HSM) to provide robust  
integrity checking of flash memory  
• System Integration Unit Lite (SIUL)  
• Boot Assist Module (BAM) supports factory programming  
using serial bootload through ‘UART Serial Boot Mode  
Protocol’. Physical interface (PHY) can be:  
– UART/LIN  
– Instruction set enhancement allowing variable length  
encoding (VLE), encoding a mix of 16-bit and 32-bit  
instructions, for code size footprint reduction  
– Single-precision floating point operations  
– 16 KB Local instruction RAM and 64 KB local data  
RAM  
– 16 KB I-Cache and 4 KB D-Cache  
• I/O Processor, dual issue, 32-bit CPU core complex  
(e200z4), with  
– Power Architecture embedded specification compliance  
– Instruction set enhancement allowing variable length  
encoding (VLE), encoding a mix of 16-bit and 32-bit  
instructions, for code size footprint reduction  
– Single-precision floating point operations  
– Lightweight Signal Processing Auxiliary Processing  
Unit (LSP APU) instruction support for digital signal  
processing (DSP)  
– CAN  
• GTM104 — generic timer module  
• Enhanced analog-to-digital converter system with  
– Twelve separate 12-bit SAR analog converters  
– Ten separate 16-bit Sigma-Delta analog converters  
• Eight deserial serial peripheral interface (DSPI) modules  
• Two Peripheral Sensor Interface (PSI5) controllers  
• Three LIN and three UART communication interface  
(LINFlexD) modules (6 total)  
– 16 KB Local instruction RAM and 64 KB local data  
RAM  
– LINFlexD_0 is a Master/Slave  
– 8 KB I-Cache  
• 8640 KB on-chip flash  
– LINFlexD_1, LINFlexD_2, LINFlexD_14,  
LINFlexD_15, and LINFlexD_16 are Masters  
• Four modular controller area network (MCAN) modules  
and one time-triggered controller area network  
(M-TTCAN)  
– Supports read during program and erase operations, and  
multiple blocks allowing EEPROM emulation  
• 404 KB on-chip general-purpose SRAM including 64 KB  
standby RAM (+ 192 KB data RAM included in the  
CPUs). Of this 404 KB, 64 KB can be powered by a  
separate supply so the contents of this portion can be  
preserved when the main MCU is powered down.  
• Multichannel direct memory access controllers (eDMA): 2  
x 64 channels per eDMA (128 channels total)  
• Triple Interrupt controller (INTC)  
• External Bus Interface (EBI)  
– Dual routing of accesses to EBI  
– Access path determined by access address  
– Access path downstream of PFLASH controller  
– Allows EBI accesses to share buffer and prefetch  
capabilities of internal flash  
– Allows internal flash accesses to be remapped to  
memories connected to EBI  
NXP reserves the right to change the detail specifications as may be required to permit  
improvements in the design of its products.  
Table of Contents  
1
2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
3.14.2 Power management integration . . . . . . . . . . . . 75  
3.14.3 3.3 V flash supply. . . . . . . . . . . . . . . . . . . . . . . 76  
3.14.4 Device voltage monitoring . . . . . . . . . . . . . . . . 77  
3.14.5 Power up/down sequencing. . . . . . . . . . . . . . . 79  
3.15 Flash memory electrical characteristics. . . . . . . . . . . . 80  
3.15.1 Flash memory program and erase  
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.3 Device feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Package pinouts and signal descriptions . . . . . . . . . . . . . . . .10  
2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2.2 Pin/ball descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.2.1 Power supply and reference voltage pins/balls .15  
2.2.2 System pins/balls. . . . . . . . . . . . . . . . . . . . . . . .16  
2.2.3 LVDS pins/balls . . . . . . . . . . . . . . . . . . . . . . . . .17  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .21  
3.3 Electrostatic discharge (ESD). . . . . . . . . . . . . . . . . . . .23  
3.4 Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.5 DC electrical specifications. . . . . . . . . . . . . . . . . . . . . .27  
3.6 I/O pad specification . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
3.6.1 I/O input DC characteristics. . . . . . . . . . . . . . . .31  
3.6.2 I/O output DC characteristics. . . . . . . . . . . . . . .35  
3.7 I/O pad current specification . . . . . . . . . . . . . . . . . . . . .42  
3.8 Reset pad (PORST, ESR0) electrical characteristics . .45  
3.9 Oscillator and FMPLL . . . . . . . . . . . . . . . . . . . . . . . . . .48  
3.10 ADC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
3.10.1 ADC input description . . . . . . . . . . . . . . . . . . . .53  
3.10.2 SAR ADC electrical specification. . . . . . . . . . . .54  
3.10.3 S/D ADC electrical specification . . . . . . . . . . . .58  
3.11 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
3.12 LVDS Fast Asynchronous Serial Transmission  
specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
3.15.2 Flash memory FERS program and  
erase specifications . . . . . . . . . . . . . . . . . . . . . 82  
3.15.3 Flash memory Array Integrity and Margin  
Read specifications . . . . . . . . . . . . . . . . . . . . . 83  
3
3.15.4 Flash memory module life specifications . . . . . 84  
3.15.5 Data retention vs program/erase cycles. . . . . . 84  
3.15.6 Flash memory AC timing specifications . . . . . . 85  
3.15.7 Flash read wait state and address pipeline  
control settings. . . . . . . . . . . . . . . . . . . . . . . . . 85  
3.16 AC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
3.16.1 Debug and calibration interface timing. . . . . . . 86  
3.16.2 DSPI timing with CMOS and LVDS pads . . . . . 94  
3.16.3 FEC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
3.16.4 FlexRay timing . . . . . . . . . . . . . . . . . . . . . . . . 115  
3.16.5 PSI5 timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
3.16.6 UART timing. . . . . . . . . . . . . . . . . . . . . . . . . . 118  
3.16.7 External Bus Interface (EBI) Timing. . . . . . . . 119  
3.16.8 I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
3.16.9 GPIO delay timing . . . . . . . . . . . . . . . . . . . . . 124  
3.16.10Package characteristics. . . . . . . . . . . . . . . . . 124  
3.17 416 TEPBGA (production) case drawing . . . . . . . . . 125  
3.18 416 TEPBGA (emulation) case drawing. . . . . . . . . . 127  
3.19 512 TEPBGA case drawing . . . . . . . . . . . . . . . . . . . 130  
3.20 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . 132  
3.20.1 General notes for specifications at  
(LFAST) pad electrical characteristics . . . . . . . . . . . . .67  
3.12.1 LFAST interface timing diagrams . . . . . . . . . . .68  
3.12.2 LFAST and MSC/DSPI LVDS interface  
electrical characteristics . . . . . . . . . . . . . . . . . .69  
maximum junction temperature . . . . . . . . . . . 132  
3.12.3 LFAST PLL electrical characteristics . . . . . . . . .72  
3.13 Aurora LVDS electrical characteristics . . . . . . . . . . . . .73  
3.14 Power management: PMC, POR/LVD, sequencing . . .75  
3.14.1 Power management electrical characteristics . .75  
4
5
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . 137  
MPC5777M Microcontroller Data Sheet, Rev. 6  
2
NXP Semiconductors  
— Access path via dedicated AXBS slave port  
Avoids contention with other memory accesses  
Two Dual-channel FlexRay controllers  
Nexus development interface (NDI) per IEEE-ISTO 5001-2003 standard, with some support for 2010 standard  
Device and board test support per Joint Test Action Group (JTAG) (IEEE 1149.1)  
Self-test capability  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
3
Introduction  
1
Introduction  
1.1  
Document overview  
This document provides electrical specifications, pin assignments, and package diagrams for the MPC5777M series of  
microcontroller units (MCUs). For functional characteristics, see the MPC5777M Microcontroller Reference Manual.  
1.2  
Description  
This family of MCUs is targeted at automotive powertrain controller and chassis control applications from single cylinder  
motorcycles at the very bottom end; through 4 to 8 cylinder gasoline and diesel engines; transmission control; steering and  
breaking applications; to high end hybrid and advanced combustion systems at the top end.  
Many of the applications are considered to be functionally safe and the family is designed to achieve ISO26262 ASIL-D  
compliance.  
1.3  
Device feature  
Table 1. MPC5777M feature  
Feature  
MPC5777M  
Process  
Main processor  
55 nm  
Core  
e200z7  
Number of main cores  
2
1
Number of checker cores  
Local RAM (per main core)  
16 KB Instruction  
64 KB Data  
Single precision floating point  
Yes  
No  
LSP  
VLE  
Yes  
Cache  
16 KB Instruction  
4 KB Data  
I/O processor  
Core  
e200z4  
Local RAM  
16 KB instruction  
64 KB Data  
Single precision floating point  
Yes  
LSP  
Yes  
Yes  
VLE  
Cache  
8 KB instruction  
300 MHz1  
200 MHz  
0
Main processor frequency  
I/O processor frequency  
MMU entries  
MPU  
Yes  
Semaphores  
Yes  
MPC5777M Microcontroller Data Sheet, Rev. 6  
4
NXP Semiconductors  
Introduction  
Table 1. MPC5777M feature (continued)  
Feature  
MPC5777M  
CRC channels  
2
Software watchdog timer  
(Task SWT/Safety SWT)  
4 (3/1)  
Core Nexus class  
3+  
Sequence processing unit (SPU)  
Yes  
Yes  
Debug and calibration interface (DCI) / run control  
module  
System SRAM  
404 KB  
8640 KB  
4 256 bit  
Flash memory  
Flash memory fetch accelerator  
Data flash memory (EEPROM)  
8 64 KB  
+ 2 16 KB  
Flash memory overlay RAM  
External bus  
16 KB  
32 bit  
Calibration interface  
DMA channels  
64-bit IPS Slave  
2 64  
DMA Nexus Class  
LINFlex (UART/MSC)  
MCAN/TTCAN  
3+  
6 (3/3)  
4/1  
DSPI  
8 (4/3/1)  
(SPI/MSC/sync SCI)  
Microsecond bus downlink  
Yes  
SENT bus  
15  
I2C  
2
5
PSI5 bus  
PSI5-S UART-to-PSI5 interface  
Yes  
FlexRay  
2 dual channel  
MII / RMII  
High speed  
Ethernet  
Zipwire(SIPI / LFAST2) Interprocessor Communication  
Interface  
System timers  
8 PIT channels  
3 AUTOSAR (STM)  
®
64-bit PIT  
Yes  
BOSCHGTM Timer3  
GTM RAM  
58 KB  
Interrupt controller  
ADC (SAR)  
727 sources  
12  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
5
Introduction  
Table 1. MPC5777M feature (continued)  
Feature  
MPC5777M  
ADC (SD)  
10  
Temperature sensor  
Self test controller  
PLL  
Yes  
Yes  
Dual PLL with FM  
None  
Integrated linear voltage regulator  
External power supplies  
5 V  
3.3 V7  
1.2 V  
Low-power modes  
Packages  
Stop mode  
Slow mode  
• 416 TEPBGA4  
• 512 TEPBGA5  
1
Includes four user-programmable CPU cores and one safety core. The main computational shell consists of  
dual e200z7 CPUs operating at 300 MHz with a third identical core running as a safety checker core in delayed  
lockstep mode with one of the dual e200z7 cores. The I/O subsystem includes a CPU targeted at managing  
the peripherals. This is an e200z4 CPU running at 200 MHz. The fifth CPU is an e200z0 running at 100 MHz  
and is embedded in the Hardware Security Module. All CPUs are compatible with the Power Architecture.  
2
3
4
5
LVDS Fast Asynchronous Serial Transmission  
BOSCH® is a registered trademark of Robert Bosch GmbH.  
416 TEPBGA package supports development and production applications with the same package footprint.  
512 TEPBGA package supports development and production applications with the same package footprint.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
6
NXP Semiconductors  
1.4  
Block diagram  
The figures below show the top-level block diagrams.  
Figure 1. Block diagram  
Package pinouts and signal descriptions  
EBI  
TDM  
PCM  
LVIIO  
2 x XBIC  
2 x AXBS  
2 x SMPU  
PRAM  
LVIFLASH  
LVI 1.2V  
HVI 1.2V  
PFLASH  
SEMA4  
INTC_0  
4 x SWT  
3 x STM  
2 x DMA  
FEC  
PMC  
TSENS  
IIC_1  
FLEXRAY_1  
9 x SAR ADC  
PSI5_1  
12 x CMU  
BAF  
SSCM  
PSI5_S_0  
CRC_1  
SENT_1  
GTM  
3 x SAR ADC  
PSI5_0  
3 x DSPI  
FCCU  
PASS  
Peripheral Bus (AIPS_1)  
CFLASH_0  
2 x LFAST  
FLEXRAY_0  
SENT_0  
2 x LINFlexD  
5 x SD ADC  
2 x SIPI  
SUIL2  
Peripheral  
Cluster B  
IIC_0  
ME  
5 x DSPI  
CMU_PLL  
PLL  
4 x LINFlexD  
4 x MCAN  
TTCAN_0  
SRAM CAN  
5 x SD ADC  
HSM INTERFACE  
DTS  
OSC_DIG  
RCOSC_DIG_0  
CGM  
RGM  
PCU  
Peripheral  
Cluster A  
JDC  
WKPU  
Peripheral Bus (AIPS_0)  
STCU2  
JTAGM  
MEMU  
IMA  
CRC_0  
10 x DMAMUX  
ATX  
2 x PIT_RTC  
Figure 2. Periphery allocation  
2
Package pinouts and signal descriptions  
See the MPC5777M Microcontroller Reference Manual for signal information.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
9
2.1  
Package pinouts  
The BGA ballmap package pinouts for the 416 and 512 production and emulation devices are shown in the following figures.  
ꢀꢉ  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀꢆ  
ꢀꢇ  
sꢁꢁͺ,sͺ  
&>ꢂ  
ꢀꢈ  
ꢁꢉ  
ꢁꢀ  
ꢁꢁ  
ꢁꢂ  
ꢁꢃ  
ꢁꢄ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
ꢁꢅ  
$
%
Eꢀ  
Wy΀Ϭ΁  
WE΀Ϭ΁  
W,΀ϭϮ΁  
Wꢀ΀ϭϱ΁  
W&΀ϯ΁  
W&΀ϱ΁  
W,΀ϭϰ΁  
W,΀ϭϱ΁  
W<΀ϭϱ΁  
WD΀ϴ΁  
Wy΀Ϯ΁  
WY΀ϭϰ΁  
W,΀ϵ΁  
WY΀ϰ΁  
WY΀ϭϬ΁  
WY΀ϵ΁  
WY΀ϯ΁  
W,΀Ϭ΁  
Wꢂ΀Ϭ΁  
Wꢂ΀ϰ΁  
ꢃ^ZϬ  
W&΀ϭϰ΁  
s^^ͺ,s  
$
%
sꢁꢁͺ,sͺ  
&>ꢂ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
Wꢁ΀ϭϱ΁  
Wꢀ΀ϳ΁  
WE΀Ϯ΁  
WE΀ϯ΁  
WE΀ϱ΁  
WE΀ϳ΁  
Wꢀ΀ϰ΁  
WE΀ϵ΁  
WE΀ϭϭ΁  
WE΀ϭϱ΁  
Wꢃ΀Ϭ΁  
W'΀Ϭ΁  
W/΀ϵ΁  
Wꢁ΀ϭϰ΁  
W>΀Ϯ΁  
WD΀ϭϱ΁  
W,΀ϭϯ΁  
Wꢀ΀ϭϯ΁  
Wꢀ΀ϭϬ΁  
Wꢀ΀ϭϮ΁  
WD΀ϭϭ΁ WD΀ϭϬ΁  
W&΀ϰ΁  
WD΀ϯ΁  
WD΀ϭ΁  
W<΀ϭϰ΁  
WD΀ϲ΁  
WD΀ϳ΁  
WD΀ϰ΁  
WD΀ϱ΁  
WY΀ϭϱ΁  
WY΀ϭϯ΁  
W,΀ϭϬ΁  
Wy΀ϭ΁  
W,΀ϰ΁  
Wꢃ΀ϭϭ΁  
WY΀ϳ΁  
WY΀ϲ΁  
W,΀ϳ΁  
WY΀ϭϭ΁  
Wꢁ΀Ϭ΁  
W,΀ϭ΁  
WY΀ϴ΁  
Wꢁ΀ϯ΁  
Wꢁ΀ϭ΁  
WY΀ϱ΁  
W,΀ϴ΁  
WD΀ϵ΁  
W,΀ϯ΁  
W,΀Ϯ΁  
Wꢂ΀ϭϮ΁  
Wꢂ΀ϭϬ΁  
Wꢂ΀ϭϭ΁  
WKZ^d dꢃ^dDKꢁꢃ  
s^^ͺ,s sꢁꢁͺ>sꢄ  
sꢁꢁͺ,sͺ/  
Wꢂ΀ϭ΁  
&
WD΀ϭϰ΁ WD΀ϭϮ΁  
Wꢀ΀ϭϰ΁  
Wꢀ΀ϭϭ΁  
WD΀Ϯ΁  
WD΀Ϭ΁  
Wꢃ΀ϭϬ΁  
Wꢁ΀Ϯ΁  
s^^ͺ,s sꢁꢁͺ>sꢄ Wꢂ΀ϭϰ΁  
&
KͺDꢂ/E  
sꢁꢁͺ,sͺ  
/Kͺ&>ꢃy  
sꢁꢁͺ,sͺ  
WDꢀ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
'
WE΀ϰ΁  
Wꢀ΀ϵ΁  
Wꢀ΀ϴ΁  
W&΀Ϯ΁  
Wꢀ΀ϱ΁  
WE΀ϲ΁  
WE΀ϭϬ΁  
WE΀ϭϰ΁  
Wꢀ΀Ϭ΁  
Wꢃ΀ϰ΁  
W/΀ϴ΁  
WE΀ϭ΁  
W>΀ϳ΁  
Wꢀ΀ϲ΁  
W>΀ϭ΁  
s^^ͺ,s sꢁꢁͺ>sꢄ Wꢃ΀ϭϮ΁  
s^^ͺ,s  
Wꢂ΀ϭϯ΁  
W'΀ϭϱ΁  
s^^ͺ,s  
sꢁꢁͺ>sꢄ  
Wꢂ΀ϲ΁  
Wꢂ΀ϳ΁  
W/΀ϭϱ΁  
Eꢀ  
Wꢂ΀ϵ΁  
Wꢂ΀ϴ΁  
Wꢁ΀ϲ΁  
'
sꢁꢁͺ,sͺ  
/Kͺ:dꢂ'  
(
sꢁꢁͺ>sꢄ  
Wꢂ΀ϱ΁  
(
s^^ͺ,sͺ  
K^ꢀ  
)
W>΀ϲ΁  
W>΀Ϭ΁  
Eꢀ  
ꢃydꢂ>  
Eꢀ  
)
*
+
W>΀ϯ΁  
W>΀ϱ΁  
Wꢁ΀ϳ΁  
ydꢂ>  
Eꢀ  
*
+
W>΀ϰ΁  
sꢁꢁͺ>sꢄ  
s^^ͺ,s  
W&΀ϭϯ΁  
W/΀ϭϰ΁  
W&΀ϵ΁  
:
Wꢀ΀ϯ΁  
WE΀ϴ΁  
WE΀ϭϯ΁  
Wꢀ΀ϭ΁  
Wꢃ΀Ϯ΁  
WY΀ϭ΁  
Wꢁ΀ϭϮ΁  
Wꢁ΀ϭϯ΁  
W<΀Ϯ΁  
Wꢅ΀ϭϯ΁  
W/΀ϭ΁  
W&΀ϭϬ΁  
W,΀ϱ΁  
W&΀ϴ΁  
W&΀ϭϭ΁  
W,΀ϲ΁  
W:΀ϯ΁  
W&΀ϭϮ΁  
W:΀ϵ΁  
W:΀ϰ΁  
W:΀Ϯ΁  
:
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
<
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
Eꢀ  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
Eꢀ  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
Eꢀ  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
Eꢀ  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
Eꢀ  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
Eꢀ  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
Eꢀ  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
Eꢀ  
<
>
>
WE΀ϭϮ΁  
Wꢀ΀Ϯ΁  
Wꢃ΀ϭ΁  
s^^ͺ,s  
sꢁꢁͺ,sͺ/  
Kͺꢃꢅ/  
D
E
D
E
Wt΀ϭϰ΁ Wt΀ϭϱ΁  
Wt΀ϭϬ΁  
sꢁꢁͺ>sꢄ  
s^^ͺ,s  
Wt΀ϭϭ΁ Wt΀ϭϮ΁ Wt΀ϭϯ΁  
W
W
WY΀Ϯ΁  
Eꢀ  
Wt΀ϳ΁  
Wt΀ϰ΁  
Wt΀ϭ΁  
Ws΀ϭϯ΁  
Ws΀ϭϬ΁  
Ws΀ϳ΁  
Ws΀ϯ΁  
Ws΀ϭ΁  
Wd΀Ϯ΁  
Wt΀ϴ΁  
Wt΀ϱ΁  
Wt΀Ϯ΁  
Ws΀ϭϰ΁  
Ws΀ϭϭ΁  
Ws΀ϴ΁  
Ws΀ϰ΁  
Wz΀ϰ΁  
Wt΀ϵ΁  
Wt΀ϲ΁  
Wt΀ϯ΁  
Ws΀ϭϱ΁  
Ws΀ϭϮ΁  
Ws΀ϵ΁  
Z
Z
Eꢀ  
WY΀Ϭ΁  
Wꢃ΀ϯ΁  
WZ΀ϭϰ΁  
WZ΀ϭϮ΁  
WZ΀ϭϬ΁  
WZ΀ϴ΁  
W/΀ϱ΁  
Eꢀ  
Eꢀ  
sꢁꢁͺ,sͺ/  
Kͺꢃꢅ/  
d
d
W<΀ϭ΁  
W<΀Ϭ΁  
WZ΀ϭϱ΁  
WZ΀ϭϯ΁  
WZ΀ϭϭ΁  
WZ΀ϵ΁  
W/΀ϯ΁  
s^^ͺ,s  
W<΀ϯ΁  
Wꢅ΀ϭϮ΁  
s^^ͺ>s  
Eꢀ  
s^^ͺ>s  
Eꢀ  
h
h
Wt΀Ϭ΁  
s
s
sꢁꢁͺ>sꢄ  
s^^ͺ,s  
sꢁꢁͺ,sͺ  
ꢂꢁZͺꢁ  
s^^ͺ,sͺ  
ꢂꢁZͺꢁ  
t
z
t
z
sꢁꢁͺ,sͺ/  
Kͺꢃꢅ/  
W/΀Ϭ΁  
Ws΀ϱ΁  
ꢂꢂ  
ꢂꢅ  
$&  
$'  
$(  
$)  
ꢂꢂ  
ꢂꢅ  
$&  
$'  
$(  
$)  
Wꢃ΀ϭϯ΁  
WZ΀ϳ΁  
W'΀ϴ΁  
W'΀ϳ΁  
W'΀ϭϮ΁  
WZ΀ϲ΁  
Wꢃ΀ϭϰ΁  
Wꢃ΀ϭϱ΁  
W<΀ϭϬ΁  
Wꢅ΀Ϯ΁  
Ws΀Ϯ΁  
Ws΀Ϭ΁  
W/΀ϰ΁  
sꢁꢁͺ>sꢄ  
Wd΀ϳ΁  
Wd΀ϭϮ΁  
Wd΀ϭϯ΁  
Wd΀ϭϰ΁  
Wd΀ϭϱ΁  
s^^ͺ,sͺ  
ꢂꢁZͺꢁϮ  
sꢁꢁͺ,sͺ  
ꢂꢁZͺꢁϮ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
ꢀꢅ  
sꢁꢁͺ,sͺ  
/Kͺ&>ꢃyꢃ  
sꢁꢁͺ,sͺ  
s^^ͺ,s  
W/΀Ϯ΁  
Wꢁ΀ϭϭ΁  
WZ΀Ϭ΁  
W/΀ϳ΁  
Wꢅ΀Ϭ΁  
Wꢅ΀ϭ΁  
W'΀ϲ΁  
W'΀ϱ΁  
WZ΀ϰ΁  
Wꢅ΀ϲ΁  
Wꢅ΀ϳ΁  
W>΀ϵ΁  
W>΀ϭϬ΁  
W/΀ϭϯ΁  
W/΀ϭϮ΁  
W/΀ϭϭ΁  
W&΀ϭ΁  
W&΀Ϭ΁  
Wꢁ΀ϵ΁  
W>΀ϭϰ΁  
W>΀ϭϱ΁  
W:΀Ϭ΁  
Wꢂ΀ϭϱ΁  
W:΀ϲ΁  
Wꢁ΀ϭϬ΁  
Wꢅ΀ϭϭ΁  
Wꢁ΀ϴ΁  
W&΀ϳ΁  
W&΀ϲ΁  
W:΀ϳ΁  
s^^ͺ,s sꢁꢁͺ>sꢄ  
Eꢀ  
Wd΀ϯ΁  
Wd΀ϴ΁  
/Kͺ&>ꢃyꢃ  
Wꢅ΀ϰ΁  
WZ΀ϭ΁  
sꢁꢁ^dꢅz W>΀ϭϮ΁  
W^΀Ϭ΁  
W^΀ϭ΁  
W^΀ϯ΁  
W^΀ϰ΁  
W^΀ϲ΁  
W^΀ϳ΁  
W^΀ϵ΁  
W^΀ϭϬ΁  
W^΀ϭϮ΁  
W^΀ϭϯ΁  
W^΀ϭϰ΁  
W^΀ϭϱ΁  
Wd΀ϰ΁  
Wd΀ϵ΁  
sꢁꢁͺ,sͺ  
ꢂꢁsͺꢁ  
s^^ͺ,sͺ  
ꢂꢁsͺꢁ  
s^^ͺ,sͺ sꢁꢁͺ,sͺ  
ꢂꢁZͺ^ ꢂꢁsͺ^  
sꢁꢁͺ,sͺ s^^ͺ,sͺ  
ꢂꢁZͺ^  
WZ΀Ϯ΁  
W>΀ϭϯ΁  
Wꢅ΀ϵ΁  
Wd΀ϱ΁  
Wd΀ϭϬ΁  
Eꢀ  
W/΀ϲ΁  
W'΀ϭϭ΁  
Wꢅ΀ϯ΁  
WZ΀ϯ΁  
WZ΀ϱ΁  
W>΀ϭϭ΁  
W/΀ϭϬ΁  
Wꢅ΀ϭϬ΁  
W:΀ϭ΁  
Wꢅ΀ϴ΁  
Wꢂ΀ϯ΁  
W:΀ϱ΁  
W^΀Ϯ΁  
W^΀ϱ΁  
W^΀ϴ΁  
W^΀ϭϭ΁  
Wd΀Ϭ΁  
Wd΀ϭ΁  
Wd΀ϲ΁  
Wd΀ϭϭ΁  
Eꢀ  
ꢂꢁsͺ^  
ꢀꢉ  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢆ  
ꢀꢇ  
ꢀꢈ  
ꢁꢉ  
ꢁꢀ  
ꢁꢁ  
ꢁꢂ  
ꢁꢃ  
ꢁꢄ  
ꢁꢅ  
Figure 3. 416-ball BGA production device pinout (top view)  
ꢀꢉ  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀꢆ  
ꢀꢇ  
sꢁꢁͺ,sͺ  
&>ꢂ  
ꢀꢈ  
ꢁꢉ  
ꢁꢀ  
ꢁꢁ  
ꢁꢂ  
ꢁꢃ  
ꢁꢄ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
ꢁꢅ  
$
%
Eꢀ  
Wy΀Ϭ΁  
WE΀Ϭ΁  
W,΀ϭϮ΁  
Wꢀ΀ϭϱ΁  
W&΀ϯ΁  
W&΀ϱ΁  
W,΀ϭϰ΁  
W,΀ϭϱ΁  
W<΀ϭϱ΁  
WD΀ϴ΁  
Wy΀Ϯ΁  
WY΀ϭϰ΁  
W,΀ϵ΁  
WY΀ϰ΁  
WY΀ϭϬ΁  
WY΀ϵ΁  
WY΀ϯ΁  
W,΀Ϭ΁  
Wꢂ΀Ϭ΁  
Wꢂ΀ϰ΁  
ꢃ^ZϬ  
W&΀ϭϰ΁  
s^^ͺ,s  
$
%
sꢁꢁͺ,sͺ  
&>ꢂ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
Wꢁ΀ϭϱ΁  
Wꢀ΀ϳ΁  
WE΀Ϯ΁  
WE΀ϯ΁  
WE΀ϱ΁  
WE΀ϳ΁  
Wꢀ΀ϰ΁  
WE΀ϵ΁  
WE΀ϭϭ΁  
WE΀ϭϱ΁  
Wꢃ΀Ϭ΁  
W'΀Ϭ΁  
W/΀ϵ΁  
Wꢁ΀ϭϰ΁  
W>΀Ϯ΁  
WD΀ϭϱ΁  
W,΀ϭϯ΁  
Wꢀ΀ϭϯ΁  
Wꢀ΀ϭϬ΁  
Wꢀ΀ϭϮ΁  
WD΀ϭϭ΁ WD΀ϭϬ΁  
W&΀ϰ΁  
WD΀ϯ΁  
WD΀ϭ΁  
W<΀ϭϰ΁  
WD΀ϲ΁  
WD΀ϳ΁  
WD΀ϰ΁  
WD΀ϱ΁  
WY΀ϭϱ΁  
WY΀ϭϯ΁  
W,΀ϭϬ΁  
Wy΀ϭ΁  
W,΀ϰ΁  
Wꢃ΀ϭϭ΁  
WY΀ϳ΁  
WY΀ϲ΁  
W,΀ϳ΁  
WY΀ϭϭ΁  
Wꢁ΀Ϭ΁  
W,΀ϭ΁  
WY΀ϴ΁  
Wꢁ΀ϯ΁  
Wꢁ΀ϭ΁  
WY΀ϱ΁  
W,΀ϴ΁  
WD΀ϵ΁  
W,΀ϯ΁  
W,΀Ϯ΁  
Wꢂ΀ϭϮ΁  
Wꢂ΀ϭϬ΁  
Wꢂ΀ϭϭ΁  
WKZ^d dꢃ^dDKꢁꢃ  
s^^ͺ,s sꢁꢁͺ>sꢄ  
sꢁꢁͺ,sͺ/  
Wꢂ΀ϭ΁  
&
WD΀ϭϰ΁ WD΀ϭϮ΁  
Wꢀ΀ϭϰ΁  
Wꢀ΀ϭϭ΁  
WD΀Ϯ΁  
WD΀Ϭ΁  
Wꢃ΀ϭϬ΁  
Wꢁ΀Ϯ΁  
&
s^^ͺ,s sꢁꢁͺ>sꢄ Wꢂ΀ϭϰ΁  
KͺDꢂ/E  
sꢁꢁͺ,sͺ  
/Kͺ&>ꢃy  
sꢁꢁͺ,sͺ  
WDꢀ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
'
WE΀ϰ΁  
Wꢀ΀ϵ΁  
Wꢀ΀ϴ΁  
W&΀Ϯ΁  
Wꢀ΀ϱ΁  
WE΀ϲ΁  
WE΀ϭϬ΁  
WE΀ϭϰ΁  
Wꢀ΀Ϭ΁  
Wꢃ΀ϰ΁  
W/΀ϴ΁  
WE΀ϭ΁  
W>΀ϳ΁  
Wꢀ΀ϲ΁  
W>΀ϭ΁  
s^^ͺ,s sꢁꢁͺ>sꢄ Wꢃ΀ϭϮ΁  
s^^ͺ,s  
Wꢂ΀ϭϯ΁  
W'΀ϭϱ΁  
s^^ͺ,s  
sꢁꢁͺ>sꢄ  
Wꢂ΀ϲ΁  
Wꢂ΀ϳ΁  
W/΀ϭϱ΁  
Eꢀ  
Wꢂ΀ϵ΁  
Wꢂ΀ϴ΁  
Wꢁ΀ϲ΁  
'
sꢁꢁͺ,sͺ  
/Kͺ:dꢂ'  
(
sꢁꢁͺ>sꢄ  
Wꢂ΀ϱ΁  
(
s^^ͺ,sͺ  
K^ꢀ  
)
W>΀ϲ΁  
W>΀Ϭ΁  
)
Eꢀ  
ꢃydꢂ>  
Eꢀ  
*
+
W>΀ϯ΁  
W>΀ϱ΁  
Wꢁ΀ϳ΁  
ydꢂ>  
Eꢀ  
*
+
W>΀ϰ΁  
sꢁꢁͺ>sꢄ  
s^^ͺ,s  
W&΀ϭϯ΁  
W/΀ϭϰ΁  
W&΀ϵ΁  
:
:
Wꢀ΀ϯ΁  
WE΀ϴ΁  
WE΀ϭϯ΁  
Wꢀ΀ϭ΁  
Wꢃ΀Ϯ΁  
WY΀ϭ΁  
Wꢁ΀ϭϮ΁  
Wꢁ΀ϭϯ΁  
W<΀Ϯ΁  
Wꢅ΀ϭϯ΁  
W/΀ϭ΁  
W&΀ϭϬ΁  
W,΀ϱ΁  
W&΀ϴ΁  
W&΀ϭϭ΁  
W,΀ϲ΁  
W:΀ϯ΁  
W&΀ϭϮ΁  
W:΀ϵ΁  
W:΀ϰ΁  
W:΀Ϯ΁  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
<
<
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
dyϯW  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
dyϮW  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
dyϭE  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
dyϭW  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
dyϬE  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
dyϬW  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
ꢀ><E  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
>
>
WE΀ϭϮ΁  
Wꢀ΀Ϯ΁  
Wꢃ΀ϭ΁  
s^^ͺ,s  
sꢁꢁͺ,sͺ/  
Kͺꢃꢅ/  
D
E
D
E
Wt΀ϭϰ΁ Wt΀ϭϱ΁  
Wt΀ϭϬ΁  
sꢁꢁͺ>sꢄ  
s^^ͺ,s  
Wt΀ϭϭ΁ Wt΀ϭϮ΁ Wt΀ϭϯ΁  
sꢁꢁͺ,sͺ  
/Kͺꢅꢁ  
W
Wt΀ϳ΁  
Wt΀ϰ΁  
Wt΀ϭ΁  
Ws΀ϭϯ΁  
Ws΀ϭϬ΁  
Ws΀ϳ΁  
Ws΀ϯ΁  
Ws΀ϭ΁  
Wd΀Ϯ΁  
Wt΀ϴ΁  
Wt΀ϱ΁  
Wt΀Ϯ΁  
Ws΀ϭϰ΁  
Ws΀ϭϭ΁  
Ws΀ϴ΁  
Ws΀ϰ΁  
Wz΀ϰ΁  
Wt΀ϵ΁  
Wt΀ϲ΁  
Wt΀ϯ΁  
Ws΀ϭϱ΁  
Ws΀ϭϮ΁  
Ws΀ϵ΁  
W
WY΀Ϯ΁  
sꢁꢁͺ>sͺ  
ꢅꢁ  
sꢁꢁͺ>sͺ  
ꢅꢁ  
Z
Z
WY΀Ϭ΁  
Wꢃ΀ϯ΁  
WZ΀ϭϰ΁  
WZ΀ϭϮ΁  
WZ΀ϭϬ΁  
WZ΀ϴ΁  
W/΀ϱ΁  
dyϯE  
Eꢀ  
sꢁꢁͺ,sͺ/  
Kͺꢃꢅ/  
d
d
W<΀ϭ΁  
W<΀Ϭ΁  
WZ΀ϭϱ΁  
WZ΀ϭϯ΁  
WZ΀ϭϭ΁  
WZ΀ϵ΁  
W/΀ϯ΁  
s^^ͺ,s  
W<΀ϯ΁  
s^^ͺ>s  
dyϮE  
s^^ͺ>s  
ꢀ><W  
h
h
Wt΀Ϭ΁  
s
s
Wꢅ΀ϭϮ΁  
sꢁꢁͺ>sꢄ  
s^^ͺ,s  
sꢁꢁͺ,sͺ  
ꢂꢁZͺꢁ  
s^^ͺ,sͺ  
ꢂꢁZͺꢁ  
t
z
t
z
sꢁꢁͺ,sͺ/  
Kͺꢃꢅ/  
W/΀Ϭ΁  
Ws΀ϱ΁  
ꢂꢂ  
ꢂꢅ  
$&  
$'  
$(  
$)  
ꢂꢂ  
ꢂꢅ  
$&  
$'  
$(  
$)  
Wꢃ΀ϭϯ΁  
WZ΀ϳ΁  
W'΀ϴ΁  
W'΀ϳ΁  
W'΀ϭϮ΁  
WZ΀ϲ΁  
Wꢃ΀ϭϰ΁  
Wꢃ΀ϭϱ΁  
W<΀ϭϬ΁  
Wꢅ΀Ϯ΁  
Ws΀Ϯ΁  
Ws΀Ϭ΁  
W/΀ϰ΁  
sꢁꢁͺ>sꢄ  
Wd΀ϳ΁  
Wd΀ϭϮ΁  
Wd΀ϭϯ΁  
Wd΀ϭϰ΁  
Wd΀ϭϱ΁  
s^^ͺ,sͺ  
ꢂꢁZͺꢁϮ  
sꢁꢁͺ,sͺ  
ꢂꢁZͺꢁϮ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
ꢀꢅ  
sꢁꢁͺ,sͺ  
/Kͺ&>ꢃyꢃ  
sꢁꢁͺ,sͺ  
s^^ͺ,s  
W/΀Ϯ΁  
Wꢁ΀ϭϭ΁  
WZ΀Ϭ΁  
W/΀ϳ΁  
Wꢅ΀Ϭ΁  
Wꢅ΀ϭ΁  
W'΀ϲ΁  
W'΀ϱ΁  
WZ΀ϰ΁  
Wꢅ΀ϲ΁  
Wꢅ΀ϳ΁  
W>΀ϵ΁  
W>΀ϭϬ΁  
W/΀ϭϯ΁  
W/΀ϭϮ΁  
W/΀ϭϭ΁  
W&΀ϭ΁  
W&΀Ϭ΁  
Wꢁ΀ϵ΁  
W>΀ϭϰ΁  
W>΀ϭϱ΁  
W:΀Ϭ΁  
Wꢂ΀ϭϱ΁  
W:΀ϲ΁  
Wꢁ΀ϭϬ΁  
Wꢅ΀ϭϭ΁  
Wꢁ΀ϴ΁  
W&΀ϳ΁  
W&΀ϲ΁  
W:΀ϳ΁  
s^^ͺ,s sꢁꢁͺ>sꢄ  
Eꢀ  
Wd΀ϯ΁  
Wd΀ϴ΁  
/Kͺ&>ꢃyꢃ  
Wꢅ΀ϰ΁  
WZ΀ϭ΁  
sꢁꢁ^dꢅz W>΀ϭϮ΁  
W^΀Ϭ΁  
W^΀ϭ΁  
W^΀ϯ΁  
W^΀ϰ΁  
W^΀ϲ΁  
W^΀ϳ΁  
W^΀ϵ΁  
W^΀ϭϬ΁  
W^΀ϭϮ΁  
W^΀ϭϯ΁  
W^΀ϭϰ΁  
W^΀ϭϱ΁  
Wd΀ϰ΁  
Wd΀ϵ΁  
sꢁꢁͺ,sͺ  
ꢂꢁsͺꢁ  
s^^ͺ,sͺ  
ꢂꢁsͺꢁ  
s^^ͺ,sͺ sꢁꢁͺ,sͺ  
ꢂꢁZͺ^ ꢂꢁsͺ^  
sꢁꢁͺ,sͺ s^^ͺ,sͺ  
ꢂꢁZͺ^  
WZ΀Ϯ΁  
W>΀ϭϯ΁  
Wꢅ΀ϵ΁  
Wd΀ϱ΁  
Wd΀ϭϬ΁  
Eꢀ  
W/΀ϲ΁  
W'΀ϭϭ΁  
Wꢅ΀ϯ΁  
WZ΀ϯ΁  
WZ΀ϱ΁  
W>΀ϭϭ΁  
W/΀ϭϬ΁  
Wꢅ΀ϭϬ΁  
W:΀ϭ΁  
Wꢅ΀ϴ΁  
Wꢂ΀ϯ΁  
W:΀ϱ΁  
W^΀Ϯ΁  
W^΀ϱ΁  
W^΀ϴ΁  
W^΀ϭϭ΁  
Wd΀Ϭ΁  
Wd΀ϭ΁  
Wd΀ϲ΁  
Wd΀ϭϭ΁  
Eꢀ  
ꢂꢁsͺ^  
ꢀꢉ  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢆ  
ꢀꢇ  
ꢀꢈ  
ꢁꢉ  
ꢁꢀ  
ꢁꢁ  
ꢁꢂ  
ꢁꢃ  
ꢁꢄ  
ꢁꢅ  
Figure 4. 416-ball BGA emulation device pinout (top view)  
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ  
Eꢀ  
ϭϭ  
ϭϮ  
ϭϯ  
ϭϰ  
ϭϱ  
ϭϲ  
ϭϳ  
Eꢀ  
ϭϴ  
ϭϵ  
ϮϬ  
Ϯϭ  
Eꢀ  
ϮϮ  
Ϯϯ  
Ϯϰ  
Ϯϱ  
Eꢀ  
Ϯϲ  
Eꢀ  
Ϯϳ  
Eꢀ  
Ϯϴ  
Eꢀ  
Ϯϵ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
ϯϬ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
Eꢀ  
Eꢀ  
Wy΀Ϭ΁  
WD΀ϭϱ΁  
WE΀Ϭ΁  
Eꢀ  
Eꢀ  
Wy΀ϰ΁  
Wy΀ϯ΁  
Wy΀ϭ΁  
WY΀ϭϯ΁  
WY΀ϭϭ΁  
WY΀ϵ΁  
WY΀ϳ΁  
WY΀ϱ΁  
WY΀ϯ΁  
Wy΀ϭϭ΁  
Wy΀ϵ΁  
Wy΀ϳ΁  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
sꢁꢁͺ,sͺ  
s^^ͺ,s s^^ͺ,s  
/KͺDꢂ/E  
Eꢀ  
Eꢀ  
s^^ͺ,s  
Eꢀ  
Eꢀ  
WD΀ϭϰ΁ WD΀ϭϯ΁ WD΀ϭϮ΁ WD΀ϭϭ΁  
Eꢀ  
Eꢀ  
Wy΀Ϯ΁  
WY΀ϭϱ΁  
WY΀ϭϰ΁  
WY΀ϭϮ΁  
WY΀ϭϬ΁  
WY΀ϴ΁  
Eꢀ  
WY΀ϲ΁  
WY΀ϰ΁  
Eꢀ  
Eꢀ  
Wy΀ϭϬ΁  
Wy΀ϴ΁  
Wy΀ϲ΁  
Wy΀ϱ΁  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
sꢁꢁͺ,sͺ/  
KͺDꢂ/E  
&
WE΀Ϯ΁  
WE΀ϰ΁  
Eꢀ  
WE΀ϭ΁  
WE΀ϯ΁  
Eꢀ  
s^^ͺ,s  
W,΀ϭϯ΁  
W&΀Ϯ΁  
W&΀ϱ΁  
W&΀ϯ΁  
WD΀ϭϬ΁  
W,΀ϭϰ΁  
W,΀ϭϱ΁  
W&΀ϰ΁  
Wꢀ΀ϭϭ΁  
Wꢀ΀ϭϬ΁  
Wꢀ΀ϭϯ΁  
Wꢀ΀ϭϮ΁  
Wꢃ΀ϭϮ΁  
Wꢀ΀ϭϱ΁  
Wꢁ΀Ϭ΁  
Wꢁ΀ϭ΁  
Wꢁ΀Ϯ΁  
Wꢁ΀ϯ΁  
W,΀ϵ΁  
W,΀ϰ΁  
W,΀ϯ΁  
Wꢂ΀ϭϭ΁  
Wꢃ΀ϭϭ΁  
WD΀ϵ΁  
Wꢂ΀ϭϬ΁  
Wꢂ΀Ϭ΁  
Wꢂ΀ϭ΁  
s^^ͺ,s  
Wꢂ΀Ϯ΁  
Wꢃ΀ϵ΁  
&
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
'
Wꢁ΀ϭϰ΁ s^^ͺ,s  
W,΀ϭϮ΁  
Wꢃ΀ϭϬ΁  
Wꢂ΀ϭϯ΁  
s^^ͺ,s  
Wꢂ΀ϭϮ΁  
Wꢁ΀ϱ΁  
'
,
Wꢀ΀ϵ΁  
Wꢀ΀ϳ΁  
Wꢀ΀ϱ΁  
Wꢀ΀ϯ΁  
Wꢀ΀Ϯ΁  
Wꢀ΀Ϭ΁  
Wꢃ΀ϭ΁  
Wꢁ΀ϭϯ΁  
W/΀ϴ΁  
Wꢁ΀ϭϱ΁  
Wꢀ΀ϴ΁  
Wꢀ΀ϲ΁  
Wꢀ΀ϰ΁  
Wꢀ΀ϭ΁  
Wꢃ΀Ϭ΁  
Wꢃ΀Ϯ΁  
Wꢃ΀ϰ΁  
W/΀ϵ΁  
s^^ͺ,s s^^ͺ,s  
,
sꢁꢁͺ,sͺ  
/Kͺ&>ꢃy  
sꢁꢁͺ,sͺ  
&>ꢂ  
sꢁꢁͺ,sͺ sꢁꢁͺ,sͺ  
:
Eꢀ  
WE΀ϱ΁  
WE΀ϳ΁  
WE΀ϵ΁  
WE΀ϭϬ΁  
WE΀ϭϮ΁  
WE΀ϭϰ΁  
Eꢀ  
s^^ͺ,s  
W>΀ϭ΁  
W>΀Ϯ΁  
W>΀ϯ΁  
W>΀ϲ΁  
Wꢁ΀ϭϮ΁  
Wꢃ΀ϯ΁  
W<΀Ϭ΁  
W<΀Ϯ΁  
Wꢅ΀ϭϮ΁  
W/΀ϭ΁  
WD΀Ϯ΁  
WD΀ϯ΁  
WD΀Ϭ΁  
WD΀ϭ΁  
W<΀ϭϰ΁  
W<΀ϭϱ΁  
Wꢀ΀ϭϰ΁  
WD΀ϰ΁  
WD΀ϲ΁  
WD΀ϱ΁  
W,΀ϳ΁  
W,΀ϴ΁  
W,΀ϭϬ΁  
W,΀Ϯ΁  
W,΀ϭ΁  
W,΀Ϭ΁  
s^^ͺ,s  
Wꢃ΀ϲ΁  
Wꢃ΀ϴ΁  
:
/Kͺꢃꢅ/  
/Kͺꢃꢅ/  
sꢁꢁͺ,sͺ  
&>ꢂ  
<
WE΀ϲ΁  
WE΀ϴ΁  
WE΀ϭϭ΁  
WE΀ϭϯ΁  
WE΀ϭϱ΁  
Eꢀ  
s^^ͺ,s  
W>΀Ϭ΁  
W>΀ϰ΁  
W>΀ϱ΁  
W>΀ϳ΁  
W'΀Ϭ΁  
W<΀ϭ΁  
W<΀ϯ΁  
Wꢅ΀ϭϰ΁  
W<΀ϱ΁  
W<΀ϲ΁  
W<΀ϴ΁  
W'΀ϳ΁  
WD΀ϳ΁  
WD΀ϴ΁  
W'΀ϭϱ΁  
s^^ͺ,s  
ꢃ^ZϬ  
Wꢃ΀ϳ΁  
Wꢁ΀ϰ΁  
Wꢃ΀ϱ΁  
Wt΀ϭϰ΁ Wt΀ϭϱ΁  
Wt΀ϭϮ΁ Wt΀ϭϯ΁  
Wt΀ϭϬ΁ Wt΀ϭϭ΁  
<
>
W'΀ϭϯ΁  
WKZ^d  
Wꢂ΀ϴ΁  
W'΀ϭϰ΁  
W,΀ϭϭ΁  
>
D
E
Eꢀ  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
Eꢀ  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
Eꢀ  
s^^ͺ>s sꢁꢁͺ>sꢄ  
s^^ͺ>s  
Wꢂ΀ϰ΁  
Wꢂ΀ϵ΁  
Wꢂ΀ϲ΁  
Wꢂ΀ϳ΁  
W<΀ϭϯ΁  
W:΀ϭϱ΁  
W:΀ϭϯ΁  
W:΀ϭϬ΁  
W:΀ϴ΁  
W&΀ϭϱ΁  
D
E
Eꢀ  
s^^ͺ>s  
Eꢀ  
sꢁꢁͺ>sꢄ  
s^^ͺ>s  
Eꢀ  
dꢃ^dDKꢁꢃ W&΀ϭϰ΁  
Wt΀ϴ΁  
Wt΀ϲ΁  
Wt΀ϰ΁  
Wt΀Ϯ΁  
Wt΀Ϭ΁  
s^^ͺ,s  
Ws΀ϲ΁  
Wt΀ϵ΁  
Wt΀ϳ΁  
Wt΀ϱ΁  
Wt΀ϯ΁  
Wt΀ϭ΁  
W
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
W/΀ϭϱ΁  
W/΀ϭϰ΁  
W<΀ϭϮ΁  
W:΀ϭϰ΁  
W:΀ϭϮ΁  
W:΀ϭϭ΁  
W:΀ϵ΁  
Wꢁ΀ϳ΁  
W&΀ϭϯ΁  
Wꢂ΀ϱ΁  
ydꢂ>  
Eꢀ  
Wꢂ΀ϭϰ΁  
Wꢁ΀ϲ΁  
W
Z
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
Z
s^^ͺ,sͺ  
K^ꢀ  
d
W>΀ϴ΁  
WY΀Ϯ΁  
Eꢀ  
WY΀ϭ΁  
WY΀Ϭ΁  
Eꢀ  
Eꢀ  
Eꢀ  
d
h
W'΀Ϯ΁  
W'΀ϰ΁  
Wꢅ΀ϭϱ΁  
W/΀Ϭ΁  
W'΀ϭ΁  
W'΀ϯ΁  
Wꢅ΀ϭϯ΁  
Wꢅ΀ϱ΁  
s^^ͺ>s  
sꢁꢁͺ>sꢄ  
s^^ͺ>s  
sꢁꢁͺ>sꢄ  
ꢃydꢂ>  
h
sꢁꢁͺ,sͺ  
/Kͺ:dꢂ'  
sꢁꢁͺ,sͺ  
/Kͺꢃꢅ/  
s
s^^ͺ>s  
s^^ͺ>s  
s
t
z
WZ΀ϭϰ΁  
WZ΀ϭϮ΁  
Wz΀ϯ΁  
WZ΀ϭϭ΁  
Wz΀ϭ΁  
WZ΀ϴ΁  
Wy΀ϭϱ΁  
WZ΀ϲ΁  
WZ΀ϭϱ΁  
WZ΀ϭϯ΁  
Wz΀Ϯ΁  
WZ΀ϭϬ΁  
Wz΀Ϭ΁  
WZ΀ϵ΁  
Wy΀ϭϰ΁  
WZ΀ϳ΁  
sꢁꢁͺ>sꢄ s^^ͺ>s  
s^^ͺ>s sꢁꢁͺ>sꢄ  
W&΀ϭϬ΁  
W&΀ϭϮ΁  
W:΀ϰ΁  
W&΀ϵ΁  
W&΀ϭϭ΁  
W,΀ϱ΁  
W:΀ϯ΁  
Eꢀ  
t
z
W<΀ϰ΁  
W<΀ϳ΁  
Eꢀ  
Ws΀ϭϰ΁  
Ws΀ϭϮ΁  
Ws΀ϭϬ΁  
Ws΀ϴ΁  
Ws΀ϭϱ΁  
Ws΀ϭϯ΁  
Ws΀ϭϭ΁  
Ws΀ϵ΁  
Ws΀ϱ΁  
Ws΀ϯ΁  
Ws΀ϭ΁  
Ws΀Ϭ΁  
sꢁꢁͺ,sͺ s^^ͺ,sͺ  
ꢂꢂ  
ꢂꢅ  
ꢂꢀ  
ꢂꢁ  
ꢂꢃ  
ꢂ&  
ꢂ'  
ꢂ,  
ꢂ:  
ꢂ<  
W<΀ϵ΁  
W'΀ϭϬ΁  
W<΀ϭϬ΁  
Wꢅ΀ϰ΁  
Wꢁ΀ϭϭ΁  
Wꢅ΀ϯ΁  
Wꢅ΀Ϭ΁ sꢁꢁ^dꢅz W>΀ϭϬ΁  
W>΀ϭϮ΁  
W>΀ϭϯ΁  
W>΀ϭϰ΁  
W>΀ϭϱ΁  
W:΀ϲ΁  
W:΀ϳ΁  
s^^ͺ,s  
W:΀ϱ΁  
W,΀ϲ΁  
ꢂꢂ  
ꢂꢅ  
ꢂꢀ  
ꢂꢁ  
ꢂꢃ  
ꢂ&  
ꢂ'  
ꢂ,  
ꢂ:  
ꢂ<  
ꢂꢁZͺꢁ  
ꢂꢁZͺꢁ  
W/΀Ϯ΁  
W/΀ϯ΁  
W<΀ϭϭ΁  
Wꢃ΀ϭϰ΁  
Wꢅ΀ϭ΁  
W>΀ϵ΁  
W>΀ϭϭ΁  
s^^ͺ,s  
W&΀ϴ΁  
sꢁꢁͺ,sͺ/  
KͺDꢂ/E  
W/΀ϰ΁  
W'΀ϱ΁  
Eꢀ  
W/΀ϱ΁  
W'΀ϲ΁  
Wꢅ΀ϳ΁  
W:΀Ϯ΁  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
W/΀ϲ΁  
W/΀ϳ΁  
W'΀ϴ΁  
W'΀ϵ΁  
W'΀ϭϭ΁  
Wꢃ΀ϭϱ΁  
W'΀ϭϮ΁  
Wꢅ΀Ϯ΁  
W/΀ϭϯ΁  
W/΀ϭϮ΁  
W/΀ϭϭ΁  
W/΀ϭϬ΁  
W&΀ϭ΁  
W&΀Ϭ΁  
Wꢁ΀ϵ΁  
Wꢅ΀ϭϭ΁  
Wꢅ΀ϭϬ΁  
Wꢅ΀ϵ΁  
Wꢅ΀ϴ΁  
Wꢂ΀ϯ΁  
Wꢁ΀ϴ΁  
W&΀ϳ΁  
W&΀ϲ΁  
Wꢂ΀ϭϱ΁  
W:΀Ϭ΁  
s^^ͺ,s  
W:΀ϭ΁  
Ws΀ϳ΁  
s^^ͺ,sͺ sꢁꢁͺ,sͺ sꢁꢁͺ,sͺ s^^ͺ,sͺ  
ꢂꢁs ꢂꢁs ꢂꢁZ ꢂꢁZ  
Wꢅ΀ϲ΁  
Wꢃ΀ϭϯ΁  
Wꢁ΀ϭϬ΁  
s^^ͺ,s  
Ws΀ϰ΁  
^
^
^
^
Ws΀Ϯ΁  
sꢁꢁͺ,sͺ s^^ͺ,sͺ  
ꢂꢁZ ꢁϮ ꢂꢁZ ꢁϮ  
Wz΀ϰ΁  
sꢁꢁͺ,sͺ sꢁꢁͺ,sͺ  
/KͺDꢂ/E /Kͺꢃꢅ/  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
s^^ͺ,sͺ sꢁꢁͺ,sͺ  
ꢂꢁsͺ^  
sꢁꢁͺ,sͺ  
/Kͺ&>ꢃyꢃ  
sꢁꢁͺ,sͺ  
/Kͺ&>ꢃyꢃ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
Eꢀ  
WZ΀ϰ΁  
WZ΀Ϯ΁  
Wy΀ϭϮ΁  
WZ΀ϭ΁  
s^^ͺ,s  
W^΀Ϭ΁  
W^΀Ϯ΁  
W^΀ϰ΁  
W^΀ϲ΁  
W^΀ϴ΁  
W^΀ϭϬ΁  
W^΀ϭϮ΁  
W^΀ϭϰ΁  
Eꢀ  
Wd΀Ϭ΁  
Wd΀Ϯ΁  
Wd΀ϰ΁  
Wd΀ϲ΁  
Wd΀ϴ΁  
Wd΀ϭϬ΁  
Wd΀ϭϮ΁  
Wd΀ϭϰ΁  
s^^ͺ,s  
ꢂꢁsͺ^  
s^^ͺ,sͺ sꢁꢁͺ,sͺ  
ꢂꢁsͺꢁ  
ϴ
sꢁꢁͺ,sͺ  
/Kͺ&>ꢃyꢃ  
ϮϬ  
sꢁꢁͺ,sͺ  
/Kͺ&>ꢃyꢃ  
Ϯϵ  
Eꢀ  
Ϯ
Eꢀ  
ϯ
WZ΀ϱ΁  
ϰ
WZ΀ϯ΁  
ϱ
Wy΀ϭϯ΁  
ϲ
WZ΀Ϭ΁  
ϳ
s^^ͺ,s  
ϭϬ  
W^΀ϭ΁  
ϭϮ  
W^΀ϯ΁  
ϭϯ  
W^΀ϱ΁  
ϭϰ  
W^΀ϳ΁  
ϭϱ  
W^΀ϵ΁  
ϭϲ  
W^΀ϭϭ΁  
ϭϳ  
W^΀ϭϯ΁  
ϭϴ  
W^΀ϭϱ΁  
ϭϵ  
Wd΀ϭ΁  
Ϯϭ  
Wd΀ϯ΁  
ϮϮ  
Wd΀ϱ΁  
Ϯϯ  
Wd΀ϳ΁  
Ϯϰ  
Wd΀ϵ΁  
Ϯϱ  
Wd΀ϭϭ΁  
Ϯϲ  
Wd΀ϭϯ΁  
Ϯϳ  
Wd΀ϭϱ΁  
Ϯϴ  
ꢂꢁsͺꢁ  
ϵ
ϭ
ϭϭ  
ϯϬ  
Figure 5. 512-ball BGA production device pinout (top view)  
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ  
Eꢀ  
ϭϭ  
ϭϮ  
ϭϯ  
ϭϰ  
ϭϱ  
ϭϲ  
ϭϳ  
Eꢀ  
ϭϴ  
ϭϵ  
ϮϬ  
Ϯϭ  
Eꢀ  
ϮϮ  
Ϯϯ  
Ϯϰ  
Ϯϱ  
Eꢀ  
Ϯϲ  
Eꢀ  
Ϯϳ  
Eꢀ  
Ϯϴ  
Eꢀ  
Ϯϵ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
ϯϬ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
Eꢀ  
Eꢀ  
Wy΀Ϭ΁  
WD΀ϭϱ΁  
WE΀Ϭ΁  
Eꢀ  
Eꢀ  
Wy΀ϰ΁  
Wy΀ϯ΁  
Wy΀ϭ΁  
WY΀ϭϯ΁  
WY΀ϭϭ΁  
WY΀ϵ΁  
WY΀ϳ΁  
WY΀ϱ΁  
WY΀ϯ΁  
Wy΀ϭϭ΁  
Wy΀ϵ΁  
Wy΀ϳ΁  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
sꢁꢁͺ,sͺ  
s^^ͺ,s s^^ͺ,s  
/KͺDꢂ/E  
Eꢀ  
Eꢀ  
s^^ͺ,s  
Eꢀ  
Eꢀ  
WD΀ϭϰ΁ WD΀ϭϯ΁ WD΀ϭϮ΁ WD΀ϭϭ΁  
Eꢀ  
Eꢀ  
Wy΀Ϯ΁  
WY΀ϭϱ΁  
WY΀ϭϰ΁  
WY΀ϭϮ΁  
WY΀ϭϬ΁  
WY΀ϴ΁  
Eꢀ  
WY΀ϲ΁  
WY΀ϰ΁  
Eꢀ  
Eꢀ  
Wy΀ϭϬ΁  
Wy΀ϴ΁  
Wy΀ϲ΁  
Wy΀ϱ΁  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
sꢁꢁͺ,sͺ/  
KͺDꢂ/E  
&
WE΀Ϯ΁  
WE΀ϰ΁  
Eꢀ  
WE΀ϭ΁  
WE΀ϯ΁  
Eꢀ  
s^^ͺ,s  
W,΀ϭϯ΁  
W&΀Ϯ΁  
W&΀ϱ΁  
W&΀ϯ΁  
WD΀ϭϬ΁  
W,΀ϭϰ΁  
W,΀ϭϱ΁  
W&΀ϰ΁  
Wꢀ΀ϭϭ΁  
Wꢀ΀ϭϬ΁  
Wꢀ΀ϭϯ΁  
Wꢀ΀ϭϮ΁  
Wꢃ΀ϭϮ΁  
Wꢀ΀ϭϱ΁  
Wꢁ΀Ϭ΁  
Wꢁ΀ϭ΁  
Wꢁ΀Ϯ΁  
Wꢁ΀ϯ΁  
W,΀ϵ΁  
W,΀ϰ΁  
W,΀ϯ΁  
Wꢂ΀ϭϭ΁  
Wꢃ΀ϭϭ΁  
WD΀ϵ΁  
Wꢂ΀ϭϬ΁  
Wꢂ΀Ϭ΁  
Wꢂ΀ϭ΁  
s^^ͺ,s  
Wꢂ΀Ϯ΁  
Wꢃ΀ϵ΁  
&
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
'
Wꢁ΀ϭϰ΁ s^^ͺ,s  
W,΀ϭϮ΁  
Wꢃ΀ϭϬ΁  
Wꢂ΀ϭϯ΁  
s^^ͺ,s  
Wꢂ΀ϭϮ΁  
Wꢁ΀ϱ΁  
'
,
Wꢀ΀ϵ΁  
Wꢀ΀ϳ΁  
Wꢀ΀ϱ΁  
Wꢀ΀ϯ΁  
Wꢀ΀Ϯ΁  
Wꢀ΀Ϭ΁  
Wꢃ΀ϭ΁  
Wꢁ΀ϭϯ΁  
W/΀ϴ΁  
Wꢁ΀ϭϱ΁  
Wꢀ΀ϴ΁  
Wꢀ΀ϲ΁  
Wꢀ΀ϰ΁  
Wꢀ΀ϭ΁  
Wꢃ΀Ϭ΁  
Wꢃ΀Ϯ΁  
Wꢃ΀ϰ΁  
W/΀ϵ΁  
s^^ͺ,s s^^ͺ,s  
,
sꢁꢁͺ,sͺ  
/Kͺ&>ꢃy  
sꢁꢁͺ,sͺ  
&>ꢂ  
sꢁꢁͺ,sͺ sꢁꢁͺ,sͺ  
:
Eꢀ  
WE΀ϱ΁  
WE΀ϳ΁  
WE΀ϵ΁  
WE΀ϭϬ΁  
WE΀ϭϮ΁  
WE΀ϭϰ΁  
Eꢀ  
s^^ͺ,s  
W>΀ϭ΁  
W>΀Ϯ΁  
W>΀ϯ΁  
W>΀ϲ΁  
Wꢁ΀ϭϮ΁  
Wꢃ΀ϯ΁  
W<΀Ϭ΁  
W<΀Ϯ΁  
Wꢅ΀ϭϮ΁  
W/΀ϭ΁  
WD΀Ϯ΁  
WD΀ϯ΁  
WD΀Ϭ΁  
WD΀ϭ΁  
W<΀ϭϰ΁  
W<΀ϭϱ΁  
Wꢀ΀ϭϰ΁  
WD΀ϰ΁  
WD΀ϲ΁  
WD΀ϱ΁  
W,΀ϳ΁  
W,΀ϴ΁  
W,΀ϭϬ΁  
W,΀Ϯ΁  
W,΀ϭ΁  
W,΀Ϭ΁  
s^^ͺ,s  
Wꢃ΀ϲ΁  
Wꢃ΀ϴ΁  
:
/Kͺꢃꢅ/  
/Kͺꢃꢅ/  
sꢁꢁͺ,sͺ  
&>ꢂ  
<
WE΀ϲ΁  
WE΀ϴ΁  
WE΀ϭϭ΁  
WE΀ϭϯ΁  
WE΀ϭϱ΁  
Eꢀ  
s^^ͺ,s  
W>΀Ϭ΁  
W>΀ϰ΁  
W>΀ϱ΁  
W>΀ϳ΁  
W'΀Ϭ΁  
W<΀ϭ΁  
W<΀ϯ΁  
Wꢅ΀ϭϰ΁  
W<΀ϱ΁  
W<΀ϲ΁  
W<΀ϴ΁  
W'΀ϳ΁  
WD΀ϳ΁  
WD΀ϴ΁  
W'΀ϭϱ΁  
s^^ͺ,s  
ꢃ^ZϬ  
Wꢃ΀ϳ΁  
Wꢁ΀ϰ΁  
Wꢃ΀ϱ΁  
Wt΀ϭϰ΁ Wt΀ϭϱ΁  
Wt΀ϭϮ΁ Wt΀ϭϯ΁  
Wt΀ϭϬ΁ Wt΀ϭϭ΁  
<
>
W'΀ϭϯ΁  
WKZ^d  
Wꢂ΀ϴ΁  
W'΀ϭϰ΁  
W,΀ϭϭ΁  
>
sꢁꢁͺ>sͺ  
ꢅꢁ  
D
E
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
dyϮE  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
dyϮW  
s^^ͺ>s sꢁꢁͺ>sꢄ  
s^^ͺ>s  
Wꢂ΀ϰ΁  
Wꢂ΀ϵ΁  
Wꢂ΀ϲ΁  
Wꢂ΀ϳ΁  
W<΀ϭϯ΁  
W:΀ϭϱ΁  
W:΀ϭϯ΁  
W:΀ϭϬ΁  
W:΀ϴ΁  
W&΀ϭϱ΁  
D
E
sꢁꢁͺ>sͺ  
ꢅꢁ  
sꢁꢁͺ>sꢄ  
s^^ͺ>s  
dꢃ^dDKꢁꢃ W&΀ϭϰ΁  
Wt΀ϴ΁  
Wt΀ϲ΁  
Wt΀ϰ΁  
Wt΀Ϯ΁  
Wt΀Ϭ΁  
s^^ͺ,s  
Ws΀ϲ΁  
Wt΀ϵ΁  
Wt΀ϳ΁  
Wt΀ϱ΁  
Wt΀ϯ΁  
Wt΀ϭ΁  
W
s^^ͺ>s  
dyϯW  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
W/΀ϭϱ΁  
W/΀ϭϰ΁  
W<΀ϭϮ΁  
W:΀ϭϰ΁  
W:΀ϭϮ΁  
W:΀ϭϭ΁  
W:΀ϵ΁  
Wꢁ΀ϳ΁  
W&΀ϭϯ΁  
Wꢂ΀ϱ΁  
ydꢂ>  
Eꢀ  
Wꢂ΀ϭϰ΁  
Wꢁ΀ϲ΁  
W
sꢁꢁͺ,sͺ  
/Kͺꢅꢁ  
Z
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
s^^ͺ>s  
Z
s^^ͺ,sͺ  
K^ꢀ  
d
W>΀ϴ΁  
WY΀Ϯ΁  
Eꢀ  
WY΀ϭ΁  
WY΀Ϭ΁  
Eꢀ  
dyϯE  
Eꢀ  
d
h
W'΀Ϯ΁  
W'΀ϰ΁  
Wꢅ΀ϭϱ΁  
W/΀Ϭ΁  
W'΀ϭ΁  
W'΀ϯ΁  
Wꢅ΀ϭϯ΁  
Wꢅ΀ϱ΁  
s^^ͺ>s  
sꢁꢁͺ>sꢄ  
s^^ͺ>s  
sꢁꢁͺ>sꢄ  
ꢃydꢂ>  
h
sꢁꢁͺ,sͺ  
/Kͺ:dꢂ'  
sꢁꢁͺ,sͺ  
/Kͺꢃꢅ/  
s
s^^ͺ>s  
s^^ͺ>s  
s
t
z
WZ΀ϭϰ΁  
WZ΀ϭϮ΁  
Wz΀ϯ΁  
WZ΀ϭϭ΁  
Wz΀ϭ΁  
WZ΀ϴ΁  
Wy΀ϭϱ΁  
WZ΀ϲ΁  
WZ΀ϭϱ΁  
WZ΀ϭϯ΁  
Wz΀Ϯ΁  
WZ΀ϭϬ΁  
Wz΀Ϭ΁  
WZ΀ϵ΁  
Wy΀ϭϰ΁  
WZ΀ϳ΁  
sꢁꢁͺ>sꢄ s^^ͺ>s  
s^^ͺ>s sꢁꢁͺ>sꢄ  
W&΀ϭϬ΁  
W&΀ϭϮ΁  
W:΀ϰ΁  
W&΀ϵ΁  
W&΀ϭϭ΁  
W,΀ϱ΁  
W:΀ϯ΁  
Eꢀ  
t
z
W<΀ϰ΁  
W<΀ϳ΁  
Eꢀ  
Ws΀ϭϰ΁  
Ws΀ϭϮ΁  
Ws΀ϭϬ΁  
Ws΀ϴ΁  
Ws΀ϭϱ΁  
Ws΀ϭϯ΁  
Ws΀ϭϭ΁  
Ws΀ϵ΁  
Ws΀ϱ΁  
Ws΀ϯ΁  
Ws΀ϭ΁  
Ws΀Ϭ΁  
sꢁꢁͺ,sͺ s^^ͺ,sͺ  
ꢂꢂ  
ꢂꢅ  
ꢂꢀ  
ꢂꢁ  
ꢂꢃ  
ꢂ&  
ꢂ'  
ꢂ,  
ꢂ:  
ꢂ<  
W<΀ϵ΁  
W'΀ϭϬ΁  
W<΀ϭϬ΁  
Wꢅ΀ϰ΁  
Wꢁ΀ϭϭ΁  
Wꢅ΀ϯ΁  
Wꢅ΀Ϭ΁ sꢁꢁ^dꢅz W>΀ϭϬ΁  
W>΀ϭϮ΁  
dyϬE  
W>΀ϭϰ΁  
dyϬW  
W:΀ϲ΁  
ꢀ><E  
s^^ͺ,s  
ꢀ><W  
W,΀ϲ΁  
ꢂꢂ  
ꢂꢅ  
ꢂꢀ  
ꢂꢁ  
ꢂꢃ  
ꢂ&  
ꢂ'  
ꢂ,  
ꢂ:  
ꢂ<  
ꢂꢁZͺꢁ  
ꢂꢁZͺꢁ  
W/΀Ϯ΁  
W/΀ϯ΁  
W<΀ϭϭ΁  
Wꢃ΀ϭϰ΁  
Wꢅ΀ϭ΁  
dyϭE  
dyϭW  
s^^ͺ,s  
W&΀ϴ΁  
sꢁꢁͺ,sͺ/  
KͺDꢂ/E  
W/΀ϰ΁  
W'΀ϱ΁  
Eꢀ  
W/΀ϱ΁  
W'΀ϲ΁  
Wꢅ΀ϳ΁  
W:΀Ϯ΁  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
W/΀ϲ΁  
W/΀ϳ΁  
W'΀ϴ΁  
W'΀ϵ΁  
W'΀ϭϭ΁  
Wꢃ΀ϭϱ΁  
W'΀ϭϮ΁  
Wꢅ΀Ϯ΁  
W/΀ϭϯ΁  
W/΀ϭϮ΁  
W/΀ϭϭ΁  
W/΀ϭϬ΁  
W&΀ϭ΁  
W&΀Ϭ΁  
Wꢁ΀ϵ΁  
Wꢅ΀ϭϭ΁  
Wꢅ΀ϭϬ΁  
Wꢅ΀ϵ΁  
Wꢅ΀ϴ΁  
Wꢂ΀ϯ΁  
Wꢁ΀ϴ΁  
W&΀ϳ΁  
W&΀ϲ΁  
Wꢂ΀ϭϱ΁  
W:΀Ϭ΁  
s^^ͺ,s  
W:΀ϭ΁  
Ws΀ϳ΁  
s^^ͺ,sͺ sꢁꢁͺ,sͺ sꢁꢁͺ,sͺ s^^ͺ,sͺ  
ꢂꢁs ꢂꢁs ꢂꢁZ ꢂꢁZ  
Wꢅ΀ϲ΁  
Wꢃ΀ϭϯ΁  
Wꢁ΀ϭϬ΁  
s^^ͺ,s  
Ws΀ϰ΁  
^
^
^
^
Ws΀Ϯ΁  
sꢁꢁͺ,sͺ s^^ͺ,sͺ  
ꢂꢁZ ꢁϮ ꢂꢁZ ꢁϮ  
Wz΀ϰ΁  
sꢁꢁͺ,sͺ sꢁꢁͺ,sͺ  
/KͺDꢂ/E /Kͺꢃꢅ/  
Eꢀ  
Eꢀ  
Eꢀ  
Eꢀ  
s^^ͺ,sͺ sꢁꢁͺ,sͺ  
ꢂꢁsͺ^  
sꢁꢁͺ,sͺ  
/Kͺ&>ꢃyꢃ  
sꢁꢁͺ,sͺ  
/Kͺ&>ꢃyꢃ  
sꢁꢁͺ,sͺ  
/KͺDꢂ/E  
Eꢀ  
WZ΀ϰ΁  
WZ΀Ϯ΁  
Wy΀ϭϮ΁  
WZ΀ϭ΁  
s^^ͺ,s  
W^΀Ϭ΁  
W^΀Ϯ΁  
W^΀ϰ΁  
W^΀ϲ΁  
W^΀ϴ΁  
W^΀ϭϬ΁  
W^΀ϭϮ΁  
W^΀ϭϰ΁  
Eꢀ  
Wd΀Ϭ΁  
Wd΀Ϯ΁  
Wd΀ϰ΁  
Wd΀ϲ΁  
Wd΀ϴ΁  
Wd΀ϭϬ΁  
Wd΀ϭϮ΁  
Wd΀ϭϰ΁  
s^^ͺ,s  
ꢂꢁsͺ^  
s^^ͺ,sͺ sꢁꢁͺ,sͺ  
ꢂꢁsͺꢁ  
ϴ
sꢁꢁͺ,sͺ  
/Kͺ&>ꢃyꢃ  
ϮϬ  
sꢁꢁͺ,sͺ  
/Kͺ&>ꢃyꢃ  
Ϯϵ  
Eꢀ  
Ϯ
Eꢀ  
ϯ
WZ΀ϱ΁  
ϰ
WZ΀ϯ΁  
ϱ
Wy΀ϭϯ΁  
ϲ
WZ΀Ϭ΁  
ϳ
s^^ͺ,s  
ϭϬ  
W^΀ϭ΁  
ϭϮ  
W^΀ϯ΁  
ϭϯ  
W^΀ϱ΁  
ϭϰ  
W^΀ϳ΁  
ϭϱ  
W^΀ϵ΁  
ϭϲ  
W^΀ϭϭ΁  
ϭϳ  
W^΀ϭϯ΁  
ϭϴ  
W^΀ϭϱ΁  
ϭϵ  
Wd΀ϭ΁  
Ϯϭ  
Wd΀ϯ΁  
ϮϮ  
Wd΀ϱ΁  
Ϯϯ  
Wd΀ϳ΁  
Ϯϰ  
Wd΀ϵ΁  
Ϯϱ  
Wd΀ϭϭ΁  
Ϯϲ  
Wd΀ϭϯ΁  
Ϯϳ  
Wd΀ϭϱ΁  
Ϯϴ  
ꢂꢁsͺꢁ  
ϵ
ϭ
ϭϭ  
ϯϬ  
Figure 6. 512-ball BGA emulation device pinout (top view)  
Package pinouts and signal descriptions  
2.2  
Pin/ball descriptions  
The following sections provide signal descriptions and related information about device functionality and configuration.  
2.2.1  
Power supply and reference voltage pins/balls  
Table 2 contains information on power supply and reference pin functions for the devices.  
NOTE  
All ground supplies must be tied to ground. They can NOT float.  
Table 2. Power supply and reference pins  
Supply  
BGA ball  
416ED 512PD  
Symbol  
Type  
Ground  
Description  
416PD  
512ED  
VSS_HV  
High voltage ground  
A26, B25, C24, D23, B2, B29, B30, F6,  
D15, D8, J4, L23, F25, G7, G24, H29,  
R23,T4, W23, AC23, H30, J9, J22, K10,  
AC19  
K21,V29, AA21,  
AB22, AD24, AE25,  
AJ10, AJ29, AK10  
VSS_LV  
Ground  
Low voltage ground  
K10, K11, K12, K13,  
K14, K15, K16, K17,  
M14, M15, M16,  
M17, N14, N15,  
L10, L11, L12, L13, N16, N17, P12, P13,  
L14, L15, L16, L17, P15, P16, P18, P19,  
M10, M11, M12,  
M13, M14, M15,  
R13, R14, R15,  
R16, R17, R18,  
M16, M17, N10, N11, T13,T14, T15, T16,  
N12, N13, N14,  
N15,N 16, N17, P11,  
T17, T18, U12, U13,  
U 15, U16, U18,  
P12, P13, P14, P15, U19, V14, V15 V16,  
P16, R 11, R12, R13,  
R14, R15, R16, T10,  
T11, T12, T13, T14,  
T15, T16, T17  
V17, W14, W17  
VDD_LV  
Power  
Low voltage power supply for  
production device  
(PLL is also powered by this pin.)  
B26, C25, D9, D24,  
E23, H4, P23, V23,  
AB23, AC20  
M18, N19, V12,  
V19, W13, W18  
VDD_LV_BD  
Power  
Power  
Power  
Low voltage power supply for  
buddy die  
R1, R4  
M13,  
N12  
VDD_HV_PMC  
VDD_HV_IO_MAIN  
High voltage power supply for  
internal power management unit  
D14  
High voltage power supply for I/O A25, B24, C23, D22, A2, A29, B3, B28,  
K4, AC16, AD16,  
AE16, AF16  
F7, F24, G8, G23,  
AC24, AD25, AH29,  
AJ30  
VDD_HV_IO_BD  
Power  
High voltage power supply for  
buddy die I/O  
P17  
R19  
VSS_HV_OSC  
VDD_HV_JTAG  
Ground  
Power  
Oscillator ground supply  
F25  
E26  
T25  
V25  
JTAG/Oscillator power supply  
MPC5777M Microcontroller Data Sheet, Rev. 6  
14  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 2. Power supply and reference pins (continued)  
Supply  
BGA ball  
Symbol  
Type  
Power  
Description  
416PD  
416ED  
512PD  
J10  
512ED  
VDD_HV_IO_FLEX  
FlexRay/Ethernet 3.3 V I/O  
supply  
D7  
VDD_HV_IO_FLEXE  
VDD_HV_IO_EBI  
Power  
Power  
FLexRay/Ethernet/EBI I/O  
Segment Voltage Supply  
AC18, AC22  
M23,T23,Y23  
AJ11, AK11, AK20,  
AK29  
EBIAddress/ControlI/OSegment  
Voltage Supply  
J29, J30, V30, AH30  
VDD_HV_FLA  
Power  
Decoupling supply pin for flash  
Ground supply for ADC SAR  
Voltage supply for ADC SAR  
Ground supply for ADC SD  
Voltage supply for ADC SD  
Ground reference for ADC SAR  
Voltage reference for ADC SAR  
Ground reference for ADC SD  
Voltage reference for ADC SD  
Standby RAM supply  
A18, B18  
AF9  
J21, K20  
AE9, AJ8  
AE10, AJ9  
AK8  
VSS_HV_ADV_S  
VDD_HV_ADV_S  
VSS_HV_ADV_D  
VDD_HV_ADV_D  
VSS_HV_ADR_S  
VDD_HV_ADR_S  
VSS_HV_ADR_D  
VDD_HV_ADR_D  
VDDSTBY  
Ground  
Power  
AE9  
Ground  
Power  
AF5  
AE5  
AK9  
Reference  
Reference  
Reference  
Reference  
Power  
AE8  
AE12  
AF8  
AE11  
Y4, AC6  
W4, AD6  
AD9  
AA7  
AA6  
AA16  
2.2.2  
System pins/balls  
Table 3 contains information on system pin functions for the devices.  
Table 3. System pins  
BGA ball  
416PD 416ED 512PD 512ED  
Symbol  
Description  
Direction  
PORST  
Power on reset with Schmitt trigger  
characteristics and noise filter. PORST is  
active low  
Bidirectional  
B22  
A23  
B23  
M22  
L21  
N24  
ESR0  
External functional reset with Schmitt  
trigger characteristics and noise filter.  
ESR0 is active low  
Bidirectional  
Input only  
TESTMODE Pin for testing purpose only. TESTMODE  
pull-down is implemented to prevent the  
device from entering TESTMODE. It is  
recommended to connect the  
TESTMODE pin to VSS_HV_IO on the  
board. The value of the TESTMODE pin  
is latched at the negation of reset and has  
no affect afterward.  
Note: The device will not exit reset with  
the TESTMODE pin asserted  
during power-up.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
15  
Package pinouts and signal descriptions  
Table 3. System pins (continued)  
Description Direction  
BGA ball  
Symbol  
416PD 416ED 512PD 512ED  
XTAL  
Analog output of the oscillator amplifier  
Output  
G25  
U24  
circuit  
needs to be grounded if oscillator is used  
in bypass mode.  
EXTAL  
Analog input of the oscillator amplifier  
circuit when oscillator is not in bypass  
mode  
Input  
G26  
U25  
Analog input for the clock generator when  
oscillator is in bypass mode  
2.2.3  
LVDS pins/balls  
The following table contains information on LVDS pin functions for the devices.  
Table 4. LVDS pin descriptions  
BGA ball  
(416 PD,  
416 ED)  
BGA ball  
(512 PD,  
512 ED)  
Functional block Port pin  
Signal  
Signal description  
SIPI / LFAST1  
PA[14]  
PD[6]  
PD[7]  
PF[13]  
SIPI_TXP  
Interprocessor Bus LFAST,  
LVDS Transmit Positive  
Terminal  
O
O
I
C26  
D26  
G23  
H23  
P25  
R25  
P24  
R24  
SIPI_TXN  
SIPI_RXP  
SIPI_RXN  
Interprocessor Bus LFAST,  
LVDS Transmit Negative  
Terminal  
Interprocessor Bus LFAST,  
LVDS Receive Positive  
Terminal  
Interprocessor Bus LFAST,  
LVDS Receive Negative  
Terminal  
I
High-Speed  
Debug (HSD) /  
LFAST1,2  
PA[7]  
PA[8]  
PA[9]  
PA[5]  
DEBUG_TXP Debug LFAST, LVDS  
Transmit Positive Terminal  
O
O
I
F24  
E25  
D25  
F23  
R21  
N22  
N21  
T24  
DEBUG_TXN Debug LFAST, LVDS  
Transmit Negative Terminal  
DEBUG_RXP Debug LFAST, LVDS Receive  
Positive Terminal  
DEBUG_RXN Debug LFAST, LVDS Receive  
Negative Terminal  
I
MPC5777M Microcontroller Data Sheet, Rev. 6  
16  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 4. LVDS pin descriptions (continued)  
BGA ball  
(416 PD,  
416 ED)  
BGA ball  
(512 PD,  
512 ED)  
Functional block Port pin  
Signal  
Signal description  
DSPI 4  
Microsecond Bus  
PD[2]  
PD[3]  
PD[0]  
PD[1]  
PF[10]  
PF[9]  
SCK_P  
DSPI 4 Microsecond Bus  
Serial Clock, LVDS Positive  
Terminal  
O
O
O
O
O
O
O
O
O
O
O
O
C18  
C17  
C16  
D17  
J24  
K23  
J26  
J25  
A17  
B17  
B16  
A16  
F17  
G17  
F16  
G16  
W24  
W25  
Y24  
Y25  
A16  
B16  
A15  
B15  
SCK_N  
SOUT_P  
SOUT_N  
SCK_P  
DSPI 4 Microsecond Bus  
Serial Clock, LVDS Negative  
Terminal  
DSPI 4 Microsecond Bus  
Serial Data, LVDS Positive  
Terminal  
DSPI 4 Microsecond Bus  
Serial Data, LVDS Negative  
Terminal  
DSPI 5  
Microsecond Bus  
DSPI 5 Microsecond Bus  
Serial Clock, LVDS Positive  
Terminal  
SCK_N  
DSPI 5 Microsecond Bus  
Serial Clock, LVDS Negative  
Terminal  
PF[12]  
PF[11]  
PQ[9]  
PQ[8]  
PQ[11]  
PQ[10]  
SOUT_P  
SOUT_N  
SCK_P  
DSPI 5 Microsecond Bus  
Serial Data, LVDS Positive  
Terminal  
DSPI 5 Microsecond Bus  
Serial Data, LVDS Negative  
Terminal  
DSPI 6  
Microsecond Bus  
DSPI 6Microsecond Bus  
Serial Clock, LVDS Positive  
Terminal  
SCK_N  
DSPI 6 Microsecond Bus  
Serial Clock, LVDS Negative  
Terminal  
SOUT_P  
SOUT_N  
DSPI 6 Microsecond Bus  
Serial Data, LVDS Positive  
Terminal  
DSPI 6 Microsecond Bus  
Serial Data, LVDS Negative  
Terminal  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
17  
Package pinouts and signal descriptions  
Table 4. LVDS pin descriptions (continued)  
BGA ball  
(416 PD,  
416 ED)  
BGA ball  
(512 PD,  
512 ED)  
Functional block Port pin  
Signal  
Signal description  
Differential DSPI  
2
PD[2]  
PD[3]  
PD[0]  
SCK_P  
SCK_N  
SOUT_P  
Differential DSPI 2 Clock,  
LVDS Positive Terminal  
O
O
O
C18  
C17  
C16  
F17  
G17  
F16  
Differential DSPI 2 Clock,  
LVDS Negative Terminal  
Differential DSPI 2 Serial  
Output, LVDS Positive  
Terminal  
PD[1]  
SOUT_N  
Differential DSPI 2 Serial  
Output, LVDS Negative  
Terminal  
O
D17  
G16  
PD[7]  
SIN_P  
SIN_N  
Differential DSPI 2 Serial  
Input, LVDS Positive Terminal  
I
I
G23  
H23  
P24  
R24  
PF[13]  
Differential DSPI 2 Serial  
Input, LVDS Negative  
Terminal  
Differential DSPI  
5
PF[10]  
PF[9]  
SCK_P  
SCK_N  
SOUT_P  
Differential DSPI 5 Clock,  
LVDS Positive Terminal  
O
O
O
J24  
K23  
J26  
W24  
W25  
Y24  
Differential DSPI 5 Clock,  
LVDS Negative Terminal  
PF[12]  
Differential DSPI 5 Serial  
Output, LVDS Positive  
Terminal  
PF[11]  
SOUT_N  
Differential DSPI 5 Serial  
Output, LVDS Negative  
Terminal  
O
J25  
Y25  
PD[7]  
SIN_P  
SIN_N  
Differential DSPI 5 Serial  
Input, LVDS Positive Terminal  
I
I
G23  
H23  
P24  
R24  
PF[13]  
Differential DSPI 5 Serial  
Input, LVDS Negative  
Terminal  
PI[15]  
PI[14]  
SIN_P  
SIN_N  
Differential DSPI 5 Serial  
Input, LVDS Positive Terminal  
I
I
G24  
J23  
P22  
R22  
Differential DSPI 5 Serial  
Input, LVDS Negative  
Terminal  
1
2
DRCLK and TCK/DRCLK usage for SIPI LFAST and Debug LFAST are described in the MPC5777M  
Microcontroller Reference Manual SIPI LFAST and Debug LFAST chapters.  
Pads use special enable signal form DCI block: DCI driven enable for Debug LFAST pads is transparent to user.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
18  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Aurora pin descriptions  
Signal Description  
BGA  
Functional  
Block  
PAD  
Signal  
416PD  
416ED  
512PD 512ED  
Nexus Aurora  
High Speed  
Trace  
TX0P Nexus Aurora High Speed  
Trace Lane 0, LVDS Positive  
Terminal  
O
O
O
O
O
O
O
O
I
U15  
AB19  
AB18  
AB17  
AB16  
W16  
W15  
R12  
TX0N Nexus Aurora High Speed  
Trace Lane 0, LVDS Negative  
Terminal  
U14  
U13  
U12  
U11  
U10  
P10  
R10  
U17  
U16  
TX1P Nexus Aurora High Speed  
Trace Lane 1, LVDS Positive  
Terminal  
TX1N Nexus Aurora High Speed  
Trace Lane 1, LVDS Negative  
Terminal  
TX2P Nexus Aurora High Speed  
Trace Lane 2, LVDS Positive  
Terminal  
TX2N Nexus Aurora High Speed  
Trace Lane 2, LVDS Negative  
Terminal  
TX3P Nexus Aurora High Speed  
Trace Lane 3, LVDS Positive  
Terminal  
TX3N Nexus Aurora High Speed  
Trace Lane 3, LVDS Negative  
Terminal  
T12  
CLKP Nexus Aurora High Speed  
(BD-AGB Trace Clock, LVDS Positive  
TCLKP) Terminal  
AB21  
AB20  
CLKN Nexus Aurora High Speed  
(BD-AGB Trace Clock, LVDS Negative  
TCLKN) Terminal  
I
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
19  
Electrical characteristics  
3
Electrical characteristics  
3.1  
Introduction  
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing  
specifications.  
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” (Controller  
Characteristics) is included in the “Symbol” column.  
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol  
“SR” (System Requirement) is included in the “Symbol” column.  
NOTE  
Within this document, V  
refers to supply pins V  
,
DD_HV_IO  
DD_HV_IO_MAIN  
V
V
V
V
V
V
, V  
V
, V  
, and  
DD_HV_IO_JTAG DD_HV_IO_FLEX, DD_HV_IO_FLEXE  
DD_HV_IO_EBI  
. V  
refers to ADC supply pins V and  
refers to ADC reference pins V  
refers to ADC ground pins V  
DD_HV_FLA  
DD_HV_ADV  
DD_HV_ADV_S  
. V  
. V  
and  
DD_HV_ADR_S  
DD_HV_ADV_D  
DD_HV_ADR  
and  
DD_HV_ADR_D  
SS_HV_ADV  
SS_HV_ADV_S  
. V  
.
refers to ADC reference pins V  
and  
SS_HV_ADV_D  
SS_HV_ADR_D  
SS_HV_ADR  
SS_HV_ADR_S  
3.2  
Absolute maximum ratings  
Table 6 describes the maximum ratings of the device.  
1
Table 6. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
Cycle  
VDD_LV  
SR Lifetime power cycles  
1000 k  
1.5  
V
V
V
V
SR 1.2 V core supply voltage2,3,4  
SR Emulation module voltage2,3,4  
SR I/O supply voltage5,6  
–0.3  
–0.3  
–0.3  
–0.3  
VDD_LV_BD  
VDD_HV_IO  
VDD_HV_PMC  
1.5  
6.0  
SR Power Management Controller  
supply voltage5  
6.0  
VDD_HV_FLA  
VDDSTBY  
SR Flash core voltage7  
–0.3  
–0.3  
–0.3  
4.5  
6.0  
0.3  
6.0  
V
V
V
V
SR RAM standby supply voltage5  
8
VSS_HV_ADV  
SR SAR and S/D ADC ground voltage Reference to VSS_HV  
9
VDD_HV_ADV  
SR SAR and S/D ADC supply voltage Reference to corresponding –0.3  
VSS_HV_ADV  
10  
VSS_HV_ADR  
SR SAR and S/D ADC low reference  
Reference to VSS_HV  
–0.3  
0.3  
6.0  
V
V
11  
VDD_HV_ADR  
SR SAR and S/D ADC high reference Reference to corresponding –0.3  
VSS_HV_ADR  
VDD_HV_IO_JTAG  
SR Crystal oscillator, FEC MDIO/MDC, Reference to VSS_HV  
LFAST, JTAG5  
–0.3  
6.0  
V
MPC5777M Microcontroller Data Sheet, Rev. 6  
20  
NXP Semiconductors  
Electrical characteristics  
1
Table 6. Absolute maximum ratings (continued)  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min  
Max  
VDD_HV_IO_EBI  
SR External Bus Interface supply  
voltage  
–0.3  
6.0  
V
V
V
V
DD_LV_BD – VDD_LV SR Emulation module supply  
–0.3  
1.5  
differential to 1.2 V core supply  
VIN  
SR I/O input voltage range12  
–0.3  
–0.3  
6.0  
0.3  
5
13,14  
13,14  
Relative to VSS_HV_IO  
Relative to VDD_HV_IO  
IINJD  
IINJA  
SR Maximum DC injection current for Per pin, applies to all digital  
digital pad pins  
–5  
mA  
mA  
mA  
SR Maximum DC injection current for Per pin, applies to all analog  
analog pad pins  
–5  
5
IMAXD  
SR Maximum output DC current when Medium  
7  
8
driven  
Strong  
Very strong  
–10  
–11  
–90  
10  
11  
90  
IMAXSEG  
TSTG  
SR Maximum current per power  
segment15  
mA  
°C  
SR Storage temperature range and  
non-operating times  
–55  
175  
20  
STORAGE  
SR Maximum storage time, assembled No supply; storage  
years  
part programmed in ECU  
temperature in range –40 °C  
to 60 °C  
TSDR  
SR Maximum solder temperature16  
Pb-free package  
260  
°C  
MSL  
SR Moisture sensitivity level17  
SR X-ray screen time18  
3
3
tXRAY  
At 160 KeV at max 5 mm  
min  
1
2
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress  
ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect  
device reliability or cause permanent damage to the device.  
Allowed 1.45 – 1.5 V for 60 seconds cumulative time at maximum TJ = 150 °C, remaining time as defined in note 3  
and note 4  
3
4
Allowed 1.38– 1.45 V– for 10 hours cumulative time at maximum TJ = 150 °C, remaining time as defined in note 4  
1.32 – 1.38 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.326 V at  
maximum TJ = 150 °C.  
5
6
7
8
Allowed 5.5–6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset,  
TJ = 150 °C, remaining time at or below 5.5 V.  
VDD_HV_IO applies to VDD_HV_IO_MAIN, VDD_HV_IO_FLEX, VDD_HV_IO_FLEXE, VDD_HV_IO_JTAG, and VDD_HV_IO_EBI I/O  
power supplies.  
Allowed 3.6–4.5 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset,  
TJ = 150 °C, remaining time at or below 3.6 V.  
Includes ADC grounds VSS_HV_ADV_S and VSS_HV_ADV_D  
.
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
21  
Electrical characteristics  
9
Includes ADC supplies VDD_HV_ADV_S and VDD_HV_ADV_D. VDD_HV_ADV_S is also the supply for the device  
temperature sensor, RCOSC, and bandgap reference.  
10 Includes ADC low references VSS_HV_ADR_S and VSS_HV_ADR_D  
.
11 Includes ADC high references VDD_HV_ADR_S and VDD_HV_ADR_D  
.
12 The maximum input voltage on an I/O pin tracks with the associated I/O supply maximum. For the injection current  
condition on a pin, the voltage equals the supply plus the voltage drop across the internal ESD diode from I/O pin to  
supply. The diode voltage varies significantly across process and temperature, but a value of 0.3V can be used for  
nominal calculations.  
13  
V
V
/VSS_HV_IO refers to supply pins and corresponding grounds: VDD_HV_IO_MAIN, VDD_HV_IO_FLEX,  
DD_HV_IO_JTAG, VDD_HV_OSC, VDD_HV_FLA.  
DD_HV_IO  
14 Relative value can be exceeded if design measures are taken to ensure injection current limitation (parameters IINJD  
and IINJA).  
15 Sum of all controller pins (including both digital and analog) must not exceed 200 mA. A VDD_HV_IO power segment  
is defined as one or more GPIO pins located between two VDD_HV_IO supply pins.  
16 Solder profile per IPC/JEDEC J-STD-020D  
17 Moisture sensitivity per JEDEC test method A112  
18 Three Screen done, 1 minute each. No change in device parameters during characterization of at least 10 devices at  
30 minutes exposure of 150 KeV at maximum 5 mm.  
3.3  
Electrostatic discharge (ESD)  
The following table describes the ESD ratings of the device.  
1,2  
Table 7. ESD ratings  
Parameter  
Conditions  
Value  
Unit  
ESD for Human Body Model (HBM)3  
All pins  
All pins  
2000  
500  
V
V
ESD for field induced Charged Device Model (CDM)4  
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
2
Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification  
requirements, which includes the complete DC parametric and functional testing at room temperature and hot  
temperature. Maximum DC parametrics variation within 10% of maximum specification”  
3
4
This parameter tested in conformity with ANSI/ESD STM5.1-2007 Electrostatic Discharge Sensitivity Testing  
This parameter tested in conformity with ANSI/ESD STM5.3-1990 Charged Device Model - Component Level  
3.4  
Operating conditions  
The following table describes the operating conditions for the device for which all specifications in the data sheet are valid,  
except where explicitly noted.  
The device operating conditions must not be exceeded or the functionality of the device is not guaranteed.  
1
Table 8. Device operating conditions  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Frequency  
fSYS  
SR Device operating  
frequency2  
TJ  40 °C to 150 °C  
300  
MHz  
MPC5777M Microcontroller Data Sheet, Rev. 6  
22  
NXP Semiconductors  
Electrical characteristics  
1
Table 8. Device operating conditions (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Temperature  
TJ  
SR Operating temperature  
range - junction  
–40.0  
–40.0  
150.0  
125.0  
°C  
°C  
TA (TL to TH)  
SR Ambient operating  
temperature range  
Voltage  
VDD_LV  
SR External core supply  
voltage3,4  
LVD/HVD enabled  
1.24  
1.19  
1.385  
1.385  
V
V
LVD/HVD  
disabled6,7,8,9  
10,11  
VDD_HV_IO_MAIN  
SR I/O supply voltage  
LVD400/HVD600  
enabled18  
4.5  
4.2  
3.0  
5.512  
5.5  
LVD400/HVD600  
disabled 6,13,14,15,18  
LVD360/HVD600  
5.5  
disabled 6,13,14,16,17,18  
VDD_HV_IO_JTAG  
VDD_HV_IO_FLEX  
VDD_HV_IO_FLEXE  
VDD_HV_IO_EBI  
VDD_HV_OSC  
SR JTAG I/O supply  
voltage6,19  
5 V range  
3.3 V range  
5 V range  
3.3 V range  
4.5  
3.0  
5.5  
3.6  
5.5  
3.6  
5.5  
3.6  
5.5  
3.6  
5.5  
3.6  
5.5  
3.5  
V
V
V
V
V
V
SR FlexRay I/O supply  
voltage  
4.5  
3.0  
SR FlexRay/EBI I/O supply 5 V range  
4.5  
voltage  
3.3 V range  
3.0  
SR External Bus Interface 5 V range  
4.5  
supply voltage  
3.3 V range  
3.0  
SR Oscillator supply  
voltage6,20  
5 V range  
4.5  
3.3 V range  
3.0  
VDD_HV_PMC  
SR Power Management  
Controller (PMC)  
supply voltage  
Full functionality22,23  
3.524,25  
21  
Reduced internal  
regulator output  
capability26  
3.15  
Supply monitoring  
activity only (LVD/HVD)  
3.0  
1.1  
3.15  
5.5  
VDDSTBY  
SR RAM standby supply  
voltage27,28,29  
V
V
VDD_HV_ADV  
SR SARADC, SDADC,  
Temperature Sensor,  
and Bandgap  
LVD400 enabled  
4.5  
4.0  
5.5  
LVD400  
5.532  
disabled30,31,34  
Reference supply  
voltage  
LVD300  
3.7  
5.532  
disabled6,30,31,33,34  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
23  
Electrical characteristics  
1
Table 8. Device operating conditions (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
VDD_HV_ADR_D  
SR SD ADC supply  
reference voltage  
Reduced SNR  
Full SNR  
3.0  
4.5  
VDD_HV_ADV_D  
4.5  
5.532  
25  
V
VDD_HV_ADR_D  
SR SD ADC reference  
differential voltage  
mV  
V
VDD_HV_ADV_D  
VSS_HV_ADR_D  
SR SD ADC ground  
reference voltage  
VSS_HV_ADV_D  
VSS_HV_ADR_D  
SR VSS_HV_ADR_D  
differential voltage  
–25  
25  
mV  
V
VSS_HV_ADV_D  
35  
VDD_HV_ADR_S  
SR SARADC reference  
2.0  
4.0  
VDD_HV_ADV_S  
4.0  
5.532  
VSS_HV_ADR_S  
VDD_HV_ADR_S  
SR SAR ADC ground  
reference voltage  
VSS_HV_ADV_S  
V
SR SARADC reference  
differential voltage  
–25  
–25  
25  
25  
mV  
VDD_HV_ADV_S  
VSS_HV_ADR_S  
SR VSS_HV_ADR_S  
differential voltage  
mV  
VSS_HV_ADV_S  
VSS_HV_ADV – VSS SR VSS_HV_ADV differential  
25  
mV  
voltage  
VRAMP_LV  
VRAMP_HV  
SR Slew rate on core  
power supply pins  
100  
100  
V/ms  
V/ms  
SR Slew rate on HV power  
supply pins  
Vpor_rel  
Vpor_hys  
VIN  
CC POR release trip point  
CC POR hysteresis  
-40 °C < Tj < 150 °C  
-40 °C < Tj < 150 °C  
3.10  
150  
0
4.26  
300  
5.5  
V
mV  
V
SR I/O input voltage range  
Injection current  
IIC  
SR DC injection current  
(per pin)36,37,38  
Digital pins and analog  
pins  
–3.0  
–80  
3.0  
80  
mA  
mA  
IMAXSEG  
SR Maximum current per  
power segment39  
1
2
The ranges in this table are design targets and actual data may vary in the given range.  
Maximum operating frequency is applicable to the computational cores and platform for the device. See the Clocking chapter  
in the MPC5777M Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks  
on the device.  
3
4
Core voltage as measured on device pin to guarantee published silicon performance.  
During power ramp, voltage measured on silicon might be lower. maximum performance is not guaranteed, but correct  
silicon operation is guaranteed. Refer to the Power Management and Reset Generation Module chapters in the MPC5777M  
Microcontroller Reference Manual for further information.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
24  
NXP Semiconductors  
Electrical characteristics  
5
6
Although the maximum VDD_LV operating voltage is 1.38 V, reset is not entered at that voltage. An external voltage monitor  
is needed or the HVD140_C can be monitored (via an interrupt or by polling the HVD140_C flag bit). Performance above  
1.38 V is not guaranteed, and allowed operation above 1.38 V is defined in Absolute maximum ratings.  
In the LVD/HVD disabled case, it is necessary for the system to be within a higher voltage range during destructive reset  
events.  
7
8
9
Maximum core voltage is not permitted for entire product life. See Absolute maximum rating.  
When internal LVD/HVDs are disabled, external monitoring is required to guarantee correct device operation.  
Vdd_lv should be above 1.24 V during destructive resets or POR events.  
10 VDD_HV_IO_MAIN range limited to 4.75–5.25 V when FERS = 1 to enable the fast erase time of the flash memory.  
11 During power up operation, the minimum required voltage to come out of reset state is determined by the VPORUP_HV  
monitor, which is defined in the voltage monitor electrical characteristics table. Note that the VPORUP_HV monitor is connected  
to the VDD_HV_IO_MAIN0 physical I/O segment.  
12 When the LVD/HVDs are enabled, the VDD_HV_IO_MAIN must be less than 5.412 V to exit from a destructive reset.  
13 Maximum voltage is not permitted for entire product life. See Absolute maximum rating.  
14 When internal LVD/HVDs are disabled, external monitoring is required to guarantee device operation. Failure to monitor  
externally supply voltage may result in erroneous operation of the device.  
15 When these LVD/HVDs are disabled, the VDD_HV_IO_MAIN supply must be between 3.182 V and 5.412 V.  
16 Reduced output capabilities below 4.2 V. See performance derating values in I/O pad electrical characteristics.  
17 When the LVD/HVDs are disabled, the VDD_HV_IO_MAIN must be between 3.024 V and 5.412 V.  
18 The PMC supply voltage (VDD_HV_PMC) must be within the correct range (see the VDD_HV_PMC specification).  
19 When the LVD/HVDs are disabled, the HV I/O JTAG supply (VDD_HV_IO_JTAG) must be above 3.024 V.  
20 When the LVD/HVDs are disabled, the HV OSC supply (VDD_HV_OSC) must be above 3.024 V.  
21 Flash read operation is supported for a minimum VDD_HV_PMC value of 3.15 V. Flash read, program, and erase operations  
are supported for a minimum VDD_HV_PMC value of 3.5 V.  
22 When the LVD/HVDs are disabled, the VDD_HV_PMC must be below 5.412 V during destructive reset events.  
23 A minimum of 4.5 V is required to guarantee correct user logic BIST operation.  
24 During power up operation, the minimum required voltage to come out of reset state is determined by the VPORUP_HV  
monitor, which is defined in the voltage monitor electrical characteristics table. Note that the VPORUP_HV monitor is connected  
to the VDD_HV_IO_MAIN0 physical I/O segment.  
25 Above Ta = 25°C, the minimum VDD_HV_PMC voltage is 3.6 V.  
26 With the reduced internal regulator output capability, erases and writes to the device flash cannot be guaranteed for a single  
event and multiple erases and writes may be necessary. User logic BIST is not supported with reduced capability.  
27 RAM data retention is guaranteed at a voltage that is always below the maximum brownout flag trip point voltage (see the  
DC Electrical Specification table). The minimum VDDSTBY voltage at the pin is larger in order to account for on-chip IR drop  
and noise. There is no effect on RAM operation when VDDSTBY is below 1.1 V, and VDD_LV is above the minimum operating  
value.  
28 Non-regulated supplies can be used on the VDDSTBY pin if the absolute maximum and operating condition voltage limits  
are met. There is no static clamp to a supply rail for the VDDSTBY pin, only dynamic protection for ESD events.  
29 The VDDSTBY pin should be connected to ground in the application when the standby RAM feature is not used.  
30  
V
is required to be between 4.5 V and 5.5 V to read the internal Temperature Sensor and Bandgap Reference.  
DD_HV_ADV_S  
31 SAR ADC only. SDADC minimum is 4.5 V.  
32 The ADC is functional up to 5.9V with no reliability issues, but performance is not guaranteed.  
33 When the LVD/HVDs are disabled, the HV ADC supply (VDD_HV_ADV) must be above 3.182 V.  
34 For supply voltages between 3.0 V and 4.0 V there is no guaranteed precision of ADC (accuracy/linearity). ADCs recover to  
a fully functional state when the voltage rises above 4.0 V.  
35  
V
must be between 4.5 V and 5.5 V for accurate reading of the device Temperature Sensor.  
DD_HV_ADR_S  
36 Full device lifetime without performance degradation  
37 I/O and analog input specifications are only valid if the injection current on adjacent pins is within these limits. See the  
Absolute maximum ratings table for maximum input current for reliability requirements.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
25  
Electrical characteristics  
38 The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pin is above  
the supply rail, current is injected through the clamp diode to the supply rail. For external RC network calculation, assume  
typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature.  
39 Sum of all controller pins (including both digital and analog) must not exceed 200 mA. A VDD_HV_IO power segment is defined  
as one or more GPIO pins located between two VDD_HV_IO supply pins.  
1
Table 9. Emulation (buddy) device operating conditions  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Frequency  
SR Standard JTAG 1149.1/1149.7 frequency  
SR High-speed debug frequency  
SR Data trace frequency  
50  
MHz  
320 MHz  
1250 MHz  
Temperature  
TJ_BD  
SR Device junction operating temperature  
range  
–40.0  
–40.0  
150.0  
125.0  
°C  
°C  
TA _BD  
SR Ambient operating temperature range  
Voltage  
VDD_LV_BD SR Buddy core supply voltage  
1.2  
3.0  
1.365  
5.5  
V
V
VDD_HV_IO_BD SR Buddy I/O supply voltage  
VRAMP_LV_BD SR Buddy slew rate on core power supply pins  
VRAMP_HV_BD SR Buddy slew rate on HV power supply pins  
100 V/ms  
100 V/ms  
1
The ranges in this table are design targets and actual data may vary in the given range.  
3.5  
DC electrical specifications  
The following table describes the DC electrical specifications.  
Table 10. DC electrical specifications  
1
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
IDD_LV  
CC  
CC  
CC  
Maximum operating  
TJ = 150 oC  
1140  
mA  
mA  
mA  
current on the VDD_LV VDD_LV = 1.325 V  
supply2  
fMAX  
IDDAPP_LV  
Application use case  
TJ = 150 °C  
950  
40  
operating current on the VDD_LV = 1.325 V  
VDD_LV supply3  
fMAX  
IDD_LV_PE  
Operating current on  
the VDD_LV supply for  
flash program/erase  
TJ = 150 oC  
MPC5777M Microcontroller Data Sheet, Rev. 6  
26  
NXP Semiconductors  
Electrical characteristics  
1
Table 10. DC electrical specifications (continued)  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
IDD_HV_PMC  
CC  
Operating current on  
the VDD_HV_PMC  
supply4,5  
Flash read  
10  
40  
mA  
Flash P/E  
PMC only  
256  
7
IDD_MAIN_CORE_AC  
CC  
CC  
Main Core 0/1 dynamic 300 MHz  
operating current  
115  
mA  
mA  
IDD_CHKR_CORE_AC  
Checker Core 0  
dynamic operating  
current  
300 MHz  
80  
IDD_HSM_AC  
CC  
CC  
HSM platform dynamic 100 MHz  
operating current  
20  
mA  
µA  
IDDSTBY_RAM  
64 KB RAM Standby  
Leakage Current  
(RAM not  
VDDSTBY @1.1 V  
to 5.5 V, TJ =  
150 °C  
350  
operational)8,9,10,11  
CC  
CC  
CC  
CC  
CC  
V
DDSTBY @1.1 V  
60  
100  
50  
to 5.5 V, TA =  
40 °C  
V
DDSTBY @1.1 V  
to 5.5 V, TA =  
85 °C  
IDDSTBY_REG  
64 KB RAM Standby  
Leakage Current12  
VDDSTBY @1.3 V  
to 5.5 V, TA =  
125 °C  
µA  
mA  
mA  
IDD_LV_BD  
BD Debug/Emulation  
low voltage supply  
operating current13  
TJ = 150 °C  
VDD_LV_BD  
1.32 V  
290  
130  
=
IDD_HV_IO_BD  
Debug/Emulation high TJ = 150 °C  
voltage supply  
operating current  
(Aurora +  
JTAGM/LFAST)  
IDD_BD_STBY  
CC  
CC  
CC  
CC  
BD Debug/Emulation  
low voltage supply  
standby current14,15  
VDD_LV_BD  
1.32 V,  
TJ = 150 °C  
=
230  
5
mA  
VDD_LV_BD  
1.32 V,  
TJ = 55 °C  
=
ISPIKE  
Maximum short term  
current spike16  
< 20 µs  
observation  
window  
90  
20  
mA  
%
dI  
Current difference ratio 20 µs  
to average current  
observation  
window  
(dI/avg(I))17  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
27  
Electrical characteristics  
1
Table 10. DC electrical specifications (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
18  
ISR  
CC  
CC  
CC  
Current variation during See footnote19  
power up/down  
90  
mA  
µA  
µA  
IBG  
Bandgap reference  
current consumption  
600  
IDDOFF  
Power-off current on  
high voltage supply  
rails20  
VDD_HV = 2.5 V  
100  
VSTBY_BO  
CC  
CC  
Standby RAM brownout  
flag trip point voltage  
0.921  
V
V
VDD_LV_STBY_SW  
Standby RAM switch  
VDD_LV voltage  
threshold  
0.93  
VREF_BG_T  
VREF_BG_TC  
VREF_BG_LR  
CC  
CC  
CC  
Bandgap trimmed  
reference voltage  
TJ = 40 °C to  
150 °C  
1.200  
1.237  
50  
V
VDD_HV_ADV  
5 V ± 10%  
=
Bandgap temperature TJ = 40 °C to  
ppm/°  
C
coefficient22  
150 °C  
VDD_HV_ADV  
5 V  
=
=
=
Bandgap line  
regulation22  
TJ = 40 °C  
VDD_HV_ADV  
5 V ± 10%  
8000 ppm/V  
4000  
TJ = 150 °C  
VDD_HV_ADV  
5 V ± 10%  
1
All parameters in this data sheet are valid for operation within an operating range of -40° C TJ150 °C except where  
otherwise noted  
2
fMAX as specified per IP. Excludes flash P/E and HSM dynamic current. Measured on an application specific pattern.  
Calculation of total current for the device, all rails, is done by adding the applicable dynamic currents to the IDD_LV value  
for the core supply, and summing the currents based on use case for the 5 V blocks, for which current consumption values  
are defined in later sections of the DC electrical specification.  
3
4
fMAX as specified per IP. Excludes flash P/E and HSM dynamic current. Measured on an application specific pattern.  
VDD_HV_PMC only available in the 416 BGA package. PMC supply is shorted to VDD_HV_IO_MAIN in the 512 BGA, with an  
external bypass capacitor connected to the VDD_HV_PMC_BYP ball. The flash read and P/E current, and PMC current apply  
to VDD_HV_IO_MAIN for the 512 BGA.  
5
6
The flash read and flash P/E currents are mutually exclusive, and are not cumulative.  
This includes PMC consumption, LFAST PLL regulator current, and Nwell bias regulator current. If the VDD_LV auxiliary  
regulator is enabled, the PMC supply may see short term (10 µs) spikes of up to 150 mA depending on transient current  
conditions from use case of the device. The auxiliary regulator can be disabled at power-up in the user DCF clients in the  
flash memory.  
7
8
There is an additional 25 mA when FERS = 1 to enable the fast erase time of the flash memory.  
Data is retained for full TJ range of -40 °C to 150 °C. RAM supply switch to the standby regulator occurs when the VDD_LV  
supply falls below 0.95V.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
28  
NXP Semiconductors  
Electrical characteristics  
9
VDDSTBY may be supplied with a non-regulated power supply, but the absolute maximum voltage on VDDSTBY given in  
the absolute maximum ratings table must be observed.  
10 Standby current is reduced by a factor of two from TJ=150 °C, for approximately every ~20 °C drop in operating  
temperature.  
11 The maximum value for IDDSTBY_ON is also valid when switching from the core supply to the standby supply, and when  
powering up the device and switching the RAM supply back to VDD_LV  
.
12 The standby RAM regulator current is present on the VDDSTBY pin whenever a voltage is applied to the pin. This also  
applies to normal operation where the RAM is powered by the VDD_LV supply. Connecting the VDDSTBY pin to ground  
when not using the standby RAM feature will remove the leakage current on the VDDSTBY pin.  
13 If Aurora and JTAGM/LFAST not used, VDD_LV_BD current is reduced by ~20mA.  
14 Applies to 2MB calibration RAM in the BD.  
15 Buddy device leakage dependency on temperature can be estimated by dividing the 150 °C leakage by two for each  
temperature drop of ~20 °C.  
16 Current spike may occur during normal operation that are above average current, valid for IDDAPP and its conditions given  
in Table 10 (DC electrical specifications). Internal schemes must be used (eg frequency ramping, feature enable) to  
ensure that incremental demands are made on the external power supply. An internal fast regulator providing ~40mA peak  
current within 1us to filter any core power supply droops is available on the device. Assumption is minimum 13.3 µF (20 µF  
typical) capacitance on the core supply.]  
17 Moving window, valid for IDDAPP and its conditions given in Table 10 (DC electrical specifications), with a maximum of  
90 mA for the worst case application  
18 This specification is the maximum value and is a boundary for the dl specification.  
19 Condition1: For power on period from 0 V up to normal operation with reset asserted. Condition 2: From reset asserted  
until PLL running free. Condition 3: Increasing PLL from free frequency to full frequency. Condition 4: reverse order for  
power down to 0 V.  
20  
I
is the minimum guaranteed consumption of the device during power-up. It can be used to correctly size power-off  
DDOFF  
ballast in case of current injection during power-off state.Power up/down current transients can be limited by controlling  
the clock ramp rates with the Progressive Clock Frequency Switching block on the device.  
21  
V
is the maximum voltage that sets the standby RAM brown-out flag in the device logic. The minimum voltage for  
STBY_BO  
RAM data retention is guaranteed to always be less than the VSTBY_BO maximum value.  
22 The temperature coefficient and line regulation specifications are used to calculate the reference voltage drift at an  
operating point within the specified voltage and temperature operating conditions.  
3.6  
I/O pad specification  
The following table describes the different pad type configurations.  
Table 11. I/O pad specification descriptions  
Pad type  
Description  
Weak configuration  
Provides a good compromise between transition time and low electromagnetic emission.  
Pad impedance is centered around 800   
Medium configuration  
Strong configuration  
Provides transition fast enough for the serial communication channels with controlled  
current to reduce electromagnetic emission.  
Pad impedance is centered around 200   
Provides fast transition speed; used for fast interface.  
Pad impedance is centered around 50   
Very strong configuration Provides maximum speed and controlled symmetric behavior for rise and fall transition.  
Used for fast interface including Ethernet, FlexRay, and the EBI data bus interfaces  
requiring fine control of rising/falling edge jitter.  
Pad impedance is centered around 40   
EBI configuration  
Provides necessary speed for fast external memory interfaces on the EBI address and  
control signals. Drive strength is matched to four selectable loads.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
29  
Electrical characteristics  
Pad type  
Table 11. I/O pad specification descriptions (continued)  
Description  
Differential configuration A few pads provide differential capability providing very fast interface together with good  
EMC performances.  
Input only pads  
These low input leakage pads are associated with the ADC channels.  
NOTE  
Each I/O pin on the device supports specific drive configurations. See the signal description  
table in the device reference manual for the available drive configurations for each I/O pin.  
The device supports both 3.3 V and 5 V nominal I/O voltages. In order to use 3.3 V on the  
V
physical I/O segment, the HV supply low voltage monitor (V  
)
DD_HV_IO_MAIN0  
LVD400  
must be disabled by DCF client. All other physical I/O segments are unaffected by the  
LVD400.  
3.6.1  
I/O input DC characteristics  
Table 12 provides input DC electrical characteristics as described in Figure 7.  
V
IN  
V
DD  
V
IH  
V
HYS  
V
IL  
V
INTERNAL  
(SIUL register)  
Figure 7. I/O input DC electrical characteristics definition  
Table 12. I/O input DC electrical characteristics  
Value  
Typ  
Symbol  
Parameter  
Conditions1  
Unit  
Min  
Max  
TTL  
VIHTTL  
SR Input high level TTL  
SR Input low level TTL  
4.5 V < VDD_HV_IO < 5.5 V6  
2
VDD_HV_IO  
+ 0.3  
V
VILTTL  
4.5 V < VDD_HV_IO < 5.5 V6  
4.5 V < VDD_HV_IO < 5.5 V6  
–0.3  
0.8  
VHYSTTL — Input hysteresis TTL  
0.275  
MPC5777M Microcontroller Data Sheet, Rev. 6  
30  
NXP Semiconductors  
Electrical characteristics  
Table 12. I/O input DC electrical characteristics (continued)  
Value  
Symbol  
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VDRFTTTL — Input VIL/VIH temperature  
drift TTL  
100  
mV  
AUTOMOTIVE  
2
VIHAUT  
SR Input high level  
AUTOMOTIVE  
4.5 V < VDD_HV_IO < 5.5 V  
4.5 V < VDD_HV_IO < 5.5 V  
4.5 V < VDD_HV_IO < 5.5 V  
4.5 V < VDD_HV_IO < 5.5 V  
3.8  
–0.3  
0.4  
VDD_HV_IO  
+ 0.3  
V
V
3
VILAUT  
SR Input low level  
AUTOMOTIVE  
2.2  
4
VHYSAUT  
— Input hysteresis  
AUTOMOTIVE  
V
VDRFTAUT — Input VIL/VIH temperature  
drift  
1005  
mV  
CMOS/EBI  
VIHCMOS_H SR Input high level CMOS  
3.0 V < VDD_HV_IO < 3.6 V  
4.5 V < VDD_HV_IO < 5.5 V  
3.0 V < VDD_HV_IO < 3.6 V  
4.5 V < VDD_HV_IO < 5.5 V  
3.0 V < VDD_HV_IO < 3.6 V  
4.5 V < VDD_HV_IO < 5.5 V  
3.0 V < VDD_HV_IO < 3.6 V  
4.5 V < VDD_HV_IO < 5.5 V  
3.0 V < VDD_HV_IO < 3.6 V  
4.5 V < VDD_HV_IO < 5.5 V7  
3.0 V < VDD_HV_IO < 3.6 V  
4.5 V < VDD_HV_IO < 5.5 V  
0.70 *  
VDD_HV_IO  
VDD_HV_IO  
+ 0.3  
V
V
6
(with hysteresis)  
6
VIHCMOS SR Input high level CMOS  
0.6 *  
VDD_HV_IO  
VDD_HV_IO  
+ 0.3  
(without hysteresis)  
6
VILCMOS_H SR Input low level CMOS  
–0.3  
–0.3  
0.35 *  
VDD_HV_IO  
V
(with hysteresis)  
6
VILCMOS SR Input low level CMOS  
0.4 *  
VDD_HV_IO  
V
(without hysteresis)  
VHYSCMOS — Input hysteresis CMOS  
0.1 *  
VDD_HV_IO  
V
VDRFTCMOS — Input VIL/VIH temperature  
drift CMOS  
1005  
mV  
INPUT CHARACTERISTICS8  
ILKG  
CC Digital input leakage  
4.5 V < VDD_HV < 5.5 V  
VSS_HV < VIN < VDD_HV  
TJ = 150 °C  
750  
750  
nA  
nA  
pF  
ILKG_EBI CC Digital input leakage for 4.5 V < VDD_HV < 5.5 V  
EBI pad  
VSS_HV < VIN < VDD_HV  
TJ = 150 °  
CIN  
CC Digital input capacitance  
GPIO input pins  
EBI input pins  
7
7
1
During power up operation, the minimum required voltage to come out of reset state is determined by the VPORUP_HV  
monitor, which is defined in the voltage monitor electrical characteristics table. Note that the VPORUP_HV monitor is  
connected to the VDD_HV_IO_MAIN0 physical I/O segment.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
31  
Electrical characteristics  
2
A good approximation for the variation of the minimum value with supply is given by formula  
V
IHAUT = 0.69 × VDD_HV_IO.  
A good approximation for the variation of the maximum value with supply is given by formula  
ILAUT = 0.49 × VDD_HV_IO.  
A good approximation of the variation of the minimum value with supply is given by formula  
HYSAUT = 0.11 × VDD_HV_IO.  
3
4
5
6
V
V
In a 1 ms period, assuming stable voltage and a temperature variation of ±30 °C, VIL/VIH shift is within ±50 mV. For  
SENT requirement refer to NOTE on page 41.  
Only for VDD_HV_IO_JTAG and VDD_HV_IO_FLEX power segment. The TTL threshold are controlled by the VSIO bit.  
VSIO[VSIO_xx] = 0 in the range 3.0 V < VDD_HV_IO < 4.0 V, VSIO[VSIO_xx] = 1 in the range  
4.5 V < VDD_HV_IO < 5.5 V.  
7
8
Only for VDD_HV_IO_JTAG and VDD_HV_IO_FLEX power segment.  
For LFAST, microsecond bus and LVDS input characteristics, refer to dedicated communication module chapters.  
Table 13 provides weak pull figures. Both pull-up and pull-down current specifications are provided.  
Table 13. I/O pull-up/pull-down DC electrical characteristics  
Value  
Symbol  
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
IWPU  
CC Weak pull-up current VIN = 0 V  
absolute value2 VDD_POR3 < VDD_HV_IO < 3.0 V4,5  
10.6 * VDD_HV – 10.6  
µA  
V
IN > VIL = 1.1 V (TTL)  
10  
25  
23  
40  
34  
130  
4.5 V < VDD< 5.5 V  
VIN = 0.75*VDD_HV_IO (AUTO)  
3.0 V < VDD_HV_IO < 3.6 V  
VIN = 0.35* VDD_HV_IO (AUTO)  
3.0 V < VDD_HV_IO < 3.6 V  
70  
VIN = 0.35* VDD_HV_IO (CMOS)  
80  
3.0 V < VDD_HV_IO < 3.6 V  
VIN = 0.69* VDD_HV_IO (AUTO)  
4.5 V < VDD_HV_IO < 5.5 V  
VIN = 0.49* VDD_HV_IO (AUTO)  
4.5 V < VDD_HV_IO < 5.5 V  
82  
VIN = 0.35* VDD_HV_IO (CMOS)  
120  
62  
4.5 V < VDD_HV_IO < 5.5 V  
RWPU CC Weak pull-up  
resistance  
k  
MPC5777M Microcontroller Data Sheet, Rev. 6  
32  
NXP Semiconductors  
Electrical characteristics  
Table 13. I/O pull-up/pull-down DC electrical characteristics (continued)  
Value  
Symbol  
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
IWPD  
CC Weak pull-down  
VIN < VIL = 0.9 V (TTL)  
16  
µA  
current absolute value 4.5 V < VDD < 5.5 V  
V
IN = 0.75* VDD_HV_IO (AUTO)  
19  
25  
40  
40  
30  
92  
3.0 V < VDD_HV_IO < 3.6 V  
VIN = 0.35* VDD_HV_IO (AUTO)  
3.0 V < VDD_HV_IO < 3.6 V  
VIN = 0.65* VDD_HV_IO (CMOS)  
3.0 V < VDD_HV_IO < 3.6 V  
80  
VIN = 0.69* VDD_HV_IO (AUTO)  
130  
4.5 V < VDD_HV_IO < 5.5 V  
VIN = 0.49* VDD_HV_IO (AUTO)  
4.5 V < VDD_HV_IO < 5.5 V  
VIN = 0.65* VDD_HV_IO (CMOS)  
4.5 V < VDD_HV_IO < 5.5 V  
120  
55  
RWPD CC Weak pull-down  
resistance  
k  
1
During power up operation, the minimum required voltage to come out of reset state is determined by the  
VPORUP_HV monitor, which is defined in the voltage monitor electrical characteristics table. Note that the VPORUP_HV  
monitor is connected to the VDD_HV_IO_MAIN0 physical I/O segment.  
2
3
Weak pull-up/down is enabled within tWK_PU = 1 µs after internal/external reset has been asserted. Output voltage  
will depend on the amount of capacitance connected to the pin.  
VDD_POR is the minimum VDD_HV_IO supply voltage for the activation of the device pull-up/down, and is given in the  
Reset electrical characteristics table of Section Reset pad (PORST, ESR0) electrical characteristics in this Data  
Sheet.  
4
5
VDD_POR is defined in the Reset electrical characteristics table of Section Reset pad (PORST, ESR0) electrical  
characteristics in this Data Sheet.  
Weak pull-up behavior during power-up. Operational with VDD_HV_IO > VDD_POR  
.
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
33  
Electrical characteristics  
t
t
WK_PU  
WK_PU  
V
DD_HV_IO  
V
DD_POR  
RESET  
(INTERNAL)  
pull-up  
enabled  
YES  
NO  
(1)  
PAD  
(1)  
(1)  
POWER-UP  
Application defined  
RESET  
Application defined  
POWER-DOWN  
1. Actual PAD slopes will depend on external capacitances and VDD_HV_IO supply.  
Figure 8. Weak pull-up electrical characteristics definition  
3.6.2  
I/O output DC characteristics  
The figure below provides description of output DC electrical characteristics.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
34  
NXP Semiconductors  
Electrical characteristics  
V
INTERNAL  
(SIUL register)  
V
HYS  
t
PD50-50  
t
PD50-50  
t
V
SKEW20-80  
out  
90%  
80%  
50%  
20%  
10%  
t
R20-80  
t
F20-80  
t
R10-90  
t
F10-90  
t
t
(max) = MAX(t  
;t  
)
TR  
TR  
R10-90 F10-90  
t
t
(max) = MAX(t  
;t  
)
TR20-80  
R20-80 F20-80  
(min) = MIN(t  
;t  
)
R10-90 F10-90  
(min) = MIN(t  
;t  
)
TR20-80  
R20-80 F20-80  
t
= t  
-tF20-80  
SKEW20-80  
R20-80  
Figure 9. I/O output DC electrical characteristics definition  
The following tables provide DC characteristics for bidirectional pads:  
Table 14 provides output driver characteristics for I/O pads when in WEAK configuration.  
Table 15 provides output driver characteristics for I/O pads when in MEDIUM configuration.  
Table 16 provides output driver characteristics for I/O pads when in STRONG configuration.  
Table 17 provides output driver characteristics for I/O pads when in VERY STRONG configuration.  
Table 18 provides output driver characteristics for the EBI pads.  
NOTE  
Driver configuration is controlled by SIUL2_MSCRn registers. It is available within two  
PBRIDGEA_CLK clock cycles after the associated SIUL2_MSCRn bits have been written.  
Table 14 shows the WEAK configuration output buffer electrical characteristics.  
Table 14. WEAK configuration output buffer electrical characteristics  
Value  
Symbol  
Parameter  
Conditions1,2  
Unit  
Min  
Typ  
Max  
ROH_W CC PMOS output impedance  
weak configuration  
4.5 V < VDD_HV_IO < 5.5 V  
Push pull, IOH < 0.5 mA  
520  
800  
1052  
ROL_W CC NMOS output impedance  
weak configuration  
4.5 V < VDD_HV_IO < 5.5 V  
Push pull, IOL < 0.5 mA  
520  
800  
1052  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
35  
Electrical characteristics  
Table 14. WEAK configuration output buffer electrical characteristics (continued)  
Value  
Typ  
Symbol  
Parameter  
Conditions1,2  
CL = 25 pF3  
Unit  
Min  
Max  
fMAX_W CC Output frequency  
weak configuration  
40  
2
1
MHz  
CL = 50 pF3  
CL = 200 pF3  
0.25  
120  
tTR_W CC Transition time output pin  
weak configuration4  
CL = 25 pF,  
4.5 V < VDD_HV_IO < 5.5 V  
ns  
CL = 50 pF,  
4.5 V < VDD_HV_IO < 5.5 V  
80  
320  
50  
240  
820  
150  
300  
1050  
25  
CL = 200 pF,  
4.5 V < VDD_HV_IO < 5.5 V  
CL = 25 pF,  
3.0 V < VDD_HV_IO < 3.6 V5  
CL = 50 pF,  
100  
350  
3.0 V < VDD_HV_IO < 3.6 V5  
CL = 200 pF,  
3.0 V < VDD_HV_IO < 3.6 V5  
tSKEW_WCC Difference between rise and  
%
fall time  
IDCMAX_W CC Maximum DC current  
4
mA  
1
All VDD_HV_IO conditions for 4.5V to 5.5V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V  
are valid for VSIO[VSIO_xx] = 0  
2
During power up operation, the minimum required voltage to come out of reset state is determined by the  
VPORUP_HV monitor, which is defined in the voltage monitor electrical characteristics table. Note that the  
VPORUP_HV monitor is connected to the VDD_HV_IO_MAIN0 physical I/O segment.  
3
4
CL is the sum of external capacitance. Device and package capacitances (CIN, defined in Table 12) are to be added  
to calculate total signal capacitance (CTOT = CL + CIN).  
Transition time maximum value is approximated by the following formula:  
0 pF < CL < 50 pF  
tTR_W(ns) = 22 ns + CL(pF) 4.4 ns/pF  
50 pF < CL < 200 pF tTR_W(ns) = 50 ns + CL(pF) 3.85 ns/pF  
Only for VDD_HV_IO_JTAG segment when VSIO[VSIO_IJ] = 0 or VDD_HV_IO_FLEX segment when VSIO[VSIO_IF] = 0.  
5
Table 15 shows the MEDIUM configuration output buffer electrical characteristics.  
Table 15. MEDIUM configuration output buffer electrical characteristics  
Value  
Symbol  
Parameter  
Conditions1,2  
Unit  
Min  
Typ  
Max  
ROH_M CC PMOS output impedance  
MEDIUM configuration  
4.5 V < VDD_HV_IO < 5.5 V  
Push pull, IOH < 2 mA  
135  
200  
260  
ROL_M CC NMOS output impedance  
MEDIUM configuration  
4.5 V < VDD_HV_IO < 5.5 V  
Push pull, IOL < 2 mA  
135  
200  
260  
MPC5777M Microcontroller Data Sheet, Rev. 6  
36  
NXP Semiconductors  
Electrical characteristics  
Table 15. MEDIUM configuration output buffer electrical characteristics (continued)  
Value  
Typ  
Symbol  
Parameter  
Conditions1,2  
CL = 25 pF3  
Unit  
Min  
Max  
fMAX_M CC Output frequency  
MEDIUM configuration  
12  
6
MHz  
CL = 50 pF3  
CL = 200 pF3  
1.5  
4
tTPD50-50 CC 50-50 % Output pad  
VDD_HV_IO = 5 V +/- 10 %, CL  
= 25 pF  
21/17  
ns  
ns  
ns  
propagation delay time  
VDD_HV_IO = 5.0 V +/- 10 %,  
10  
20  
60  
12  
24  
70  
35/27  
30  
CL = 50 pF  
tTR_M  
CC Transition time output pin  
MEDIUM configuration5  
CL = 25 pF  
4.5 V < VDD_HV_IO < 5.5 V  
CL = 50 pF  
4.5 V < VDD_HV_IO < 5.5 V  
60  
CL = 200 pF  
4.5 V < VDD_HV_IO < 5.5 V  
200  
42  
CL = 25 pF,  
3.0 V < VDD_HV_IO < 3.6 V6  
CL = 50 pF,  
86  
3.0 V < VDD_HV_IO < 3.6 V6  
CL = 200 pF,  
300  
25  
3.0 V < VDD_HV_IO < 3.6 V6  
tSKEW_MCC Difference between rise and fall  
%
time  
IDCMAX_M CC Maximum DC current  
4
mA  
1
2
All VDD_HV_IO conditions for 4.5V to 5.5V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V  
are valid for VSIO[VSIO_xx] = 0  
During power up operation, the minimum required voltage to come out of reset state is determined by the  
VPORUP_HV monitor, which is defined in the voltage monitor electrical characteristics table. Note that the  
VPORUP_HV monitor is connected to the VDD_HV_IO_MAIN0 physical I/O segment.  
3
4
5
CL is the sum of external capacitance. Device and package capacitances (CIN, defined in Table 12) are to be added  
to calculate total signal capacitance (CTOT = CL + CIN).  
If two values are given for propagation delay, the first value is for rising edge signals and the second for falling  
edge signals.  
Transition time maximum value is approximated by the following formula:  
0 pF < CL < 50 pF  
tTR_M(ns) = 5.6 ns + CL(pF) 1.11 ns/pF  
50 pF < CL < 200 pF tTR_M(ns) = 13 ns + CL(pF) 0.96 ns/pF  
Only for VDD_HV_IO_JTAG segment when VSIO[VSIO_IJ] = 0 or VDD_HV_IO_FLEX segment when VSIO[VSIO_IF] = 0  
6
Table 16 shows the STRONG configuration output buffer electrical characteristics.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
37  
Electrical characteristics  
Table 16. STRONG configuration output buffer electrical characteristics  
Value  
Symbol  
Parameter  
Conditions1,2  
Unit  
Min  
Typ  
Max  
ROH_S CC PMOS output impedance  
STRONG configuration  
4.5 V < VDD_HV_IO < 5.5 V  
Push pull, IOH < 8 mA  
30  
50  
77  
ROL_S CC NMOS output impedance  
STRONG configuration  
4.5 V < VDD_HV_IO < 5.5 V  
Push pull, IOL < 8 mA  
30  
50  
77  
fMAX_S CC Output frequency  
STRONG configuration  
CL = 25 pF3  
CL = 50 pF3  
CL = 200 pF3  
40  
20  
5
MHz  
4
tTPD50-50 CC 50-50 % Output pad  
VDD_HV_IO = 5 V +/- 10 %, CL  
8/7  
ns  
ns  
ns  
propagation delay time  
= 25 pF  
VDD_HV_IO = 5.0 V +/- 10 %,  
3
11/9  
10  
16  
50  
15  
27  
83  
25  
10  
CL = 50 pF  
tTR_S  
CC Transition time output pin  
STRONG configuration5  
CL = 25 pF  
4.5 V < VDD_HV_IO < 5.5 V  
CL = 50 pF  
4.5 V < VDD_HV_IO < 5.5 V  
5
CL = 200 pF  
4.5 V < VDD_HV_IO < 5.5 V  
17  
4
CL = 25 pF,  
3.0 V < VDD_HV_IO < 3.6 V6  
CL = 50 pF,  
6
3.0 V < VDD_HV_IO < 3.6 V6  
CL = 200 pF,  
20  
3.0 V < VDD_HV_IO < 3.6 V6  
tSKEW_SCC Difference between rise and fall  
%
time  
IDCMAX_S CC Maximum DC current  
mA  
1
All VDD_HV_IO conditions for 4.5V to 5.5V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V  
are valid for VSIO[VSIO_xx] = 0  
2
During power up operation, the minimum required voltage to come out of reset state is determined by the  
VPORUP_HV monitor, which is defined in the voltage monitor electrical characteristics table. Note that the  
VPORUP_HV monitor is connected to the VDD_HV_IO_MAIN0 physical I/O segment.  
3
4
CL is the sum of external capacitance. Device and package capacitances (CIN, defined in Table 12) are to be  
added to calculate total signal capacitance (CTOT = CL + CIN).  
If two values are given for propagation delay, the first value is for rising edge signals and the second for falling  
edge signals.  
5
6
Transition time maximum value is approximated by the following formula: tTR_S(ns) = 4.5 ns + CL(pF) x 0.23 ns/pF.  
Only for VDD_HV_IO_JTAG segment when VSIO[VSIO_IJ] = 0 or VDD_HV_IO_FLEX segment when VSIO[VSIO_IF] = 0  
Table 17 shows the VERY STRONG configuration output buffer electrical characteristics.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
38  
NXP Semiconductors  
Electrical characteristics  
1
Table 17. VERY STRONG configuration output buffer electrical characteristics  
Value  
Symbol  
Parameter  
Conditions2,3  
Unit  
Min  
Typ  
Max  
ROH_V  
CC PMOS output impedance  
VDD_HV_IO = 5.0 V ± 10%,  
20  
40  
72  
VERY STRONG configuration VSIO[VSIO_xx] = 1  
IOH = 8 mA  
V
DD_HV_IO = 3.3 V ± 10%,  
30  
20  
30  
50  
40  
50  
90  
72  
90  
VSIO[VSIO_xx] = 0,  
I
OH = 7 mA4  
ROL_V  
CC NMOS output impedance  
VERY STRONG configuration VSIO[VSIO_xx] = 1  
OL = 8 mA  
VDD_HV_IO = 5.0 V ± 10%,  
I
V
DD_HV_IO = 3.3 V ± 10%,  
VSIO[VSIO_xx] = 0,  
OL = 7 mA4  
I
fMAX_V  
CC Output frequency  
VDD_HV_IO = 5.0 V ± 10%,  
1
50  
50  
MHz  
VERY STRONG configuration CL = 25 pF5  
VSIO[VSIO_xx] = 1,  
CL = 15 pF4,5  
6
tTPD50-50 CC 50-50 % Output pad  
VDD_HV_IO = 5 V +/- 10 %, CL =  
25 pF  
5.5  
6.5  
ns  
ns  
propagation delay time  
VDD_HV_IO = 5.0 V +/- 10 %, CL  
= 50 pF  
VDD_HV_IO = 3.3 V +/- 10 %, CL  
= 15 pF  
7.3/7.6 ns  
tTR_V  
CC 10–90% threshold transition VDD_HV_IO = 5.0 V ± 10%,  
5.3  
12  
45  
4
ns  
time output pin VERY  
STRONG configuration  
CL = 25 pF5  
V
DD_HV_IO = 5.0 V ± 10%,  
3
CL = 50 pF5  
VDD_HV_IO = 5.0 V ± 10%,  
CL = 200 pF5  
14  
0.8  
1
tTR20-80 CC 20–80% threshold transition VDD_HV_IO = 5.0 V ± 10%,  
ns  
time7 output pin VERY  
STRONG configuration  
CL = 25 pF5  
V
DD_HV_IO = 3.3 V ± 10%,  
5
CL = 15 pF5  
tTRTTL  
CC TTL threshold transition time8 VDD_HV_IO = 3.3 V ± 10%,  
1
5
ns  
ns  
for output pin in VERY  
STRONG configuration  
CL = 25 pF5  
tTR20-80 CC Sum of transition time  
20–80% output pin VERY  
VDD_HV_IO = 5.0 V ± 10%,  
CL = 25 pF  
0
9
9
1
STRONG configuration9  
V
DD_HV_IO = 3.3 V ± 10%,  
CL = 15 pF5  
tSKEW_V  
CC Difference between rise and VDD_HV_IO = 5.0 V ± 10%,  
fall time at 20–80%  
CL = 25 pF5  
ns  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
39  
Electrical characteristics  
1
Table 17. VERY STRONG configuration output buffer electrical characteristics (continued)  
Value  
Symbol  
Parameter  
Conditions2,3  
Unit  
Min  
Typ  
Max  
IDCMAX_VS CC Maximum DC current  
10  
mA  
1
2
Refer to FlexRay section for parameter dedicated to this interface.  
All VDD_HV_IO conditions for 4.5V to 5.5V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V  
are valid for VSIO[VSIO_xx] = 0.  
3
During power up operation, the minimum required voltage to come out of reset state is determined by the  
VPORUP_HV monitor, which is defined in the voltage monitor electrical characteristics table. Note that the  
V
PORUP_HV monitor is connected to the VDD_HV_IO_MAIN0 physical I/O segment.  
4
5
Only available on the VDD_HV_IO_JTAG, VDD_HV_IO_FLEXE, and VDD_HV_IO_FLEX segments.  
CL is the sum of external capacitance. Add device and package capacitances (CIN, defined in the I/O input DC  
electrical characteristics table in this Data Sheet) to calculate total signal capacitance (CTOT = CL + CIN).  
6
If two values are given for propagation delay, the first value is for rising edge signals and the second for falling  
edge signals.  
7
8
9
20–80% transition time as per FlexRay standard.  
TTL transition time as for Ethernet standard.  
For specification per Electrical Physical Layer Specification 3.0.1, see the dCCTxDRISE25+dCCTxDFALL25 (Sum of  
Rise and Fall time of TxD signal at the output pin) specification in TxD output characteristics table in Section TxD  
of this Data Sheet.  
Table 18 shows the EBI pad electrical specification.  
Table 18. EBI pad output electrical specification  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
EBI Mode Output Specifications1  
CDRV CC External Bus Load Capacitance MSCR[OERC] = b101  
MSCR[OERC] = b110  
10  
20  
30  
pF  
MSCR[OERC] = b111  
fMAX_EBI CC External Bus Maximum Operat- CDRV = 10/20/30 pF  
ing Frequency  
66.7 MHz  
tTR_EBI CC 10%–90% threshold transition CDRV= 10/20/30 pF  
time External Bus output pins  
0.9  
1.9  
3.0  
4.0  
ns  
ns  
tPD_EBI CC 50%–50% threshold propaga- CDRV = 10/20/30 pF  
tion delay time External Bus  
output pins  
tSKEW_EB CC Difference between rise and fall  
Itime  
25  
12  
%
IDCMAX_E CC Maximum DC current  
mA  
BI  
GPIO Mode Output Specifications - MSCR[OERC] = b100  
MPC5777M Microcontroller Data Sheet, Rev. 6  
40  
NXP Semiconductors  
Electrical characteristics  
Table 18. EBI pad output electrical specification (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
ROH_EBI_ CC PMOS output impedance  
4.5 V < VDD_HV_IO_EBI < 5.5 V  
Push pull, IOH < 2 mA  
100  
225  
400  
GPIO  
ROL_EBI_ CC NMOS output impedance  
4.5 V < VDD_HV_IO_EBI < 5.5 V  
Push pull, IOH < 2 mA  
100  
200  
400  
GPIO  
fMAX_EBI_ CC Output frequency  
CL = 25 pF2  
CL = 50 pF  
CL = 200 pF  
12  
6
MHz  
GPIO  
1.5  
4
IDCMAX_E CC Maximum DC current  
mA  
BI_GPIO  
1
2
All EBI mode specifications are valid for VDD_HV_IO_EBI = 3.3V +/- 10%.  
CL is the sum of the capacitance loading external to the device.  
3.7  
I/O pad current specification  
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V /V supply pair.  
DD SS  
Table 19 provides I/O consumption figures.  
In order to ensure device reliability, the average current of the I/O on a single segment remain below the I  
value given  
MAXSEG  
in the Table 6 (Absolute maximum ratings). Use the RMS current consumption values to calculate total segment current.  
In order to ensure device functionality, the sum of the dynamic and static currents of the I/O on a single segment should remain  
below the I  
value given in the Table 8 (Device operating conditions). Use the dynamic current consumption values to  
MAXSEG  
calculate total segment current.  
Pad mapping on each segment can be optimized using the pad usage information provided in the I/O Signal Description table.  
The sum of all pad usage ratios within a segment should remain below 100%.  
NOTE  
In order to maintain the required input thresholds for the SENT interface, the sum of all I/O  
pad output percent IR drop as defined in the I/O Signal Description table, must be below  
50 %. See the I/O Signal Description attachment.  
NOTE  
The MPC5777M I/O Signal Description and Input Multiplexing Tables are contained in a  
Microsoft Excel workbook file attached to this document. Locate the paperclip symbol on  
the left side of the PDF window, and click it. Double-click on the Excel file to open it and  
select the I/O Signal Description Table tab.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
41  
Electrical characteristics  
1
Table 19. I/O consumption  
Value  
Symbol  
Parameter  
Conditions2  
Unit  
Min Typ Max  
IRMS_W  
IRMS_M  
IRMS_S  
IRMS_V  
CC RMS I/O current for WEAK  
configuration  
CL = 25 pF, 2 MHz  
VDD = 5.0 V ± 10%  
1.1 mA  
CL = 50 pF, 1 MHz  
VDD = 5.0 V ± 10%  
1.1  
CL = 25 pF, 2 MHz  
0.6  
VDD = 3.3 V ± 10%  
CL = 50 pF, 1 MHz  
VDD = 3.3 V ± 10%  
0.6  
CC RMS I/O current for MEDIUM  
configuration  
CL = 25 pF, 12 MHz  
VDD = 5.0 V ± 10%  
4.7 mA  
4.8  
CL = 50 pF, 6 MHz  
VDD = 5.0 V ± 10%  
CL = 25 pF, 12 MHz  
VDD = 3.3 V ± 10%  
2.6  
CL = 50 pF, 6 MHz  
VDD = 3.3 V ± 10%  
2.7  
CC RMS I/O current for STRONG  
configuration  
CL = 25 pF, 50 MHz  
VDD = 5.0 V ± 10%  
19  
19  
10  
10  
22  
22  
11  
11  
9
mA  
mA  
mA  
CL = 50 pF, 25 MHz  
VDD = 5.0 V ± 10%  
CL = 25 pF, 50 MHz  
VDD = 3.3 V ± 10%  
CL = 50 pF, 25 MHz  
VDD = 3.3 V ± 10%  
CC RMS I/O current for VERY STRONG CL = 25 pF, 50 MHz,  
configuration  
VDD = 5.0V +/- 10%  
CL = 50 pF, 25 MHz,  
VDD = 5.0V ± 10%  
CL = 25 pF, 50 MHz,  
VDD = 3.3V ± 10%  
CL = 25 pF, 25 MHz,  
VDD = 3.3V ± 10%  
IRMS_EBI CC RMS I/O current for External Bus  
output pins  
CDRV = 6 pF, fEBI = 66.7 MHz,  
VDD_HV_IO_EBI = 3.3 V ± 10%  
CDRV = 12 pF, fEBI = 66.7 MHz,  
15  
27  
42  
VDD_HV_IO_EBI = 3.3 V ± 10%  
CDRV = 18 pF, fEBI = 66.7 MHz,  
VDD_HV_IO_EBI = 3.3 V ± 10%  
CDRV = 30 pF, fEBI = 66.7 MHz,  
VDD_HV_IO_EBI = 3.3 V ± 10%  
MPC5777M Microcontroller Data Sheet, Rev. 6  
42  
NXP Semiconductors  
Electrical characteristics  
1
Table 19. I/O consumption  
Value  
Unit  
Symbol  
Parameter  
Conditions2  
Min Typ Max  
3
IDYN_W  
CC Dynamic I/O current for WEAK  
configuration  
CL = 25 pF,  
VDD = 5.0 V ± 10%  
5.0 mA  
CL = 50 pF,  
5.1  
VDD = 5.0 V ± 10%  
CL = 25 pF,  
VDD = 3.3 V ± 10%  
2.2  
CL = 50 pF,  
VDD = 3.3 V ± 10%  
2.3  
IDYN_M  
CC Dynamic I/O current for MEDIUM  
configuration  
CL = 25 pF,  
15  
15.5  
7.0  
7.1  
50  
mA  
mA  
mA  
mA  
VDD = 5.0 V ± 10%  
CL = 50 pF,  
VDD = 5.0 V ± 10%  
CL = 25 pF,  
VDD = 3.3 V ± 10%  
CL = 50 pF,  
VDD = 3.3 V ± 10%  
IDYN_S  
CC Dynamic I/O current for STRONG  
configuration  
CL = 25 pF,  
VDD = 5.0 V ± 10%  
CL = 50 pF,  
VDD = 5.0 V ± 10%  
55  
CL = 25 pF,  
VDD = 3.3 V ± 10%  
22  
CL = 50 pF,  
VDD = 3.3 V ± 10%  
25  
IDYN_V  
CC Dynamic I/O current for VERY  
STRONG configuration  
CL = 25 pF,  
VDD = 5.0 V ± 10%  
60  
CL = 50 pF,  
64  
VDD = 5.0 V ± 10%  
CL = 25 pF,  
VDD = 3.3 V ± 10%  
26  
CL = 50 pF,  
VDD = 3.3 V ± 10%  
29  
4
IDYN_EBI  
CC Dynamic I/O current for External Bus CDRV = 10 pF, fEBI = 66.7 MHz,  
output pins DD_HV_IO_EBI = 3.3 V ± 10%  
30  
V
CDRV = 20 pF, fEBI = 66.7 MHz,  
50  
VDD_HV_IO_EBI = 3.3 V ± 10%  
CDRV = 30 pF, fEBI = 66.7 MHz,  
VDD_HV_IO_EBI = 3.3 V ± 10%  
80  
1
I/O current consumption specifications for the 4.5 V <= VDD_HV_IO <= 5.5 V range are valid for VSIO_[VSIO_xx] = 1,  
and VSIO[VSIO_xx] = 0 for 3.0 V <= VDD_HV_IO <= 3.6 V.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
43  
Electrical characteristics  
2
During power up operation, the minimum required voltage to come out of reset state is determined by the VPORUP_HV  
monitor, which is defined in the voltage monitor electrical characterstics table. Note that the VPORUP_HV monitor is  
connected to the VDD_HV_IO_MAIN0 physical I/O segment.  
3
4
Stated maximum values represent peak consumption that lasts only a few ns during I/O transition. When possible  
(timed output) it is recommended to delay transition between pads by few cycles to reduce noise and consumption.  
For IDYN_EBI_GPIO dynamic current for EBI GPIO mode use the IDYN_M values.  
3.8  
Reset pad (PORST, ESR0) electrical characteristics  
The device implements a dedicated bidirectional reset pin (PORST).  
NOTE  
PORST pin does not require active control. It is possible to implement an external pull-up  
to ensure correct reset exit sequence. Recommended value is 4.7 k.  
V
DD  
V
DDMIN  
V
DD_POR  
PORST  
V
IH  
V
IL  
PORST undriven.  
Device reset by  
internal power-on  
reset.  
device start-up phase  
PORST driven low by  
internal power-on reset.  
Device reset forced by  
external circuitry.  
Figure 10. Start-up reset requirements  
Figure 11 describes device behavior depending on supply signal on PORST:  
1. PORST low pulse amplitude is too low—it is filtered by input buffer hysteresis. Device remains in current state.  
2. PORST low pulse duration is too short—it is filtered by a low pass filter. Device remains in current state.  
3. PORST low pulse generates a reset:  
a) PORST low but initially filtered during at least W  
. Device remains initially in current state.  
FRST  
b) PORST potentially filtered until W  
. Device state is unknown: it may either be reset or remains in current  
NFRST  
state depending on other factors (temperature, voltage, device).  
c) PORST asserted for longer than W . Device is under reset.  
NFRST  
MPC5777M Microcontroller Data Sheet, Rev. 6  
44  
NXP Semiconductors  
Electrical characteristics  
VPORST, VESR0  
V
DD  
V
IH  
V
HYS  
V
IL  
internal  
reset  
filtered by  
hysteresis  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
3b  
1
2
3a  
3c  
Figure 11. Noise filtering on reset signal  
Table 20. Reset electrical characteristics  
Value1  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
VIH  
VIL  
SR Input high level TTL  
(Schmitt trigger)  
2.2  
VDD_HV_IO  
+0.4  
V
V
SR Input low level TTL  
(Schmitt trigger)  
–0.4  
300  
0.8  
VHYS  
CC Input hysteresis TTL  
(Schmitt trigger)  
mV  
V
VDD_POR CC Minimum supply for strong  
pull-down activation  
1.2  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
45  
Electrical characteristics  
Table 20. Reset electrical characteristics (continued)  
Value1  
Symbol  
Parameter  
CC Strong pull-down current2  
Conditions  
Unit  
Min  
Typ  
Max  
IOL_R  
Device under power-on reset  
0.2  
mA  
VDD_HV_IO = VDD_POR  
,
VOL = 0.35 * VDD_HV_IO  
Device under power-on reset  
3.0 V < VDD_HV_IO < 5.5 V,  
VOL > 0.9 V  
11  
mA  
µA  
|IWPU  
|
CC Weak pull-up current absolute ESR0 pin  
23  
82  
value  
VIN = 0.69 * VDD_HV_IO  
ESR0 pin  
VIN = 0.49 * VDD_HV_IO  
|IWPD  
|
CC Weak pull-down current  
absolute value  
PORST pin  
VIN = 0.69 * VDD_HV_IO  
130  
µA  
PORST pin  
VIN = 0.49 * VDD_HV_IO  
40  
WFRST  
SR PORST and ESR0 input  
filtered pulse  
500  
ns  
ns  
WNFRST  
SR PORST and ESR0 input not  
filtered pulse  
2000  
WFNMI  
SR ESR1 input filtered pulse  
15  
ns  
ns  
WNFNMI  
SR ESR1 input not filtered pulse  
400  
1
2
An external 4.7 KOhm pull-up resistor is recommended to be used with the PORST and ESR0 pins for fast negation  
of the signals.  
IOL_R applies to both PORST and ESR0: Strong pull-down is active on PHASE0 for PORST. Strong pull-down is active  
on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for ESR0.  
NOTE  
PORST can optionally be connected to an external power-on supply circuitry.  
NOTE  
No restrictions exist on reset signal slew rate apart from absolute maximum rating  
compliance.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
46  
NXP Semiconductors  
Electrical characteristics  
3.9  
Oscillator and FMPLL  
The Reference PLL (PLL0) and the System PLL (PLL1) generate the system and auxiliary clocks from the main oscillator  
driver.  
PLL0_PHI  
RCOSC  
PLL0  
PLL0_PHI1  
XOSC  
PLL1_PHI  
PLL1  
Figure 12. PLL integration  
Table 21. PLL0 electrical characteristics  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
fPLL0IN  
PLL0IN  
fPLL0VCO  
SR  
SR  
CC  
CC  
PLL0 input clock1,2  
8
44  
60  
MHz  
%
PLL0 input clock duty cycle2  
40  
PLL0 VCO frequency  
600  
35  
1250  
400  
MHz  
MHz  
fPLL0VCOFR  
PLL0 VCO free running  
frequency  
fPLL0PHI  
tPLL0LOCK  
CC  
CC  
CC  
PLL0 output frequency  
4.762  
400  
110  
200  
MHz  
µs  
PLL0 lock time  
PLL0PHISPJ  
|
PLL0_PHI single period jitter3  
fPLL0IN = 20 MHz (resonator)  
f
PLL0PHI = 400 MHz,  
ps  
6-sigma  
PLL0PHI1SPJ  
|
CC  
PLL0_PHI1 single period jitter3 fPLL0PHI1 = 40 MHz,  
3004  
ps  
6-sigma  
fPLL0IN = 20 MHz (resonator)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
47  
Electrical characteristics  
Table 21. PLL0 electrical characteristics (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
PLL0LTJ  
CC  
PLL0 output long term jitter3,4 10 periods  
±250  
ps  
fPLL0IN = 20 MHz (resonator),  
VCO frequency = 800 MHz  
accumulated jitter  
(80 MHz equivalent  
frequency), 6-sigma  
pk-pk  
16 periods  
±300  
ps  
accumulated jitter  
(50 MHz equivalent  
frequency), 6-sigma  
pk-pk  
long term jitter  
(< 1 MHz equivalent  
frequency), 6-sigma  
pk-pk)  
±500  
5
ps  
IPLL0  
CC  
PLL0 consumption  
FINE LOCK state  
mA  
1
fPLL0IN frequency must be scaled down using PLLDIG_PLL0DV[PREDIV] to ensure PFD input signal is in the range 8  
MHz–20 MHz.  
2
3
4
PLL0IN clock retrieved directly from either internal RCOSC or external XOSC clock. Input characteristics are granted when  
using internal RCOSC or external oscillator is used in functional mode.  
PLL jitter is guaranteed when transient currents on the VDDLV supply are within the ISPIKE parameter value in Table 10 (DC  
electrical specifications).  
Noise on the VDD_LV supply with frequency content below 40 KHz and above 50 MHz is filtered by the PLL. Noise on the  
VDD_LV supply with frequency content in the range of 40 KHz – 50 MHz must be filtered externally to the device.  
Table 22. PLL1 electrical characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
fPLL1IN  
PLL1IN  
fPLL1VCO  
SR  
SR  
CC  
CC  
PLL1 input clock1  
38  
35  
78  
65  
MHz  
%
PLL1 input clock duty cycle1  
PLL1 VCO frequency  
600  
35  
1250  
400  
MHz  
MHz  
fPLL1VCOFR  
PLL1 VCO free running  
frequency  
fPLL1PHI  
tPLL1LOCK  
fPLL1MOD  
CC  
CC  
CC  
CC  
PLL1 output clock PHI  
PLL1 lock time  
4.762  
600  
100  
250  
2
MHz  
µs  
PLL1 modulation frequency  
kHz  
%
PLL1MOD  
|
PLL1 modulation depth (when Center spread  
enabled)  
0.25  
0.5  
Down spread  
4
%
IPLL1  
CC  
PLL1 consumption  
FINE LOCK state  
6
mA  
1
PLL1IN clock retrieved directly from either internal PLL0 or external XOSC clock. Input characteristics are granted when  
using internal PLL0 or external oscillator is used in functional mode.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
48  
NXP Semiconductors  
Electrical characteristics  
1
Table 23. External Oscillator electrical specifications  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min  
Max  
fXTAL  
CC  
Crystal Frequency Range2  
4
>8  
>20  
8
20  
40  
5
MHz  
TJ = 150 °C  
tcst  
trec  
CC  
CC  
CC  
Crystal start-up time 3,4  
Crystal recovery time5  
ms  
ms  
V
0.5  
VIHEXT  
EXTAL input high voltage6,7  
(External Clock Input)  
V
REF = 0.28 * VDD_HV_IO_JTAG VREF  
+
0.6  
VILEXT  
CS_xtal  
VEXTAL  
CC  
CC  
CC  
EXTAL input low voltage6,7  
(External Clock Input)  
VREF = 0.28 * VDD_HV_IO_JTAG  
BGA416, BGA512  
8
VREF - 0.6  
8.6  
V
pF  
V
Total on-chip stray capacitance  
on XTAL/EXTAL pins8  
Oscillation Amplitude on the  
EXTAL pin after startup9  
TJ = –40 °C to 150 °C  
0.5  
1.6  
VHYS  
IXTAL  
CC  
CC  
Comparator Hysteresis  
XTAL current13,10  
TJ = –40 °C to 150 °C  
TJ = –40 °C to 150 °C  
0.1  
1.0  
14  
V
mA  
1
2
3
4
5
All oscillator specifications are valid for VDD_HV_IO_JTAG = 3.0 V – 5.5 V.  
The range is selectable by UTEST miscellaneous DCF clients XOSC_LF_EN and XOSC_EN_40MHZ.  
This value is determined by the crystal manufacturer and board design.  
Proper PC board layout procedures must be followed to achieve specifications.  
Crystal recovery time is the time for the oscillator to settle to the correct frequency after adjustment of the integrated load  
capacitor value.  
6
7
8
This parameter is guaranteed by design rather than 100% tested.  
Applies to an external clock input and not to crystal mode.  
See crystal manufacturer’s specification for recommended load capacitor (CL) values.The external oscillator requires  
external load capacitors when operating from 8 MHz to 16 MHz. Account for on-chip stray capacitance (CS_EXTAL/CS_XTAL  
and PCB capacitance when selecting a load capacitor value. When operating at 20 MHz/40 MHz, the integrated load  
capacitor value is selected via S/W to match the crystal manufacturer’s specification, while accounting for on-chip and PCB  
capacitance.  
)
9
Amplitude on the EXTAL pin after startup is determined by the ALC block, i.e., the Automatic Level Control Circuit. The  
function of the ALC is to provide high drive current during oscillator startup, but reduce current after oscillation in order to  
reduce power, distortion, and RFI, and to avoid over-driving the crystal. The operating point of the ALC is dependent on the  
crystal value and loading conditions.  
10  
I
is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded. This is the maximum  
XTAL  
current during startup of the oscillator. The current after oscillation is typically in the 2–3 mA range and is dependent on the  
load and series resistance of the crystal. Test circuit is shown in Figure 13.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
49  
Electrical characteristics  
Table 24. Selectable load capacitance  
load_cap_sel[4:0] from DCF record  
Load capacitance1,2 (pF)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
1.032  
1.976  
2.898  
3.823  
4.751  
5.679  
6.605  
7.536  
8.460  
9.390  
10.317  
11.245  
12.173  
13.101  
14.029  
14.957  
1
2
Values are determined from simulation across process corners and voltage and temperature  
variation. Capacitance values vary ±12% across process, 0.25% across voltage, and no variation  
across temperature.  
Values in this table do not include the die and package capacitances given by Cs_xtal/Cs_extal in  
Table 23 (External Oscillator electrical specifications).  
MPC5777M Microcontroller Data Sheet, Rev. 6  
50  
NXP Semiconductors  
Electrical characteristics  
VDDOSC  
Bias  
Current  
ALC  
IXTAL  
XTAL  
-
EXTAL  
Comparator  
+
A
OFF  
VSSOSC  
VSS  
V
Conditions  
Z = R + jL  
VEXTAL=0 V  
VXTAL=0 V  
Tester  
ALC INACTIVE  
PCB  
GND  
Figure 13. Test circuit  
Table 25. Internal RC Oscillator electrical specifications  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
fTarget  
CC  
CC  
IRC target frequency  
16  
8
MHz  
%
fvar_noT  
IRC frequency variation  
without temperature  
compensation  
T < 150 oC  
–8  
fvar_T  
CC  
CC  
IRC frequency variation with  
temperature compensation  
T < 150 oC  
–3  
–1  
3
1
%
%
1
fvar_SW  
IRC software trimming  
accuracy  
Trimming  
temperature  
f  
IRC Software trimming step  
-48  
+40  
5
kHz  
µs  
Tstart_noT  
CC  
CC  
Startup time to reach within  
fvar_noT  
No trimming  
Tstart_T  
Startup time to reach within  
fvar_T  
Factory  
trimming  
120  
µs  
already applied  
IAVDD5  
CC  
CC  
Current consumption on 5 V  
power supply  
After Tstart_T  
400  
175  
µA  
µA  
IDVDD12  
Current consumption on 1.2 V After Tstart_T  
power supply  
1
IRC software trimmed accuracy is performed either with the CMU_0 clock monitor, using the XOSC as a reference or  
through the CCCU (CAN clock control Unit), extracting reference clock from CAN master clock. Software trim must be  
repeated as the device operating temperature varies in order to maintain the specified accuracy.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
51  
Electrical characteristics  
3.10 ADC specifications  
3.10.1 ADC input description  
Figure 14 shows the input equivalent circuit for fast SARn channels.  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
R
R
AD  
SW1  
C
C
C
S
P1  
P2  
Common mode  
switch  
R
R
C
C
R
R
Channel Selection Switch Impedance  
Sampling Switch Impedance  
Pin Capacitance (two contributions, C and C  
Sampling Capacitance  
Common mode switch  
SW1  
AD  
Common mode  
resistive ladder  
)
P2  
P
P1  
S
CMSW  
CML  
Common mode resistive ladder  
This figure can be used as approximation circuitry for external filtering definition.  
Figure 14. Input equivalent circuit (Fast SARn channels)  
Figure 15 shows the input equivalent circuit for SARB channels.  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Selection  
Extended  
Switch  
Sampling  
R
R
R
AD  
SW2  
SW1  
C
S
C
C
C
P2  
P1  
P3  
Common mode  
switch  
Common mode  
resistive ladder  
R
R
:
:
Channel Selection Switch Impedance (two contributions R  
Sampling Switch Impedance  
and R  
)
SW2  
SW  
SW1  
AD  
C :  
Pin Capacitance (three contributions, C , C and C )  
P
P1 P2 P3  
C :  
Sampling Capacitance  
S
R
R
Common mode switch  
Common mode resistive ladder  
CMSW:  
:
CML  
The above figure can be used as approximation circuitry for external filtering definition.  
Figure 15. Input equivalent circuit (SARB channels)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
52  
NXP Semiconductors  
Electrical characteristics  
1
Table 26. ADC pin specification  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min  
Max  
ILK_INUD  
CC Input leakage current, two ADC  
channels input with weak pull-up and  
weak pull-down  
TJ < 40 °C  
50  
nA  
nA  
nA  
nA  
mA  
TJ < 150 °C  
150  
ILK_INUSD  
ILK_INREF  
ILK_INOUT  
IINJ  
CC Input leakage current, two ADC  
channels input with weak pull-up and  
strong pull-down  
TJ < 40 °C  
80  
TJ < 150 °C  
250  
CC Input leakage current, two ADC  
channels input with weak pull-up and  
weak pull-down and alternate reference  
TJ < 40 °C  
160  
400  
TJ < 150 °C  
CC Input leakage current, two ADC  
channels input, GPIO output buffer with  
weak pull-up and weak pull-down  
TJ < 40 °C  
140  
380  
TJ < 150 °C  
CC Injection current on analog input  
preserving functionality  
Applies to any analog pins  
–3  
3
CHV_ADC  
CP1  
SR VDD_HV_ADV external capacitance2  
1
0
0
0
0
6
0
0
0
0
0
0
2.2  
10  
µF  
pF  
pF  
CC Pad capacitance  
CP2  
CC Internal routing capacitance  
SARn channels  
0.5  
1
SARB channels  
CP3  
CS  
CC Internal routing capacitance  
CC SAR ADC sampling capacitance  
CC Analog switches resistance  
Only for SARB channels  
1
pF  
pF  
k  
8.5  
1.1  
1.7  
0.6  
2.6  
3.5  
300  
RSWn  
SARn channels  
SARB channels  
RAD  
CC ADC input analog switches resistance  
CC Common mode switch resistance  
CC Common mode resistive ladder  
k  
k  
k  
RCMSW  
RCMRL  
3
RSAFEPD  
CC Discharge resistance for AN7/AN35  
channels (strong pull-down for safety)  
1
2
3
All specifications in this table valid for the full input voltage range for the analog inputs.  
For noise filtering, add a high frequency bypass capacitance of 0.1 µF between VDD_HV_ADV and VSS_HV_ADV  
Safety pull-down is available for port pin PB[5] and PE[14].  
.
3.10.2 SAR ADC electrical specification  
The SARn ADCs are 12-bit Successive Approximation Register analog-to-digital converters with full capacitive DAC. The  
SARn architecture allows input channel multiplexing.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
53  
Electrical characteristics  
1
Table 27. SARn ADC electrical specification  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
2.0  
Max  
VDD_HV_ADV_S  
VALTREF  
SR ADC alternate  
VALTREF < VDD_HV_IO_MAIN  
V
reference voltage  
SR ADC input signal  
SR Clock frequency  
SR ADC precharge time  
VIN  
0 < VIN < VDD_HV_IO_MAIN  
TJ < 150 °C  
VSS_HV_ADR_S VDD_HV_ADR_S  
V
MHz  
ns  
fADCK  
7.5  
135  
270  
270  
14.6  
tADCPRECH  
Fast SAR—fast precharge  
Fast SAR—full precharge  
Slow SAR (SARADC_B)—fast  
precharge  
Slow SAR (SARADC_B)—full  
precharge  
540  
VPRECH  
SR Precharge voltage  
precision  
Full precharge  
VPRECH = VDD_HV_ADR_S/2  
TJ < 150 °C  
–0.25  
0.25  
V
V
V
Fast precharge  
–0.5  
0.5  
VPRECH = VDD_HV_ADR_S/2  
TJ < 150 °C  
VINTREF  
CC Internal reference  
voltage precision  
Applies to all internal reference  
points (VSS_HV_ADR_S  
0.20  
0.20  
,
1/3 * VDD_HV_ADR_S  
2/3 * VDD_HV_ADR_S  
,
,
VDD_HV_ADR_S  
)
tADCSAMPLE SR ADC sample time2  
Fast SAR – 12-bit configuration  
0.750  
1.500  
µs  
Slow SAR (SARADC_B) – 12-bit  
configuration  
tADCEVAL  
SR ADC evaluation time  
12-bit configuration (25 clock  
cycles)  
1.712  
7
µs  
3,4  
IADCREFH  
CC ADC high reference  
current  
Run mode tconv 5 µs  
(average across all codes)  
µA  
Run mode tconv = 2.5 µs  
(average across all codes)  
7
Power Down mode  
Bias Current5  
6
+2  
15  
4
IADCREFL  
CC ADC low reference  
current  
Run mode tconv 5 µs  
µA  
VDD_HV_ADR_S <= 5.5 V  
Run mode tconv = 2.5 µs  
30  
1
VDD_HV_ADR_S <= 5.5 V  
Power Down mode  
VDD_HV_ADR_S <= 5.5 V  
MPC5777M Microcontroller Data Sheet, Rev. 6  
54  
NXP Semiconductors  
Electrical characteristics  
1
Table 27. SARn ADC electrical specification (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
4
IADV_S  
CC VDD_HV_ADV_S power Run mode tconv 5 µs  
–4  
4.0  
4.0  
1.0  
4
mA  
supply current (each  
Run mode tconv = 2.5 µs  
ADC)  
Power Down mode  
TUE12  
CC Total unadjusted error TJ < 150 °C,  
in 12-bit configuration6 VDD_HV_ADV_S > 4 V,  
VDD_HV_ADR_S > 4 V  
LSB  
(12b)  
TJ < 150 °C,  
–6  
6
VDD_HV_ADV_S > 4 V,  
4 V > VDD_HV_ADR_S > 2 V  
TJ < 150 °C,  
–12  
12  
4 V > VDD_HV_ADV_S > 3.5 V  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
55  
Electrical characteristics  
1
Table 27. SARn ADC electrical specification (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
TUE12  
CC TUE degradation due VIN < VDD_HV_ADV_S  
0
0
LSB  
to VDD_HV_ADR_Soffset VDD_HV_ADR_S VDD_HV_ADV_S  
(12b)  
with respect to  
[0:25 mV]  
VDD_HV_ADV_S  
VIN < VDD_HV_ADV_S  
VDD_HV_ADR_S VDD_HV_ADV_S  
[25:50 mV]  
–2  
–4  
2
4
VIN < VDD_HV_ADV_S  
VDD_HV_ADR_S VDD_HV_ADV_S  
[50:75 mV]  
VIN < VDD_HV_ADV_S  
–6  
6
VDD_HV_ADR_S VDD_HV_ADV_S  
[75:100 mV]  
VDD_HV_ADV_S < VIN  
<
–2.5  
2.5  
VDD_HV_ADR_S  
VDD_HV_ADR_S VDD_HV_ADV_S  
[0:25 mV]  
VDD_HV_ADV_S< VIN  
<
–4  
–7  
4
7
VDD_HV_ADR_S  
VDD_HV_ADR_S VDD_HV_ADV_S  
[25:50 mV]  
VDD_HV_ADV_S < VIN  
<
VDD_HV_ADR_S  
VDD_HV_ADR_S VDD_HV_ADV_S  
[50:75 mV]  
VDD_HV_ADV_S < VIN  
<
–12  
12  
VDD_HV_ADR_S  
VDD_HV_ADR_S VDD_HV_ADV_S  
[75:100 mV]  
DNL  
INL  
CC Differential  
non-linearity  
V
DD_HV_ADV_S > 4 V  
–1  
–3  
–5  
2
3
5
LSB  
VDD_HV_ADR_S > 4 V  
(12b)  
CC Integral non-linearity 4.0 V < VDD_HV_ADV_S < 5.5 V  
4.0 V < VDD_HV_ADR_S < 5.5 V  
LSB  
(12b)  
VDD_HV_ADV_S = 2V  
VDD_HV_ADR_S = 2 V  
1
2
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress  
ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect  
device reliability or cause permanent damage to the device.  
Minimum ADC sample times are dependent on adequate charge transfer from the external driving circuit to the internal  
sample capacitor. The time constant of the entire circuit must allow the sampling capacitor to charge within 1/2 LSB  
within the sampling window. Please refer to Figure 14 and Figure 15 for models of the internal ADC circuit, and the  
values to use in external RC sizing and calculating the sampling window duration.  
3
IADCREFH and IADCREFL are independent from ADC clock frequency. It depends on conversion rate: consumption is  
driven by the transfer of charge between internal capacitances during the conversion.  
4
5
Current parameter values are for a single ADC.  
Extra bias current is present only when BIAS is selected.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
56  
NXP Semiconductors  
Electrical characteristics  
6
This parameter is guaranteed by bench validation with a small sample of typical devices, and tested in production to  
± 6 LSB.  
3.10.3 S/D ADC electrical specification  
The SDn ADCs are Sigma Delta 16-bit analog-to-digital converters with 333 Ksps maximum output rate.  
1
Table 28. SDn ADC electrical specification  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
VDD_HV_ADV  
VIN  
SR ADC input signal  
0
V
V
_D  
2
VIN_PK2PK  
SR Input range peak to Single ended  
peak VINM = VSS_HV_ADR_D  
VDD_HV_ADR_D/GAIN  
±0.5*VDD_HV_ADR_D  
3
V
VINM  
IN_PK2PK = VINP –  
Single ended  
4
VINM = 0.5*VDD_HV_ADR_D  
GAIN = 1  
Single ended  
±VDD_HV_ADR_D/GAIN  
VINM = 0.5*VDD_HV_ADR_D  
GAIN = 2,4,8,16  
Differential,  
±VDD_HV_ADR_D/GAIN  
0 < VIN < VDD_HV_IO_MAIN  
fADCD_M  
fADCD_S  
SR S/D modulator Input  
Clock  
4
14.4  
16  
MHz  
ksps  
SR Output conversion  
rate  
333  
CC Oversampling ratio  
Internal modulator  
24  
256  
256  
bit  
External modulator  
2’s complement notation  
RESOLUTION  
GAIN  
CC S/D register  
resolution5  
16  
SR ADC gain  
Defined via ADC_SD[PGA]  
register. Only integer powers of 2  
are valid gain values.  
1
16  
GAIN  
CC Absolute value of the Before calibration (applies to gain  
1.5  
5
%
ADC gain error6,7  
setting = 1)  
After calibration, VDD_HV_ADR_D  
5%  
VDD_HV_ADV_D 10%  
TJ 50 °C  
mV  
After calibration, VDD_HV_ADR_D  
5%  
VDD_HV_ADV_D 10%  
TJ 100 °C  
7.5  
10  
After calibration, VDD_HV_ADR_D  
5%  
VDD_HV_ADV_D 10%  
TJ 150 °C  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
57  
Electrical characteristics  
1
Table 28. SDn ADC electrical specification (continued)  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VOFFSET  
CC Input Referred Offset Before calibration (applies to all  
10*  
(1+1/gain)  
20  
mV  
Error6,7,8  
gain settings – 1, 2, 4, 8, 16)  
After calibration,  
VDD_HV_ADR_D 10%  
TJ 50 °C  
5
After calibration, VDD_HV_ADV_D  
10%  
TJ 100 °C  
7.5  
10  
After calibration, VDD_HV_ADV_D  
10%  
TJ 150 °C  
4.5 < VDD_HV_ADV_D < 5.59,10,17  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 1  
0.5  
80  
SNRDIFF150 CC Signal to noise ratio in  
differential mode  
dBFS  
150 ksps output rate  
TJ < 150 °C  
4.5 < VDD_HV_ADV_D < 5.59,10,17  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 2  
77  
74  
71  
68  
TJ < 150 °C  
4.5 < VDD_HV_ADV_D < 5.59,10,17  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 4  
TJ < 150 °C  
4.5 < VDD_HV_ADV_D < 5.59,10,17  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 8  
TJ < 150 °C  
4.5 < VDD_HV_ADV_D < 5.59,10,17  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 16  
TJ < 150 °C  
MPC5777M Microcontroller Data Sheet, Rev. 6  
58  
NXP Semiconductors  
Electrical characteristics  
1
Table 28. SDn ADC electrical specification (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
4.5 < VDD_HV_ADV_D < 5.59,10,17  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 1  
SNRDIFF333 CC Signal to noise ratio in  
differential mode  
74  
dBFS  
333 ksps output rate  
TJ < 150 °C  
4.5 < VDD_HV_ADV_D < 5.59,10,17  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 2  
71  
68  
65  
62  
74  
71  
68  
65  
62  
TJ < 150 °C  
4.5 < VDD_HV_ADV_D < 5.59,10,17  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 4  
TJ < 150 °C  
4.5 < VDD_HV_ADV_D < 5.59,10,17  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 8  
TJ < 150 °C  
4.5 < VDD_HV_ADV_D < 5.59,10,17  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 16  
TJ < 150 °C  
4.5 < VDD_HV_ADV_D < 5.59,10,17  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 1  
SNRSE150 CC Signal to noise ratio in  
single ended mode  
150 ksps output  
dBFS  
TJ < 150 °C  
rate11  
4.5 < VDD_HV_ADV_D < 5.59,10,17  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 2  
TJ < 150 °C  
4.5 < VDD_HV_ADV_D < 5.59,10,17  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 4  
TJ < 150 °C  
4.5 < VDD_HV_ADV_D < 5.59,10,17  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 8  
TJ < 150 °C  
9,10,17  
4.5 < VDD_HV_ADV_D < 5.5  
VDD_HV_ADR_D=VDD_HV_ADV_D  
GAIN = 16  
TJ < 150 °C  
SFDR  
CC Spurious free  
dynamic range  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 16  
60  
60  
60  
60  
60  
dBc  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
59  
Electrical characteristics  
1
Table 28. SDn ADC electrical specification (continued)  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
ZDIFF  
D Differential Input  
impedance1213  
GAIN=1  
GAIN=2  
GAIN=4  
GAIN=8  
GAIN=16  
GAIN=1  
GAIN=2  
GAIN=4  
GAIN=8  
GAIN=16  
1000  
600  
300  
200  
200  
1400  
1000  
700  
500  
500  
110  
1250  
800  
400  
250  
250  
1800  
1300  
950  
650  
650  
144  
1500  
1000  
500  
k  
300  
300  
ZCM  
D Common Mode Input  
impedance14 15  
2200  
1600  
1150  
800  
k  
800  
RBIAS  
VINTCM  
VBIAS  
D Bare Bias resistance  
180  
k  
%
V
D common mode input  
reference voltage16  
-12  
+12  
CC Bias voltage  
VDD_HV_  
ADR_D/2  
VBIAS  
CC Bias voltage accuracy  
–2.5  
54  
+2.5  
%
Vcmrr  
SR Common mode  
rejection ratio  
dB  
RCaaf  
SR Anti-aliasing filter  
CC  
External series resistance  
Filter capacitances  
20  
k  
pF  
180  
0.01  
fPASSBAND CC Pass band17  
0.333 *  
kHz  
fADCD_S  
RIPPLE  
CC Pass band ripple18  
0.333 * fADCD_S  
CC Stop band attenuation [0.5 * fADCD_S, 1.0 * fADCD_S  
[1.0 * fADCD_S, 1.5 * fADCD_S  
–1  
40  
45  
50  
55  
60  
1
%
Frolloff  
]
]
]
]
dB  
[1.5 * fADCD_S, 2.0 * fADCD_S  
[2.0 * fADCD_S, 2.5 * fADCD_S  
[2.5 * fADCD_S, fADCD_M/2]  
MPC5777M Microcontroller Data Sheet, Rev. 6  
60  
NXP Semiconductors  
Electrical characteristics  
1
Table 28. SDn ADC electrical specification (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
GROUP  
CC Group delay  
Within pass band – Tclk is fADCD_M  
/ 2  
OSR = 24  
238.5  
278  
Tclk  
OSR = 28  
OSR = 32  
317.5  
357  
OSR = 36  
OSR = 40  
396.5  
436  
OSR = 44  
OSR = 48  
475.5  
554.5  
633.5  
712.5  
699  
OSR = 56  
OSR = 64  
OSR = 72  
OSR = 75  
OSR = 80  
791.5  
870.5  
949.5  
1107.5  
1265.5  
1423.5  
1581.5  
1739.5  
1897.5  
2213.5  
2529.5  
OSR = 88  
OSR = 96  
OSR = 112  
OSR = 128  
OSR = 144  
OSR = 160  
OSR = 176  
OSR = 192  
OSR = 224  
OSR = 256  
Distortion within pass band  
–0.5/  
+0.5/  
fADCD  
fADCD_S  
_S  
fHIGH  
CC High pass filter 3dB Enabled  
frequency  
10e-5*  
fADCD_S  
µs  
tSTARTUP  
tLATENCY  
CC Start-up time from  
power down state  
100  
CC Latency between  
input data and  
HPF = ON  
GROUP +  
fADCD_S  
converted data when  
input mux does not  
change19  
HPF = OFF  
GROUP  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
61  
Electrical characteristics  
1
Table 28. SDn ADC electrical specification (continued)  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
tSETTLING  
CC Settling time after  
mux change  
Analog inputs are muxed  
HPF = ON  
2*GROUP  
3*fADCD_S  
+
HPF = OFF  
2*GROUP +  
2*fADCD_S  
tODRECOVERY CC Overdrive recovery  
time  
After input comes within range  
from saturation  
2*GROUP +  
fADCD_S  
HPF = ON  
HPF = OFF  
2*GROUP  
75*GAIN  
600  
fF  
fF  
CS_D  
CC S/D ADC sampling  
capacitance after  
GAIN = 1, 2, 4, 8  
GAIN = 16  
sampling switch20  
IBIAS  
CC Bias consumption  
At least 1 ADCD enabled  
3.5  
3.5  
mA  
mA  
IADV_D  
CC VDD_HV_ADV_D power ADCD enabled  
72  
supply current (each  
ADC)  
IADR_D  
CC Sum of all ADC  
reference  
ADCD enabled, fADCD_M  
14.4 MHz  
=
30  
µA  
consumption  
SINADDIFF150 CC Signal to Noise and Gain = 1  
dBFS  
Distortion Ratio,  
Differential Mode,  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
150 Ksps output rate Tj < 150 °C  
Gain = 2  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
72  
69  
Gain = 4  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 8  
68.8  
64.8  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 16  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
MPC5777M Microcontroller Data Sheet, Rev. 6  
62  
NXP Semiconductors  
Electrical characteristics  
1
Table 28. SDn ADC electrical specification (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
SINADDIFF333 CC Signal to Noise and Gain = 1  
Distortion Ratio, 4.5 V < VDD_HV_ADV_D < 5.5 V  
66  
dBFS  
Single-ended Mode, VDD_HV_ADR_D = VDD_HV_ADV_D  
150Ksps output rate Tj < 150 °C  
Gain = 2  
4.5 V < VDD_HV_ADV_D < 5.5 V  
66  
63  
62  
59  
66  
66  
63  
62  
59  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 4  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 8  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 16  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
SINADSE150 CC Signal to Noise and Gain = 1  
Distortion Ratio, 4.5 V < VDD_HV_ADV_D < 5.5 V  
dBFS  
Single-ended Mode, VDD_HV_ADR_D = VDD_HV_ADV_D  
150Ksps output rate Tj < 150 °C  
Gain = 2  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 4  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 8  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 16  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
63  
Electrical characteristics  
1
Table 28. SDn ADC electrical specification (continued)  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
THDDIFF150 CC Total Harmonic  
Gain = 1  
65  
dBFS  
Distortion, Differential 4.5 V < VDD_HV_ADV_D < 5.5 V  
Mode, 150Ksps  
output rate  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 2  
4.5 V < VDD_HV_ADV_D < 5.5 V  
68  
74  
80  
80  
65  
68  
74  
80  
80  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 4  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 8  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 16  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
THDDIFF333 CC Total Harmonic  
Gain = 1  
dBFS  
Distortion, Differential 4.5 V < VDD_HV_ADV_D < 5.5 V  
Mode, 333Ksps  
output rate  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 2  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 4  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 8  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 16  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
MPC5777M Microcontroller Data Sheet, Rev. 6  
64  
NXP Semiconductors  
Electrical characteristics  
1
Table 28. SDn ADC electrical specification (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
THDSE150 CC Total Harmonic  
Distortion,  
Gain = 1  
4.5 V < VDD_HV_ADV_D < 5.5 V  
68  
dBFS  
Single-ended Mode, VDD_HV_ADR_D = VDD_HV_ADV_D  
150Ksps output rate Tj < 150 °C  
Gain = 2  
4.5 V < VDD_HV_ADV_D < 5.5 V  
68  
68  
68  
68  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 4  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 8  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
Gain = 16  
4.5 V < VDD_HV_ADV_D < 5.5 V  
VDD_HV_ADR_D = VDD_HV_ADV_D  
Tj < 150 °C  
1
2
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress  
ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect  
device reliability or cause permanent damage to the device.  
For input voltage above the maximum and below the clamp voltage of the input pad, there is no latch-up concern, and  
the signal will only be ‘clipped’.  
3
4
5
VINP is the input voltage applied to the positive terminal of the SDADC.  
VINM is the input voltage applied to the negative terminal of the SDADC.  
When using a GAIN setting of 16, the conversion result will always have a value of zero in the least significant bit. The  
gives an effective resolution of 15 bits.  
6
7
Offset and gain error due to temperature drift can occur in either direction (+/-) for each of the SDADCs on the device.  
Calibration of gain is possible when gain = 1.  
Offset Calibration should be done with respect to 0.5*VDD_HV_ADR_D for differential mode and single ended mode with  
negative input=0.5*VDD_HV_ADR_D  
.
Offset Calibration should be done with respect to 0 for "single ended mode with negative input=0".  
Both offset and Gain Calibration is guaranteed for ±5% variation of VDD_HV_ADR_D, ±10% variation of VDD_HV_ADV_D  
and ± 50 °C temperature variation.  
,
8
9
Conversion offset error must be divided by the applied gain factor (1, 2, 4, 8, or 16) to obtain the actual input referred  
offset error.  
S/D ADC is functional in the range 3.6 V – 4.5 V, SNR parameter degrades by 3 dB. Degraded SNR value based on  
simulation.  
10 S/D ADC is functional in the range 3.0 V –4.5 V, SNR parameter degrades by 9 dB. Degraded SNR value based on  
simulation.  
11 This parameter is guaranteed by bench validation with a small sample of typical devices, and tested in production to  
a value of 6 dB less.  
12 Input impedance in differential mode ZIN(input impedance) = ZDIFF  
.
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
65  
Electrical characteristics  
13 Impedance given at FADCD_M= 16 MHz. Impedance is inversely proportional to SDADC clock frequency.  
Z
DIFF(FADCD_M) = (16 MHz / FADCD_M) * ZDIFF, ZCM (FADCD_M) = (16MHz / FADCD_M) * ZCM  
14 Input impedance in single-ended mode ZIN = (2 * ZDIFF * ZCM) / (ZDIFF + ZCM).  
15 Impedance given at FADCD_M= 16 MHz. Impedance is inversely proportional to SDADC clock frequency.  
ZDIFF(FADCD_M) = (16 MHz / FADCD_M) * ZDIFF, ZCM (FADCD_M) = (16MHz / FADCD_M) * ZCM  
.
.
16 Vintcm is the common mode input reference voltage for the SDADC, and has a nominal value of (VDD_HV_ADC  
VSS_HV_ADC) / 2.  
-
17 SNR values guaranteed only if external noise on the ADC input pin is attenuated by the required SNR value in the  
frequency range of fADCD_M – fADCD_S to fADCD_M + fADCD_S, where fADCD_M is the input sampling frequency, and  
f
ADCD_S is the output sample frequency. A proper external input filter should be used to remove any interfering signals  
in this frequency range.  
18 The ±1% passband ripple specification is equivalent to 20 * log10 (0.99) = 0.087 dB.  
19 Propagation of the information from the pin to the register CDR[CDATA] and flags SFR[DFEF], SFR[DFFF] is given by  
the different modules that need to be crossed: delta/sigma filters, high pass filter, fifo module, clock domain  
synchronizers. The time elapsed between data availability at pin and internal S/D module registers is given by the  
below formula:  
REGISTER LATENCY = tLATENCY + 0.5/fADCD_S + 2 (~+1)/fADCD_M + 2(~+1)fPBRIDGEx_CLK  
where fADCD_S is the frequency of the sampling clock, fADCD_M is the frequency of the modulator, and  
fPBRIDGEx_CLK is the frequency of the peripheral bridge clock feeds to the ADC S/D module. The (~+1) symbol  
refers to the number of clock cycles uncertainty (from 0 to 1 clock cycle) to be added due to resynchronization of the  
signal during clock domain crossing.  
Some further latency may be added by the target module (core, DMA, interrupt) controller to process the data received  
from the ADC S/D module.  
20 This capacitance does not include pin capacitance, that can be considered together with external capacitance, before  
sampling switch.  
3.11 Temperature sensor  
The following table describes the temperature sensor electrical characteristics.  
Table 29. Temperature sensor electrical characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
CC Temperature monitoring range  
CC Sensitivity  
–40  
5.18  
150  
°C  
mV/°C  
°C  
TSENS  
TACC  
TJ 150 °C  
CC Accuracy  
–3  
3
ITEMP_SENS CC VDD_HV_ADV_S power supply  
current  
700  
µA  
3.12 LVDS Fast Asynchronous Serial Transmission (LFAST) pad  
electrical characteristics  
The LFAST pad electrical characteristics apply to both the SIPI and high-speed debug serial interfaces on the device. The same  
LVDS pad is used for the Microsecond Channel (MSC) and DSPI LVDS interfaces, with different characteristics given in the  
following tables.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
66  
NXP Semiconductors  
Electrical characteristics  
3.12.1 LFAST interface timing diagrams  
Signal excursions above this level NOT allowed  
Max. common mode input at RX  
1743 mV  
1600 mV  
VOD  
Max Differential Voltage =  
285 mV p-p (LFAST)  
400 mV p-p (MSC/DSPI)  
Minimum Data Bit Time  
Opening =  
0.55 * T (LFAST)  
0.50 * T (MSC/DSPI)  
VOS = 1.2 V +/- 10%  
TX common mode  
“No-Go” Area  
VOD  
Min Differential Voltage =  
100 mV p-p (LFAST)  
150 mV p-p (MSC/DSPI)  
VICOM  
PEREYE  
PEREYE  
Data Bit Period  
T = 1 /FDATA  
Min. common mode input at RX  
150 mV  
0 V  
Signal excursions below this level NOT allowed  
Figure 16. LFAST and MSC/DSPI LVDS timing definition  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
67  
Electrical characteristics  
H
lfast_pwr_down  
L
t
PD2NM_TX  
Differential TX  
Data Lines  
pad_p/pad_n  
Data Valid  
Figure 17. Power-down exit time  
VIH  
Differential TX  
Data Lines  
90%  
10%  
pad_p/pad_n  
VIL  
tTR  
tTR  
Figure 18. Rise/fall time  
3.12.2 LFAST and MSC/DSPI LVDS interface electrical characteristics  
The following table contains the electrical characteristics for the LFAST interface.  
1,2  
Table 30. LVDS pad startup and receiver electrical characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
STARTUP3,4  
tSTRT_BIAS CC Bias current reference startup time5  
0.5  
0.4  
4
µs  
µs  
tPD2NM_TX CC Transmitter startup time (power  
down to normal mode)6  
2.75  
MPC5777M Microcontroller Data Sheet, Rev. 6  
68  
NXP Semiconductors  
Electrical characteristics  
1,2  
Table 30. LVDS pad startup and receiver electrical characteristics (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
tSM2NM_TX CC Transmitter startup time (sleep mode Not applicable to the  
0.2  
0.5  
µs  
ns  
to normal mode)7  
MSC/DSPI LVDS pad  
tPD2NM_RX CC Receiver startup time (power down  
to normal mode)8  
20  
20  
40  
50  
tPD2SM_RX CC Receiver startup time (power down Not applicable to the  
ns  
to sleep mode)9  
MSC/DSPI LVDS pad  
ILVDS_BIAS CC LVDS bias current consumption  
Tx or Rx enabled  
0.95  
mA  
TRANSMISSION LINE CHARACTERISTICS (PCB Track)  
Z0  
SR Transmission line characteristic  
47.5  
50  
52.5  
105  
impedance  
ZDIFF  
SR Transmission line differential  
impedance  
95  
100  
RECEIVER  
VICOM  
|VI|  
VHYS  
RIN  
SR Common mode voltage  
SR Differential input voltage12  
CC Input hysteresis  
0.1510  
100  
25  
1.611  
V
mV  
mV  
CC Terminating resistance  
CC Differential input capacitance13  
3.0 V–5.5 V  
80  
125  
3.5  
150  
6.0  
0.5  
CIN  
pF  
mA  
ILVDS_RX CC Receiver DC current consumption  
Enabled  
1
The LVDS pad startup and receiver electrical characteristics in this table apply to both the LFAST & High-speed De-  
bug (HSD) LVDS pad, and the MSC/DSPI LVDS pad except where noted in the conditions.  
2
3
All LVDS pad electrical characteristics are valid from –40 °C to 150 °C.  
All startup times are defined after a 2 peripheral bridge clock delay from writing to the corresponding enable bit in  
the LVDS control registers (LCR) of the LFAST and High-Speed Debug modules. The value of the LCR bits for the  
LFAST/HSD modules don’t take effect until the corresponding SIUL2 MSCR ODC bits are set to LFAST LVDS mode.  
Startup times for MSC/DSPI LVDS are defined after 2 peripheral bridge clock delay after selecting MSC/DSPI LVDS  
in the corresponding SIUL2 MSCR ODC field.  
4
5
6
7
8
9
Startup times are valid for the maximum external loads CL defined in both the LFAST/HSD and MSC/DSPI transmit-  
ter electrical characteristic tables.  
Bias startup time is defined as the time taken by the current reference block to reach the settling bias current after  
being enabled.  
Total transmitter startup time from power down to normal mode is tSTRT_BIAS + tPD2NM_TX + 2 peripheral bridge clock  
periods.  
Total transmitter startup time from sleep mode to normal mode is tSM2NM_TX + 2 peripheral bridge clock periods. Bias  
block remains enabled in sleep mode.  
Total receiver startup time from power down to normal mode is tSTRT_BIAS + tPD2NM_RX + 2 peripheral bridge clock  
periods.  
Total receiver startup time from power down to sleep mode is tPD2SM_RX + 2 peripheral bridge clock periods. Bias  
block remains enabled in sleep mode.  
10 Absolute min = 0.15 V – (285 mV/2) = 0 V  
11 Absolute max = 1.6 V + (285 mV/2) = 1.743 V  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
69  
Electrical characteristics  
12 The LXRXOP[0] bit in the LFAST LVDS Control Register (LCR) must be set to one to ensure proper LFAST receive  
timing.  
13 Total internal capacitance including receiver and termination, co-bonded GPIO pads, and package contributions.  
1,2  
Table 31. LFAST transmitter electrical characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
fDATA  
VOS  
SR Data rate  
312/3203 Mbps  
CC Common mode voltage  
1.08  
110  
1.32  
285  
V
|
|
CC Differential output voltage swing  
(terminated)4,5  
171  
mV  
VOD  
tTR  
CC Rise/Fall time (absolute value of the  
differential output voltage swing)4,5  
0.26  
1.5  
ns  
CL  
SR External lumped differential load  
capacitance3  
VDD_HV_IO = 4.5 V  
VDD_HV_IO = 3.0 V  
Enabled  
10.0  
8.5  
pF  
ILVDS_TX CC Transmitter DC current consumption  
3.2  
mA  
1
The LFAST and High-Speed Debug LFAST pad electrical characteristics are based on worst case internal capacitance  
values shown in Figure 19.  
2
3
All LFAST and High-Speed Debug LVDS pad electrical characteristics are valid from –40 °C to 150 °C.  
The 312 Mbps data rate is achieved with a 26 MHz reference clock, and 320 Mbps is achieved with a 10 or 20 MHz  
reference clock.  
4
5
Valid for maximum data rate fDATA. Value given is the capacitance on each terminal of the differential pair, as shown in  
Figure 19.  
Valid for maximum external load CL.  
1,2  
Table 32. MSC/DSPI LVDS transmitter electrical characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Data Rate  
fDATA  
VOS  
SR Data rate  
80  
Mbps  
V
CC Common mode voltage  
1.08  
150  
1.32  
400  
|
|
CC Differential output voltage swing  
(terminated)3,4  
214  
mV  
VOD  
tTR  
CC Rise/Fall time (absolute value of the  
differential output voltage swing)3,4  
0.8  
4.0  
ns  
CL  
SR External lumped differential load  
capacitance3  
VDD_HV_IO = 4.5 V  
50  
39  
pF  
VDD_HV_IO = 3.0 V  
ILVDS_TX CC Transmitter DC current consumption  
Enabled  
4.0  
mA  
1
2
The MSC and DSPI LVDS pad electrical characteristics are based on the application circuit and typical worst case  
internal capacitance values given in Figure 19.  
All MSC and DSPI LVDS pad electrical characteristics are valid from –40 °C to 150 °C.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
70  
NXP Semiconductors  
Electrical characteristics  
3
4
Valid for maximum data rate fDATA. Value given is the capacitance on each terminal of the differential pair, as shown  
in Figure 19.  
Valid for maximum external load CL.  
ERQGꢅSDG  
*3,2ꢊ'ULYHU  
&
/
ꢀS)  
ꢁꢂꢃS)  
ꢀꢄꢄȍ  
WHUPLQDWRU  
/9'6ꢊ'ULYHU  
ERQGꢅSDG  
*3,2ꢊ'ULYHU  
&
/
ꢀS)  
ꢁꢂꢃS)  
'LH  
3DFNDJH  
3&%  
Figure 19. LVDS pad external load diagram  
3.12.3 LFAST PLL electrical characteristics  
The following table contains the electrical characteristics for the LFAST PLL.  
1
Table 33. LFAST PLL electrical characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Nominal  
Max  
fRF_REF SR PLL reference clock frequency  
10  
–1  
45  
26  
1
MHz  
%
ERRREF CC PLL input reference clock frequency error  
DCREF  
PN  
CC PLL input reference clock duty cycle  
55  
%
CC Integrated phase noise (single side band)  
fRF_REF = 20 MHz  
–58  
–64  
dBc  
f
RF_REF = 10 MHz  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
71  
Electrical characteristics  
1
Table 33. LFAST PLL electrical characteristics (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Nominal  
Max  
fVCO  
CC PLL VCO frequency  
CC PLL phase lock3  
6402  
40  
MHz  
µs  
tLOCK  
PERREF SR Input reference clock jitter (peak to peak)  
Single period,  
300  
ps  
f
RF_REF = 10 MHz  
Long term,  
–500  
500  
400  
ps  
ps  
f
RF_REF = 10 MHz  
PEREYE CC Output Eye Jitter (peak to peak)4  
1
2
The specifications in this table apply to both the interprocessor bus and debug LFAST interfaces.  
The 640 MHz frequency is achieved with a 10 MHz or 20 MHz reference clock. With a 26 MHz reference, the VCO  
frequency is 624 MHz.  
3
4
The time from the PLL enable bit register write to the start of phase locks is maximum 2 clock cycles of the peripheral  
bridge clock that is connected to the PLL on the device.  
Measured at the transmitter output across a 100 Ohm termination resistor on a device evaluation board. See  
Figure 19.  
3.13 Aurora LVDS electrical characteristics  
The following table describes the Aurora LVDS electrical characteristics.  
NOTE  
The Aurora interface is AC coupled, so there is no common-mode voltage specification.  
1,2  
Table 34. Aurora LVDS electrical characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min Typ Max  
Transmitter  
FTX  
CC Transmit Data Rate  
1.25 Gbps  
VOD_LVDS  
CC Differential output voltage swing  
(terminated)3  
±400 ±600 ±800 mV  
tTR_LVDS  
RV_L_Tx  
TLoss  
CC Rise/Fall time (10%–90% of swing)  
SR Differential Terminating resistance  
60  
ps  
81 100 120  
CC Transmission Line Loss due to loading  
effects  
64  
dB  
Transmission line characteristics (PCB track)  
LLINE  
ZLINE  
SR Transmission line length  
45  
50  
20  
55  
cm  
SR Transmission line characteristic impedance  
Cac_clk  
SR Clock Receive Pin External AC Coupling  
Capacitance  
Values are nominal, valid  
for +/– 50% tolerance  
100  
270  
pF  
MPC5777M Microcontroller Data Sheet, Rev. 6  
72  
NXP Semiconductors  
Electrical characteristics  
1,2  
Table 34. Aurora LVDS electrical characteristics (continued)  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min Typ Max  
Cac_tx  
SR Transmit Lane External AC Coupling  
Capacitance  
Values are nominal, valid  
for +/– 50% tolerance  
250  
2000 pF  
Receiver  
FRX  
CC Receive Clock Rate  
TJ = 150 °C  
1.25 Gbps  
1000 mV  
VI_L  
SR Differential input voltage (peak to peak)  
CC Differential Terminating resistance  
200  
RV_L_Rx  
81 100 120  
1
2
3
All Aurora electrical characteristics are valid from –40 °C to 150 °C, except where noted.  
All specifications valid for maximum transmit data rate FTX  
The minimum value of 400 mV is only valid for differential terminating resistance (RV_L) = 99 ohm to 101 ohm. The  
differential output voltage swing tracks with the value of RV_L  
.
.
4
Transmission line loss maximum value is specified for the maximum drive level of the Aurora transmit pad.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
73  
Electrical characteristics  
3.14 Power management: PMC, POR/LVD, sequencing  
3.14.1 Power management electrical characteristics  
The power management module monitors the different power supplies. It also generates the internal supplies that are required  
for correct device functionality. The power management is supplied by the V  
supply (see Table 8).  
DD_HV_PMC  
3.14.2 Power management integration  
In order to ensure correct functionality of the device, it is recommended to follow below integration scheme.  
CHV_PMC  
CHV_FLA  
VDD_HV_IO  
VDD_LV  
(2)  
MPC5777M  
(1)  
CHV_IO  
CLV  
VSS  
VSS  
(1) One capacitance near each VDD_LV pin  
(2) One capacitance near each VDD_HV pin  
Figure 20. Recommended supply pin circuits  
MPC5777M Microcontroller Data Sheet, Rev. 6  
74  
NXP Semiconductors  
Electrical characteristics  
The following table describes the supply stability capacitances required on the device for proper operation.  
Table 35. Device power supply integration  
Value1  
Symbol  
Parameter  
Conditions  
Unit  
Min Typ Max  
CLV  
SR Minimum VDD_LV external Bulk capacitance  
External regulator  
bandwidth > 20 KHz  
10  
µF  
capacitance2  
Total bypass  
capacitance at  
external pin3  
Note  
3
CHV_IO  
CHV_FLA  
CHV_PMC  
SR Minimum VDD_HV_IO external capacitance  
SR Minimum VDD_HV_FLA external capacitance4,5  
SR Minimum VDD_HV_PMC External Capacitance6,7  
4.7  
µF  
µF  
µF  
0.75 1.5  
512 BGA balls A29, 2.2 4.7  
B28, F24, and G23  
CHV_ADC  
SR Minimum VDD_HV_ADV external capacitance8  
1.5 3.3  
µF  
1
2
3
4
See Figure 20 for capacitor integration.  
Recommended X7R or X5R ceramic low ESR capacitors, ±15% variation over voltage, temperature, and aging.  
Each VDD_LV pin requires both a 0.1µF and 0.01µF capacitor for high-frequency bypass and EMC requirements.  
The recommended flash regulator composition capacitor is 1.5 µF typical X7R or X5R, with –50% and +35% as min and  
max. This puts the min cap at 0.75 µF.  
5
6
7
8
Start-up time of the internal flash regulator from release of the LVD360 is worst case 500 us. This is based on the typical  
CHV_FLA bulk capacitance value.  
For noise filtering it is recommended to add a high frequency bypass capacitance of 0.1 µF between VDD_HV_PMC and  
VSS_HV  
.
In the 512BGA package, VDD_HV_PMC is shorted to VDD_HV_IO_MAIN. Use a local 200 nF capacitor on 512BGA balls A29,  
B28, F24, G3, in addition to the normal VDD_HV_IO_MAIN bulk and local external capacitance.  
For noise filtering it is recommended to add a high frequency bypass capacitance of 0.1 µF between VDD_HV_ADV and  
VSS_HV_ADV  
.
3.14.3 3.3 V flash supply  
Table 36. Flash power supply  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min Typ Max  
1
VDD_HV_FLA  
CC  
Flash regulator DC output voltage  
Before trimming  
3.12 3.3  
3.15 3.3  
3.5  
3.4  
V
After trimming  
–40°C TJ 25°C  
After trimming  
3.10 3.3  
3.4  
25°C TJ 150°C  
1
2
Min value accounts for all static and dynamic variations of the regulator (min cap as 0,75uF).  
Min value of 3.1 V for VDD_HV_REG at 3.15V assumes that the auxiliary regulator on VDD_LV does not actively provide  
any current to the chip. If the auxiliary regulator actively provides current, the min value may go lower than 3.1 V drop to  
IR drop caused by auxiliary current demanding on VDD_HV_REG supply.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
75  
Electrical characteristics  
3.14.4 Device voltage monitoring  
The LVD/HVDs and their associated levels for the device are given in the following table. The figure below illustrates the  
workings of voltage monitoring threshold.  
V
DD_xxx  
V
V
HVD(rise)  
HVD(fall)  
V
V
LVD(rise)  
LVD(fall)  
t
t
VDRELEASE  
VDASSERT  
HVD TRIGGER  
(INTERNAL)  
t
t
VDASSERT  
VDRELEASE  
LVD TRIGGER  
(INTERNAL)  
Figure 21. Voltage monitor threshold definition  
Table 37. Voltage monitor electrical characteristics  
1
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
2
VPORUP_LV CC LV supply power on reset threshold Rising voltage (power up)  
1111  
1235 mV  
1125  
Falling voltage (power down)3 1015  
Hysteresis on power-up  
See note 5  
50  
VLVD096  
VLVD108  
VLVD112  
CC LV internal4 supply low voltage  
monitoring  
1015  
1145 mV  
CC Core LV internal4 supply low voltage See note 6  
monitoring  
1150  
1175  
1220 mV  
1235 mV  
CC LV external7 supply low voltage  
monitoring  
See note 5  
MPC5777M Microcontroller Data Sheet, Rev. 6  
76  
NXP Semiconductors  
Electrical characteristics  
1
Table 37. Voltage monitor electrical characteristics (continued)  
Value  
Unit  
Symbol  
Parameter  
Conditions  
See note 8  
Min  
Typ  
Max  
VHVD140  
VHVD145  
CC LV external10 supply high voltage  
monitoring  
1385  
1475 mV  
CC LV externa10 supply high voltage  
reset threshold  
1430  
4040  
2730  
2870  
1510 mV  
448010 mV  
3030  
VPORUP_HV CC HV supply power on reset threshold9 Rising voltage (power up) on  
PMC/IO Main supply  
2
Rising voltage (power up) on  
IO JTAG and Osc supply  
Rising voltage (power up) on  
ADC supply  
3182  
Falling voltage (power down)11 2850  
3162  
Hysteresis on power up12  
878  
2420  
2400  
2750  
2700  
1630  
VPOR240  
VLVD270  
VLVD295  
VHVD360  
VLVD360  
VLVD400  
VHVD600  
CC HV supply power-on reset voltage  
monitoring  
Rising voltage  
2780 mV  
2760  
Falling voltage  
Rising voltage  
CC HV supply low voltage monitoring  
3000 mV  
2950  
Falling voltage  
Rising voltage  
CC Flash supply low voltage  
monitoring13  
3120 mV  
3100  
Falling voltage  
2920  
3435  
3415  
CC Flash supply high voltage monitoring Rising voltage  
Falling voltage  
3650 mV  
CC HV supply low voltage monitoring  
CC HV supply low voltage monitoring  
CC HV supply high voltage monitoring  
Rising voltage  
Falling voltage  
Rising voltage  
Falling voltage  
Rising voltage  
Falling voltage  
4000 mV  
3880  
3600  
4110  
3970  
5560  
5500  
0.1  
4410 mV  
4270  
5960 mV  
5900  
tVDASSERT CC Voltage detector threshold crossing  
assertion  
2
µs  
tVDRELEASE CC Voltage detector threshold crossing  
de-assertion  
5
20  
µs  
1
2
For VDD_LV levels, a maximum of 30 mV IR drop is incurred from the pin to all sinks on the die. For other LVD, the IR  
drop is estimated by multiplying the supply current by 0.5 .  
VPORUP_LV and VPORUP_HV threshold are untrimmed values before completion of the power-up sequence. All other  
LVD/HVD thresholds are provided after trimming.  
3
4
5
Assume all of LVDs on LV supplies disabled.  
LV internal supply levels are measured on device internal supply grid after internal voltage drop.  
LVD is released after tVDRELEASE temporization when upper threshold is crossed, LVD is asserted tVDASSERT after  
detection when lower threshold is crossed.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
77  
Electrical characteristics  
6
This specification is driven by LVD108_C. There are additional LVDs on PLL and Flash VDD_LV supply nets which will  
assert at voltage below LVD108_C.  
7
LV external supply levels are measured on the die side of the package bond wire after package voltage drop. This is  
monitoring external regulator supply voltage and board voltage drop. This does not guarantee device is working down  
to minimum threshold. For minimum supply, refer to operating condition table.  
8
HVD is released after tVDRELEASE temporization when lower threshold is crossed, HVD is asserted tVDASSERT after  
detection when upper threshold is crossed. HVD140 does not cause reset.  
9
This supply also needs to be below 5472 mV (untrimmed HVD600 min)  
10  
The PMC supply also needs to be below 5472 mV (untrimmed HVD600 mV).  
11 Untrimmed LVD300_A will be asserted first on power down.  
12 Hysteresis is implemented only between the VDD_HV_IO_MAIN High voltage Supplies and the ADC high voltage  
supply. When these two supplies are shorted together, the hysteresis is as is shown in Table 37. If the supplies are not  
shorted (VDD_IO_MAIN and ADC high voltage supply), then there will be no hysteresis on the high voltage supplies.  
13  
V
supply range is guaranteed by internal regulator.  
DD_HV_FLA  
3.14.5 Power up/down sequencing  
Table 38 shows the constraints and relationships for the different power supplies  
Table 38. Device supply relation during power-up/power-down sequence  
Supply 21  
VDD_LV VDD_HV_PMC VDD_HV_IO VDD_HV_FLA VDD_HV_ADV VDD_HV_ADR ALTREFn2 VDDSTBY  
VDD_LV  
VDD_HV_PMU  
VDD_HV_IO  
VDD_HV_FLA  
VDD_HV_ADV  
VDD_HV_ADR  
ALTREFn  
2 mA3  
5 mA  
10 mA4  
10 mA4  
VDDSTBY  
1
2
Red cells: supply1 (row) can exceed supply2 (column), granted that external circuitry ensure current flowing from supply1  
is less than absolute maximum rating current value provided.  
ALTREFn are the alternate references for the ADC that can be used in place of the default reference (VDD_HV_ADR_*). They  
are SARB.ALTREF and SAR2.ALTREF.  
3
4
VDD_HV_FLA is generated internally in normal mode. Above current constraints is guaranteed.  
ADC performances is not guaranteed with ALTREFn above VDD_HV_IO / VDD_HV_ADV  
During power-up, all functional terminals are maintained into a known state as described within the following table.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
78  
NXP Semiconductors  
Electrical characteristics  
Table 39. Functional terminals state during power-up and reset  
TERMINAL  
TYPE1  
POWERUP2  
pad state  
RESET  
pad state  
DEFAULT  
pad state3  
Comments  
Power-on reset pad  
PORST  
ESR05  
Strong  
Weak pull-down  
Strong pull-down  
Weak pull-down  
Weak pull-up  
pull-down4  
Strong  
Functional reset pad.  
pull-down  
ESR1  
High impedance  
Weak pull-down  
Weak pull-up  
Weak pull-up  
TESTMODE  
Weak pull-down6  
Weak pull-down6  
GPIO  
Weak pull-up4  
High impedance  
High impedance  
Weak pull-up  
High impedance  
High impedance  
Weak pull-up  
High impedance  
High impedance  
ANALOG  
ERROR0  
During functional reset, pad state  
can be overridden by FCCU  
JCOMP  
High impedance  
Weak pull-down  
Weak pull-down  
TCK  
TMS  
TDI  
High impedance  
High impedance  
High impedance  
High impedance  
Weak pull-down  
Weak pull-up  
Weak pull-up  
Weak pull-up  
Weak pull-down  
Weak pull-up  
Weak pull-up  
TDO  
High impedance  
1
2
Refer to pinout information for terminal type  
POWERUP state is guaranteed from VDD_HV_IO>1.1 V and maintained until supply cross the power-on reset  
threshold: VPORUP_LV for LV supply, VPORUP_HV for high voltage supply.  
3
4
Before software configuration  
Pull-down and pull-up strength are provided as part of Table 13 in Section 3.6.1, I/O input DC characteristics.  
Pull-up/Pull-down are activated within 2 µs after internal reset has been asserted. Actual pad transition will depend  
on external capacitance.  
5
6
Unlike ESR0, ESR1 is provided as normal GPIO and implements weak pull-up during power-up.  
An internal pull-down is implemented on the TESTMODE pin to prevent the device from entering test mode if the  
package TESTMODE pin is not connected. It is recommended to connect the TESTMODE pin to VSS_HV_IO on the  
board for maximum robustness, but not required. The value of TESTMODE is latched at the negation of reset and  
has no affect afterward. The device will not exit functional reset with the TESTMODE pin asserted during power-up.  
The TESTMODE pin can be connected externally directly to ground without any other components.  
3.15 Flash memory electrical characteristics  
The following sections contain flash memory electrical specifications.  
3.15.1 Flash memory program and erase specifications  
NOTE  
All timing, voltage, and current numbers specified in this section are defined for a single  
embedded flash memory within an SoC, and represent average currents for given supplies  
and operations.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
79  
Electrical characteristics  
Table 40 shows the estimated Program/Erase times.  
Table 40. Flash memory program and erase specifications (pending characterization)  
Factory  
Field Update  
Programming3,4  
Typical  
Initial Max  
Full Temp  
Symbol  
Characteristic1  
Typ2 Initial Max  
End of  
Lifetime Max6  
Units  
Life5  
20°CTa -40°CTJ -40°CTJ  1,000 250,000  
30°C  
150°C  
150 °C  
cycles  
cycles  
tdwpgm Doubleword (64 bits) program time  
tppgm Page (256 bits) program time  
43  
73  
100  
200  
800  
290  
45  
150  
300  
1,200  
320  
50  
55  
108  
396  
250  
40  
500  
500  
µs  
µs  
tqppgn Quad-page (1024 bits) program time 268  
2,000  
1,000  
1,000  
1,200  
1.200  
1,600  
1,600  
µs  
t16kers 16 KB Block erase time  
t16kpgn 16 KB Block program time  
t32kers 32 KB Block erase time  
t32kpgm 32 KB Block program time  
t64kers 64 KB Block erase time  
t64kpgm 64 KB Block program time  
t256kers 256 KB Block erase time  
t256kpgm 256 KB Block program time  
168  
34  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
217  
69  
360  
100  
490  
180  
1,520  
720  
390  
110  
310  
90  
315  
138  
884  
552  
590  
210  
2,030  
880  
420  
170  
1,080  
650  
4,000  
4,000  
1
Program times are actual hardware programming times and do not include software overhead. Block program times assume  
quad-page programming.  
2
Typical program and erase times represent the median performance and assume nominal supply values and operation at  
25 °C. Typical program and erase times may be used for throughput calculations.  
3
4
5
Conditions: 150 cycles, nominal voltage.  
Plant Programming times provide guidance for timeout limits used in the factory.  
Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical  
End of Life program and erase values may be used for throughput calculations.  
6
Conditions: -40°CTJ 150°C; full spec voltage.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
80  
NXP Semiconductors  
Electrical characteristics  
3.15.2 Flash memory FERS program and erase specifications  
Table 41. Flash memory FERS program and erase specifications (pending characterization)  
Factory Programming with FERS=1 and Vfers  
pin is  
5V ± 5%2  
Symbol  
Characteristic1  
Units  
Initial Max  
Full Temp  
Initial Max  
Typ3  
20°CTA30°C4 -40°CTJ150°C4  
tdwpgm  
tppgm  
Doubleword (64 bits) program time  
Page (256 bits) program time  
Quad-page (1024 bits) program time  
16 KB erase time  
30  
43  
90  
145  
530  
782  
24  
135  
218  
795  
782  
35  
µs  
µs  
tqppgn  
134  
160  
18  
µs  
t16kers  
t16kpgn  
t32kers  
t32kpgm  
t64kers  
t64kpgm  
t256kers  
t256kpgm  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
16 KB program time  
32 KB erase time  
190  
36  
782  
47  
782  
68  
32 KB program time  
64 KB erase time  
250  
72  
782  
94  
782  
135  
2,070  
568  
64 KB program time  
256 KB erase time  
600  
288  
1,380  
374  
256 KB program time  
1
Program times are actual hardware programming times and do not include software overhead. Block program times assume  
quad-page programming.  
2
3
Conditions: 150 cycles, nominal voltage.  
Typical program and erase times represent the median performance and assume nominal supply values and operation at  
25 °C. Typical program and erase times may be used for throughput calculations.  
4
Plant Programming times provide guidance for timeout limits used in the factory.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
81  
Electrical characteristics  
3.15.3 Flash memory Array Integrity and Margin Read specifications  
Table 42. Flash memory Array Integrity and Margin Read specifications (characterized but not tested)  
Symbol  
Characteristic  
Min  
Typical  
Max1  
Units2  
tai16kseq Array Integrity time for sequential sequence on 16KB block.  
tai32kseq Array Integrity time for sequential sequence on 32KB block.  
tai64kseq Array Integrity time for sequential sequence on 64KB block.  
tai256kseq Array Integrity time for sequential sequence on 256KB block.  
taifullseq Array Integrity time for sequential sequence full array.  
512 ×  
Tperiod ×  
Nread  
1024 ×  
Tperiod ×  
Nread  
2048 ×  
Tperiod ×  
Nread  
8192 ×  
Tperiod ×  
Nread  
3.77e5 ×  
Tperiod ×  
Nread  
taifullprop Array Integrity time for proprietary sequence (applies to full  
array or single block).  
9.96e6 ×  
Tperiod ×  
Nread  
tmr16kseq Margin Read time for sequential sequence on 16KB block.  
tmr32kseq Margin Read time for sequential sequence on 32KB block.  
tmr64kseq Margin Read time for sequential sequence on 64KB block.  
73.81  
128.43  
237.65  
110.7  
192.6  
356.5  
1,339.5  
60.26  
µs  
µs  
µs  
µs  
ms  
tmr256kseq Margin Read time for sequential sequence on 256KB block. 893.01  
tmrfull Margin Read time for sequential sequence full array. 45.21  
1
2
Array Integrity times need to be calculated and are dependent on system frequency and number of clocks per read.  
The equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal  
5e-9) and Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup  
that requires 6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read,  
and has the address pipeline set to 2, Nread would equal 4 (or 6 - 2).)  
The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the  
equation, the results of the equation are also unit accurate.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
82  
NXP Semiconductors  
Electrical characteristics  
3.15.4 Flash memory module life specifications  
Table 43. Flash memory module life spec (pending characterization)  
Symbol  
Characteristic  
Conditions  
Min  
Typical  
Units  
Array P/E Number of program/erase cycles per  
250,000  
P/E  
cycles  
block for 16 KB, 32 KB and 64 KB  
blocks.1  
cycles  
Number of program/erase cycles per  
block for 256 KB blocks.2  
1,000  
50  
250,000  
P/E  
cycles  
Data  
retention  
Minimum data retention.  
Blocks with 0 – 1,000 P/E  
cycles.  
Years  
Years  
Years  
Blocks with 100,000 P/E  
cycles.  
20  
Blocks with 250,000 P/E  
cycles.  
10  
1
2
Program and erase supported across standard temperature specs.  
Program and erase supported across standard temperature specs.  
3.15.5 Data retention vs program/erase cycles  
Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window  
represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the  
qualification limits.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
83  
Electrical characteristics  
3.15.6 Flash memory AC timing specifications  
Table 44. Flash memory AC timing specifications (characterized but not tested)  
Symbol  
Characteristic  
Min  
Typical  
Max  
Units  
tpsus  
Time from setting the MCR-PSUS bit until MCR-DONE bit  
is set to a 1.  
7 plus four 9.1 plus  
µs  
system  
clock  
four  
system  
clock  
periods  
periods  
tesus  
Time from setting the MCR-ESUS bit until MCR-DONE bit  
is set to a 1.  
16 plus  
four  
20.8 plus  
four  
µs  
system  
clock  
system  
clock  
periods  
periods  
tres  
Time from clearing the MCR-ESUS or PSUS bit with  
EHV = 1 until DONE goes low.  
100  
ns  
ns  
µs  
tdone  
tdones  
Time from 0 to 1 transition on the MCR-EHV bit initiating a  
program/erase until the MCR-DONE bit is cleared.  
5
Time from 1 to 0 transition on the MCR-EHV bit aborting a  
program/erase until the MCR-DONE bit is set to a 1.  
16 plus  
four  
20.8 plus  
four  
system  
clock  
system  
clock  
periods  
periods  
tdrcv  
Time to recover once exiting low power mode.  
16 plus  
seven  
system  
clock  
45 plus  
seven  
system  
clock  
µs  
periods  
periods  
taistart  
Time from 0 to 1 transition of UT0-AIE initiating a Margin  
Read or Array Integrity until the UT0-AID bit is cleared.  
This time also applies to the resuming from a suspend or  
breakpoint by clearing AISUS or clearing NAIBP  
5
ns  
ns  
taistop  
Time from 1 to 0 transition of UTO-AIE initiating an Array  
Integrity abort until the UT0-AID bit is set. This time also  
applies to the UT0-AISUS to UT0-AID setting in the event  
of a Array Integrity suspend request.  
80  
plus fifteen  
system  
clock  
periods  
tmrstop Time from 1 to 0 transition of UTO-AIE initiating a Margin  
Read abort until the UT0-AID bit is set. This time also  
10.36  
plus four  
20.42  
plus four  
system  
clock  
µs  
applies to the UT0-AISUS to UT0-AID setting in the event system  
of a Margin Read suspend request.  
clock  
periods  
periods  
3.15.7 Flash read wait state and address pipeline control settings  
Table 45 describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic  
flash access times of the C55FMC array at 150 °C.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
84  
NXP Semiconductors  
Electrical characteristics  
Table 45. Flash Read Wait State and Address Pipeline Control Combinations  
Flash Frequency  
RWSC setting  
APC setting  
0 MHz < fFLASH 33 MHz  
33 MHz < fFLASH 100 MHz  
100 MHz < fFLASH 133 MHz  
133 MHz < fFLASH 167 MHz  
167 MHz < fFLASH 200 MHz  
0
2
3
4
5
0
1
1
1
2
3.16 AC specifications  
All AC timing specifications are valid up to 150 °C, except where explicitly noted.  
3.16.1 Debug and calibration interface timing  
3.16.1.1 JTAG interface timing  
1,2  
Table 46. JTAG pin AC electrical characteristics  
Value  
#
Symbol  
Characteristic  
Unit  
Min  
Max  
1
2
tJCYC  
tJDC  
CC TCK cycle time  
100  
40  
5
60  
ns  
%
CC TCK clock pulse width  
3
tTCKRISE  
CC TCK rise and fall times (40%–70%)  
CC TMS, TDI data setup time  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
tTMSS, TDIS  
t
5
t
TMSH, tTDIH CC TMS, TDI data hold time  
5
6
tTDOV  
tTDOI  
CC TCK low to TDO data valid  
0
163  
7
CC TCK low to TDO data invalid  
8
tTDOHZ  
tJCMPPW  
tJCMPS  
tBSDV  
CC TCK low to TDO high impedance  
CC JCOMP assertion time  
100  
40  
15  
15  
15  
9
10  
11  
12  
13  
14  
15  
CC JCOMP setup time to TCK low  
CC TCK falling edge to output valid  
6004  
600  
600  
tBSDVZ  
tBSDHZ  
tBSDST  
tBSDHT  
CC TCK falling edge to output valid out of high impedance  
CC TCK falling edge to output high impedance  
CC Boundary scan input valid to TCK rising edge  
CC TCK rising edge to boundary scan input invalid  
1
2
These specifications apply to JTAG boundary scan only. See Table 47 for functional specifications.  
JTAG timing specified at VDD_HV_IO_JTAG = 4.0 V to 5.5 V, and maximum loading per pad type as specified in the  
I/O section of the data sheet.  
3
Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
85  
Electrical characteristics  
4
Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG  
delay.  
TCK  
2
3
3
2
1
Figure 22. JTAG test clock input timing  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 23. JTAG test access port timing  
MPC5777M Microcontroller Data Sheet, Rev. 6  
86  
NXP Semiconductors  
Electrical characteristics  
TCK  
10  
JCOMP  
9
Figure 24. JTAG JCOMP timing  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
87  
Electrical characteristics  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 25. JTAG boundary scan timing  
3.16.1.2 Nexus interface timing  
1
Table 47. Nexus debug port timing  
Value  
Min Max  
#
Symbol  
Characteristic  
Unit  
2
7
8
9
9
tEVTIPW CC EVTI pulse width  
tEVTOPW CC EVTO pulse width  
tTCYC CC TCK cycle time  
4
40  
tCYC  
ns  
2
23,4  
tCYC  
ns  
tTCYC CC Absolute minimum TCK cycle time5 (TDO/TDOC sampled on posedge of 406  
TCK)  
Absolute minimum TCK cycle time7 (TDO/TDOC sampled on negedge of 206  
TCK)  
118  
tNTDIS CC TDI/TDIC data setup time  
5
ns  
MPC5777M Microcontroller Data Sheet, Rev. 6  
88  
NXP Semiconductors  
Electrical characteristics  
1
Table 47. Nexus debug port timing (continued)  
Value  
Unit  
#
Symbol  
Characteristic  
Min Max  
12  
tNTDIH CC TDI/TDIC data hold time  
5
5
16  
ns  
ns  
ns  
ns  
ns  
139 tNTMSS CC TMS/TMSC data setup time  
14  
1510  
16  
tNTMSH CC TMS/TMSC data hold time  
5
CC TDO/TDOC propagation delay from falling edge of TCK11  
2.25  
CC TDO/TDOC hold time with respect to TCK falling edge (minimum  
TDO/TDOC propagation delay)  
1
Nexus timing specified at VDD_HV_IO_JTAG = 4.0 V to 5.5 V, and maximum loading per pad type as specified in the  
I/O section of the data sheet.  
2
3
tCYC is system clock period.  
Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that is  
less than the maximum functional capability of the design (system frequency / 4) depending on the actual peripheral  
frequency being used. To ensure proper operation TCK frequency should be set to the peripheral frequency divided  
by a number greater than or equal to that specified here.  
4
This is a functionally allowable feature. However, it may be limited by the maximum frequency specified by the  
Absolute minimum TCK period specification.  
5
6
This value is TDO/TDOC propagation time 36ns + 4 ns setup time to sampling edge.  
This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability  
of the design (system frequency / 4) depending on the actual system frequency being used.  
7
8
9
This value is TDO/TDOC propagation time 16ns + 4 ns setup time to sampling edge.  
TDIC represents the TDI bit frame of the scan packet in compact JTAG 2-wire mode.  
TMSC represents the TMS bit frame of the scan packet in compact JTAG 2-wire mode.  
10 TDOC represents the TDO bit frame of the scan packet in compact JTAG 2-wire mode.  
11 Timing includes TCK pad delay, clock tree delay, logic delay and TDO/TDOC output pad delay.  
TCK  
EVTI  
EVTO  
9
Figure 26. Nexus event trigger and test clock timings  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
89  
Electrical characteristics  
TCK  
11  
13  
12  
14  
TMS/TMSC,  
TDI/TDIC  
15  
16  
TDO/TDOC  
Figure 27. Nexus TDI/TDIC, TMS/TMSC, TDO/TDOC timing  
3.16.1.3 Aurora LVDS interface timing  
Table 48. Aurora LVDS interface timing specifications  
Value  
Typ  
Symbol  
Parameter  
Unit  
Min  
Max  
Data Rate  
STARTUP  
SR Data rate  
1250  
Mbps  
tSTRT_BIAS CC Bias startup time1  
tSTRT_TX  
CC Transmitter startup time2  
tSTRT_RX  
CC Receiver startup time3  
5
5
4
µs  
µs  
µs  
1
2
Startup time is defined as the time taken by LVDS current reference block for settling bias current after its pwr_down  
(power down) has been deasserted. LVDS functionality is guaranteed only after the startup time.  
Startup time is defined as the time taken by LVDS transmitter for settling after its pwr_down (power down) has been  
deasserted. Here it is assumed that current reference is already stable (see Bias start-up time). LVDS functionality  
is guaranteed only after the startup time.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
90  
NXP Semiconductors  
Electrical characteristics  
3
Startup time is defined as the time taken by LVDS receiver for settling after its pwr_down (power down) has been  
deasserted. Here it is assumed that current reference is already stable (see Bias start-up time). LVDS functionality  
is guaranteed only after the startup time.  
3.16.1.4 Aurora debug port timing  
Table 49. Aurora debug port timing  
Value  
#
Symbol  
Characteristic  
Unit  
Min  
Max  
1
1a  
2
tREFCLK  
CC Reference clock frequency  
625  
1250  
400  
55  
MHz  
ps  
tMCYC  
tRCDC  
JRC  
CC Reference clock rise/fall time  
CC Reference clock duty cycle  
CC Reference clock jitter  
45  
%
3
40  
ps  
4
tSTABILITY  
BER  
JD  
CC Reference clock stability  
CC Bit error rate  
50  
PPM  
5
10–12  
0.17  
0.35  
20  
6
SR Transmit lane deterministic jitter  
SR Transmit lane total jitter  
CC Differential output skew  
CC Lane to lane output skew  
CC Aurora lane unit interval1  
OUI  
OUI  
ps  
7
JT  
8
SO  
9
SMO  
OUI  
1000  
1600  
800  
ps  
10  
625 Mbps  
1.25 Gbps  
1600  
800  
ps  
1
± 100 PPM  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
91  
Electrical characteristics  
1
2
2
CLOCKREF  
Zero Crossover  
CLOCKREF  
-
+
1a  
1a  
1a  
1a  
8
8
8
Tx Data  
-
Ideal Zero Crossover  
Tx Data  
+
Tx Data [n]  
Zero Crossover  
Tx Data [n+1]  
Zero Crossover  
Tx Data [m]  
Zero Crossover  
9
9
Figure 28. Aurora timings  
MPC5777M Microcontroller Data Sheet, Rev. 6  
92  
NXP Semiconductors  
Electrical characteristics  
3.16.2 DSPI timing with CMOS and LVDS1 pads  
DSPI channel frequency support is shown in Table 50. Timing specifications are shown in Table 51, Table 52, Table 54,  
Table 55 and Table 56.  
Table 50. DSPI channel frequency support  
Max usable  
DSPI use mode  
frequency (MHz)1,2  
CMOS (Master mode)  
LVDS (Master mode)3  
Full duplex – Classic timing (Table 51)  
17  
30  
30  
30  
33  
40  
Full duplex – Modified timing (Table 52)  
Output only mode (SCK/SOUT/PCS) (Table 51 and Table 52)  
Output only mode TSB mode (SCK/SOUT/PCS) (Table 56)  
Full duplex – Modified timing (Table 54)  
Output only mode TSB mode (SCK/SOUT/PCS) (Table 55)  
1
Maximum usable frequency can be achieved if used with fastest configuration of the highest drive pads.  
Maximum usable frequency does not take into account external device propagation delay.  
µS Channel and LVDS timing is not supported for DSPI12.  
2
3
3.16.2.1 DSPI master mode full duplex timing with CMOS and LVDS pads  
3.16.2.1.1 DSPI CMOS Master Mode – Classic Timing  
1
Table 51. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1  
Condition  
Pad drive3  
SCK drive strength  
Value2  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
Min  
Max  
1
tSCK CC SCK cycle time  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
33.0  
80.0  
ns  
Medium  
200.0  
2
tCSC CC PCS to SCK delay SCK and PCS drive strength  
Very strong  
Strong  
25 pF  
(N4 × tSYS5) – 16  
(N4 × tSYS5) – 16  
(N4 × tSYS5) – 16  
(N4 × tSYS5) – 29  
ns  
50 pF  
Medium  
50 pF  
PCS medium  
PCS = 50 pF  
and SCK strong SCK = 50 pF  
1. DSPI in TSB mode with LVDS pads can be used to implement Micro Second Channel bus protocol.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
93  
Electrical characteristics  
1
Table 51. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1  
Condition  
Pad drive3  
SCK and PCS drive strength  
Value2  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
Min  
Max  
3
tASC CC After SCK delay  
Very strong  
PCS = 0 pF  
SCK = 50 pF  
(M6 × tSYS5) – 35  
(M6 × tSYS5) – 35  
(M6 × tSYS5) – 35  
(M6 × tSYS5) – 35  
ns  
Strong  
PCS = 0 pF  
SCK = 50 pF  
Medium  
PCS = 0 pF  
SCK = 50 pF  
PCS medium  
PCS = 0 pF  
and SCK strong SCK = 50 pF  
4
tSDC CC SCK duty cycle7  
SCK drive strength  
Very strong  
Strong  
0 pF  
0 pF  
0 pF  
1/2tSCK – 2  
1/2tSCK – 2  
1/2tSCK – 5  
1/2tSCK + 2  
1/2tSCK + 2  
1/2tSCK + 5  
ns  
Medium  
PCS strobe timing  
5
6
tPCSC CC PCSx to PCSS  
time8  
PCS and PCSS drive strength  
Strong  
25 pF  
16.0  
16.0  
ns  
ns  
tPASC CC PCSS to PCSx  
time8  
PCS and PCSS drive strength  
Strong  
25 pF  
SIN setup time  
7
8
9
tSUI  
CC SIN setup time to SCK drive strength  
SCK9  
Very strong  
Strong  
25 pF  
25.0  
32.75  
52.0  
ns  
ns  
ns  
50 pF  
50 pF  
Medium  
SIN hold time  
tHI  
CC SIN hold time from SCK drive strength  
SCK9  
Very strong  
Strong  
0 pF  
–1.0  
–1.0  
–1.0  
0 pF  
0 pF  
Medium  
SOUT data valid time (after SCK edge)  
SOUT and SCK drive strength  
tSUO CC SOUT data valid  
time from SCK10  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
7.0  
8.0  
Medium  
16.0  
SOUT data hold time (after SCK edge)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
94  
NXP Semiconductors  
Electrical characteristics  
1
Table 51. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1  
Condition  
Pad drive3  
SOUT and SCK drive strength  
Value2  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
Min  
Max  
10  
tHO  
CC SOUT data hold  
time after SCK10  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
–7.7  
–11.0  
–15.0  
ns  
Medium  
1
2
3
All output timing is worst case and includes the mismatching of rise and fall times of the output pads.  
All timing values for output signals in this table are measured to 50% of the output voltage.  
Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds  
and may cause incorrect operation.  
4
N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software  
programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless  
TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS  
and SCK are driven by the same edge of DSPI_CLKn).  
5
6
tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min  
tSYS = 10 ns).  
M is the number of clock cycles added to time between SCK negation and PCS negation and is software  
programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB  
mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and  
SCK are driven by the same edge of DSPI_CLKn).  
7
tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd  
divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.  
8
9
PCSx and PCSS using same pad configuration.  
Input timing assumes an input slew rate of 1 ns (10% – 90%) and uses TTL / Automotive voltage thresholds.  
10 SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the  
same value.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
95  
Electrical characteristics  
tCSC  
tASC  
PCSx  
tSCK  
tSDC  
SCK Output  
(CPOL = 0)  
tSDC  
SCK Output  
(CPOL = 1)  
tSUI  
tHI  
First Data  
First Data  
SIN  
Data  
Last Data  
tSUO  
tHO  
Data  
Last Data  
SOUT  
Figure 29. DSPI CMOS master mode – classic timing, CPHA = 0  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
tSUI  
tHI  
Data  
First Data  
Last Data  
SIN  
tSUO  
tHO  
Data  
SOUT  
First Data  
Last Data  
Figure 30. DSPI CMOS master mode – classic timing, CPHA = 1  
MPC5777M Microcontroller Data Sheet, Rev. 6  
96  
NXP Semiconductors  
Electrical characteristics  
tPCSC  
tPASC  
PCSS  
PCSx  
Figure 31. DSPI PCS strobe (PCSS) timing (master mode)  
3.16.2.1.2  
DSPI CMOS Master Mode – Modified Timing  
1
Table 52. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1  
Condition  
Pad drive3  
SCK drive strength  
Value2  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
Min  
Max  
1
tSCK CC SCK cycle time  
Very strong  
Strong  
25 pF  
33.0  
80.0  
ns  
50 pF  
50 pF  
Medium  
200.0  
2
tCSC CC PCS to SCK delay SCK and PCS drive strength  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
(N4 × tSYS5) – 16  
(N4 × tSYS5) – 16  
(N4 × tSYS5) – 16  
(N4 × tSYS5) – 29  
ns  
Medium  
PCS medium PCS = 50 pF  
and SCK  
strong  
SCK = 50 pF  
3
tASC CC After SCK delay  
SCK and PCS drive strength  
Very strong  
PCS = 0 pF  
SCK = 50 pF  
(M6 × tSYS5) – 35  
(M6 × tSYS5) – 35  
(M6 × tSYS5) – 35  
(M6 × tSYS5) – 35  
ns  
Strong  
PCS = 0 pF  
SCK = 50 pF  
Medium  
PCS = 0 pF  
SCK = 50 pF  
PCS medium PCS = 0 pF  
and SCK  
strong  
SCK = 50 pF  
4
tSDC CC SCK duty cycle7  
SCK drive strength  
Very strong  
Strong  
0 pF  
1/2tSCK – 2  
1/2tSCK – 2  
1/2tSCK – 5  
1/2tSCK + 2  
1/2tSCK + 2  
1/2tSCK + 5  
ns  
0 pF  
0 pF  
Medium  
PCS strobe timing  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
97  
Electrical characteristics  
Table 52. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1  
1
Condition  
Pad drive3  
PCS and PCSS drive strength  
Strong 25 pF  
PCS and PCSS drive strength  
Value2  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
Min  
Max  
5
tPCSC CC PCSx to PCSS  
time8  
16.0  
16.0  
ns  
ns  
6
7
tPASC CC PCSS to PCSx  
time8  
Strong  
25 pF  
SIN setup time  
tSUI  
CC SIN setup time to  
SCK  
SCK drive strength  
5
Very strong  
Strong  
25 pF  
25 – (P10 × tSYS  
)
ns  
ns  
CPHA = 09  
50 pF  
32.75 – (P10 × tSY  
5
)
S
5
Medium  
50 pF  
52 – (P10 × tSYS  
)
SIN setup time to  
SCK  
SCK drive strength  
Very strong  
Strong  
25 pF  
25.0  
32.75  
52.0  
CPHA = 19  
50 pF  
50 pF  
Medium  
SIN hold time  
8
tHI  
CC SIN hold time from SCK drive strength  
SCK  
Very strong  
Strong  
0 pF  
–1 + (P9 × tSYS  
–1 + (P9 × tSYS  
–1 + (P9 × tSYS  
)
ns  
ns  
4
CPHA = 09  
4
4
0 pF  
0 pF  
)
)
Medium  
SIN hold time from SCK drive strength  
SCK  
Very strong  
Strong  
0 pF  
–1.0  
–1.0  
–1.0  
CPHA = 19  
0 pF  
0 pF  
Medium  
SOUT data valid time (after SCK edge)  
SOUT and SCK drive strength  
9
tSUO CC SOUT data valid  
time from SCK  
5
5
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
7.0 + tSYS  
8.0 + tSYS  
ns  
ns  
CPHA = 010  
5
Medium  
16.0 + tSYS  
SOUT data valid  
time from SCK  
CPHA = 110  
SOUT and SCK drive strength  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
7.0  
8.0  
Medium  
16.0  
SOUT data hold time (after SCK edge)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
98  
NXP Semiconductors  
Electrical characteristics  
1
Table 52. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1  
Condition  
Pad drive3  
SOUT and SCK drive strength  
Value2  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
Min  
Max  
10  
tHO  
CC SOUT data hold  
time after SCK  
CPHA = 011  
5
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
–7.7 + tSYS  
ns  
5
–11.0 + tSYS  
–15.0 + tSYS  
5
Medium  
SOUT data hold  
time after SCK  
CPHA = 111  
SOUT and SCK drive strength  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
–7.7  
–11.0  
–15.0  
ns  
Medium  
1
2
3
All output timing is worst case and includes the mismatching of rise and fall times of the output pads.  
All timing values for output signals in this table are measured to 50% of the output voltage.  
Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds  
and may cause incorrect operation.  
4
N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software  
programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless  
TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS  
and SCK are driven by the same edge of DSPI_CLKn).  
5
6
tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min  
tSYS = 10 ns).  
M is the number of clock cycles added to time between SCK negation and PCS negation and is software  
programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB  
mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and  
SCK are driven by the same edge of DSPI_CLKn).  
7
tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd  
divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.  
8
9
PCSx and PCSS using same pad configuration.  
Input timing assumes an input slew rate of 1 ns (10% – 90%) and uses TTL / Automotive voltage thresholds.  
10 P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using  
DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is  
automatically set to 1.  
11 SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the  
same value.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
99  
Electrical characteristics  
tCSC  
tASC  
PCSx  
tSCK  
tSDC  
SCK Output  
(CPOL = 0)  
tSDC  
SCK Output  
(CPOL = 1)  
tSUI  
tHI  
First Data  
First Data  
SIN  
Data  
Last Data  
tSUO  
tHO  
Data  
Last Data  
SOUT  
Figure 32. DSPI CMOS master mode – modified timing, CPHA = 0  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
tHI  
tSUI  
tHI  
Data  
First Data  
SIN  
Last Data  
tSUO  
tHO  
Data  
SOUT  
First Data  
Last Data  
Figure 33. DSPI CMOS master mode – modified timing, CPHA = 1  
MPC5777M Microcontroller Data Sheet, Rev. 6  
100  
NXP Semiconductors  
Electrical characteristics  
tPCSC  
tPASC  
PCSS  
PCSx  
Figure 34. DSPI PCS strobe (PCSS) timing (master mode)  
3.16.2.1.3  
DSPI LVDS Master Mode – Modified Timing  
Table 53. DSPI LVDS master timing full duplex modified transfer format (MTFE = 1), CPHA = 0 or 1  
Condition  
Value1  
#
Symbol  
Characteristic  
Unit  
Pad drive  
LVDS  
Load  
Min  
Max  
1
tSCK CC SCK cycle time  
15 pF  
30.0  
ns  
to 25 pF  
differential  
2
tCSC CC PCS to SCK delay PCS drive strength  
(LVDS SCK)  
Very strong  
Strong  
25 pF  
(N2 × tSYS3) – 10  
(N2 × tSYS3) – 10  
(N2 × tSYS3) – 32  
(M4 × tSYS3) – 8  
ns  
ns  
ns  
ns  
50 pF  
50 pF  
Medium  
3
tASC CC After SCK delay Very strong  
(LVDS SCK)  
PCS = 0 pF  
SCK = 25 pF  
Strong  
PCS = 0 pF  
SCK = 25 pF  
(M4 × tSYS3) – 8  
(M4 × tSYS3) – 8  
1/2tSCK – 2  
ns  
ns  
ns  
Medium  
PCS = 0 pF  
SCK = 25 pF  
4
7
tSDC CC SCK duty cycle5 LVDS  
15 pF  
1/2tSCK +2  
to 25 pF  
differential  
tSUI  
CC  
SIN setup time  
SIN setup time to SCK drive strength  
SCK  
3
LVDS  
15 pF  
to 25 pF  
differential  
23 – (P7 × tSYS  
)
ns  
ns  
CPHA = 06  
SIN setup time to SCK drive strength  
SCK  
LVDS  
15 pF  
to 25 pF  
23  
CPHA = 16  
differential  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
101  
Electrical characteristics  
Table 53. DSPI LVDS master timing full duplex modified transfer format (MTFE = 1), CPHA = 0 or 1  
Condition  
Pad drive  
Value1  
#
Symbol  
Characteristic  
Unit  
Load  
Min  
Max  
8
tHI  
CC  
SIN Hold Time  
SIN hold time  
from SCK  
SCK drive strength  
LVDS  
0 pF differential –1 + (P7 × tSYS  
3
)
ns  
ns  
CPHA = 06  
SIN hold time  
from SCK  
SCK drive strength  
LVDS 0 pF differential  
–1  
CPHA = 16  
9
tSUO CC  
SOUT data valid time (after SCK edge)  
SOUT data valid SOUT and SCK drive strength  
time from SCK  
3
LVDS  
15 pF  
7.0 + tSYS  
ns  
ns  
CPHA = 08  
to 25 pF  
differential  
SOUT data valid SOUT and SCK drive strength  
time from SCK  
LVDS  
15 pF  
to 25 pF  
differential  
7.0  
CPHA = 18  
10  
tHO  
CC  
SOUT data hold time (after SCK edge)  
SOUT data hold SOUT and SCK drive strength  
time after SCK  
3
LVDS  
15 pF  
–7.5 + tSYS  
ns  
ns  
CPHA = 08  
to 25 pF  
differential  
SOUT data hold SOUT and SCK drive strength  
time after SCK  
LVDS  
15 pF  
to 25 pF  
differential  
–7.5  
CPHA = 18  
1
2
All timing values for output signals in this table are measured to 50% of the output voltage.  
N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software  
programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB  
mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and  
SCK are driven by the same edge of DSPI_CLKn).  
3
4
tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min  
tSYS = 10 ns).  
M is the number of clock cycles added to time between SCK negation and PCS negation and is software  
programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB  
mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and  
SCK are driven by the same edge of DSPI_CLKn).  
5
tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd  
divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.  
6
7
Input timing assumes an input slew rate of 1 ns (10% – 90%) and LVDS differential voltage = ±100 mV.  
P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using  
DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically  
set to 1.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
102  
NXP Semiconductors  
Electrical characteristics  
8
SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the  
same value.  
1
Table 54. DSPI LVDS slave timing full duplex modified transfer format (MTFE = 0/1)  
Condition  
Pad drive  
Value  
#
Symbol  
Characteristic  
Unit  
Load  
Min  
Max  
1
2
3
4
5
tSCK CC SCK cycle time2  
tCSC SR SS to SCK delay2  
62  
16  
16  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
50  
50  
60  
5
tASC  
tSDC CC SCK duty cycle2  
SR SCK to SS delay2  
tA  
CC Slave Access  
Time2, 3, 4 (SS  
active to SOUT  
driven)  
Very strong  
Strong  
Medium  
Very strong  
Strong  
Medium  
25 pF  
50 pF  
50 pF  
25 pF  
50 pF  
50 pF  
6
tDIS  
CC Slave SOUT  
Disable Time 2, 3,  
4(SS inactive to  
SOUT High-Z or  
invalid)  
5
10  
7
8
9
tSUI  
tHI  
CC Data setup time  
for inputs2  
10  
10  
ns  
ns  
CC Data hold time for —  
inputs2  
tSUO CC  
SOUT Valid  
Time2, 3, 4 (after  
SCK edge)  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
25 pF  
50 pF  
50 pF  
30  
30  
50  
ns  
ns  
ns  
ns  
ns  
ns  
Medium  
Very strong  
Strong  
10  
tHO  
CC  
SOUT Hold  
Time2, 3, 4 (after  
SCK edge)  
2.5  
2.5  
2.5  
Medium  
1
DSPI slave operation is only supported for a single master and single slave on the device. Timing is valid for that  
case only.  
2
3
4
Input timing assumes an input slew rate of 1 ns (10% - 90%) and uses TTL / Automotive voltage thresholds.  
All timing values for output signals in this table, are measured to 50% of the output voltage.  
All output timing is worst case and includes the mismatching of rise and fall times of the output pads.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
103  
Electrical characteristics  
tCSC  
tASC  
PCSx  
tSCK  
tSDC  
SCK Output  
(CPOL = 0)  
tSDC  
SCK Output  
(CPOL = 1)  
tSUI  
tHI  
First Data  
First Data  
SIN  
Data  
Last Data  
tSUO  
tHO  
Data  
Last Data  
SOUT  
Figure 35. DSPI LVDS master mode – modified timing, CPHA = 0  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
tHI  
tSUI  
tHI  
Data  
First Data  
SIN  
Last Data  
tSUO  
tHO  
Data  
SOUT  
First Data  
Last Data  
Figure 36. DSPI LVDS master mode – modified timing, CPHA = 1  
MPC5777M Microcontroller Data Sheet, Rev. 6  
104  
NXP Semiconductors  
Electrical characteristics  
3.16.2.1.4  
DSPI Master Mode – Output Only  
Table 55. DSPI LVDS master timing output only timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or  
1,2  
1, continuous SCK clock  
Condition  
Value  
#
Symbol  
Characteristic  
Unit  
Pad drive  
LVDS  
Load  
Min  
Max  
1
tSCK CC SCK cycle time  
15 pF  
25.0  
ns  
to 50 pF  
differential  
2
3
4
tCSV CC PCS valid after SCK3 Very strong  
25 pF  
6.0  
ns  
ns  
(SCK with 50 pF  
differential load cap.)  
Strong  
50 pF  
10.5  
tCSH CC PCS hold after SCK3 Very strong  
0 pF  
0 pF  
–4.0  
–4.0  
ns  
ns  
(SCK with 50 pF  
differential load cap.)  
Strong  
tSDC CC SCK duty cycle  
(SCK with 50 pF  
LVDS  
15 pF  
to 50 pF  
differential  
1/2tSCK – 2  
1/2tSCK + 2  
ns  
ns  
ns  
differential load cap.)  
SOUT data valid time (after SCK edge)  
5
6
tSUO CC SOUT data valid time SOUT and SCK drive strength  
from SCK4  
LVDS  
15 pF  
to 50 pF  
differential  
3.5  
SOUT data hold time (after SCK edge)  
tHO  
CC SOUT data hold time SOUT and SCK drive strength  
after SCK4  
LVDS  
15 pF  
–3.5  
to 50 pF  
differential  
1
All DSPI timing specifications apply to pins when using LVDS pads for SCK and SOUT and CMOS pad for PCS  
with pad driver strength as defined. Timing may degrade for weaker output drivers.  
2
3
TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.  
With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of  
DSPI_CLKn. This timing value is due to pad delays and signal propagation delays.  
4
SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the  
same value.  
Table 56. DSPI CMOS master timing output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or  
1,2  
1, continuous SCK clock  
Condition  
Pad drive4  
SCK drive strength  
Value3  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
Min  
Max  
1
tSCK CC SCK cycle time  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
33.0  
80.0  
ns  
ns  
ns  
Medium  
200.0  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
105  
Electrical characteristics  
Table 56. DSPI CMOS master timing output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or  
1,2  
1, continuous SCK clock (continued)  
Condition  
Pad drive4  
SCK and PCS drive strength  
Value3  
#
Symbol  
Characteristic  
Unit  
Load (CL)  
Min  
Max  
2
tCSV CC PCS valid after SCK5  
Very strong  
Strong  
25 pF  
7
8
ns  
ns  
ns  
ns  
50 pF  
Medium  
50 pF  
16  
29  
PCS medium  
PCS = 50 pF  
and SCK strong SCK = 50 pF  
3
tCSH CC PCS hold after SCK5  
SCK and PCS drive strength  
Very strong  
Strong  
PCS = 0 pF  
SCK = 50 pF  
–14  
–14  
–33  
–35  
ns  
ns  
ns  
ns  
PCS = 0 pF  
SCK = 50 pF  
Medium  
PCS = 0 pF  
SCK = 50 pF  
PCS medium  
PCS = 0 pF  
and SCK strong SCK = 50 pF  
4
9
tSDC CC SCK duty cycle6  
SCK drive strength  
Very strong  
Strong  
0 pF  
0 pF  
0 pF  
1/2tSCK – 2  
1/2tSCK – 2  
1/2tSCK – 5  
1/2tSCK + 2 ns  
1/2tSCK + 2 ns  
1/2tSCK + 5 ns  
Medium  
SOUT data valid time (after SCK edge)  
tSUO CC SOUT data valid time from  
SOUT and SCK drive strength  
SCK  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
7.0  
8.0  
ns  
ns  
ns  
CPHA = 17  
Medium  
16.0  
SOUT data hold time (after SCK edge)  
CC SOUT data hold time after SOUT and SCK drive strength  
10  
tHO  
SCK  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
–7.7  
–11.0  
–15.0  
ns  
ns  
ns  
CPHA = 17  
Medium  
1
2
3
4
TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.  
All output timing is worst case and includes the mismatching of rise and fall times of the output pads.  
All timing values for output signals in this table are measured to 50% of the output voltage.  
Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds  
and may cause incorrect operation.  
5
With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of  
DSPI_CLKn. This timing value is due to pad delays and signal propagation delays.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
106  
NXP Semiconductors  
Electrical characteristics  
6
7
tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd  
divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.  
SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the  
same value.  
PCSx  
tCSV  
tSCK  
tSDC  
tCSH  
SCK Output  
(CPOL = 0)  
tSUO  
tHO  
First Data  
Last Data  
SOUT  
Data  
Figure 37. DSPI LVDS and CMOS master timing output only modified transfer format MTFE = 1, CHPA = 1  
3.16.2.2 Slave Mode timing  
1
Table 57. DSPI CMOS Slave timing - Modified Transfer Format (MTFE = 0/1)  
Condition  
#
Symbol  
Characteristic  
Min  
Max  
Unit  
Pad Drive  
Load  
1
2
3
4
5
tSCK CC  
tCSC SR  
SCK Cycle Time2  
SS to SCK Delay2  
SCK to SS Delay2  
SCK Duty Cycle2  
-
-
-
-
-
62  
16  
16  
30  
50  
ns  
ns  
ns  
ns  
ns  
-
tASC  
SR  
-
-
tSDC CC  
tA  
CC  
CC  
Slave Access Time2,3,4  
(SS active to SOUT driven)  
Very  
Strong  
25 pF  
Strong  
50 pF  
50 pF  
25 pF  
50  
60  
5
ns  
ns  
ns  
Medium  
6
tDIS  
Slave SOUT Disable  
Time2,3,4  
Very  
Strong  
(SS inactive to SOUT High-Z  
or invalid)  
Strong  
Medium  
50 pF  
50 pF  
10  
10  
5
ns  
ns  
ns  
ns  
10  
9
tSUI  
tHI  
CC Data Setup Time for Inputs2  
CC Data Hold Time for Inputs2  
10  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
107  
Electrical characteristics  
Table 57. DSPI CMOS Slave timing - Modified Transfer Format (MTFE = 0/1)  
Condition  
1
#
Symbol  
Characteristic  
Min  
Max  
Unit  
Pad Drive  
Load  
11  
tSUO CC  
SOUT Valid Time2,3,4  
(after SCK edge)  
Very  
Strong  
25 pF  
30  
ns  
Strong  
50 pF  
50 pF  
25 pF  
30  
50  
ns  
ns  
ns  
Medium  
12  
tHO  
CC  
SOUT Hold Time2,3,4  
(after SCK edge)  
Very  
2.5  
Strong  
Strong  
50 pF  
50 pF  
2.5  
2.5  
ns  
ns  
Medium  
1
DSPI slave operation is only supported for a single master and single slave on the device. Timing is valid for  
that case only.  
2
3
4
Input timing assumes an input slew rate of 1 ns (10% - 90%) and uses TTL / Automotive voltage thresholds.  
All timing values for output signals in this table, are measured to 50% of the output voltage.  
All output timing is worst case and includes the mismatching of rise and fall times of the output pads.  
tASC  
tCSC  
SS  
tSCK  
SCK Input  
tSDC  
(CPOL=0)  
tSDC  
SCK Input  
(CPOL=1)  
tHO  
tSUO  
tA  
tDIS  
First Data  
tSUI  
Data  
Data  
Last Data  
SOUT  
SIN  
tHI  
Last Data  
First Data  
Figure 38. DSPI Slave Mode - Modified transfer format timing (MFTE = 0/1) — CPHA = 0  
MPC5777M Microcontroller Data Sheet, Rev. 6  
108  
NXP Semiconductors  
Electrical characteristics  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
tSUO  
tA  
tDIS  
tHO  
Last Data  
First Data  
tHI  
Data  
Data  
SOUT  
SIN  
tSUI  
First Data  
Last Data  
Figure 39. DSPI Slave Mode - Modified transfer format timing (MFTE = 0/1) — CPHA = 1  
3.16.3 FEC timing  
The FEC provides both MII and RMII interfaces in the 416 TEPBGA and 512 TEPBGA packages, and the MII and RMII  
signals can be configured for either CMOS or TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.  
3.16.3.1 MII receive signal timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)  
The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency  
requirement. The system clock frequency must be at least equal to or greater than the RX_CLK frequency.  
1
Table 58. MII receive signal timing  
Value  
Symbol  
Characteristic  
Unit  
Min  
Max  
M1  
M2  
M3  
M4  
CC RXD[3:0], RX_DV, RX_ER to RX_CLK setup  
CC RX_CLK to RXD[3:0], RX_DV, RX_ER hold  
CC RX_CLK pulse width high  
5
ns  
5
ns  
35%  
35%  
65%  
65%  
RX_CLK period  
RX_CLK period  
CC RX_CLK pulse width low  
1
All timing specifications are referenced from RX_CLK = 1.4 V to the valid input levels, 0.8 V and 2.0 V.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
109  
Electrical characteristics  
M3  
RX_CLK (input)  
M4  
RXD[3:0] (inputs)  
RX_DV  
RX_ER  
M2  
M1  
Figure 40. MII receive signal timing diagram  
3.16.3.2 MII transmit signal timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)  
The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency  
requirement. The system clock frequency must be at least equal to or greater than the TX_CLK frequency.  
The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising or falling edge of  
TX_CLK, and the timing is the same in either case. This options allows the use of non-compliant MII PHYs.  
Refer to the MPC5777M Microcontroller Reference Manuals Fast Ethernet Controller (FEC) chapter for details of this option  
and how to enable it.  
1
Table 59. MII transmit signal timing  
Value2  
Symbol  
Characteristic  
Unit  
Min  
Max  
M5  
M6  
M7  
M8  
CC TX_CLK to TXD[3:0], TX_EN, TX_ER invalid  
CC TX_CLK to TXD[3:0], TX_EN, TX_ER valid  
CC TX_CLK pulse width high  
5
25  
ns  
ns  
35%  
35%  
65%  
65%  
TX_CLK period  
TX_CLK period  
CC TX_CLK pulse width low  
1
2
All timing specifications are referenced from TX_CLK = 1.4 V to the valid output levels, 0.8 V and 2.0 V.  
Output parameters are valid for CL = 25 pF, where CL is the external load to the device. The internal package  
capacitance is accounted for, and does not need to be subtracted from the 25 pF value.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
110  
NXP Semiconductors  
Electrical characteristics  
M7  
TX_CLK (input)  
M5  
M8  
TXD[3:0] (outputs)  
TX_EN  
TX_ER  
M6  
Figure 41. MII transmit signal timing diagram  
3.16.3.3 MII async inputs signal timing (CRS and COL)  
Table 60. MII async inputs signal timing  
Value  
Symbol  
Characteristic  
Unit  
Min  
Max  
M9  
CC CRS, COL minimum pulse width  
1.5  
TX_CLK period  
CRS, COL  
M9  
Figure 42. MII async inputs timing diagram  
3.16.3.4 MII and RMII serial management channel timing (MDIO and MDC)  
The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.  
1
Table 61. MII serial management channel timing  
Value2  
Symbol  
Characteristic  
Unit  
Min  
Max  
M10  
M11  
CC MDC falling edge to MDIO output invalid (minimum  
propagation delay)  
0
ns  
ns  
CC MDC falling edge to MDIO output valid (max prop  
delay)  
25  
M12  
M13  
M14  
M15  
CC MDIO (input) to MDC rising edge setup  
CC MDIO (input) to MDC rising edge hold  
CC MDC pulse width high  
10  
0
ns  
ns  
40%  
40%  
60%  
60%  
MDC period  
MDC period  
CC MDC pulse width low  
1
All timing specifications are referenced from MDC = 1.4 V (TTL levels) to the valid input and output levels, 0.8 V and  
2.0 V (TTL levels). For 5 V operation, timing is referenced from MDC = 50% to 2.2 V/3.5 V input and output levels.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
111  
Electrical characteristics  
2
Output parameters are valid for CL = 25 pF, where CL is the external load to the device. The internal package  
capacitance is accounted for, and does not need to be subtracted from the 25 pF value.  
M14  
M15  
MDC (output)  
M10  
MDIO (output)  
M11  
MDIO (input)  
M12  
M13  
Figure 43. MII serial management channel timing diagram  
3.16.3.5 RMII receive signal timing (RXD[1:0], CRS_DV)  
The receiver functions correctly up to a REF_CLK maximum frequency of 50 MHz +1%. There is no minimum frequency  
requirement. The system clock frequency must be at least equal to or greater than the RX_CLK frequency, which is half that of  
the REF_CLK frequency.  
1
Table 62. RMII receive signal timing  
Value  
Symbol  
Characteristic  
Unit  
Min  
Max  
R1  
R2  
R3  
R4  
CC RXD[1:0], CRS_DV to REF_CLK setup  
CC REF_CLK to RXD[1:0], CRS_DV hold  
CC REF_CLK pulse width high  
4
ns  
2
ns  
35%  
35%  
65%  
65%  
REF_CLK period  
REF_CLK period  
CC REF_CLK pulse width low  
1
All timing specifications are referenced from REF_CLK = 1.4 V to the valid input levels, 0.8 V and 2.0 V.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
112  
NXP Semiconductors  
Electrical characteristics  
R3  
REF_CLK (input)  
R4  
RXD[1:0] (inputs)  
CRS_DV  
R1  
R2  
Figure 44. RMII receive signal timing diagram  
3.16.3.6 RMII transmit signal timing (TXD[1:0], TX_EN)  
The transmitter functions correctly up to a REF_CLK maximum frequency of 50 MHz + 1%. There is no minimum frequency  
requirement. The system clock frequency must be at least equal to or greater than the TX_CLK frequency, which is half that of  
the REF_CLK frequency.  
The transmit outputs (TXD[1:0], TX_EN) can be programmed to transition from either the rising or falling edge of REF_CLK,  
and the timing is the same in either case. These options allows the use of non-compliant RMII PHYs.  
1, 2  
Table 63. RMII transmit signal timing  
Value3  
Symbol  
Characteristic  
Unit  
Min  
Max  
R5  
R6  
R7  
R8  
CC REF_CLK to TXD[1:0], TX_EN invalid  
CC REF_CLK to TXD[1:0], TX_EN valid  
CC REF_CLK pulse width high  
2
16  
ns  
ns  
35%  
35%  
65%  
65%  
REF_CLK period  
REF_CLK period  
CC REF_CLK pulse width low  
1
2
RMII timing is valid only up to a maximum of 150 oC junction temperature.  
All timing specifications are referenced for TTL or CMOS input levels for REF_CLK to the valid output levels, 0.8 V  
and 2.0 V.  
3
Output parameters are valid for CL = 25 pF, where CL is the external load to the device. The internal package  
capacitance is accounted for, and does not need to be subtracted from the 25 pF value.  
R7  
REF_CLK (input)  
R5  
R8  
TXD[1:0] (outputs)  
TX_EN  
R6  
Figure 45. RMII transmit signal timing diagram  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
113  
Electrical characteristics  
3.16.4 FlexRay timing  
This section provides the FlexRay Interface timing characteristics for the input and output signals.  
These are recommended numbers as per the FlexRay EPL v3.0 specification.  
3.16.4.1 TxEN  
TxEN  
80 %  
20 %  
dCCTxENFALL  
dCCTxENRISE  
Figure 46. TxEN signal  
1
Table 64. TxEN output characteristics  
Value  
Symbol  
Characteristic  
Unit  
Min  
Max  
dCCTxENRISE25 CC Rise time of TxEN signal at CC  
dCCTxENFALL25 CC Fall time of TxEN signal at CC  
9
9
ns  
ns  
ns  
dCCTxEN01  
CC Sum of delay between Clk to Q of the last FF and the final output buffer,  
rising edge  
25  
dCCTxEN10  
CC Sum of delay between Clk to Q of the last FF and the final output buffer,  
falling edge  
25  
ns  
1
TxEN pin load maximum 25 pF  
MPC5777M Microcontroller Data Sheet, Rev. 6  
114  
NXP Semiconductors  
Electrical characteristics  
PE_Clk  
TxEN  
dCCTxEN10  
dCCTxEN01  
Figure 47. TxEN signal propagation delays  
3.16.4.2 TxD  
TxD  
dCCTxD50%  
80 %  
50 %  
20 %  
dCCTxDRISE  
dCCTxDFALL  
Figure 48. TxD signal  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
115  
Electrical characteristics  
1,2  
Table 65. TxD output characteristics  
Characteristic  
Value  
Min  
Symbol  
Unit  
Max  
dCCTxAsym  
CC Asymmetry of sending CC at 25 pF load  
–2.45  
2.45  
ns  
ns  
(= dCCTxD50% 100 ns)  
dCCTxDRISE25+dCCTxDFALL25 CC Sum of Rise and Fall time of TxD signal at the output  
pin3,4  
95  
96  
25  
dCCTxD01  
dCCTxD10  
CC Sum of delay between Clk to Q of the last FF and the  
final output buffer, rising edge  
ns  
ns  
CC Sum of delay between Clk to Q of the last FF and the  
final output buffer, falling edge  
25  
1
2
TxD pin load maximum 25 pF  
Specifications valid according to FlexRay EPL 3.0.1 standard with 20%–80% levels and a 10pF load at the end of a  
50 Ohm, 1 ns stripline. Please refer to the Very Strong I/O pad specifications.  
3
4
Pad configured as VERY STRONG  
Sum of transition time simulation is performed according to Electrical Physical Layer Specification 3.0.1 and the entire  
temperature range of the device has been taken into account.  
5
6
VDD_HV_IO = 5.0 V ± 10%, Transmission line Z = 50 ohms, tdelay = 1 ns, CL = 10 pF  
VDD_HV_IO = 3.3 V ± 10%, Transmission line Z = 50 ohms, tdelay = 0.6 ns, CL = 10 pF  
PE_Clk*  
TxD  
dCCTxD10  
dCCTxD01  
* FlexRay Protocol Engine Clock  
Figure 49. TxD Signal propagation delays  
MPC5777M Microcontroller Data Sheet, Rev. 6  
116  
NXP Semiconductors  
Electrical characteristics  
3.16.4.3 RxD  
1
Table 66. RxD input characteristics  
Characteristic  
Value  
Unit  
Symbol  
Min  
Max  
C_CCRxD  
uCCLogic_1  
uCCLogic_0  
dCCRxD01  
CC Input capacitance on RxD pin  
35  
30  
7
pF  
%
CC Threshold for detecting logic high  
CC Threshold for detecting logic low  
70  
65  
%
CC Sum of delay from actual input to the D input of the first  
FF, rising edge  
10  
10  
44  
43  
ns  
ns  
ns  
ns  
dCCRxD10  
CC Sum of delay from actual input to the D input of the first  
FF, falling edge  
dCCRxAsymAccept15 CC Acceptance of asymmetry at receiving CC with 15 pF  
load  
–31.5  
–30.5  
dCCRxAsymAccept25 CC Acceptance of asymmetry at receiving CC with 25 pF  
load  
1
FlexRay RxD timing is valid for Automotive input levels with hysteresis enabled (hysteresis permanently enabled in  
Automotive input levels) and CMOS input levels with hysteresis disabled, 4.5 V VDD_HV_IO 5.5 V for both cases.  
3.16.5 PSI5 timing  
The following table describes the PSI5 timing.  
Table 67. PSI5 timing  
Value  
Max  
Symbol  
Parameter  
Unit  
Min  
tMSG_DLY CC Delay from last bit of frame (CRC0) to assertion  
of new message received interrupt  
3
2
1
µs  
µs  
tSYNC_DLY CC Delay from internal sync pulse to sync pulse  
trigger at the SDOUT_PSI5_n pin  
tMSG_JIT  
CC Delay jitter from last bit of frame (CRC0) to  
assertion of new message received interrupt  
cycles1  
cycles  
tSYNC_JIT CC Delay jitter from internal sync pulse to sync pulse  
trigger at the SDOUT_PSI5_n pin  
±(1 PSI5_1µs_CLK +  
1 PBRIDGEn_CLK)  
1
Measured in PSI5 clock cycles (PBRIDGEn_CLK on the device). Minimum PSI5 clock period is 20 ns.  
3.16.6 UART timing  
UART channel frequency support is shown in the following table.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
117  
Electrical characteristics  
Table 68. UART frequency support  
LINFlexD clock frequency  
LIN_CLK (MHz)  
Max usable frequency  
(Mbaud)  
Oversampling rate  
Voting scheme  
80  
16  
8
3:1 majority voting  
5
10  
6
Limited voting on one  
sample with configurable  
sampling point  
13.33  
16  
5
4
20  
100  
16  
8
3:1 majority voting  
6.25  
12.5  
16.67  
20  
6
Limited voting on one  
sample with configurable  
sampling point  
5
4
25  
3.16.7 External Bus Interface (EBI) Timing  
1
Table 69. Bus Operation Timing  
66.7 MHz (Ext. Bus Freq)2 3  
Spec  
Characteristic  
Symbol  
Unit  
Min  
Max  
1
2
3
4
5
CLKOUT Period4  
tC  
15.15  
45%  
ns  
tC  
CLKOUT Duty Cycle  
CLKOUT Rise Time  
CLKOUT Fall Time  
tCDC  
tCRT  
tCFT  
tCOH  
55%  
5
ns  
ns  
ns  
5
CLKOUT Posedge to Output Signal Invalid or High Z  
(Hold Time)6  
1.0  
ADDR[12:31]  
ADDR[8:11]/WE[0:3]/BE[0:3]  
BDIP  
CS[0:3]  
DATA[0:31]  
OE  
RD_WR  
TS  
6
CLKOUT Posedge to Output Signal Valid (Output  
Delay)7,8  
tCOV  
8.0  
ns  
ADDR[12:31]  
ADDR[8:11]/WE[0:3]/BE[0:3]  
BDIP  
CS[0:3]  
DATA[0:31]  
OE  
RD_WR  
TS  
MPC5777M Microcontroller Data Sheet, Rev. 6  
118  
NXP Semiconductors  
Electrical characteristics  
1
Table 69. Bus Operation Timing (continued)  
66.7 MHz (Ext. Bus Freq)2 3  
Spec  
Characteristic  
Symbol  
Unit  
Min  
Max  
7
Input Signal Valid to CLKOUT Posedge (Setup Time)  
tCIS  
7.0  
ns  
DATA[0:31]  
8
CLKOUT Posedge to Input Signal Invalid (Hold Time)  
tCIH  
1.0  
ns  
DATA[0:31]  
1
EBI timing specified at VDD_HV_IO_EBI and VDD_HV_IO_FLEXE = 3.0 V to 3.6 V, TA = TL to TH, and CL = 30 pF with  
DSC = 0b10 for ADDR/CTRL and DSC = 0b11 for CLKOUT/DATA.  
2
3
Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including PLL jitter.  
Depending on the internal bus speed, set the CGM_SC_DC4 register bits correctly not to exceed maximum  
external bus frequency. The maximum external bus frequency is 66.7 MHz.  
4
5
6
7
8
Signals are measured at 50% VDD_HV_IO_EBI or VDD_HV_IO_FLEXE  
Refer to Fast pad timing in Table 18.  
.
CLKOUT may be required at the highest drive strength in order to meet the hold time specification.  
One wait state must be added for all write accesses to external memories at the maximum external bus frequency.  
One wait state must be added to the outut signal valid delay for external writes.  
VOH_F  
VDD_HV_IO_EBI / 2  
VOL_F  
D_CLKOUT  
2
3
2
4
1
Figure 50. D_CLKOUT Timing  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
119  
Electrical characteristics  
D_CLKOUT  
V
DD_HV_IO_EBI / 2  
6
5
5
Output  
Bus  
VDD_HV_IO_EBI / 2  
6
5
5
Output  
Signal  
VDD_HV_IO_EBI / 2  
6
Output  
Signal  
VDD_HV_IO_EBI / 2  
Figure 51. Synchronous Output Timing  
MPC5777M Microcontroller Data Sheet, Rev. 6  
120  
NXP Semiconductors  
Electrical characteristics  
D_CLKOUT  
VDD_HV_IO_EBI / 2  
7
8
VDD_HV_IO_EBI / 2  
Input  
Bus  
7
8
Input  
Signal  
VDD_HV_IO_EBI / 2  
Figure 52. Synchronous Input Timing  
3.16.8  
I2C timing  
2
The I C AC timing specifications are provided in the following tables.  
2
1
Table 70. I C input timing specifications — SCL and SDA  
Value  
Min Max  
No.  
Symbol  
Parameter  
Unit  
1
2
3
4
CC Start condition hold time  
CC Clock low time  
2
PER_CLK Cycle2  
8
PER_CLK Cycle  
CC Bus free time between Start and Stop condition  
CC Data hold time  
4.7  
0.0  
µs  
ns  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
121  
Electrical characteristics  
2
1
Table 70. I C input timing specifications — SCL and SDA (continued)  
Value  
No.  
Symbol  
Parameter  
Unit  
Min  
Max  
5
6
7
8
CC Clock high time  
4
0.0  
2
PER_CLK Cycle  
ns  
CC Data setup time  
CC Start condition setup time (for repeated start condition only)  
CC Stop condition setup time  
PER_CLK Cycle  
PER_CLK Cycle  
2
1
2
I2C input timing is valid for Automotive and TTL inputs levels, hysteresis enabled, and an input edge rate no slower  
than 1 ns (10% 90%).  
PER_CLK is the SoC peripheral clock, which drives the I2C BIU and module clock inputs. See the Clocking chapter in  
the device reference manual for more detail.  
2
1,2 ,3,4  
Table 71. I C output timing specifications — SCL and SDA  
Value  
No.  
Symbol  
Parameter  
Unit  
Min  
Max  
1
2
3
4
5
6
7
8
CC Start condition hold time  
CC Clock low time  
6
10  
4.7  
7
PER_CLK Cycle5  
PER_CLK Cycle  
µs  
CC Bus free time between Start and Stop condition  
CC Data hold time  
PER_CLK Cycle  
PER_CLK Cycle  
PER_CLK Cycle  
PER_CLK Cycle  
PER_CLK Cycle  
CC Clock high time  
10  
2
CC Data setup time  
CC Start condition setup time (for repeated start condition only)  
CC Stop condition setup time  
20  
10  
1
All output timing is worst case and includes the mismatching of rise and fall times of the output pads.  
2
3
4
Output parameters are valid for CL = 25 pF, where CL is the external load to the device (lumped). The internal package  
capacitance is accounted for, and does not need to be subtracted from the 25 pF value.  
Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and  
may cause incorrect operation.  
Programming the IBFD register (I2C bus Frequency Divider) with the maximum frequency results in the minimum  
output timings listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL  
low period. The actual position is affected by the pre-scale and division values programmed in the IBC field of the IBFD  
register.  
5
PER_CLK is the SoC peripheral clock, which drives the I2C BIU and module clock inputs. See the Clocking chapter  
in the device reference manual for more detail.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
122  
NXP Semiconductors  
Electrical characteristics  
2
5
SCL  
SDA  
8
6
4
3
1
7
2
Figure 53. I C input/output timing  
3.16.9 GPIO delay timing  
The GPIO delay timing specification is provided in the following table.  
Table 72. GPIO delay timing  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
IO_delay  
CC  
Delay from SIUL2 MSCR register bit update to pad function  
enable at the input of the I/O pad  
5
25  
ns  
3.16.10 Package characteristics  
The following table lists the case numbers for each available package for the device.  
Table 73. Package case numbers  
Package Type  
Device Type  
Case Outline Number  
416TEPBGA  
416TEPBGA  
512TEPBGA  
Production  
Emulation  
98ARE10523D  
98ASA00493D  
98ASA00262D  
Production or Emulation  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
123  
Electrical characteristics  
3.17 416 TEPBGA (production) case drawing  
Figure 54. 416 TEPBGA (production) package mechanical drawing (Sheet 1 of 2)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
124  
NXP Semiconductors  
Electrical characteristics  
Figure 55. 416 TEPBGA (production) package mechanical drawing (Sheet 2 of 2)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
125  
Electrical characteristics  
3.18 416 TEPBGA (emulation) case drawing  
Figure 56. 416 TEPBGA (emulation) package mechanical drawing (Sheet 1 of 3)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
126  
NXP Semiconductors  
Electrical characteristics  
Figure 57. 416 TEPBGA (emulation) package mechanical drawing (Sheet 2 of 3)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
127  
Electrical characteristics  
Figure 58. 416 TEPBGA (emulation) package mechanical drawing (Sheet 3 of 3)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
128  
NXP Semiconductors  
Electrical characteristics  
3.19 512 TEPBGA case drawing  
2
Figure 59. 512 TEPBGA package mechanical drawing (Sheet 1 of 2)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
129  
Electrical characteristics  
Figure 60. 512 TEPBGA package mechanical drawing (Sheet 2 of 2)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
130  
NXP Semiconductors  
Electrical characteristics  
3.20 Thermal characteristics  
The following tables describe the thermal characteristics of the device.  
.
Table 74. Thermal characteristics  
416  
Value Value  
512  
Symbol  
Parameter  
Conditions  
Unit Notes  
1,2  
1,2,3  
1,3  
RJA  
Junction-to-Ambient, Natural  
Convection  
Single Layer board (1s)  
Four layer board (2s2p)  
25  
24.1 °C/W  
17.2 16.8  
RJMA Junction-to-Moving-Air, Ambient  
@200 ft/min., single layer  
board (1s)  
18.1 16.6 °C/W  
1,3  
@200 ft/min., four layer board 13.4 12.4  
(2s2p)  
4
5
6
7
RJB  
RJC  
JT  
Junction-to-board  
8.6  
5.0  
0.2  
3.5  
8.8  
5.0  
0.2  
3.0  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case  
Junction-to-package top  
Natural convection  
JB  
Junction-to-package bottom/solder Natural convection  
balls  
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance,  
mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on  
the board, and board thermal resistance.  
2
3
4
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
5
6
7
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the  
junction temperature per JEDEC JESD51-2.  
Thermal characterization parameter indicating the temperature difference between package bottom center and  
the junction temperature per JEDEC JESD51-12.  
3.20.1 General notes for specifications at maximum junction temperature  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
* P )  
Eqn. 1  
J
A
JA  
D
where:  
o
T = ambient temperature for the package ( C)  
A
o
R
= junction-to-ambient thermal resistance ( C/W)  
JA  
P = power dissipation in the package (W)  
D
The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for  
estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a  
four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance  
is not a constant. The thermal resistance depends on the:  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
131  
Electrical characteristics  
Construction of the application board (number of planes)  
Effective size of the board which cools the component  
Quality of the thermal and electrical connections to the planes  
Power dissipated by adjacent components  
Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package  
to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance  
between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.  
As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit  
board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:  
One oz. (35 micron nominal thickness) internal planes  
Components are well separated  
2
Overall power dissipation on the board is less than 0.02 W/cm  
The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the  
ambient temperature varies widely within the application. For many natural convection and especially closed box applications,  
the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the  
device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the  
local ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following equation:  
T = T + (R  
* P )  
Eqn. 2  
J
B
JB  
D
where:  
o
T = board temperature for the package perimeter ( C)  
B
o
R
= junction-to-board thermal resistance ( C/W) per JESD51-8  
JB  
P = power dissipation in the package (W)  
D
When the heat loss from the package case to the air does not factor into the calculation, the junction temperature is predictable  
if the application board is similar to the thermal test condition, with the component soldered to a board with internal planes.  
The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal  
resistance:  
R
= R  
+ R  
CA  
Eqn. 3  
JA  
JC  
where:  
o
R
R
R
= junction-to-ambient thermal resistance ( C/W)  
JA  
JC  
CA  
o
= junction-to-case thermal resistance ( C/W)  
o
= case to ambient thermal resistance ( C/W)  
R
is device related and is not affected by other factors. The thermal environment can be controlled to change the  
JC  
case-to-ambient thermal resistance, R  
. For example, change the air flow around the device, add a heat sink, change the  
CA  
mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding  
the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat  
sink to ambient. For most packages, a better model is required.  
A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the  
junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a  
substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the  
thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple  
estimations and for computational fluid dynamics (CFD) thermal models. More accurate compact Flotherm models can be  
generated upon request.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
132  
NXP Semiconductors  
Ordering information  
To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization  
parameter () to determine the junction temperature by measuring the temperature at the top center of the package case using  
JT  
the following equation:  
T = T + (x P )  
Eqn. 4  
J
T
JT  
D
where:  
o
T = thermocouple temperature on top of the package ( C)  
T
o
= thermal characterization parameter ( C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests  
on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from  
the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling  
effects of the thermocouple wire.  
When board temperature is perfectly defined below the device, it is possible to use the thermal characterization parameter  
() to determine the junction temperature by measuring the temperature at the bottom center of the package case (exposed  
JPB  
pad) using the following equation:  
T = T + (  
x P )  
Eqn. 5  
J
B
JPB  
D
where:  
o
T = thermocouple temperature on bottom of the package ( C)  
T
o
= thermal characterization parameter ( C/W)  
JT  
P = power dissipation in the package (W)  
D
4
Ordering information  
Table 75 shows the orderable part numbers for the MPC5777M series.  
Table 75. Orderable part number summary  
Part Number  
Device Type1,2  
Sample  
Package  
PPC5777MK0MVU8B  
PPC5777MK0MVA8B  
PPC5777M2K0MVU8B  
PPC5777M2K0MVA8B  
SPC5777MK0MVU8  
SPC5777MK0MVU8R  
416 TEPBGA  
512 TEPBGA  
416 TEPBGA  
512 TEPBGA  
416 TEPBGA  
Sample  
Sample ED  
Sample ED  
Production PD  
Production PD  
416 TEPBGA  
w/Tape and Reel  
SPC5777MK0MVA8  
SPC5777MK0MVA8R  
Production PD  
Production PD  
512 TEPBGA  
512 TEPBGA  
w/Tape and Reel  
1
“PD” refers to a production device, orderable in quantity  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
133  
Ordering information  
2
“ED" refers to an emulation device, orderable in limited quantities. An emulation  
device (ED) is for use during system development only and is not to be used in  
production. An ED is a Production PD chip combined with a companion chip to form  
an Emulation and Debug Device (ED) and includes additional RAM memory and  
debug features. EDs are provided “as is" without warranty of any kind. In the event  
of a suspected ED failure, NXP agrees to exchange the suspected failing ED from  
the customer at no additional charge; however, NXP will not analyze ED returns.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
134  
NXP Semiconductors  
Ordering information  
Example code:  
M
PC  
57  
4
6
M
Q
F0  
M
xx  
5
R
MC Qualification Status  
Power Architecture Core  
Automotive Platform  
Processor Core  
Flash Memory Size  
Product/Family Name  
Miscellaneous (Optional)  
Fab and Mask Revision  
Temperature  
Package Code  
Maximum Frequency  
Tape or Reel  
Qualification Status  
Flash Memory Size  
Package Code  
MPC = Full specification qualified  
SPC = Mask specification qualified  
PPC = Engineering samples  
ZP = 416 PBGA SnPb  
z0, z2  
z4  
z7  
VA = 416 PBGA Pb-free  
VA = 512 TEPBGA Pb-free  
VU = 416 TEPBGA Pb-free  
VF = 208 MAPBGA SnPb  
VM = 208 MAPBGA Pb-free  
ZQ = 324 PBGA SnPb  
VZ = 324 PBGA Pb-free  
LQ = 144 LQFP Pb-free  
LU = 176 LQFP Pb-free  
KU = 176 LQFP ep Pb-free  
MP = 292 MAPBGA Pb-free  
OU = 216 FQ (176 leads)  
1
2
3
4
5
6
7
8
9
256 KB  
1 MB  
1 MB  
Automotive Platform  
55 = PPC in 130 nm  
56 = PPC in 90 nm  
57 = PPC in 55 nm  
384 KB 1.5 MB 1.5 MB  
512 KB  
2 MB  
2 MB  
3 MB  
4 MB  
6 MB  
8 MB  
12 MB  
16 MB  
768 KB 2.5 MB  
Processor Core  
0 = e200z0  
1 = e200z1  
2 = e200z2  
3 = e200z3  
4 = e200z4  
5 = e200z6 without VLE  
6 = e200z6  
1 MB  
1.5 MB  
2 MB  
3 MB  
4 MB  
5 MB  
6 MB  
8 MB  
Maximum Frequency  
0 = 64 MHz  
1 = 80 MHz  
2 = 120 MHz  
3 = 150 MHz  
4 = 160 MHz  
5 = 200 MHz  
8 = 300 MHz  
2.5 MB  
3 MB  
7 = e200z7  
Miscellaneous  
D = Dual Core  
T = Triple Core  
Q = Quad Core  
S = Single Core  
2 = Emulation Device  
Temperature Specification  
C = –40 °C to 85 °C  
V = –40 °C to 105 °C  
M = –40 °C to 125 °C  
K = –40 °C to 135 °C  
Suffix  
A = cut2.0 revision  
T = Tape  
Fab and Mask Revision  
F = ATMC  
R = Reel  
K = TSMC  
0 = Revision  
Figure 61. Product code structure  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
135  
Document revision history  
5
Document revision history  
Table 76 summarizes revisions to this document.  
Table 76. Revision history  
Description of changes  
Revision  
Date  
1
2
12/2011  
4/2013  
Initial release  
Throughout  
• Data sheet now includes both KGD (TJ165 °C) and non-KGD (TJ150 °C)  
specifications  
• The interfaces and components formerly including the name “DigRF” have been  
renamed to “LFAST.”  
Introduction  
• Changed on-chip general-purpose SRAM to 404 KB (was 384 KB)  
• Changed item describing Boot Assist Flash support to “Boot Assist Module (BAM)  
supports factory programming using serial bootload through ’UART Serial Boot Mode  
Protocol’. Physical interface (PHY) can be: UART/LIN, CAN, FlexRay”  
Table 1 (Family comparison):  
• Changed feature from “Zipwire/LFAST7 bus” to “Zipwire (SIPI / LFAST7) Interprocessor  
Communication Interface”  
Figure 1 (Block diagram):  
• Changed SRAM from 320 to 340 KB  
• Changed figure to include “Triple INTC”  
• Added “LFAST Switch” block to Computational Shell  
• Added “Debug SIPI” block to the Peripheral Domain 50 MHz Concentrator  
Figure 2 (Periphery allocation):  
• Added PSI5_S_0 module  
• Changed “Peripheral Cluster A” to “Peripheral Cluster B” and “Peripheral Cluster B” to  
“Peripheral Cluster A”  
• Added PSI5_S_0 module  
Package pinouts and signal descriptions  
Figure 3 (292-ball BGA production device pinout (top view))  
Figure 4 (292-ball BGA emulation device pinout (top view))  
Figure 5 (512-ball BGA production device pinout (top view))  
Figure 8 (512-ball BGA emulation device pinout (top view)):  
• Changed “VDD_HV_PMC_BYP” to “VDD_HV_IO_MAIN”  
Table 2 (Power supply and reference pins):  
• Removed VDD_HV_PMC_BYP (PMC Voltage Supply Bypass Capacitor) row.  
Table 3 (System pins):  
• Clarification of TESTMODE pin definition: “TESTMODE pull-down is implemented to  
prevent the device from entering TESTMODE. It is recommended to connect the  
TESTMODE pin to VSS_HV_IO on the board. The value of the TESTMODE pin is  
latched at the negation of reset and has no affect afterward. The device will not exit  
reset with the TESTMODE pin asserted during power-up.” (Added detail regarding  
when TESTMODE pin value is latched and that device will not exit reset when pin is  
asserted during power-up)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
136  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
2
4/2013  
Package pinouts and signal descriptions (con’t)  
Table 4 (LVDS pin descriptions):  
• In SIPI/LFAST, Differential DSPI2, and Differential DSPI 5 groups, changed port pin  
“PF[7]” to “PD[7]”  
• Changed the polarity of the signal assigned to several port pins. For example, the  
signal for port pin PD[7] has been changed to “SIPI_RXP” (was SIPI_RXN) and  
“Interprocessor Bus LFAST, LVDS Receive Positive Terminal” (was “Interprocessor  
Bus LFAST, LVDS Receive Negative Terminal”). This change affects port pins PD[7],  
PF[13], PA[14], PD[6], PA[7], PA[8], PD[2], PD[3], PD[0], PD[1], PF[10], PF[9], PF[11],  
PF[12], PQ[8], PQ[9], PQ[10], PQ[11], PI[14], and PI[15].  
• Added package ball locations  
Electrical characteristics—Miscellaneous  
Section 3, Electrical characteristics:  
• Thermal characteristics section has been moved to Package characteristics section.  
• Following note removed: “All parameter values in this document are tested with  
nominal supply voltage values (VDD_LV = 1.25 V, VDD_HV = 5.0 V ± 10%,  
VDD_HV_IO = 5.0 V ± 10% or 3.3 V ± 10%) and TA = –40 to 125 °C unless otherwise  
specified.”. Operating conditions will appear elsewhere in the data sheet.  
• Added VDD_HV_IO_FLEX before VDD_HV_FLA in the second note on the page  
Electrical characteristics—Absolute maximum ratings  
Table 6 (Absolute maximum ratings):  
• IMAXD specification now given by pad type (Medium, Strong, and Very Strong)  
• IMAXA specification deleted.  
• New specification: IINJD (Maximum DC injection current for digital pad)  
• New specification: IINJA (Maximum DC injection current for analog pad)  
• New specification: IMAXSEG (Maximum current per power segment)  
• New specification: VFERS (Flash erase acceleration supply)  
• New specification: VDD_HV_IO_EBI (External Bus Interface supply)  
• Changed “Emulation module supply” to “BD supply” in the VDD_LV_BD – BDD_LV row  
• Maximum junction temperature changed from 125 °C to 165 °C in cumulative time  
limits on voltage levels for VDD_LV and VDD_LV_BD  
• Footnote added to VFERS: VFERS is a factory test supply pin that is used to reduce the  
erase time of the flash. It is only available in bare die devices. There is no VFERS pin in  
the packaged devices. The VFERS supply pad can be bonded to ground (VSS_HV) to  
disable, or connected to 5.0 V ± 5% to use the flash erase acceleration feature. Pad  
can be left at 5 V ± 5% in normal operation.  
• Footnote added to VIN: “The maximum input voltage on an I/O pin tracks with the  
associated I/O supply maximum. For the injection current condition on a pin, the  
voltage will be equal to the supply plus the voltage drop across the internal ESD diode  
from I/O pin to supply. The diode voltage varies greatly across process and  
temperature, but a value of 0.3V can be used for nominal calculations.“  
• Footnote VDD_LV changed: “1.32 – 1.375 V range allowed periodically for supply with  
sinusoidal shape and average supply value below 1.288 V at maximum TJ = 165 °C”  
(was 1.275)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
137  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
2
4/2013  
Electrical characteristics—Operating conditions  
Table 8 (Device operating conditions)  
• Changed VSTBY_BO minimum from 0.7V to 0.8V.  
Electrical characteristics—DC electrical specifications  
Table 10 (DC electrical specifications)  
• Replaced table; significant changes throughout, including parameter names,  
descriptions, and values.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
138  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
2
4/2013  
Electrical characteristics—I/O pad specification  
Table 11 (I/O pad specification descriptions)  
• Revised “Very strong configuration” description to include EBI data bus.  
• Added “EBI configuration” row.  
• Changed “Input only pads” description to “These pads, which ensure low input leakage,  
are associated with the ADC channels” (was “These pads are associated with the ADC  
channels and 32 kHz low power external crystal oscillator providing low input leakage”)  
• Changed note following table to “Each I/O pin on the device supports specific drive  
configurations. See the signal description table in the device reference manual for the  
available drive configurations for each I/O pin” (was “All pads can be configured in all  
configurations”)  
Table 12 (I/O input DC electrical characteristics)  
• New specification: VDRFTTTL (Input VIL/VIH temperature drift TTL)  
• New specification: VDRFTAUT (Input VIL/VIH temperature drift)  
• New specification: VDRFTCMOS (Input VIL/VIH temperature drift CMOS)  
• Conditions for VIHCMOS_H, VIHCMOS, VILCMOS_H, VILCMOS, VHYSCMOS, VDRFTCMOS are  
now 3.0 V < VDD_HV_IO < 3.6 V and 4.5 V < VDD_HV_IO < 5.5 V (was 2.7 V < VDD_HV_IO  
< 3.6 V and 4.0 V < VDD_HV_IO < 5.5 V)  
• New specification: ILKG_MED (Digital input leakage for MEDIUM pad)  
• Footnotes give formulas for approximation of the variation of the minimum value with  
supply of VIHAUT and VHYSAUT (previously stated formulas approximated upper value  
instead of minimum value). Changed formula for VIHAUT to “0.69 x VDD_HV_IO” (was  
“0.69 supply”). Changed formula for VHYSAUT to “0.11 x VDD_HV_IO” (was “0.11  
supply”).  
• Footnote gives formula for approximation of the variation of the maximum value with  
supply of VILAUT (previously stated formula approximated upper value instead of  
maximum value). Changed formula for VILAUT to “0.49 x VDD_HV_IO” (was “0.49  
supply”).  
• Added footnote: “In a 1 ms period, assuming stable voltage and a temperature  
variation of ±30°C, VIL/VIH shift is within ±50 mV.”  
• VHYSAUT conditions column: replaced dash with 4.5V < VDD_HV_IO < 5.5V  
• CIN row, changed GPIO input pins conditions Max value from “10” to 7pF and EBI input  
pins Max value from “8” to “7pF”  
Table 13 (I/O pull-up/pull-down DC electrical characteristics)  
• Significant revisions throughout this table, including new conditions for IWPUand  
IWPD  
• New specification: RWPU (Weak pull-up resistance)  
• New specification: RWPD (Weak pull-down resistance)  
• New figure: Figure 8 (Weak pull-up electrical characteristics definition)  
• New figure: Figure 18 (I/O output DC electrical characteristics definition)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
139  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
2
4/2013  
Electrical characteristics—I/O pad specification (con’t)  
Table 14 (WEAK configuration output buffer electrical characteristics)  
• ROH_W (PMOS output impedance weak configuration) condition is now 4.5 V <  
VDD_HV_IO < 5.9 V, Push pull IOH < 0.5 mA (was 4.0 V < VDD_HV_IO < 5.9 V). Removed  
3.0 V < VDD_HV_IO < 4.0 V condition.  
• ROL_W (NMOS output impedance WEAK configuration) condition is now 4.5 V <  
VDD_HV_IO < 5.9 V, Push pull IOL < 0.5 mA (was 4.0 V < VDD_HV_IO < 5.9 V). Removed  
3.0 V < VDD_HV_IO < 4.0 V condition.  
• tTR_W (Transition time output pin WEAK configuration) conditions changed for CL = 25  
pF, CL = 50 pF, CL = 200 pF: 4.5 V < VDD_HV_IO < 5.9 V (was 4.0 V < VDD_HV_IO <  
5.9 V)  
• Specification change: tTR_W, CL = 200 pF, 4.5 V < VDD_HV_IO < 5.9 V max value is  
820 ns (was 1000)  
• Specification change: tTR_W, CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V min value is 50 ns  
(was TBD)  
• Specification change: tTR_W, CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V min value is 100 ns  
(was TBD)  
• Specification change: tTR_W, CL = 200 pF, 3.0 V < VDD_HV_IO < 3.6 V min value is  
350 ns (was TBD) and max value is 1050 ns (was TBD)  
• Conditions column heading, added footnote: All VDD_HV_IO conditions for 4.5V to  
5.9V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V are valid  
for VSIO[VSIO_xx] = 0  
Table 15 (MEDIUM configuration output buffer electrical characteristics)  
• ROH_M (PMOS output impedance MEDIUM configuration) condition is now 4.5 V <  
VDD_HV_IO < 5.9 V, Push pull IOH < 2 mA (was 4.0 V < VDD_HV_IO < 5.9 V). Removed  
3.0 V < VDD_HV_IO < 4.0 V condition.  
• ROL_M (NMOS output impedance MEDIUM configuration) condition is now 4.5 V <  
VDD_HV_IO < 5.9 V, Push pull IOL < 2 mA (was 4.0 V < VDD_HV_IO < 5.9 V). Removed  
3.0 V < VDD_HV_IO < 4.0 V condition.  
• tTR_M (Transition time output pin MEDIUM configuration) conditions changed for CL =  
25 pF, CL = 50 pF, CL = 200 pF: 4.5 V < VDD_HV_IO < 5.9 V (was 4.0 V < VDD_HV_IO  
< 5.9 V)  
• Specification change: tTR_M, CL = 200 pF, 4.5 V < VDD_HV_IO < 5.9 V max value is  
200 ns (was 240)  
• Specification change: tTR_M, CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V min value is 12 ns  
(was TBD)  
• Specification change: tTR_M, CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V min value is 24 ns  
(was TBD)  
• Specification change: tTR_M, CL = 200 pF, 3.0 V < VDD_HV_IO < 3.6 V min value is 70 ns  
(was TBD) and max value is 300 ns (was TBD)  
• New specification: IDCMAX_M (Maximum DC current)  
• New specification: tSKEW_M(Difference between rise and fall time)  
• Formula given for transition time typical value changed to: tTR_M(ns) = 5.6 ns+CL(pF)  
x 1.11 ns/pF (when 0 pF < CL < 50 pF) and tTR_M(ns) = 13 ns+CL(pF) x 0.96 ns/pF  
(when 50 pF < CL < 200 pF)  
• Footnote added: ROX_M(min) may decrease by 10% at TJ = 165 °C.  
• Footnote added: ROX_M(max) may increase by 10% at TJ = 165 °C.  
• Conditions column heading, added footnote: All VDD_HV_IO conditions for 4.5V to  
5.9V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V are valid  
for VSIO[VSIO_xx] = 0  
MPC5777M Microcontroller Data Sheet, Rev. 6  
140  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
2
4/2013  
Electrical characteristics—I/O pad specification (con’t)  
Table 16 (STRONG configuration output buffer electrical characteristics)  
• New specification: IDCMAX_S (Maximum DC current)  
• Renamed: ROH_F (PMOS output impedance STRONG configuration) is now ROH_S  
• Renamed: ROL_F (NMOS output impedance STRONG configuration) is now ROL_S  
• Renamed: fMAX_M (Output frequency STRONG configuration) is now fMAX_S  
• ROH_S condition is now 4.5 V < VDD_HV_IO < 5.9 V, Push pull IOH < 8 mA (was 4.0 V <  
VDD_HV_IO < 5.9 V). Removed 3.0 V < VDD_HV_IO < 4.0 V condition.  
• ROL_S condition is now 4.5 V < VDD_HV_IO < 5.9 V, Push pull IOH < 8 mA (was 4.0 V <  
VDD_HV_IO < 5.9 V). Removed 3.0 V < VDD_HV_IO < 4.0 V condition.  
• tTR_S conditions changed for CL = 25 pF, CL = 50 pF, CL = 200 pF: 4.5 V < VDD_HV_IO  
< 5.9 V (was 4.0 V < VDD_HV_IO < 5.9 V)  
• Specification change: fMAX_S, CL = 200 pF max value is 5 MHz (was “—”)  
• Specification change: tTR_S, CL = 25 pF, 3.0 V < VDD_HV_IO < 3.6 V min value is 4 ns  
(was TBD) and max value is 15 ns (was TBD)  
• Specification change: tTR_S, CL = 50 pF, 3.0 V < VDD_HV_IO < 3.6 V min value is 6 ns  
(was TBD) and max value is 27 ns (was TBD)  
• Specification change: tTR_S, CL = 200 pF, 3.0 V < VDD_HV_IO < 3.6 V min value is 20 ns  
(was TBD) and max value is 83 ns (was TBD)  
• Footnote added: ROX_S(min) may decrease by 10% at TJ = 165 °C.  
• Footnote added: ROX_S(max) may increase by 10% at TJ = 165 °C.  
• Conditions column heading, added footnote: All VDD_HV_IO conditions for 4.5V to  
5.9V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V are valid  
for VSIO[VSIO_xx] = 0  
Table 17 (VERY STRONG configuration output buffer electrical characteristics)  
• New specification: IDCMAX_M (Maximum DC current)  
• New condition added to tTR_V: VDD_HV_IO = 5.0 V ± 10%, CL = 200 pF  
• Footnote added: ROX_V(min) may decrease by 10% at TJ = 165 °C.  
• Footnote added: ROX_V(max) may increase by 10% at TJ = 165 °C.  
• Conditions column heading, added footnote: All VDD_HV_IO conditions for 4.5V to  
5.9V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V are valid  
for VSIO[VSIO_xx] = 0  
Table 18 (EBI pad output electrical specification)  
• Replaced this table “EBI output driver electrical characteristics” with new table “EBI pad  
electrical specification”  
Electrical characteristics—I/O pad current specification  
New section  
Electrical characteristics—Reset pad (PORST, ESR0) electrical characteristics  
Section 3.8, Reset pad (PORST, ESR0) electrical characteristics:  
• Added note on PORST and active control  
Figure 11 (Noise filtering on reset signal):  
• Replaced; significant detail added  
• Clarification: VESR0 is also described by VPORST behavior shown in illustration.  
• Figure prefaced with more detailed PORST description.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
141  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
2
4/2013  
Electrical characteristics—Reset pad (PORST, ESR0) electrical characteristics  
(con’t)  
Table 20 (Reset electrical characteristics)  
• New specification: WFNMI (ESR1 input filtered pulse)  
• New specification: WNFNMI (ESR1 input not filtered pulse)  
• New specification: VDD_POR (Minimum supply for strong pull-down activation)  
• IOL_R condition changed (VDD_HV_IO = 1.0 V is now VDD_HV_IO = VDD_POR, VDD_HV_IO  
= 4.0 V is now 3.0 V < VDD_HV_IO < 5.5 V, and VOL = 0.35*VDD_HV_IO is now VOL  
0.9 V)  
>
• Specification change: IOL_R (3.0 V < VDD_HV_IO < 5.5 V, VOL > 0.9 V) min value is  
11 mA (was 15)  
• Added footnote: An external 4.7 Kpull-up resistor is recommended to be used with  
the PORST and ESR0 pins for fast negation of the signals.  
• Added footnote: IOL_R applies to both PORST and ESR0: Strong pull-down is active on  
PHASE0 for PORST. Strong pull-down is active on PHASE0, PHASE1, PHASE2, and  
the beginning of PHASE3 for ESR0.  
• Added note on reset signal slew rate restrictions  
Electrical characteristics—Oscillator and FMPLL  
Section 3.12, Oscillator and FMPLL  
Table 21 (PLL0 electrical characteristics)  
• New specification: fPLL0PHI0 (PLL0 output frequency)  
• Specification change: tPLL0LOCK (PLL0 lock time) maximum is 100 µs (was  
100–110 µs)  
PLL0LTJ specification parameter and conditions change: “PLL0 output long term jitter,  
fPLL0IN = 20 MHz (resonator), VCO frequency = 800 MHz” (was “PLL0 output long term  
jitter, fPLL0IN = 20 MHz (resonator)”). Conditions significantly revised.  
• Revised footnote: “VDD_LV noise due to application in the range VDD_LV = 1.25 V ±5%  
with frequency below PLL bandwidth (40 KHz) will be filtered” (was “1.25 V ±5%  
application noise below 40kHz at VDD_LV pin”)  
• Removed “F” from “FXOSC” in footnote 1  
Table 22 (PLL1 electrical characteristics)  
• Specification change: fPLL1PHI (PLL1 output clock PHI) is now fPLL1PHI0 (PLL1 output  
clock PHI0)  
• Specification change: fPLL1PHI0 (PLL1 output clock PHI0) max is 200 MHz (was  
625 MHz)  
• fPLL1PHI parameter, Max column, changed 200MHz to 300MHz.  
• Removed “F” from “FXOSC” in footnote 1  
MPC5777M Microcontroller Data Sheet, Rev. 6  
142  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
2
4/2013  
Electrical characteristics—Oscillator and FMPLL (con’t)  
Table 23 (External Oscillator electrical specifications):  
• New specification: VHYS (Comparator Hysteresis)  
• New specification: VEXTAL (Oscillation Amplitude on the EXTAL pin after startup)  
• Specification change: fXTAL range values changed: fXTAL ranges are 4–8 MHz,  
>8–20 MHz, and >20–40 MHz (previously stated as 4–8 MHz, 8–16 MHz, and  
20–40 MHz  
• Specification change tcst (Crystal start-up time) is now specified by temperature range  
• Specification change: VIHEXT specified at VREF = 0.28 * VDD_HV_IO_JTAG (previously  
specified at VDDOSC = 3.0 V and VDDOSC = 5.5 V)  
• Specification change: VILEXT specified at VREF = 0.28 * VDD_HV_IO_JTAG (previously  
specified at VDDOSC = 3.0 V and VDDOSC = 5.5 V)  
• Specification change: CS_EXTAL values specified by package (was previously based on  
selected load capacitance value)  
• Specification change: CS_XTAL values specified by package (was previously based on  
selected load capacitance value)  
• Specification change: gm (Oscillator Transconductance) is now specified by  
temperature and frequency range conditions (was previously specified without  
conditions)  
• Footnote added: “All oscillator specifications are valid for  
VDD_HV_IO_JTAG = 3.0 V – 5.5 V.“  
• Footnote added to CS_EXTAL, CS_XTAL to refer to crystal manufacturer's specifications  
for load capacitance values.  
• Footnote added: “Amplitude on the EXTAL pin after startup is determined by the ALC  
block, i.e., the Automatic Level Control Circuit. The function of the ALC is to provide  
high drive current during oscillator startup, but reduce current after oscillation in order  
to reduce power, distortion, and RFI, and to avoid over-driving the crystal. The  
operating point of the ALC is dependent on the crystal value and loading conditions.”  
• Footnote added: “IXTAL is the oscillator bias current out of the XTAL pin with both  
EXTAL and XTAL pins grounded. This is the maximum current during startup of the  
oscillator. The current after oscillation is typically in the 2–3 mA range and is dependent  
on the load and series resistance of the crystal.”  
• VILEXT parameter, changed “External Reference” to “External Clock Input”  
• VILEXT parameter, added footnote: This parameter is guaranteed by design rather than  
100% tested.  
Table 24 (Selectable load capacitance):  
• Changed footnote 2 from “Values in this table do not include 8 pF routing and ESD  
structure on die and package trace capacitance.” to "Values in this table do not include  
the die and package capacitances given by Cs_xtal/Cs_extal in Table 23 (External  
Oscillator electrical specifications).”  
Electrical characteristics—ADC specifications  
Section 3.10.1, ADC input description  
Table 26 (ADC pin specification)  
• ILK_IN specification change: removed TA = 125 °C row from (TA = 125 °C)  
• ILK_INUD, ILK_INUSD, ILK_INREF, and ILK_INOUT specification changes to parameters,  
conditions, and values.  
• Specification change: IINJ min value is –3 mA (was –1)  
• Specification change: CS max value is 8.5 pF (was 7)  
• Specification change: RSWn max value for SARn channels is 1.1 k(was 0.6)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
143  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
2
4/2013  
Electrical characteristics—ADC specifications (con’t)  
Section 3.10.1, ADC input description  
Table 26 (ADC pin specification):  
• Specification change: RSWn max value for SARB channels is 1.7 k(was 1.2)  
• Specification change: RCMSW max value is 2.6 k(was 2)  
• Removed VREF_BG specification  
• Added VREF_BG_LR and VREF_BG_TC specifications  
• Added footnote: Specifications in this table apply to both packaged parts and Known  
Good Die (KGD) parts, except where noted.  
• Added footnote: The temperature coefficient and line regulation specifications are  
used to calculate the reference voltage drift at an operating point within the specified  
voltage and temperature operating conditions.  
• Parameter ILK_INOUT description column, changed MEDIUM output buffer with GPIO  
output buffer.  
Table 27 (SARn ADC electrical specification)  
• Replaced table  
Section 3.13.3, S/D ADC electrical specification  
• Revised sentence to indicate that the ADCs are 14-bit (was 16-bit)  
Table 28 (SDn ADC electrical specification)  
• New specification: fPASSBAND (Pass band)  
• Removed VDD and VSS specifications  
• Removed fIN specification  
• Throughout table, appended _D to change to VDD_HV_ADV_D (was VDD_HV_ADV),  
VSS_HV_ADV_D (was VSS_HV_ADV), VDD_HV_ADR_D (was VDD_HV_ADR), and  
VSS_HV_ADR_D (was VSS_HV_ADR).  
• VIN_PK2PK (Input range peak to peak VIN_PK2PK= VINP – VINM): single ended  
specification extended to include multiple conditions  
• Multiple condition changes for the GAINand SNRDIFF150 parameters  
GAIN: changed maximum value for Before calibration condition to “1.5 %” (was 1 %).  
• SFDR conditions revised to include different GAIN settings  
• Specification change: VBIAS min value is –2.5% (was –10) and the max value is +2.5%  
(was +10)  
• Significant revisions to footnotes, including one added to voltage range conditions in  
all SNR specs: “In the range 3.6 V< VDD_HV_ADV<4.0 V and  
<3.0 V<VDD_HV_ADR_D<4.0 V, SNR parameter degrades by 9 dB”  
• fADCD_M, changed “S/D clock 3(4)” to “S/D Modulator Input Clock” and replaced “—”  
with “4” in Min column  
• fADCD_S changed “conversion rate'” to “output conversion rate”  
• Changed SNR specifications Unit column from “dB” to “dBFS”  
• Changed SFDR specification Unit column from “dB” to “dBc”  
• Add to footnote: Input impedance is calculated in megaohms by the formula 25.6/(Gain  
Fadcd_m)  
• Changed Group delay, OSR = 75, Max value from “546” to “596”  
• Added new specifications: SINADDIFF150, SINADDIFF333, SINADSE150, THDDIFF150,  
THDDIFF333, THDSE150  
Electrical characteristics—Temperature sensor specifications  
Table 29 (Temperature sensor electrical characteristics)  
• TSENS, TACC, and ITEMP_SENS added to Symbol column.  
• Condition change for TACC (Accuracy): added 150 °C and 165 °C conditions  
• Specification change: TACC min value for TJ < 165°C is 7 °C (was –3) and max value  
is 7 °C (was 3)  
• Specification change: ITEMP_SENS max value is 700 µA (was 600).  
MPC5777M Microcontroller Data Sheet, Rev. 6  
144  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
2
4/2013  
Electrical characteristics—LFAST electrical specifications  
Formerly named “DigRF interface electrical characteristics”; renamed to “LVDS Fast  
Asynchronous Serial Transmission (LFAST) pad electrical characteristics. The change  
from “DigRF” to “LFAST” applies throughout.  
Figure 16 (LFAST and MSC/DSPI LVDS timing definition). Figure updated.  
Section Table 30., LVDS pad startup and receiver electrical characteristics,  
• Specification change: added ILVDS_BIAS  
• TRANSMITTER parameters moved to separate table: VOS_DRF (Common mode  
voltage), |DVOD_DRF| (Differential output voltage swing (terminated)), tTR_DRF  
(Rise/Fall time (10%–90% of swing)), ROUT_DRF (Terminating resistance), COUT_DRF  
(Capacitance)  
• Receiver requirement VICOM_DRF renamed to VICOM  
• Receiver requirement |VI_DRF| renamed to |VI|  
• Receiver specification VHYS_DRF renamed to VHYS  
• Receiver specification RIN_DRF renamed to RIN  
• Receiver specification CIN_DRF renamed to CIN  
• Receiver specification LIN_DRF deleted  
• Extensive changes throughout table footnotes.  
Table 31 (LFAST transmitter electrical characteristics,):  
Differential output voltage swing parameter:  
• Removed the delta symbol from |VOD|  
• Changed Min = 100, Typ = 171, Max = 285. removed the “+/-” from each value.  
Rise/Fall time parameter:  
• Changed “(10%–90% of swing)” to (absolute value of the differential output voltage  
swing  
Table 32 (MSC/DSPI LVDS transmitter electrical characteristics ,):  
Differential output voltage swing parameter:  
• Removed the delta symbol from |VOD|  
• Changed Min +/- 150 to 150  
• Changed Typ +/- 200 to 214  
• Changed Max +/- 400 to 400  
Rise/Fall time parameter:  
• Changed “(10%–90% of swing)” to (absolute value of the differential output voltage  
swing)  
Table 33 (LFAST PLL electrical characteristics)  
• Changed footnote 2, from “320” to “640” MHz frequency  
Table 34 (Aurora LVDS electrical characteristics,)  
• Extensive changes throughout table  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
145  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
2
4/2013  
Electrical characteristics—Power management: PMC, POR/LVD, sequencing  
Table 40 (PMC operating conditions and external regulators supply voltage)  
• Specification change: VDD_HV_PMC, Reduced internal regulator output capacity max  
value is 3.5 V (was 5.5)  
• Specification change: VDD_HV_PMC, Monitoring activity only min value is 2.7 V (was  
3.0) and max value is 3.15 V (was 5.5)  
Section 3.14.2, Power management integration  
• Entire section replaced  
Table 36 (Flash power supply):  
• New  
Section 3.14.4, Device voltage monitoring  
• Added Figure 24 (Voltage monitor threshold definition)  
Table 37 (Voltage monitor electrical characteristics)  
• VPORUP_LV Added footnote2, “Hysteresis is only true with the High voltage Supplies for  
the I/O Main and the ADC are connected together. (There is actually around 1V of  
Hysteresis using these two supplies.)”  
• New specification: VPOR240 (HV supply power-on reset voltage monitoring)  
• New specification: tVDASSERT (Voltage detector threshold crossing assertion)  
• New specification: tVDRELEASE (Voltage detector threshold crossing deassertion)  
• Specification change: VPORUP_LV, Rising voltage max value is 1180 mV (was 1170)  
• Specification change: VPORUP_LV Falling voltage max value is 1100 mV  
• Significant changes to footnotes for this table.  
• VLVD096 (LV internal supply low voltage monitoring). Footnote added: “LV internal  
supply levels are measured on device internal supply grid after internal voltage drop.“  
• VLVD108 (LV internal supply low voltage monitoring). Footnote added: “LV internal  
supply levels are measured on device internal supply grid after internal voltage drop.“  
• Specification change: VLVD112 max value is 1180 mV (was 1190)  
• Specification change: VHVD140 is 1440 mV (was 1420)  
• Specification change: VPORUP_HV Rising voltage max value is 4480 mV (was 4200);  
min value is 4040. in addition, the Falling voltage min value is 2830 mV (was 2700) and  
the max value of 3210 mV was added  
• Specification change: VLVD270 max value is 2950 mV (was 2980)  
• Specification change: VLVD400 max value is 4410 mV (was 4400); min value added for  
Rising voltage. Also, changed min value for Falling voltage is 3970 mV (was 3980)  
Specification change: VHVD600 min value is 5560 mV (was 5520) and max value is  
6000 mV (was 5960)  
Table 39 (Functional terminals state during power-up and reset)  
• Corrected ESR1 RESET pad state to “Weak pull-up” (was “pull-down”) and DEFAULT  
pad state to “Weak pull-up” (was “pull-down”)  
• Corrected TMS RESET pad state to “Weak pull-up” (was “pull-down”) and DEFAULT  
pad state to “Weak pull-up” (was “pull-down”)  
• Changed TDO RESET pad state to “High impedance” (was “Weak pull-up”)  
• Revised TESTMODE footnote: “An internal pull-down is implemented on the  
TESTMODE pin to prevent the device from entering test mode if the package  
TESTMODE pin is not connected. It is recommended to connect the TESTMODE pin  
to VSS_HV_IO on the board for maximum robustness, but not required. The value of  
TESTMODE is latched at the negation of reset and has no affect afterward. The device  
will not exit functional reset with the TESTMODE pin asserted during power-up. The  
TESTMODE pin can be connected externally directly to ground without any other  
components.”  
MPC5777M Microcontroller Data Sheet, Rev. 6  
146  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
2
4/2013  
Electrical characteristics—Flash memory electrical characteristics  
Section 3.15, Flash memory electrical characteristics  
• This section completely revised.  
Electrical characteristics—AC specifications—Debug and Calibration  
Table 46 (JTAG pin AC electrical characteristics,):  
• Specification change: tJCYC (TCK cycle time) now consists of a single  
specification—minimum value is 100 ns. Footnotes from previous entries have been  
removed.  
• Specification change: tTDOHZ (TCK low to TDO high impedance) is now 15 ns (was 16)  
• Classification change: All specifications are “D” (were “P” and “C”)  
Table 47 (Nexus debug port timing)  
• New specification: tEVTIPW (EVTI pulse width)  
• New specification: tEVTOPW (EVTO pulse width)  
• Clarification: footnote added to TCYC, defining it as the system clock period  
• Specification change: TDO propagation delay from falling edge of TCK max is 16 ns  
(was 12.5 ns)  
• Specification change: TCK cycle time is min value is 2 tCYC (was 4)  
• Specification change: Absolute minimum TCK cycle time min value is 40 ns (was 25)  
• Specification change: TDI Data Hold Time min value is 5 ns (was 17.5)  
• Specification change: TMS Data Hold Time min value is 5 ns (was 17.5)  
• TDO propagation delay from falling edge of TCK max value is 16 ns (was 12.5)  
• Specification change: tTCYC (absolute minimum TCK cycle time) now consists of two  
specifications—one with TDO sampled on posedge of TCK and one sampled with TDO  
sampled on negedge of TCK.  
Table 48 (Aurora LVDS interface timing specifications)  
• Specification change: Data rate typ. value is undefined (was 1200 Mbps)  
• Specification change: Data rate max. value is 1250 Mbps (was “Typ+1%”)  
Table 49 (Aurora debug port timing)  
• Specification change: tREFCLK (Reference clock frequency) max value is 1250 MHz  
(was 1200)  
• Specification change: OUI (Aurora lane unit interval) is now specified by data rate  
• Characteristic vs. Requirement change: JD (Transmit lane deterministic jitter) is “SR”  
(was “CC”)  
• Characteristic vs. Requirement change: JT (Transmit lane total jitter) is “SR” (was “CC”)  
Electrical characteristics—AC specifications—DSPI  
Section 3.19.2, DSPI timing with CMOS and LVDS pads: Substantive changes to entire  
section, including reclassification of content as:  
Table 51 (DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0,  
CPHA = 0 or 1)  
Table 52 (DSPI CMOS master modified timing (full duplex and output only) –  
MTFE = 1, CPHA = 0 or 1)  
Table 54 (DSPI LVDS slave timing – full duplex – modified transfer format  
(MTFE = 0/1))  
Table 55 (DSPI LVDS master timing – output only – timed serial bus mode TSB = 1 or  
ITSB = 1, CPOL = 0 or 1, continuous SCK clock,)  
Table 56 (DSPI CMOS master timing – output only – timed serial bus mode TSB = 1 or  
ITSB = 1, CPOL = 0 or 1, continuous SCK clock,)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
147  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
2
4/2013  
Electrical characteristics—AC specifications—Fast Ethernet Controller (FEC)  
Section 3.16.3, “FEC timing  
Table 58 (MII receive signal timing)  
• Column added: SR/CC (system requirement or controller characteristic)  
• Column added: Classification (parameters are guaranteed by design)  
Table 59 (MII transmit signal timing)  
• Column added: SR/CC (system requirement or controller characteristic)  
• Column added: Classification (parameters are guaranteed by design)  
• Footnote added to max and min values columns: “Output parameters are valid for  
CL = 25 pF, where CL is the external load to the device. The internal package  
capacitance is accounted for, and does not need to be subtracted from the 25 pF  
value.”  
Table 60 (MII async inputs signal timing)  
• Column added: SR/CC (system requirement or controller characteristic)  
• Column added: Classification (parameters are guaranteed by design)  
Table 61 (MII serial management channel timing):  
• Column added: SR/CC (system requirement or controller characteristic)  
• Column added: Classification (parameters are guaranteed by design)  
Table 62 (RMII receive signal timing):  
• Column added: SR/CC (system requirement or controller characteristic)  
• Column added: Classification (parameters are guaranteed by design)  
Table 63 (RMII transmit signal timing,):  
• Column added: SR/CC (system requirement or controller characteristic)  
• Column added: Classification (parameters are guaranteed by design)  
• Specification change: REF_CLK to TXD[1:0], TX_EN valid max value is 16 ns (was 14)  
• Added footnote 2 to value column “Output parameters are valid for CL = 25 pF, where  
CL is the external load to the device. The internal package capacitance is accounted  
for, and does not need to be subtracted from the 25 pF value.”  
Electrical characteristics—AC specifications—FlexRay  
Section 3.16.4, FlexRay timing  
Table 64 (TxEN output characteristics):  
• Column added: SR/CC (system requirement or controller characteristic)  
• Column added: Classification (parameters are guaranteed by design)  
Table 65 (TxD output characteristics,):  
tTR20-80 specification for VDD_HV_IO = 5.0 V ± 10%, Transmission line Z = 50 ohms,  
tdelay = 1 ns, CL = 10 pF, moved from Table 17 (VERY STRONG configuration output  
buffer electrical characteristics)  
tTR20-80 specification combined with dCCTxDRISE25+dCCTxDFALL25 specification.  
Footnotes added for conditions. 3.3V specification added.  
• Footnote added: “Specifications valid according to FlexRay EPL 3.0.1 standard with  
20%-80% levels and a 10pF load at the end of a 50ohm, 1ns stripline. Please refer to  
the Very Strong I/O pad specifications.“  
• Column added: SR/CC (system requirement or controller characteristic)  
• Column added: Classification (parameters are guaranteed by design)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
148  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
2
4/2013  
Electrical characteristics—AC specifications—FlexRay (con’t)  
Table 66 (RxD input characteristics):  
• New specification: dCCRxAsymAccept15 (Acceptance of asymmetry at receiving CC  
with 15 pF load)  
• New specification: dCCRxAsymAccept25 (Acceptance of asymmetry at receiving CC  
with 25 pF load)  
• Column added: SR/CC (system requirement or controller characteristic)  
• Column added: Classification (parameters are guaranteed by design)  
Electrical characteristics—AC specifications—PSI5  
Section 3.19.6, PSI5 timing  
Table 67 (PSI5 timing):  
• Specification description for tMSG_DLY changed to, “Delay from last bit of frame (CRC0)  
to assertion of new message received interrupt“ (was, “Delay from last bit of frame (end  
of idle time) ...”)  
• Specification description for tMSG_JIT changed to, “Delay jitter from last bit of frame  
(CRC0) to assertion of new message received interrupt“ (was, “Delay from last bit of  
frame (end of idle time) ...”)  
• Maximum value for tSYNC_JIT changed to ±(1 PSI5_1µs_CLK + 1 PBRIDGEn_CLK);  
was 1 cycle  
• Footnote 2 (“Measured in PSI5 1 MHz clock cycles (PSI5_1us_CLK on the device).”)  
on the unit for tSYNC_JIT deleted  
• Classification change: tMSG_DLY (Delay from last bit of frame (CRC0) to assertion of  
new message received interrupt) is “D” (was “C”)  
• Classification change: tSYNC_DLY (Delay from internal sync pulse to sync pulse trigger  
at the SDOUT_PSI5_n pin) is “D” (was “C”)  
• Classification change: tMSG_JIT (Delay jitter from last bit of frame (CRC0) to assertion  
of new message received interrupt) is “D” (was “C”)  
• Classification change: tSYNC_JIT (Delay jitter from internal sync pulse to sync pulse  
trigger at the SDOUT_PSI5_n pin) is “D” (was “C”)  
Electrical characteristics—AC specifications—UART  
Section 3.18.7, UART timing  
• New  
Electrical characteristics—AC specifications—EBI  
Section 3.16.7, External Bus Interface (EBI) Timing:  
• New  
Package characteristics  
• 292 MAPBGA case drawing Rev. A included.  
• 416 TEPBGA case drawing Rev. 0 included.  
Electrical characteristics—Thermal Characteristics  
Table 74 (Thermal characteristics)  
• This table consolidates what were formerly separate thermal specifications tables for  
each package. All values have been updated.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
149  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
2
4/2013  
Ordering Information  
Section 4, Ordering information:  
• New  
3
3/2014  
Throughout  
• Changed document ID to “MPC5777M.”  
• Updated the “e200_z720n3” cores to “e200_z710n3” and the “e200_z719” core to  
“e200_z709.”  
• Removed references to the 292 MAPBGA and LFBGA292 packages.  
• Editorial (non-technical) changes and improvements.  
• Removed references to KGD and 165oC ratings.  
Introduction  
Table 1 (Family comparison):  
• SPC5744K column, ADC (SD) feature, changed “3” to “2”.  
• MPC5777M column, removed 292 MAPBGA.  
• Changed feature from “SIPI/LFAST7 bus” to “Zipwire(SIPI / LFAST7) Interprocessor  
Communication Interface”.  
• Removed To be confirmed for final silicon” footnote from Local RAM row for  
SPC5744K.  
• Removed “Only on the I/O processor core” footnote from LSP row for all devices.  
• Changed System SRAM for MPC5777M to “404 KB” (was 384 KB).  
• Changed Flash memory for MPC5777M to “8640 KB” (was 7.9 MB).  
• Changed DMA Nexus Class for SPC5744K, MPC5746M, and MPC5777M to “3+” (was  
3).  
• Changed GTM RAM for MPC5777M to “58 KB” (was 52 KB).  
• Changed Interrupt Controller entry for MPC5777M to “727 sources” (was 930 sources).  
• Removed “Integrated switch mode voltage regulator” row.  
• Removed “Degraded performance below 4.0 V” footnote from 5 V value in External  
power supplies row.  
Figure 1 (Block diagram):  
• Updated the “e200_z720n3” cores to “e200_z710n3” and the “e200_z719” core to  
“e200_z709”.  
Section 1.5, Feature overview  
• Changed item describing main CPUs to “single issue” (was “dual issue).  
• Changed item describing on-chip flash memory to “8640 KB” (was “8528 KB”).  
• Removed FlexRay as an option for BAM serial port.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
150  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
3
3/2014  
Package pinouts and signal descriptions  
Section 2.1, Package pinouts:  
• Removed “292” from the first sentence.  
• Removed figure “292-ball BGA production device pinout (top view)” and figure  
“292-ball BGA production device pinout (bottom view)”.  
Table 2 (Power supply and reference pins) and Table 3 (System pins):  
• Removed the “292PD” and 292ED” BGA ball columns.  
• VSS_LV: Added K13 and K14 for 416PD/416ED. Added M15 and M16 for  
512PD/512ED.  
• VDD_LV_BD: R1/R4 now applies only to 416ED (416PD changed to “—”). M13/N12 now  
applies only to 512ED (512PD changed to “—”).  
• Removed VDD_HV_OSC row.  
• Changed VDD_HV_JTAG Description to "JTAG/Oscillator power supply."  
• VDDSTBY: removed "Input" from descripion.  
• Significantly revised VSS_HV_ADV_S, VDD_HV_ADV_S, VSS_HV_ADV_D, and  
VDD_HV_ADV_D rows. Added rows for VSS_HV_ADR_S, VDD_HV_ADR_S, VSS_HV_ADR_D  
VDD_HV_ADR_D  
,
.
Table 4 (LVDS pin descriptions):  
• Changed title to “LVDS pin descriptions” (was “LVDSM”).  
• Removed the “292 PD, 292 ED” BGA ball column.  
• In the BGA ball (416 PD,416 ED) column, added ball locations.  
• In the BGA ball (512 PD, 512 ED) column, added ball locations.  
• Changed SIPI_TXP to P25 for 512BGA (was T25).  
• DSPI 4: Changed SCK_N to G17 for 512BGA (was G18).  
• DSPI 2: Changed SIN_P to G23 for 416BGA (was D17).  
• DSPI 5: For SCK_P, changed PI[15] to PF[10], G26 to J24, and P22 to W24.  
• DSPI 5: For SCK_N, changed PI[15] to PF[9], J23 to K23, and R22 to W25.  
• Added another pair of SIN_P/SIN_N rows for DSPI_5.  
Electrical characteristics—Absolute maximum ratings  
Section 3.1, Introduction:  
• Added VDD_HV_IO_FLEXE and VDD_HV_IO_EBI to list in supply pins note.  
Table 7 (Parameter classifications):  
• Changed Tag description for C classification to “Parameters are guaranteed. . .” (was  
“Those parameters are achieved. . .”  
• Changed Tag description for T classification to “Parameters are guaranteed. . .” (was  
“Those parameters are achieved. . .”  
Table 6 (Absolute maximum ratings):  
• Changed VSS to VSS_HV  
.
• Removed “VSS – VSS_HV_ADV” parameter row.  
• Removed VFERS row.  
• Removed “VFERS is a factory test supply pin . . .” footnote.  
• VSS_HV_ADR: Added "Reference to VSS_HV" to Conditions field.  
• Removed VSS–VSS_HV_ADR_D and VSS–VSS_HV_ADR_S rows.  
• In VDD_HV_IO footnote, added VDD_HV_IO_JTAG to list of power supplies to which  
V
DD_HV_IO applies.  
• In ADC grounds footnote, removed VSS_HV_ADV_D2  
• In ADC supplies footnote, changed VDD_HV_ADV to VDD_HV_ADV_S  
• In ADC low and high references footnote, removed VSS_HV_ADR_D2 and  
VDD_HV_ADR_D2  
.
.
.
• In ADC supplies footnote, removed VDD_HV_ADV_D2  
.
Table 7 (ESD ratings,):  
• Changed ESD for Human Body Model (HBM) parameter classification to “T” (was SR)  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
151  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
3
3/2014  
Electrical characteristics—Electromagnetic Compatibility (EMC)  
• Removed section.  
Electrical characteristics—Operating conditions  
Table 8 (Device operating conditions):  
• VDDSTBY added new footnote: The VDDSTBY pin should be connected to ground in  
the application when the standby RAM feature is not used.'  
• Added “Vin” specification, Min = 0V, Max = 5.5 V.  
• VDD_HV_ADV changed Min value from 3.6 V to 3.7 V.  
• VDD_HV_IO_MAIN, LVD400/HVD 600 disabled and LVD360/HVD600 disabled  
conditions: changed max to “5.5 V” (was “5.9 V”).  
• VDD_HV_IO_MAIN: Added footnote "VDD_HV_IO_MAIN range limited to 4.75–5.25 V  
when FERS = 1 to enable the fast erase time of the flash memory."  
• VDD_HV_ADR_D: Changed Typ value from VDD_HV_ADV to VDD_HV_ADV_D  
• Changed "VDD_HV_ADR_D–VDD_HV_ADV" parameter to  
"VDD_HV_ADR_D–VDD_HV_ADV_D."  
.
• VSS_HV_ADR_D: Changed VSS_HV_ADV to VSS_HV_ADV_D  
• Changed "VSS_HV_ADR_D–VSS_HV_ADV" parameter to  
"VSS_HV_ADR_D–VSS_HV_ADV_D."  
.
• VDD_HV_ADR_S: Added typ value of VDD_HV_ADV_S  
• Added VSS_HV_ADR_S parameter.  
• Changed "VDD_HV_ADR_S–VDD_HV_ADV" parameter to "VDD_HV_ADR_S–VDD_HV_ADV_S  
"
• Changed "VSS_HV_ADR_S–VSS_HV_ADV" parameter to "VSS_HV_ADR_S–VSS_HV_ADV_S  
• For VDD_HV_ADV specification, changed parameter to “SARADC, SDADC,  
Temperature Sensor, and Bandgap Reference supply voltage” (was SARADC and  
SDADC). For LVD400 disabled and LVD360 disabled conditions, referenced new  
"
footnote: “VDD_HV_ADV_S is required to be between 4.5V and 5.5V to read to read the  
internal Temp Sensor and Bandgap Reference.”  
• Changed VRAMP to VRAMP_LV, and changed parameter to “slew rate on core power  
supply pins”.  
• Added VRAMP_HV specification, parameter “Slew rate on HV power supply pins”, max  
value 500 V/ms.  
• Changed VDD_HV_IO_JTAG, VDD_HV_IO_FLEX, and VDD_HV_IO_EBI values from 4.0 V Min  
to 4.5 V Min, and changed “5.9 V” Max to “5.5 V” Max.  
• Moved VREF_BG_T, VREF_BG_TC and VREF_BG_LR specifications from ADC pin  
specification table to Device operating conditions table.  
• Removed footnote “Maximum frequency for the 292BGA is TBD, and may be lower  
due to package thermal considerations.” from fSYS specification, Max value “300” MHz.  
• VDD_HV_ADV changed “LVD400 disabled” condition to “LVD360 disabled” for the  
3.7V-5.9 V case.  
• VDD_HV_IO_FLEXE added specification.  
• VSTBY_BO and VDD_LV_STBY_SW removed from the Device operating conditions table  
and added to the DC electrical specifications table.  
• Vpor_rel and Vpor_hys specifications added.  
• Removed VFERS row and associated footnote.  
Table 9 (Emulation (buddy) device operating conditions):  
• Changed VDD_LV_BD minimum value from blank to “1.2” V.  
• VDD_LV_BD: Maximum changed to 1.365 V (was 1.32 V).  
• Changed VRAMP_BD to VRAMP_LV_BD and added specification VRAMP_HV_BD.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
152  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
3
3/2014  
Electrical characteristics—DC electrical specification  
Table 10 (DC electrical specifications):  
• Changed footnote 11, to “The standby RAM regulator current is present on the  
VDDSTBY pin whenever a voltage is applied to the pin. This also applies to normal  
operation where the RAM is powered by the VDD_LV supply. Connecting the  
VDDSTBY pin to ground when not using the standby RAM feature will remove the  
leakage current on the VDDSTBY pin.”  
• Moved VREF_BG_T, VREF_BG_TC and VREF_BG_LR specifications from ADC pin  
specification table to DC electrical specifications table.  
• Removed IFERS row.  
• VSTBY_BO and VDD_LV_STBY_SW removed from the Device operating conditions table  
and added to the DC electrical specifications table.  
• Changed IDD_LV maximum value to 850 mA (was 910).  
Electrical characteristics—DC electrical specification (con’t)  
Table 10 (DC electrical specifications):  
• Changed IDD_LV maximum value to 850 mA (was 910).\  
• IDD_LV_BD, changed “250” to “290” mA.  
• IDD_BD_STBY, 150 oC condition, changed “120” to “230” mA.  
• IDD_MAIN_CORE_AC: Added footnote "There is an additional 25mA when FERS=1 to  
enable the fast erase time of the flash memory."  
• In VDD_HV_PMC availability footnote, changed “QFP” to “416 BGA” and “BGA” to “512  
BGA.”  
• Revised footnote “If Aurora and JTAGM/LFAST not used, VDD_LV_BD current is reduced  
by ~20mA.”  
• Removed silicon characterization footnote.  
Table 12 (I/O input DC electrical characteristics):  
• VDRFTAUT specification, conditions column, added “4.5 V < VDD_HV_IO < 5.5 V”.  
• VDRFTCMOS specification, added 3.0 V < VDD_HV_IO < 3.6 V and 4.5 V < VDD_HV_IO  
5.5 V conditions.  
<
• ILKG specification, entire row revised.  
• Changed footnote 6 “n the range 4.5 V < VDD_HV_IO < 5.9 V.” to “in the range 4.5 V <  
VDD_HV_IO < 5.5 V.  
• VHYSAUT conditions column: replaced dash with 4.5 V < VDD_HV_IO < 5.5 V.  
• CIN row, changed GPIO input pins conditions Max value from “10” to “7” pF and EBI  
input pins Max value from “8” to “7” pF.  
• ILKG_EBI removed “Vin = 10%/90%” from parameter column.  
Figure 18 (I/O output DC electrical characteristics definition): Replaced figure.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
153  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
3
3/2014  
Electrical characteristics—I/O pad specification  
Table 13 (I/O pull-up/pull-down DC electrical characteristics):  
• IWPU, IWPD: substantially revised these specifications.  
Table 14,Table 15,Table 16,Table 17:  
• Added footnote to “C” classification header: "Once device characterization is  
correlated to production I/O testing, the test classification of output resistance  
parameters may be subject to change in future revisions of this document."  
• ROH_W, ROL_W, ROH_M, ROL_M, ROH_S, ROL_S, ROH_V, ROL_V: Changed classification to  
C (was P).  
• Removed all VSIO conditions (VSIO[VSIO_xx] = 1 and VSIO[VSIO_xx] = 0) from  
conditions column and added footnote: “All VDD_HV_IO conditions for 4.5 V to 5.9 V are  
valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0 V to 3.6 V are valid for  
VSIO[VSIO_xx] = 0.”  
• Removed TPHL/PLH specification from WEAK, MEDIUM, and STRONG configuration  
output buffer electrical characteristics.  
• Removed characterization and validation footnotes (total 2) for each table.  
Table 14, Table 15, Table 16:  
• ROH_, ROL_, tTR_: Changed 5.9 V conditions to 5.5 V.  
Table 15,Table 16,Table 17:  
• Added tTPD10-90 specification.  
Table 16, Table 17:  
• In footnotes, changed 5.9 V to 5.5 V.  
Table 18 (EBI pad output electrical specification):  
• Replaced this table “EBI output driver electrical characteristics” with new table “EBI pad  
electrical specification”.  
Table 19 (I/O consumption)  
• IRMS_EBI: In Conditions column, changed 66MHz references to 66.7MHz. Removed  
CDRV = 6 pF condition row.  
• IDYN_EBI: revised specification.  
Electrical characteristics—I/O pad current specification  
Section 3.7, I/O pad current specification: Changed the first note: from “In order to ensure  
correct functionality for SENT, the sum of all pad usage ratio within the SENT segment  
should remain below 50%.” to “In order to maintain the required input thresholds for the  
SENT interface, the sum of all I/O pad output percent IR drop as defined in the I/O Signal  
Description table, must be below 50 %. See the I/O Signal Description attachment.”  
Electrical characteristics—Reset pad (PORST, ESR0) electrical characteristics  
Table 20 (Reset electrical characteristics):  
• |IWPU| parameter, changed Min value from “25” to “23” and Max value from “100” to “82”  
uA.  
• |IWPD| parameter, changed Min value from “25” to “40” and Max value from “100” to  
“130” uA.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
154  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
3
3/2014  
Electrical characteristics—Oscillator and FMPLL  
Section 3.12, Oscillator and FMPLL  
• Updated text to reflect that there is one FMPLL on the chip.  
Table 22 (PLL1 electrical characteristics)  
• fPLL1PHI parameter, changed Max freq from “200” MHz to “600” MHz.  
• First footnote, changed “FXOSC” to “XOSC”.  
Table 23 (External Oscillator electrical specifications):  
• Added footnote to both VIHEXT and VILEXT parameter column “Applies to an external  
clock input and not to crystal mode”.  
• Added footnote to VILEXT parameter column “This parameter is guaranteed by design  
rather than 100% tested.”  
• VILEXT parameter, changed “External Reference” to “External Clock Input”.  
• Combined CS_XTAL and CS_EXTAL parameters into one specification CS_xtal, updated  
Min and Max values and removed the “BG292” condition.  
Table 24 (Selectable load capacitance):  
• Removed last 16 rows “10000” to “11111”.  
• Changed footnote 2 from “Values in this table do not include 8 pF routing and ESD  
structure on die and package trace capacitance.” to “Values in this table do not include  
the die and package capacitances given by Cs_xtal/Cs_extal in Table 23 (External  
Oscillator electrical specifications).”  
Table 25 (Internal RC Oscillator electrical specifications): fvar_SW parameter added  
footnote “IRC software trimmed accuracy is performed either with the CMU_0 clock  
monitor, using the XOSC as a reference or through the CCCU (CAN clock control Unit),  
extracting reference clock from CAN master clock. Software trim must be repeated as  
the device operating temperature varies in order to maintain the specified accuracy.”  
Electrical characteristics—ADC specifications  
Table 36 (ADC pin specification,):  
• ILK_INUD, ILK_INUSD, ILK_INREF, ILK_INOUT: Removed footnote “Leakage current is a  
parameter potentially showing variation with process maturity. This table is based on  
current process model, and will be validated when preliminary silicon data of ADC  
modules and I/O module is available.”  
• Parameter ILK_INOUT description column, changed “MEDIUM” output buffer with  
“GPIO” output buffer.  
Table 27 (SARn ADC electrical specification):  
• Added new condition for “VPRECH” - “VPRECH = VDD_HV_ADR/2 TJ < 150 °C  
CTRn[PRECHG] > 2”  
• IADCREFL specification: added VDD_HV_ADR_S <= 5.5 V to all modes in condition  
column.  
• DNL, “Differential non-linearity” parameter, conditions column, replaced “—” with  
“VDD_HV_ADV > 4V, VDD_HV_ADR_S > 4V”.  
• INL: Conditions column, first row, removed TJ < 150C and added 4.0V <  
VDD_HV_ADV_S < 5.5V. Conditions column, second row, removed TJ < 150C and added  
VDD_HV_ADV_S = 2V.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
155  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
3
3/2014  
Electrical characteristics—ADC specifications (con’t)  
Table 28 (SDn ADC electrical specification):  
• Removed the ILK_IN specification from table.  
• For SNRDIFF150, SNRDIFF333, and SNRSE150 specifications, added reference to “S/D  
ADC is functional in the range 3.0 V < VDD_HV_ADR_D , 4.0 V. . .” footnote.  
• Moved VREF_BG_T, VREF_BG_TC and VREF_BG_LR specifications from ADC pin  
specification table to Device operating table.  
• Removed IBG specification as it is already provided in the DC electrical table.  
• Maximum value of parameter “GAIN” changed from “16” to “15”  
Table 28 (SDn ADC electrical specification):  
• Changed footnote from “The ±1% passband ripple specification is equivalent to 20 *  
log10 (0.99) = 0.87 dB.” to “The ±1% passband ripple specification is equivalent to 20  
* log10 (0.99) = 0.087 dB.”  
• Max value of GROUP modified for all values of OSR.  
• tLATENCY, SETTLING  
t
and tODRECOVERY: “HPF = ON” and “HPF = OFF” conditions added.  
New max values.  
• Added SINAD and THD specifications.  
• RESOLUTION specification, added footnote “When using a GAIN setting of 16, the  
conversion result will always have a value of zero in the least significant bit. The gives  
an effective resolution of 15 bits.”  
GAINspecification, changed Max value from ”1” % to “1.5” %, “0.1” % to “5” mV, 0.25”  
% to “7.5” mV, and “0.5 %” to 10” mV”.  
• VOFFSETspecification, added 3 “After calibration” conditions, VDD_HV_ADR_D < 5%  
VDD_HV_ADV_D < 10% TJ < 50 °C, Max value of “5” mV, VDD_HV_ADR_D < 5%  
VDD_HV_ADV_D < 10% TJ < 100 °C, Max value of “7.5” mV and “After calibration”  
conditions, VDD_HV_ADR_D < 5% VDD_HV_ADV_D < 10% TJ < 150 °C, Max value of  
“10” mV.  
• Changed all SNR specification “Unit”s from “dB” to “dBFS”.  
• Changed SFDR specification “Unit” from “dB” to “dBc”.  
• ZIN specification, changed footnote to “Input impedance is valid over the full input  
frequency range.Input impedance is calculated in megaohms by the formula  
25.6/(Gain * fADCD_M).  
• Common mode rejection ratio parameter changed symbol from “—” to “Vcmrr”.  
• Anti-aliasing filter parameter, changed symbol “—” to “RCaaf”.  
• Stop band attenuation parameter, changed symbol “—” to “Frolloff”.  
• Changed footnote in 13 “full input range (specified by Vin)” to “full input frequency  
range.”  
• Changed in footnote 15 “0.873” dB to “0.087” dB.  
• fADCD_M, changed “S/D clock 3(4)” to “S/D Modulator Input Clock” and replaced “—”  
with “4” in Min column.  
• fADCD_S changed “conversion rate'” to “output conversion rate”.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
156  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
3
3/2014  
Electrical characteristics—LFAST electrical specifications  
Table 30 (LVDS pad startup and receiver electrical characteristics,):  
• |VI| specification, Differential input voltage parameter, added footnote 12 “The  
LXRXOP[0] bit in the LFAST LVDS Control Register (LCR) must be set to one to  
ensure proper LFAST receive timing.”  
Table 31 (LFAST transmitter electrical characteristics,):  
• |VOD|: removed the delta from symbol. Changed values to Min = 110, Typ = 171, Max  
= 285 and removed the “+/-” from each value.  
• tTR: changed “(10%–90% of swing)” to “(absolute value of the differential output  
voltage swing).”  
Table 32 (MSC/DSPI LVDS transmitter electrical characteristics ,):  
• |VOD|: removed the delta from symbol. Changed values to Min = 150, Typ = 214, Max  
= 400 and removed the “+/-” from each value.  
• tTR: Changed “(10%–90% of swing)” to “(absolute value of the differential output  
voltage swing).”  
Table 33 (LFAST PLL electrical characteristics):  
• |VI| specification, Differential input voltage parameter, added footnote 12 “The  
LXRXOP[0] bit in the LFAST LVDS Control Register (LCR) must be set to one to  
ensure proper LFAST receive timing.”  
Table 32 (MSC/DSPI LVDS transmitter electrical characteristics ,), Rise/Fall time  
parameter:  
• Changed “(10%–90% of swing)” to (absolute value of the differential output voltage  
swing).  
Table 33 (LFAST PLL electrical characteristics):  
• Changed footnote 2, from “320” to “640” MHz frequency.  
Electrical characteristics—Aurora LVDS electrical characteristics  
Table 34 (Aurora LVDS electrical characteristics,):  
• Removed VDD_HV_IO_BD and VDD_LV specifications as they are supplied in the device  
operating conditions table.  
• Changed “CAC” specification name to “Cac_clk”.  
• Added specification “Cac_tx”.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
157  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
3
3/2014  
Electrical characteristics—Power management: PMC, POR/LVD, sequencing  
Figure 20 (Recommended supply pin circuits):  
• For VDD_LV supply: Changed "nxClv" to "Clv."  
Table 35 (Device power supply integration):  
• CHV_IO removed footnote.  
• CHV_FLA parameter, added footnote “Start-up time of the internal flash regulator from  
release of the LVD360 is worst case 500 us. This is based on the typical CHV_FLA bulk  
capacitance value.”  
• CLV: Changed the 3 for Bypass capacitance at pin to "Note3." Changed parameter  
"Bypass capacitance at pin" to "Total bypass capacitance at external pin."  
• Significantly revised CHV_PMC_BYP, including changing spec name to CHV_PMC, min  
value to 2.2 µF (was 200 nF), and typ value to 4.7 µF (was “—”). Added footnote "For  
noise filtering it is recommended to add a high frequency bypass capacitance of 0.1 µF  
between VDD_HV_PMC and VSS_HV."  
Table 36 (Flash power supply):  
• VDD_HV_FLA, after trimming, Min value “3.2” changed to “3.15”. Added two notes.  
• Removed IREG_FLA specification.  
Table 39 (Functional terminals state during power-up and reset):  
• Changed “TRST” to “JCOMP.”  
MPC5777M Microcontroller Data Sheet, Rev. 6  
158  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
3
3/2014  
Electrical characteristics—Device voltage monitoring electrical characteristics  
Table 37 (Voltage monitor electrical characteristics):  
• VPORUP_LV Rising voltage (power up) condition, changed Min value “1040” to “1111”  
and Max value “1180” to “1235”.  
• VPORUP_LV Falling voltage (power down) condition, changed Min value “960” to “1015”  
and Max value “1100” to “1125”. Added footnote.  
• VLVD096 “960” to “1015” and Max value “1100” to “1145”.  
• VLVD108 changed Min value “1080” to “1125” and Max value “1140” to “1235”.  
• VLVD112 changed Min value “1110” to “1175 and Max value “1180” to “1235”.  
• VHVD140 changed Min value “1320” to “1385” and Max value “1440” to “1475”.  
• Added new specification VHVD145  
.
• Added “HVD140 does not cause reset” at end of footnote “HVD is released after  
tVDRELEASE temporization when lower threshold is crossed, HVD is asserted  
t
VDASSERT after detection when upper threshold is crossed.”  
• ]VPORUP_HV, added footnote “the PMC supply also needs to be below 5472 mV  
(untrimmed HVD600)”. Added new conditions: Rising voltage (power up) on IO JTAG,  
and Osc supply, Rising voltage (power up) on ADC supply, and Hysteresis on  
Power-up.  
• VPORUP_HV: Changed Falling voltage (power down) minimum value to “2850” (was  
“2680”) and maximum value to 3162 (was “2980”).  
• Revised Falling voltage footnote to read “Untrimmed LVD300_A will be asserted first  
on power down” (was “Assume all LVDs except LVD270 on HV supplies disabled”).  
• VLVD295 Rising voltage condition changed Max value “3100” to “3120”.  
• VLVD295 Falling voltage condition changed Min value “2950” to “2920” and Max value  
“3080” to “3100”.  
• VHVD360 Rising voltage condition changed Min value “3420” to “3435” and Max value  
“3610” to “3650”.  
• VHVD360 Falling voltage condition changed Min value “3400” to “3415”.  
Electrical characteristics—Flash memory electrical characteristics  
Section 3.15, Flash memory electrical characteristics:  
• This section completely revised.  
Electrical characteristics—AC specifications—Debug and Calibration  
Table 46 (JTAG pin AC electrical characteristics,):  
• Added footnote “JTAG timing specified at VDD_HV_IO_JTAG = 4.0 V to 5.5 V, and  
maximum loading per pad type as specified in the I/O section of the data sheet.”  
Table 47 (Nexus debug port timing)  
• Footnote 1 changed to “Nexus timing specified at VDD_HV_IO_JTAG = 4.0 V to 5.5 V, and  
maximum loading per pad type as specified in the I/O section of the data sheet.”  
• Changed “TDI” to “TDI/TDIC,” “TMS” to “TMS/TMSC,” and “TDO” to “TDO/TDOC.”  
Figure 27 (Nexus TDI/TDIC, TMS/TMSC, TDO/TDOC timing):  
• Changed “TDI” to “TDI/TDIC,” “TMS” to “TMS/TMSC,” and “TDO” to “TDO/TDOC.”  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
159  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
3
3/2014  
Electrical characteristics—AC specifications—Fast Ethernet Controller (FEC)  
Table 61 (MII serial management channel timing):  
• Added footnote to “Value” column: Output parameters are valid for CL = 25 pF, where  
CL is the external load to the device. The internal package capacitance is accounted  
for, and does not need to be subtracted from the 25 pF value.”  
Table 63 (RMII transmit signal timing,):  
• Added footnote to “Value” column Output parameters are valid for CL = 25 pF, where  
CL is the external load to the device. The internal package capacitance is accounted  
for, and does not need to be subtracted from the 25 pF value.”  
• Added footnote to table title: “RMII timing is valid only up to a maximum of 150 oC  
junction temperature.”  
Electrical characteristics—AC specifications—FlexRay  
Section 3.16.4, FlexRay timing:  
• Removed reference to “292 MAPBGA”.  
• Removed “ . . . and subject to change per the final timing analysis of the device” from  
FlexRay specification sentence.  
Table 66 (RxD input characteristics):  
• Added footnote: “FlexRay RxD timing is valid for all input levels and hysteresis  
disabled."  
Electrical characteristics—AC specifications—EBI  
Table 69 (Bus Operation Timing):  
• Changed bus frequency in table heading to “66.7 MHz” (was “66 MHz”).  
• Footnote 1, added "with DSC = 0b10 for ADDR/CTRL and DSC = 0b11 for  
CLKOUT/DATA."  
• Footnote 3, changed “[Clock Register TBD]” TO “CGM_SC_DC4 register”.  
• Footnote 4, changed "VDDE" to "VDD_HV_IO_EBI or VDD_HV_IO_FLEXE."  
• Spec 5, Characteristic column, added “ADDR[8:11]/WE[0:3]/BE[0:3],” “BDIP,” and  
overbar on CS, OE, and TS. Changed "ADDR[8:31]" to "ADDR[12:31]."  
• Spec 6, Characteristic column, added “ADDR[8:11]/WE[0:3]/BE[0:3]”, “BDIP,” overbar  
on CS, OE, TS, and footnote “One wait state must be added to the output signal valid  
delay for external writes.” Changed "ADD[8:31]" to "ADDR[12:31]."  
• Spec 7, change Min value from “6.0” to “7.0” ns.  
• Spec 8, Characteristic column, changed to “DATA[0:31]”.  
• Removed cut 1 footnotes associated with output delay and setup time (total 2).  
Figure 50 (D_CLKOUT Timing)  
Figure 51 (Synchronous Output Timing)  
Figure 52 (Synchronous Input Timing):  
• Changed “VDDE” to “VDD_HV_IO_EBI” throughout.  
Electrical characteristics—AC specifications—I2C  
Section 3.16.8, “I2C timing:  
New section.  
Electrical characteristics—AC specifications—GPIO delay  
Section 3.19.10, GPIO delay timing  
• New section  
MPC5777M Microcontroller Data Sheet, Rev. 6  
160  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
3
3/2014  
Package characteristics  
Section 4, Package characteristics:  
• Removed the “292 MAPBGAcase drawing” figures.  
Table 73 (Package case numbers): Removed the 292MAPBGA row.  
Electrical characteristics—Thermal Characteristics  
Table 74 (Thermal characteristics):  
• Removed “292 Value” column.  
Ordering Information  
Table 75 (Orderable part number summary)  
• Changed Freescale part numbers: 416 MAPBGA PD to TEPBGA  
“PPC5777MK0MVU8A” (was PPC5777MQK0MVU8), 512 TEPBGA PD to  
“PPC5777MK0MVA8A” (was PPC5777MQK0MVA8), 416 MAPBGA ED to TEPBGA  
“PPC5777M2K0MVU8A” (was PPC5777M2K0MVU8), and 512 TEPBGA ED to  
“PPC5777M2K0MVA8A” (was PPC5777M2K0MVA8)  
• Removed KGD and Production PD rows.  
• Removed “Flash/SRAM,” “Emulation RAM,” and “Frequency” columns.  
Figure 61 (Product code structure):  
• Package Code, added “VA = 512 TEPBGA Pb-Free”.  
• Package Code, added “VU = 416 TEPBGA Pb-Free”.  
• Miscellaneous, added “2 = Emulation Device”.  
• Changed Tape and Reel” to “Suffix” and added “A = cut2.0 revision”.  
• In “Fab and Mask Revision” codes, changed “K = TBD” to “K = TSMC.”  
4
9/2014  
Throughout  
• Removed parameter classifications from specification tables.  
• Editorial changes and improvements.  
Introduction  
• In Figure 1 (Block diagram), added “LFAST & SIPI” block to 50 MHz concentrator.  
• In Figure 2 (Periphery allocation), changed block to “2 x SIPI” (was “SIPI_0)” and  
removed double arrow on its right side.  
Electrical characteristics—Operating conditions  
• Extensive revisions to Table 8 (Device operating conditions).  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
161  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
4
9/2014  
Electrical characteristics—DC electrical specification  
• In Section 3.1, Introduction, added the following to note text: "VDD_HV_ADV refers to  
ADC supply pins VDD_HV_ADV_S and VDD_HV_ADV_D. VDD_HV_ADR refers to ADC  
reference pins VDD_HV_ADR_S and VDD_HV_ADR_D. VSS_HV_ADV refers to ADC ground  
pins VSS_HV_ADV_S and VSS_HV_ADV_D. VSS_HV_ADR refers to ADC reference pins  
VSS_HV_ADR_S and VSS_HV_ADR_D."  
• In Table 10 (DC electrical specifications), changed IDD_HV_PMC maximum for PMC only  
condition (was 5 mA, is 25 mA). Added “This includes PMC consumption, LFAST PLL  
regulator current, and Nwell bias regulator current” to footnote associated with this  
value.  
• In Table 10 (DC electrical specifications), changed IDD_LV maximum to 1140 mA (was  
600 mA) and added “VDD_LV = 1.325 V” to conditions.  
• In Table 10 (DC electrical specifications), added IDDAPP_LV specification.  
• In Table 10 (DC electrical specifications), changed the conditions for IDDSTBY_RAM and  
IDDSTBY_REG (were “...to 6 V...”, are “...to 5.5 V...”).  
• In Table 10 (DC electrical specifications), IDDSTBY_RAM specification: changed max  
value for 40°C condition to 60 µA (was 40). Changed max value for 85°C condition to  
100 µA (was 60).  
• In Table 10 (DC electrical specifications), VSTBY_BO specification: changed min value  
to 0.9 V (was 0.8).  
Electrical characteristics—I/O pad current specification  
Table 12 (I/O input DC electrical characteristics), Table 13 (I/O pull-up/pull-down DC  
electrical characteristics), Table 14 (WEAK configuration output buffer electrical  
characteristics), Table 15 (MEDIUM configuration output buffer electrical  
characteristics), Table 16 (STRONG configuration output buffer electrical  
characteristics), Table 17 (VERY STRONG configuration output buffer electrical  
characteristics), Table 19 (I/O consumption) added the following footnote to Conditions  
heading: “During power up operation, the minimum required voltage to come out of  
reset state is determined by the VPORUP_HV monitor, which is defined in the voltage  
monitor electrical characterstics table. Note that the VPORUP_HV monitor is connected  
to the VDD_HV_IO_MAIN0 physical I/O segment.”  
Table 12 (I/O input DC electrical characteristics): VHYSTTL specification: changed min  
value to 0.275 (was 0.3). VHYSAUT specification: changed min value to 0.4 (was 0.5).  
Table 12 (I/O input DC electrical characteristics), changed VIHCMOS_H min value to  
“0.70 * VDD_HV_IO” (was 0.65 * VDD_HV_IO).  
• In Table 12 (I/O input DC electrical characteristics), changed VIHAUT min value to 3.9 V  
(was 3.8).  
Table 12 (I/O input DC electrical characteristics), revised ILKG and ILKG_EBI rows.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
162  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
4
9/2014  
Electrical characteristics—I/O pad current specification  
Table 14 (WEAK configuration output buffer electrical characteristics), ROH_W and  
ROL_W: changed min value to 517 (was 560) and max value to 1052 (was 1040).  
Table 15 (MEDIUM configuration output buffer electrical characteristics), ROH_M and  
R
OL_M: changed min value to 135 (was 140).  
Table 16 (STRONG configuration output buffer electrical characteristics), ROH_S and  
ROL_S: changed min value to 30 (was 35) and max value to 77 (was 65).  
Table 17 (VERY STRONG configuration output buffer electrical characteristics),  
revised ROH_V and ROL_V conditions.  
Table 17 (VERY STRONG configuration output buffer electrical characteristics), ROH_V  
and ROL_V: changed max values to 72 (was 60) and 90 (was 75).  
Table 18 (EBI pad output electrical specification), ROH_EBI_GPIO and ROL_EBI_GPIO  
:
changed max value to 400 (was 260).  
• In Table 18 (EBI pad output electrical specification): VIHCMOS_H_EBI specification:  
changed max value to “VDD_HV_IO_EBI + 0.3” (was “VDD_HV_IO + 0.3”). ROH_EBI_GPIO  
specification: changed condition to “4.5 V < VDD_HV_IO_EBI < 5.5 V” (was “3.0 V <  
VDD_HV_IO < 3.6 V”). ROL_EBI_GPIO specification: changed condition to “4.5 V <  
VDD_HV_IO_EBI < 5.5 V” (was “3.0 V < VDD_HV_IO < 3.6 V”).  
Electrical characteristics—Oscillator and FMPLL  
• In Table 23 (External Oscillator electrical specifications), deleted the transconductance  
specification (gm).  
Electrical characteristics—ADC specifications  
Table 26 (ADC pin specification), ILK_INUD specification: changed TJ < 40 °C condition  
max value to 50 nA (was 70). Changed TJ< 150 °C condition max value to 150 nA (was  
220).  
• In Table 27 (SARn ADC electrical specification): added condition rows for full and fast  
precharge to tADCPRECH, revised condition entries for VPRECH.  
• In Table 28 (SDn ADC electrical specification), changed the max value for tLATENCY at  
HPF = OFF (was 2*GROUP,, is GROUP).  
• In Table 28 (SDn ADC electrical specification), changed the max value for GAIN (was  
15, is 16).  
Table 28 (SDn ADC electrical specification), SNRSE150: changed GAIN=1 min value to  
72 (was 74), GAIN=2 min value to 69 (was 71), GAIN=4 min value to 66 (was 68),  
GAIN=8 min value to 63 (was 65), and GAIN=16 min value to 60 (was 62).  
Table 28 (SDn ADC electrical specification), GROUP specification: changed OSR = 75  
max value to 696 Tclk (was 746), changed OSR = 96 max value to 946.5 Tclk (was  
946.4).  
• In Table 28 (SDn ADC electrical specification), added footnote to parameter column for  
tLATENCY  
.
Electrical characteristics—Power management: PMC, POR/LVD, sequencing  
• In Section 3.16, Power management: PMC, POR/LVD, sequencing, replaced PMC  
operating conditions and external regulators supply voltage table with a cross  
reference to Table 8 (Device operating conditions).  
• In Table 35 (Device power supply integration), changed minimum VDD_LV external  
capacitance footnote to “variation over voltage, temperature, and aging” (was  
“variation over process, voltage, temperature, and aging.”)  
• In Table 36 (Flash power supply), revised table footnotes and added new “After  
trimming; 25°C < TJ 150°C” condition to VDD_HV_FLA  
.
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
163  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
4
9/2014  
Electrical characteristics—Device voltage monitoring electrical characteristics  
• In Table 37 (Voltage monitor electrical characteristics), revised the entries for VLVD108  
and VLVD145  
.
Electrical characteristics—Flash memory electrical characteristics  
• Multiple changes throughout Section 3.15, Flash memory electrical characteristics.  
Electrical characteristics—AC specifications—GPIO delay  
• In Table 72, changed parameter to “Delay from SIUL2 MSCR register bit update to pad  
function enable at the input of the I/O pad” (was “Delay from MSCR bit update to pad  
function enable”).  
Electrical characteristics—Thermal Characteristics  
• Updated Table 74 (Thermal characteristics).  
Ordering Information  
• Revised Table 75 (Orderable part number summary).  
Electrical characteristics—Absolute maximum ratings  
5
6/2015  
Table 6 (Absolute maximum ratings)  
• VDD_LV_BD: corrected footnote numbering.  
• Revised footnote (“Allowed 1.38– 1.45 V...”) text to 1.38 (was 1.375). Revised footnote  
(“1.32 – 1.38 V range...”) text to 1.38 (was 1.375) and “1.326 V at maximum” (was  
“1.288 V at maximum”).  
Electrical characteristics—Operating conditions  
Table 8 (Device operating conditions)  
• Consolidated duplicate footnotes throughout table.  
• VDD_HV_ADV: added footnote (“SAR ADC only...”) to LVD disabled conditions.  
• Revised VDD_HV_ADR_D row.  
• Changed VRAMP_LV max value to 100 V/mx (was 500).  
• Revised footnote (“RAM data retention is guaranteed at a voltage...”) (was “RAM data  
retention is not guaranteed below...”).  
Table 9 (Emulation (buddy) device operating conditions)  
• Changed VRAMP_LV_BD max value to 100 V/ms (was 500).  
Electrical characteristics—DC electrical specification  
Table 10 (DC electrical specifications)  
• IDD_MAIN_CORE_AC: changed max value to 115 mA (was 105).  
• IDD_CHKR_CORE_AC: changed max value to 80 mA (was 45).  
• IDDSTBY_REG: changed max value to 50 µA (was 30).  
• VSTBY_BO specification: changed minimum to no value (was 0.9 V) and maximum to  
0.9 V (was no value) with footnote (“VSTBY_BO is the maximum voltage...”).  
• VDD_LV_STBY_SW: changed min value to 0.93 V (was 0.95).  
Electrical characteristics—Reset pad (PORST, ESR0) electrical characteristics  
Table 20 (Reset electrical characteristics)  
• Changed VIH min value to 2.2 V (was 2.0).  
• Changed WFNMI max value to 15 ns (was 20).  
MPC5777M Microcontroller Data Sheet, Rev. 6  
164  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
5
6/2015  
Electrical characteristics—I/O pad current specification  
Replaced Figure 18 (I/O output DC electrical characteristics definition).  
Table 12 (I/O input DC electrical characteristics)  
• VIHAUT specification: changed min value to 3.8 V.  
• VHYSTTL: Changed min value to 0.250 V (was 0.275). Removed footnote (“Minimum  
hysteresis...”) from min value.  
Table 13 (I/O pull-up/pull-down DC electrical characteristics)  
• Added “AUTO” and “CMOS” designations to conditions for |IWPU| and |IWPD|.  
• |IWPU| specification: changed final condition row to “VIN = 0.35*VDD_HV_IO” (was “VIN  
0.65*VDD_HV_IO”).  
=
Table 14 (WEAK configuration output buffer electrical characteristics)  
• ROH_W specification: changed min value to 520 (was 517).  
• ROL_W specification: changed min value to 520 (was 517).  
Table 15 (MEDIUM configuration output buffer electrical characteristics), Table 16  
(STRONG configuration output buffer electrical characteristics), and Table 17 (VERY  
STRONG configuration output buffer electrical characteristics)  
• Changed specification to tTPD50-50 and revised row.  
Table 16 (STRONG configuration output buffer electrical characteristics)  
• Added tSKEW_Sspecification.  
Table 17 (VERY STRONG configuration output buffer electrical characteristics)  
• Added IDCMAX_VS specification.  
Table 18 (EBI pad output electrical specification)  
• Removed all specifications in Input Specifications section and changed table title to  
“EBI Pad Output Electrical Specifications.”  
• tPD_EBI: changed parameter to “50% – 50% threshold...” (was “50% - 10% 90%  
threshold...”) and changed max value to 4.0 ns (was 5.5).  
• ROH_EBI_GPIO specification: change min value to 100 (was 150).  
Electrical characteristics—Oscillator and FMPLL  
Table 21 (PLL0 electrical characteristics)  
• Added footnote (“fPLL0IN frequency must be...”) to fPLL0IN parameter.  
• Changed footnote text to “Noise on the VDD_LV supply...” (was “VDD_LV noise due...”).  
• Added footnote (“PLL jitter is guaranteed when...”) to PLL0PHISPJ|, PLL0PHI1SPJ|, and  
PLL0LTJ specifications.  
• Added fPLL0VCOFR specification.  
Table 22 (PLL1 electrical characteristics),  
• Added fPLL1VCOFR specification.  
Table 24 (Selectable load capacitance)  
• Significant changes throughout table.  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
165  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
5
6/2015  
Electrical characteristics—ADC specifications  
In Table 27 (SARn ADC electrical specification)  
• IADCREFH specification: changed min value for Run mode tconv 5 µs condition to 7 µA  
(was 3.5). Changed max value for Power Down mode condition to 6 µA (was 1).  
• IADV_S specification, Power Down mode: changed max value to 1.0 mA (was 0.04).  
• INL and DNL rows: removed injection current footnote.  
• TUE12 row: changed footnote text to “This parameter is guaranteed...” (was “TUE, INL,  
and DNL are granted...”). Removed TJ < 150 °C, VDD_HV_ADV_S > 4 V,  
VDD_HV_ADR_S > 4 V condition row.  
In Table 28 (SDn ADC electrical specification)  
• VOFFSET: Changed parameter name to “Input Referred Offset Error” (was “Conversion  
Offset”) and added footnote (“Conversion offset error must be...”).  
• SNRDIFF150, SNRDIFF333, SNRSE150: removed footnote (“SNR degraded by 3dB...”)  
and changed conditions range to 4.5 (was 4.0).  
• SNRSE150 specification: revised min values for each condition. Added footnote (“This  
parameter is guaranteed...”).  
• For first footnote “S/D ADC is functional in the range...” changed voltage range to  
3.6 V–4.5 V (was 3.6 V < VDD_HV_ADV_D < 4.0 V) and added “Degraded SNR value  
based on simulation.”  
• For second footnote “S/D ADC is functional in the range...” changed voltage range to  
3.0 V–4.5 V and added “Degraded SNR value based on simulation.”  
• Vcmrr specification: changed min value to 54 dB (was 20 dB).  
GROUP specification: increased the max value for each condition by 3 Tclk.  
IADR_D specification: changed max value to 30 µA (was 20). Added “fADCD_M  
=
14.4 MHz” to condition.  
Electrical characteristics—LFAST electrical specifications  
Table 30 (LVDS pad startup and receiver electrical characteristics,)  
• Revised entire RIN specification row.  
Table 31 (LFAST transmitter electrical characteristics,)  
• fDATA: Changed max value to "312/320" (was 320) and added footnote.  
Table 33 (LFAST PLL electrical characteristics)  
• Changed ERRREF and DCREF parameter descriptions to “PLL input reference clock”  
(was “PLL reference clock”).  
Electrical characteristics—Power management: PMC, POR/LVD, sequencing  
Table 36 (Flash power supply)  
• Removed VDD_HV_PMC row (this specification documented in Table 8 (Device  
operating conditions).  
Electrical characteristics—Flash memory electrical characteristics  
• Added Section 3.15.7, Flash read wait state and address pipeline control settings.  
Electrical characteristics—AC specifications—DSPI  
• Substantial revisions to Section 3.16.2, DSPI timing with CMOS and LVDS pads.  
Electrical characteristics—AC specifications—FlexRay  
Table 66 (RxD input characteristics)  
• Revised footnote (“FlexRay RxD timing is valid . . .”).  
MPC5777M Microcontroller Data Sheet, Rev. 6  
166  
NXP Semiconductors  
Document revision history  
Table 76. Revision history (continued)  
Description of changes  
Revision  
Date  
5
6/2015  
Ordering Information  
Table 75 (Orderable part number summary)  
• Revised ED footnote (“‘ED’ refers to . . .”).  
6
6/2016  
Introduction  
Section 1.3, Device feature  
• Changed the name of the section to Device feature.  
Table 1 (MPC5777M feature) Changed the name of the table to MPC5777M feature.  
Figure 1  
• Removed the 50 MHz from the concentrator box and added 50 MHz and 100 Mhz to  
the connection arrows.  
Electrical characteristics—I/O pad specification  
Section 3.7, I/O pad current specification  
• Added paragraph (In order to ensure device reliability....., and In order to ensure device  
functionality....).  
• Removed the entries IRMS_SEG and IDYN_SEG in Table 19 (I/O consumption).  
Table 12 (I/O input DC electrical characteristics)  
• VHYSTTL specification: Changed min value to 0.275 V (was 0.250 V)  
Electrical characteristics—Oscillator and FMPLL  
Table 25 (Internal RC Oscillator electrical specifications)  
• Added fTRIM specification.  
Electrical characteristics—ADC Specifications  
Table 28 (SDn ADC electrical specification),  
• ZDIFF, ZCM and VINTCM specifications added. RBIAS specification has been updated.  
Electrical characteristics—AC specifications—FlexRay  
Table 66 (RxD input characteristics)  
• Changed footnote (“FlexRay RxD timing is valid . . .”).  
MPC5777M Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
167  
How to Reach Us:  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document. NXP reserves the right to make changes  
without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of  
its products for any particular purpose, nor does NXP assume any liability arising  
out of the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in NXP data sheets and/or  
specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be  
validated for each customer application by customers technical experts. NXP  
does not convey any license under its patent rights nor the rights of others. NXP  
sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER  
WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,  
JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE  
PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE,  
MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest,  
CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo,  
Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,  
QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo,  
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,  
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service  
names are the property of their respective owners. ARM, AMBA, ARM Powered,  
Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and ìVision are  
registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or  
elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight,  
DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and  
Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or  
elsewhere. All rights reserved. Oracle and Java are registered trademarks of  
Oracle and/or its affiliates. The Power Architecture and Power.org word marks  
and the Power and Power.org logos and related marks are trademarks and  
service marks licensed by Power.org.  
© 2016 NXP B.V.  
Document Number: MPC5777M  
Rev. 6  
06/2016  

相关型号:

PPC5777MK0MVU8B

Three main CPUs, single issue, 32-bit CPU core complexes
NXP

PPC6/3

Barrier Strip Terminal Block,
PHOENIX

PPC601FD-100-2

RISC Microprocessor, 32-Bit, 100MHz, CMOS, CQFP304, CERAMIC, QFP-304
IBM

PPC603-FX-066-1

IC,MICROPROCESSOR,32-BIT,CMOS,QFP,240PIN,CERAMIC
NXP

PPC603-FX-080-2

IC,MICROPROCESSOR,32-BIT,CMOS,QFP,240PIN,CERAMIC
NXP

PPC603AIM200C

32-BIT, 200MHz, RISC PROCESSOR, CPGA288
MOTOROLA

PPC603AIM200D

RISC Microprocessor, 32-Bit, 200MHz, CMOS, CPGA288
MOTOROLA

PPC603AIM233C

32-BIT, 233MHz, RISC PROCESSOR, CPGA288
MOTOROLA

PPC603AIM233D

RISC Microprocessor, 32-Bit, 233MHz, CMOS, CPGA288
MOTOROLA

PPC603AIM266D

RISC Microprocessor, 32-Bit, 266MHz, CMOS, CPGA288
MOTOROLA

PPC603AIM266E

32-BIT, 266MHz, RISC PROCESSOR, CPGA288
MOTOROLA

PPC603AIM300C

RISC Microprocessor, 32-Bit, 300MHz, CMOS, CPGA288
MOTOROLA