PIMXRT4162DVP5A [NXP]

i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products;
PIMXRT4162DVP5A
型号: PIMXRT4162DVP5A
厂家: NXP    NXP
描述:

i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products

文件: 总124页 (文件大小:1927K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: IMXRT1160XEC  
Rev. 0, 04/2021  
NXP Semiconductors  
Data Sheet: Technical Data  
MIMXRT1166XVM5A  
MIMXRT1165XVM5A  
i.MX RT1160 Crossover  
Processors Data Sheet  
for Extended Industrial  
Products  
Package Information  
Plastic Package  
289-pin MAPBGA, 14 x 14 mm, 0.8 mm pitch  
Ordering Information  
See Table 1 on page 6  
1. i.MX RT1160 introduction . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 6  
1.3. Package marking information . . . . . . . . . . . . . . . . 9  
2. Architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1. Special signal considerations . . . . . . . . . . . . . . . 20  
3.2. Recommended connections for unused analog  
1 i.MX RT1160 introduction  
The i.MX RT1160 is a new high-end processor of i.MX  
RT family, which features NXP’s advanced  
implementation of a high performance Arm  
®
Cortex -M7 core operating at speeds up to 500 MHz  
®
and a power efficient Cortex -M4 core up to 240 MHz.  
interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 23  
4.2. System power and clocks . . . . . . . . . . . . . . . . . . 32  
4.3. I/O parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
4.4. System modules . . . . . . . . . . . . . . . . . . . . . . . . . 50  
4.5. External memory interface . . . . . . . . . . . . . . . . . 54  
4.6. Display and graphics . . . . . . . . . . . . . . . . . . . . . . 64  
4.7. Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
4.8. Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
4.9. Communication interfaces . . . . . . . . . . . . . . . . . . 81  
4.10. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
The i.MX RT1160 processor has 1 MB on-chip RAM in  
total, including a 768 KB RAM which can be flexibly  
configured as TCM (512 KB RAM shared with M7 TCM  
and 256 KB RAM shared with M4 TCM) or  
general-purpose on-chip RAM. The i.MX RT1160  
integrates advanced power management module with  
DCDC and LDO regulators that reduce complexity of  
external power supply and simplifies power sequencing.  
The i.MX RT1160 also provides various memory  
interfaces, including SDRAM, RAW NAND FLASH,  
NOR FLASH, SD/eMMC, Quad/Octal SPI, Hyper  
RAM/Flash, and a wide range of other interfaces for  
connecting peripherals, such as WLAN, Bluetooth™,  
GPS, displays, and camera sensors. The i.MX RT1160  
5.  
Boot mode configuration . . . . . . . . . . . . . . . . . . . 99  
5. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 99  
5.1. Boot mode configuration pins . . . . . . . . . . . . . . . 99  
5.2. Boot device interface allocation . . . . . . . . . . . . . . 99  
6. Package information and contact assignments . . . . . . 105  
6.1. 14 x 14 mm package information . . . . . . . . . . . 105  
7. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
NXP reserves the right to change the production detail specifications as may be required  
to permit improvements in the design of its products.  
© 2021 NXP B.V.  
i.MX RT1160 introduction  
also has rich audio and video features, including MIPI CSI/DSI, LCD display, graphic accelerator, camera  
interface, SPDIF, and I2S audio interface.  
The i.MX RT1160 is specifically useful for applications such as:  
Industrial Human Machine Interfaces (HMI)  
Motor Control  
Home Appliance  
High-end Audio Appliance  
Low-end Instrument Cluster  
Point-of-Sale (PoS)  
1.1  
Features  
®
The i.MX RT1160 processors are based on Arm Cortex -M7 Core™ Platform, which has the following  
features:  
The Arm Cortex-M7 Core Platform:  
— 32 KB L1 Instruction Cache and 32 KB L1 Data Cache  
— Floating Point Unit (FPU) with single-precision and double-precision support of Armv7-M  
Architecture FPv5  
®
— Support the Arm v7-M Thumb instruction set, defined in the Armv7-M architecture  
— Integrated Memory Protection Unit (MPU), up to 16 individual protection regions  
— Up to 512 KB I-TCM and D-TCM in total  
— Frequency of 500 MHz  
— ECC support for both cache and TCM  
— Frequency of the core, as per Table 11, "Operating ranges," on page 26.  
®
The Arm Cortex -M4 Core platform:  
— Cortex-M4 processor with single-precision FPU defined by Armv7-M architecture FPv4-SP  
— Integrated MPU with 8 individual protection regions  
— 16 KB Instruction Cache, 16 KB Data Cache, and 256 KB TCM  
— Frequency of 240 MHz  
— ECC support for TCM and parity check support for cache  
The SoC-level memory system consists of the following additional components:  
— Boot ROM (256 KB)  
— On-chip RAM (1 MB in total)  
– Configurable 512 KB RAM shared with M7 TCM  
– 256 KB RAM shared with M4 TCM  
– Dedicated 256 KB OCRAM  
— Secure always-on RAM (4 KB)  
External memory interfaces:  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
2
NXP Semiconductors  
i.MX RT1160 introduction  
— 8/16/32-bit SDRAM, up to SDRAM-133/SDRAM-166/SDRAM-200  
— 8/16-bit SLC NAND FLASH  
— SD/eMMC  
— SPI NOR/NAND FLASH  
— Parallel NOR FLASH with XIP support  
— Single/Dual channel Quad SPI FLASH with XIP support  
— Hyper RAM/FLASH  
— OCT FLASH  
— Synchronization mode for all devices  
Timers and PWMs:  
— Six General Programmable Timer (GPT) modules  
– 4-channel generic 32-bit resolution timer for each  
– Each supports standard capture and compare operation  
— Two Periodical Interrupt Timer (PIT) modules  
– Four timers for each module  
– Generic 32-bit resolution timer  
– Periodical interrupt generation  
— Four Quad Timer (QTimer) modules  
– 4-channel generic 16-bit resolution timer for each  
– Each supports standard capture and compare operation  
– Quadrature decoder integrated  
— Four FlexPWMs  
– Up to 8 individual PWM channels for each  
– 16-bit resolution PWM suitable for Motor Control applications  
— Four Quadrature Decoders  
— Four Watch Dog (WDOG) modules  
Each i.MX RT1160 processor enables the following interfaces to external devices (some of them are  
muxed and not available simultaneously):  
Display Interface:  
— Parallel RGB LCD interface (eLCDIF)  
– Support 8/16/24-bit interface  
– Support up to WXGA resolution @60fps  
– Support Index color with 256 entry x 24-bit color LUT  
— Parallel RGB LCD Interface Version 2 (LCDIFv2)  
– Enhanced based on LCDIF version  
– Support up to 8 layers of alpha blending  
— MIPI Display Serial Interface (MIPI DSI)  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
3
i.MX RT1160 introduction  
– PHY integrated  
– 2 data lanes interface with up to 1.5 GHz bit rate clock  
— Smart LCD Display with 8080 interface through SEMC  
Audio:  
— SPDIF input and output  
— Four Synchronous Audio Interface (SAI) modules supporting I2S, AC97, TDM, and  
codec/DSP interfaces  
— Medium Quality Sound (MQS) interface via GPIO pads  
— PDM microphone interface with 4 pairs of inputs  
— Asynchronous Sample Rate Converter (ASRC)  
Graphics engine:  
— Generic 2D (PXP)  
– BitBlit  
– Flexible image composition options—alpha, chroma key  
– Porter-duff blending  
– Image rotation (90, 180, 270)  
– Image resize  
– Color space conversion  
– Multiple pixel format support (RGB, YUV444, YUV422, YUV420, YUV400)  
– Standard 2D-DMA operation  
Vector Graphics Processing  
– Real-time hardware curve tessellation of lines, quadratic, and cubic Bezier curves  
– 16x Line Anti-aliasing  
– OpenVG 1.1 support  
Vector Drawing  
Camera Interface:  
— Parallel Camera Sensor Interface (CSI)  
– Support 24-bit, 16-bit, and 8-bit input  
– Barcode binarization and histogram statistics  
— MIPI Camera Serial Interface (MIPI CSI)  
– PHY integrated  
– 2 data lanes interface with up to 1.5 GHz bit rate clock  
Connectivity:  
— Two USB 2.0 OTG controllers with integrated PHY interfaces  
— Two Ultra Secure Digital Host Controller (uSDHC) interfaces  
– eMMC 5.0 compliance with HS400 support up to 400 MB/sec  
– SD/SDIO 3.0 compliance with 200 MHz SDR signaling to support up to 100 MB/sec  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
4
NXP Semiconductors  
i.MX RT1160 introduction  
– Support for SDXC (extended capacity)  
— One 10M/100M Ethernet controller with support for IEEE1588  
— One Gigabit Ethernet controller with support for AVB  
— Twelve universal asynchronous receiver/transmitter (UARTs) modules  
— Six I2C modules  
— Six SPI modules  
— Three FlexCAN (with Flexible Data-rate supported) modules  
— Two EMV SIM modules  
Analog:  
— Two Analog-Digital-Converters (ADC), which supports both differential and single-end inputs  
— One Digital-Analog-Converter (DAC)  
— Four Analog Comparators (ACMP)  
GPIO and Pin Multiplexing:  
— General-purpose input/output (GPIO) modules with interrupt capability  
— Input/output multiplexing controller (IOMUXC) to provide centralized pad control  
— Two FlexIO modules  
— 8 x 8 keypad  
The i.MX RT1160 processors integrate advanced power management unit and controllers:  
Full PMIC integration, including on-chip DCDC and LDOs  
Temperature sensor with programmable trim points  
Hardware power management controller (GPC)  
The i.MX RT1160 processors support the following system debug:  
Arm CoreSight debug and trace architecture  
Trace Port Interface Unit (TPIU) to support off-chip real-time trace  
Cross Triggering Interface (CTI)  
Support for 5-pin (JTAG) and SWD debug interfaces  
Security functions are enabled and accelerated by the following hardware:  
High Assurance Boot (HAB)  
Cryptographic Acceleration and Assurance (CAAM) module:  
— Public Key Cryptography Engine (PKHA)  
— Symmetric Engines  
— Cryptographic Hash Engine  
— Random Number Generation (RNG4)  
— Four Job Rings for use by processors  
— Secure Hardware-Only Cryptographic Key Management  
— Encrypted Boot  
— Revision control check based on fuse values  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
5
i.MX RT1160 introduction  
— DEK includes IV  
— Side channel attack countermeasures  
— 64 KB secure RAM  
Inline Encryption Engine (IEE):  
— External memory encryption/decryption  
— I/O direct encrypted storage and retrieval (Stream Support)  
— FlexSPI decryption only  
On-the-Fly AES Decryption (OTFAD):  
— AES-128 Counter Mode On-the-Fly Decryption  
— Hardware support for unwrapping “key blobs”  
— Functionally acts as a slave sub-module to the FlexSPI  
Secure Non-Volatile Storage (SNVS):  
— Secure real-time clock (SRTC)  
— Zero Master Key (ZMK)  
Secure always-on RAM (4 KB)  
Secure key management and protection  
— Physical Unclonable Function (PUF)  
— UnDocumented Function (UDF)  
— Built-in Manufacturing Protection Hardware  
Secure and trusted access control  
NOTE  
The actual feature set depends on the part numbers as described in Table 1.  
Functions such as display and camera interfaces, connectivity interfaces,  
and security features are not offered on all derivatives.  
1.2  
Ordering information  
Table 1 provide examples of orderable part numbers covered by this Data Sheet.  
Table 1. Order information  
MIMXRT1166XVM5A  
MIMXRT1165XVM5A  
Qualification tier  
M7 core  
Extended Industrial  
500 MHz  
Extended Industrial  
500 MHz  
M4 core  
240 MHz  
240 MHz  
SRAM  
1 MB without ECC or 896 KB with ECC 1 MB without ECC or 896 KB with ECC  
Parallel LCD and CSI  
MIPI DSI and CSI  
Yes  
Yes  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
6
i.MX RT1160 introduction  
MIMXRT1165XVM5A  
Table 1. Order information (continued)  
MIMXRT1166XVM5A  
GPU2D  
Yes  
Yes  
x3  
PXP  
CAN-FD  
x3  
x1  
x1  
x2  
x2  
x2  
x4  
x8  
x2  
x12  
x6  
x6  
x6  
x2  
x4  
x4  
Yes  
1 Gb ENET with AVB  
x1  
10/100 Mb ENET with 1588  
x1  
USB OTG  
eMMC 5.0 / SD 3.0  
EMV SIM  
SAI  
x2  
x2  
x2  
x4  
DMIC  
x8  
FlexSPI  
UART  
x2  
x12  
x6  
I2C  
SPI  
x6  
GPT  
x6  
PIT  
x2  
QTimer  
FlexPWM  
Security  
Package  
x4  
x4  
Yes  
289 MAPBGA, 14 mm x14 mm, 0.8 mm 289 MAPBGA, 14 mm x14 mm, 0.8 mm  
pitch  
pitch  
Junction temperature Tj (C)  
-40 to 125  
-40 to 125  
Figure 1 describes the part number nomenclature so that characteristics of a specific part number can be  
identified (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The  
primary characteristic which describes which data sheet applies to a specific part is the temperature grade  
(junction) field.  
The i.MX RT1160 Crossover Processors for Extend Industrial Products Data Sheet  
(IMXRT1160XEC) covers parts listed with a “X (Extend Industrial temp)”  
Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field  
and matching it to the proper data sheet. If there are any questions, visit the web page nxp.com/IMXRT or  
contact an NXP representative for details.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
7
i.MX RT1160 introduction  
M
IMX X X  
@
##  
%
+
VV  
$
A
Qualification Level  
M
Prototype Samples  
Mass Production  
Special  
P
M
S
Silicon Rev  
A
A0  
A
Main Core Frequency  
2xx MHz  
$
2
5
6
8
A
Part # series  
XX  
i.MX RT  
RT  
500 MHz  
@
1
Family  
600 MHz  
First Generation RT family  
Reserved  
800 MHz  
2-8  
1 GHz  
Sub-Family  
RT116x  
##  
Package Type  
VV  
VM  
VP  
VL  
16  
17  
Tie  
%
1
289MAPBGA, 14 x 14 mm, 0.8 mm pitch  
144MAPBGA, 10 x 10 mm, 0.8 mm pitch  
196MAPBGA, 10 x 10 mm, 0.65 mm pitch  
RT117x  
Single Core Standard Feature  
Single Core Enhanced Feature  
Dual Core Enhanced Security  
Dual Core Standard Feature  
Dual Core Enhanced Feature  
Dual Core Premium Feature  
8MB Flash SIP  
2
3
5
Temperature (Tj)  
+
6
7
Consumer: 0 to + 95 °C  
D
C
X
A
8
Industrial: -40 to +105 °C  
Dual Core Full Feature  
9
Extended Industrial: -40 to +125 °C  
Automotive: -40 to + 125 eC  
Facial Recognition  
F
H
S
Hybrid Solution with Vision & Voice  
Local Voice Control (w/ Text2Model)  
Figure 1. Part number nomenclature—i.MX RT11XX family  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
8
i.MX RT1160 introduction  
1.3  
Package marking information  
Figure 2 describes the package marking format about the i.MX RT1160 Crossover Processors.  
Figure 2. MAPBGA289 14 x 14 mm package marking format  
The 14 x 14 mm of i.MX RT1160 MAPBGA289 package has the following top-side marking:  
First line: aaaaaaaaaaaaaaa  
Second line: mmmmm  
Third line: xxxyywwx  
Table 2 lists the identifier decoder.  
Table 2. Identifier decoder  
Description  
Identifier  
a
m
y
Part number code, refer to Section 1.2, Ordering information  
Mask set  
Year  
w
x
Work week  
NXP internal use  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
9
Architectural overview  
2 Architectural overview  
The following subsections provide an architectural overview of the i.MX RT1160 processor system.  
2.1  
Block diagram  
1
Figure 3 shows the functional modules in the i.MX RT1160 processor system .  
.
Figure 3. i.MX RT1160 system block diagram  
1. Some modules shown in this block diagram are not offered on all derivatives. See Table 1 for details.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
10  
NXP Semiconductors  
Modules list  
3 Modules list  
The i.MX RT1160 processors contain a variety of digital and analog modules. Table 3 describes these  
modules in alphabetical order.  
Table 3. i.MX RT1160 modules list  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
ACMP1  
ACMP2  
ACMP3  
ACMP4  
Analog Comparator  
Analog  
The comparator (CMP) provides a circuit for comparing  
two analog input voltages. The comparator circuit is  
designed to operate across the full range of the supply  
voltage (rail-to-rail operation).  
ADC_ETC  
ADC External Trigger  
Control  
Analog  
Analog  
ADC_ETC enables multiple users shares a ADC  
module in a Time-Division-Multiplexing (TDM).  
ADC1  
ADC2  
Analog to Digital  
Converter  
The ADC is a 12-bit general purpose analog to digital  
converter.  
AOI  
And-Or-Inverter  
Arm Platform  
Cross Trigger  
The AOI provides a universal boolean function  
generator using a four-term sum of products expression  
with each product term containing true or complement  
values of the four selected inputs (A, B, C, D).  
Arm  
Arm  
The Arm Core Platform includes one Cortex-M7 core. It  
includes associated sub-blocks, such as Nested  
Vectored Interrupt Controller (NVIC), Floating-Point Unit  
(FPU), Memory Protection Unit (MPU), and CoreSight  
debug modules.  
The Cortex-M4 platform has following features:  
• Cortex-M4 processor with FPU  
• Local memory  
– 16 KB instruction cache and 16 KB data cache  
– 256 KB TCM  
– TCM memories support ECC  
– Cache memories support Parity Check  
ASRC  
CAAM  
Asynchronous Sample  
Rate Converter  
Multimedia  
Peripherals  
The ASRC can process groups of audio channels with  
an independent time-based simultaneously.  
Cryptographic  
Accelerator and  
Assurance Module  
Security  
CAAM supports a set of standard hardware  
accelerators, boot time acceleration of the hashing  
function, crypto key protection, HDCP 2.x authentication  
and protected video path support, manufacturing  
protection and public key cryptographic acceleration,  
and inter-operate with TrustZone, Resource Domain,  
and system virtualization access controls.  
CANFD1  
CANFD2  
CANFD3  
Flexible Controller Area  
Network  
Connectivity  
Peripherals  
The CAN with Flexible Data rate (CAN FD) module is a  
communication controller implementing the CAN  
protocol according to the ISO11898-1 and CAN 2.0B  
protocol specification.  
CCM  
GPC  
PGMC  
PMU  
SRC  
Clock Control Module,  
GeneralPowerController,  
Power Manage Unit,  
Power Gating and  
Clocks, Resets, and These modules are responsible for clock and reset  
Power Control  
distribution in the system, and also for the system power  
management.  
Memory Controller,  
System Reset Controller  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
11  
Modules list  
Table 3. i.MX RT1160 modules list (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
CSI  
Parallel CSI  
Multimedia  
Peripherals  
The CSI IP provides parallel CSI standard camera  
interface port. The CSI parallel data ports are up to 24  
bits. It is designed to support 24-bit RGB888/YUV444,  
CCIR656 video interface, 8-bit YCbCr, YUV or RGB,  
and 8-bit/10-bit/16-bit/24-bit Bayer data input.  
CWT  
Code Watchdog Timer  
Timer peripherals The CWT provides mechanisms for detecting  
side-channel attacks and the execution of unexpected  
instruction sequences.  
DAC  
DAP  
Digital-Analog-Converter  
Debug Access Port  
Analog  
The DAC is a 12-bit general purpose digital to analog  
converter.  
System Control  
Peripherals  
The DAP provides real-time access for the debugger  
without halting the core to:  
• System memory and peripheral registers  
• All debug configuration registers  
The DAP also provides debugger access to JTAG scan  
chains. The DAP module is internal to the Cortex-M7  
Core Platform.  
DCDC  
DCDC Converter  
Analog  
The DCDC module is used for generating power supply  
for core logic. Main features are:  
• Adjustable high efficiency regulator  
• Two outputs: 1.0 V and 1.8 V  
• Over current and over voltage detection  
eDMA  
eDMA_LPSR  
enhanced Direct Memory  
Access  
System Control  
Peripherals  
There are two enhanced DMAs (eDMA).  
• The eDMA is a 32-channel DMA engine, which is  
capable of performing complex data transfers with  
minimal intervention from a host processor.  
• The DMA_MUX is capable of multiplexing up to 128  
DMA request sources to the 32 DMA channels of  
eDMA.  
eLCDIF  
LCD interface  
Multimedia  
Peripherals  
The enhanced LCD controller provides flexible display  
options and to drive a wide range of display devices  
varying in size and capability. Major features are:  
• Up to WXGA 60 Hz  
• 8/16/18/24 bit LCD data bus support available  
depending on I/O mux options.  
• Programmable timing and parameters for LCD  
interfaces to support a wide variety of displays.  
• Index color with 256 entry x 24-bit color LUT  
EMV SIM1  
EMV SIM2  
Europay, Master and Visa  
Subscriber Identification  
Module  
Connectivity  
Peripherals  
EMV SIM is designed to facilitate communication to  
Smart Cards compatible to the EMV version 4.3  
standard (Book 1) and Smart Cards compatible with  
ISO/IEC 7816-3 standard.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
12  
Modules list  
Table 3. i.MX RT1160 modules list (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
The Ethernet Media Access Controller (MAC) is  
designed to support 10/100 Mbit/s Ethernet/IEEE 802.3  
networks. An external transceiver interface and  
transceiver function are required to complete the  
interface to the media. The module has dedicated  
hardware to support the IEEE 1588 standard. See the  
ENET chapter of the reference manual for details.  
ENET  
Ethernet Controller  
Connectivity  
Peripherals  
ENET 1G  
Ethernet Controller  
Connectivity  
Peripherals  
One 1G Ethernet is also integrated, which has following  
features:  
• RGMII/RMII/MII operation  
• Support IEEE1588  
• Support AVB  
EWM  
External Watchdog  
Monitor  
Timer Peripherals The EWM modules is designed to monitor external  
circuits, as well as the software flow. This provides a  
back-up mechanism to the internal WDOG that can  
reset the system. The EWM differs from the internal  
WDOG in that it does not reset the system. The EWM, if  
allowed to time-out, provides an independent trigger pin  
that when asserted resets or places an external circuit  
into a safe mode.  
FlexIO1  
FlexIO2  
Flexible Input/output  
Pulse Width Modulation  
RAM  
Connectivity and  
The FlexIO is capable of supporting a wide range of  
Communications protocols including, but not limited to: UART, I2C, SPI,  
I2S, camera interface, display interface, PWM  
waveform generation, etc. The module can remain  
functional when the chip is in a low power mode  
provided the clock it is using remain active.  
FlexPWM1  
FlexPWM2  
FlexPWM3  
FlexPWM4  
Timer Peripherals The pulse-width modulator (PWM) contains four PWM  
sub-modules, each of which is set up to control a single  
half-bridge power stage. Fault channel support is  
provided. The PWM module can generate various  
switching patterns, including highly sophisticated  
waveforms.  
FlexRAM  
Memories  
The i.MX RT1160 has 512 KB of on-chip RAM which  
could be flexible allocated to I-TCM, D-TCM, and  
on-chip RAM (OCRAM) in a 32 KB granularity. The  
FlexRAM is the manager of the 512 KB on-chip RAM  
array. Major functions of this blocks are: interfacing to  
I-TCM and D-TCM of CM7 and OCRAM controller;  
dynamic RAM arrays allocation for I-TCM, D-TCM, and  
OCRAM.  
FlexSPI1  
FlexSPI2  
Flexible Serial Peripheral  
Interface  
Connectivity and  
FlexSPI acts as an interface to one or two external serial  
Communications memory devices, FlexSPI2 has 8 bi-directional data  
lines.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
13  
Modules list  
Table 3. i.MX RT1160 modules list (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
General Purpose I/O  
Modules  
System Control  
Peripherals  
Used for general purpose input/output to external ICs.  
Each GPIO module supports up to 32 bits of I/O.  
Note: GPIO13 register access takes a long time (about  
50s due to clocked by 32 KHz clock source). During the  
period of registers access, the LPSR domain bus would  
be on hold.  
GPT1  
GPT2  
GPT3  
GPT4  
GPT5  
GPT6  
General Purpose Timer  
Timer Peripherals Each GPT is a 32-bit “free-running” or “set and forget”  
mode timer with programmable prescaler and compare  
and capture register. A timer counter value can be  
captured using an external event and can be configured  
to trigger a capture event on either the leading or trailing  
edges of an input pulse. When the timer is configured to  
operate in “set and forget” mode, it is capable of  
providing precise interrupts at regular intervals with  
minimal processor intervention. The counter has output  
compare logic to provide the status and interrupt at  
comparison. This timer can be configured to run either  
on an external clock or on an internal clock.  
GPU2D  
Graphics Processing  
Multimedia  
Peripherals  
The vector graphics processing supports following  
features:  
• Real-time hardware curve tessellation of lines,  
quadratic, and cubic Bezier curves  
• 16x line anti-aliasing  
• OpenVG 1.1 support  
• Vector drawing  
IOMUXC  
JTAGC  
IOMUX Control  
JTAG Controller  
Mux control  
This module enables flexible I/O multiplexing. Each IO  
pad has a default as well as several alternate functions.  
The alternate functions are software configurable.  
System Control  
Peripherals  
The JTAG interface complies with JTAG TAP standards  
to internal logic. The i.MX RT1160 processors use JTAG  
port for production, testing, and system debugging. In  
addition, the JTAG provides BSR (Boundary Scan  
Register) standard support, which complies with IEEE  
1149.1 and IEEE 1149.6 standards.  
The JTAG port must be accessible during platform initial  
laboratory bring-up, for manufacturing tests and  
troubleshooting, as well as for software debugging by  
authorized entities. The i.MX RT1160 JTAG  
incorporates two security modes for protecting against  
unauthorized accesses. Modes are selected through  
eFUSE configuration.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
14  
Modules list  
Table 3. i.MX RT1160 modules list (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
The KPP is a 16-bit peripheral that can be used as a  
keypad matrix interface or as general purpose  
input/output (I/O). It supports 8 x 8 external key pad  
matrix. Main features are:  
KPP  
Keypad Port  
Human Machine  
Interfaces  
• Multiple-key detection  
• Long key-press detection  
• Standby key-press detection  
• Supports a 2-point and 3-point contact key matrix  
LCDIFv2  
Parallel RGB LCD  
interface version 2  
Multimedia  
Peripherals  
The LCDIFv2 is an enhanced version of LCDIF.  
Main features are:  
• Eight layers of alpha blending  
• CRC check for configurable region on the final  
display output after alpha blending  
• Write-back channel to save the final output into  
memory  
LPI2C1  
LPI2C2  
LPI2C3  
LPI2C4  
LPI2C5  
LPI2C6  
Low Power  
Inter-integrated Circuit  
Connectivity and  
The LPI2C is a low power Inter-Integrated Circuit (I2C)  
Communications module that supports an efficient interface to an I2C bus  
as a master.  
The I2C provides a method of communication between  
a number of external devices. More detailed information,  
see Section 4.9.2, LPI2C module timing parameters.  
LPSPI1  
LPSPI2  
LPSPI3  
LPSPI4  
LPSPI5  
LPSPI6  
Low Power Serial  
Peripheral Interface  
Connectivity and  
The LPSPI is a low power Serial Peripheral Interface  
Communications (SPI) module that support an efficient interface to an SPI  
bus as a master and/or a slave.  
• It can continue operating while the chip is in stop  
modes, if an appropriate clock is available  
• Designed for low CPU overhead, with DMA off  
loading of FIFO register access  
LPUART1  
LPUART2  
LPUART3  
LPUART4  
LPUART5  
LPUART6  
LPUART7  
LPUART8  
LPUART9  
LPUART10  
LPUART11  
LPUART12  
UART Interface  
Connectivity  
Peripherals  
Each of the UART modules support the following serial  
data transmit/receive protocols and configurations:  
• 7- or 8-bit data words, 1 or 2 stop bits, programmable  
parity (even, odd or none)  
• Programmable baud rates up to 20 Mbps.  
MECC64  
Error Correcting Code  
Memories and  
MECC64 module supports Single Error Correction and  
Memory Controllers Double Error Detection (SECDED) ECC function to  
provide reliability for 4 banks On-Chip RAM (OCRAM)  
access. When ECC function is disabled, ECC OCRAM  
can be also used to store data.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
15  
Modules list  
Table 3. i.MX RT1160 modules list (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
MIPI-CSI  
MIPI CSI Interface  
Multimedia  
Peripherals  
Key features of MIPI CSI controller are listed as  
following:  
• Implements all three MIPI CSI-2 layers  
• Supports CSI-2 Unidirectional Master operation  
• Virtual Channel support  
• Flexible pixel-based user interface  
MIPI-DSI  
MIPI DSI Interface  
Multimedia  
Peripherals  
Key features of MIPI DSI controller are listed as  
following:  
• Implements all three DSI layers  
• Supports Command and Video Modes  
• Virtual Channel support  
• Flexible packet based user interface  
MQS  
MU  
Medium Quality Sound  
Messaging Unit  
Multimedia  
Peripherals  
MQS is used to generate 2-channel medium quality  
PWM-like audio via two standard digital GPIO pins.  
System Control  
The Messaging Unit module enables two processors  
within the SoC to communicate and coordinate by  
passing messages (e.g. data, status, and control)  
through the MU interface.  
The MU also provides the ability for one processor to  
signal the other processor using interrupts.  
OCOTP_CTRL  
OTP Controller  
Security  
The On-Chip OTP controller (OCOTP_CTRL) provides  
an interface for reading, programming, and/or overriding  
identification and control information stored in on-chip  
fuse elements. The module supports electrically  
programmable poly fuses (eFUSEs). The  
OCOTP_CTRL also provides a set of volatile  
software-accessible signals that can be used for  
software control of hardware elements, not requiring  
non volatility. The OCOTP_CTRL provides the primary  
user-visible mechanism for interfacing with on-chip fuse  
elements. Among the uses for the fuses are unique chip  
identifiers, mask revision numbers, cryptographic keys,  
JTAG secure mode, boot characteristics, and various  
control signals requiring permanent non volatility.  
OCRAM  
On-Chip Memory  
controller  
Memories and  
The On-Chip Memory controller (OCRAM) module is  
Memory Controllers designed as an interface between the system’s AXI bus  
and the internal (on-chip) SRAM memory module.  
OSC  
Oscillator  
Clock Sources and Two crystal oscillators:  
Control  
• 48 MHz crystal oscillator: it is used as primary clock  
source for all the PLLs to generate the clock for CPU,  
BUS, and high-speed interfaces.  
• 32 kHz crystal oscillator: it is the primary clock source  
for RTC as well as low speed clock source for  
CCM/SRC/GPC.  
PDM  
Pulse Density Modulation  
Multimedia  
Peripherals  
The PDM supports up to 8-channels (4 lanes) digital  
MIC inputs.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
16  
Modules list  
Table 3. i.MX RT1160 modules list (continued)  
Block Name Subsystem Brief Description  
Block Mnemonic  
PIT1  
PIT2  
Periodical Interrupt Timer Timer Peripherals The PIT features 32-bit counter timer, programmable  
count modules, clock division features, interrupt  
generation, and a slave mode to synchronize count  
enable for multiple PITs.  
PXP  
Pixel Processing Pipeline  
Multimedia  
Peripherals  
A high-performance pixel processor capable of 1  
pixel/clock performance for combined operations, such  
as color-space conversion, alpha blending, and rotation.  
The PXP is enhanced  
with features specifically for gray scale applications. In  
addition, the PXP supports traditional pixel/frame  
processing paths for still-image and video processing  
applications.  
Quadrature DEC1  
Quadrature DEC2  
Quadrature DEC3  
Quadrature DEC4  
Quadrature Decoder  
QuadTimer  
Timer Peripherals The enhanced quadrature decoder module provides  
interfacing capability to position/speed sensors. There  
are five input signals: PHASEA, PHASEB, INDEX,  
TRIGGER, and HOME. This module is used to decode  
shaft position, revolution count, and speed.  
QuadTimer1  
QuadTimer2  
QuadTimer3  
QuadTimer4  
Timer Peripherals The quad-timer provides four time channels with a  
variety of controls affecting both individual and  
multi-channel features.Specific features include  
up/down count, cascading of counters, programmable  
module, count once/repeated, counter preload,  
compare registers with preload, shared use of input  
signals, prescaler controls, independent  
capture/compare, fault input control, programmable  
input filters, and multi-channel synchronization.  
RDC  
Resource Domain  
Controller  
Security  
The RDC provides robust support for the isolation of  
processing domain to prevent one core from accessing  
another’s peripherals, to control access rights to  
common memory and provide hardware enforcement of  
semaphore based locking of shared peripherals.  
For single system use case, RDC can be disabled and  
AIPS-TZ/DEXSC can be bypassed. For dual system  
case, RDC can be configured and locked each core  
starts their own image.  
ROMCP  
ROM Controller with  
Patch  
Memories and  
The ROMCP acts as an interface between the Arm  
Memory Controllers advanced high-performance bus and the ROM. The  
on-chip ROM is only used by the Cortex-M7 core during  
boot up. Size of the ROM is 256 KB.  
RTC OSC  
Real Time Clock  
Oscillator  
Clock Sources and The RTC OSC provides the clock source for the  
Control  
Real-Time Clock module. The RTC OSC module, in  
conjunction with an external crystal, generates a 32.768  
kHz reference clock for the RTC.  
SAI1  
SAI2  
SAI3  
SAI4  
Synchronous Audio  
Interface  
Multimedia  
Peripherals  
The SAI module provides a synchronous audio interface  
(SAI) that supports full duplex serial interfaces with  
frame synchronization, such as I2S, AC97, TDM, and  
codec/DSP interfaces.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
17  
Modules list  
Table 3. i.MX RT1160 modules list (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
SEMA4  
Semaphores  
System Control  
The SEMA4 module implements hardware-enforced  
semaphores as an IPS-mapped slave peripheral device  
and provides 16 hardware-enforced gates in a  
dual-processor configuration.  
SEMC  
Smart External Memory  
Controller  
Memory and  
The SEMC is a multi-standard memory controller  
Memory Controller optimized for both high-performance and low pin-count.  
It can support multiple external memories in the same  
application with shared address and data pins. The  
interface supported includes SDRAM, NOR Flash,  
SRAM, and NAND Flash, as well as 8080 display  
interface.  
SNVS  
SPDIF  
Secure Non-Volatile  
Storage  
Security  
Secure Non-Volatile Storage, including Secure Real  
Time Clock, Security State Machine and Master Key  
Control.  
Sony Philips Digital  
Interconnect Format  
Multimedia  
Peripherals  
A standard audio file transfer format, developed jointly  
by the Sony and Phillips corporations. Has Transmitter  
and Receiver functionality.  
SSARC  
State Save and Restore  
Controller  
Memories and  
The SSARC saves the registers of functional modules in  
Memory Controllers memory before power down, and restores registers from  
memory after the module is powered up.  
TEMP SENSE  
Temperature Sensor  
Analog  
The temperature sensor implements a temperature  
sensor/conversion function based on a  
temperature-dependent voltage to time conversion.  
USB1  
USB2  
Universal Serial Bus 2.0  
Connectivity  
Peripherals  
USB 2.0 OTG modules (USB OTG1 and USB OTG2)  
contains:  
• Two high-speed OTG 2.0 modules with integrated HS  
USB PHYs  
• Support eight Transmit (TX) and eight Receive (Rx)  
endpoints, including endpoint 0  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
18  
Modules list  
Table 3. i.MX RT1160 modules list (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
i.MX RT1160 specific SoC characteristics:  
All four MMC/SD/SDIO controllers are identical and are  
based on the uSDHC. They are:  
• Fully compliant with MMC command/response sets  
and Physical Layer as defined in the Multimedia Card  
System Specification.  
uSDHC1  
uSDHC2  
SD/MMC and SDXC  
Enhanced Multi-Media  
Card / Secure Digital Host  
Controller  
Connectivity  
Peripherals  
• Fully compliant with SD command/response sets and  
Physical Layer as defined in the SD Memory Card  
Specifications, v3.0 including high-capacity SDXC  
cards up to 2 TB.  
• Fully compliant with SDIO command/response sets  
and interrupt/read-wait mode as defined in the SDIO  
Card Specification, Part E1, v3.0  
Two ports support:  
• 1-bit or 4-bit transfer mode specifications for SD and  
SDIO cards up to UHS-I SDR104 mode (104 MB/s  
max)  
• 1-bit, 4-bit, or 8-bit transfer mode specifications for  
MMC cards up to 52 MHz in both SDR and DDR  
modes (104 MB/s max)  
• 4-bit or 8-bit transfer mode specifications for eMMC  
chips up to 200 MHz in HS200 mode (200 MB/s max)  
VIDMUX  
Video mux  
Watch Dog  
Mux control  
Video mux are mux control for Parallel CSI (IO PADs),  
MIPI CSI-2, MIPI DSI, Parallel LCDIF (IO PADs) and  
CSI, LCDIF-V2, eLCDIF control. It also includes the  
DCIC of MIPI DSI and Parallel DSI.  
WDOG1  
WDOG2  
WDOG3  
WDOG4  
Timer Peripherals WDOG1 and WDOG2 Timer support two comparison  
points during each counting period. Each of the  
comparison points is configurable to evoke an interrupt  
to the Arm core, and a second point evokes an external  
event on the WDOG line.  
WDOG3 and WDOG4 modules are high reliability  
independent timers that are available for system to use.  
They provide a safety feature to ensure software is  
executing as planned and the CPU is not stuck in an  
infinite loop or executing unintended code. If the WDOG  
module is not serviced (refreshed) within a certain  
period, it resets the MCU. Windowed refresh mode is  
supported as well.  
XBARA  
XBARB  
Cross BAR  
Cross Trigger  
Each crossbar switch is an array of muxes with shared  
inputs. Each mux output provides one output of the  
crossbar. The number of inputs and the number of  
muxes/outputs are user configurable and registers are  
provided to select which of the shared inputs are routed  
to each output.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
19  
Modules list  
Table 3. i.MX RT1160 modules list (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
XECC can be used as a gasket module on AXI bus to  
XECC  
External ECC Controller  
Memories and  
Memory Controllers support ECC function for external memory.  
XRDC  
Extended Resource  
Domain Controller  
Security  
The XRDC provides an integrated, scalable  
architectural framework for access control, system  
memory protection, and peripheral isolation. It allows  
software to assign chip resources including processor  
cores, non-core bus masters, memory regions, and  
slave peripherals to processing domains to support  
enforcement of robust operational environments.  
3.1  
Special signal considerations  
Table 4 lists special signal considerations for the i.MX RT1160 processors. The signal names are listed in  
alphabetical order.  
The package contact assignments can be found in Section 6, Package information and contact  
assignments.” Signal descriptions are provided in the i.MX RT1160 Reference Manual  
(IMXRT1160RM).  
Table 4. Special signal considerations  
Signal Name  
Remarks  
CLK1_P/ CLK1_N  
This differential output is reserved for NXP internal use. For users, this output must be a no  
connect.  
DCDC_PSWITCH  
PAD is in DCDC_IN domain and connected to ground to bypass DCDC.  
To enable DCDC function, assert DCDC_IN with at least 1ms delay for DCDC_IN rising edge.  
RTC_XTALI/RTC_XTALO To hit the exact oscillation frequency, the board capacitors must be reduced to account for the  
board and chip parasitics. The integrated oscillation amplifier is self-biasing, but relatively weak.  
Care must be taken to limit the parasitic leakage from RTC_XTALI and RTC_XTALO to either the  
power or the ground (> 100 M). This de-biases the amplifier and reduces the start-up margin.  
If you want to feed an external low-frequency clock into RTC_XTALI, the RTC_XTALO pin must  
remain unconnected or driven by a complementary signal. The logic level of this forcing clock must  
not exceed the VDD_SNVS_DIG level and the frequency shall be < 100 kHz under the typical  
conditions.  
It is recommended to tie RTC_XTALI to GND if external crystal is not used. When a high-accuracy  
real-time clock is not required, the system may use the on-chip 32 kHz oscillator. The tolerance is  
10%. The ring oscillator starts faster than the external crystal and is used until the external crystal  
reaches a stable oscillation. The ring oscillator also starts automatically if no clock is detected at  
RTC_XTALI.  
XTALI/XTALO  
The SDK software requires 24 MHz on XTALI/XTALO. The crystal can be eliminated if an external  
24 MHz oscillator is available in the system. In this case, refer to section of Bypass Configuration  
(24 MHz) from the reference manual. There are three configurations that can be utilized, but  
configuration 2 is recommended.  
The logic level of this forcing clock must not exceed the VDD_LPSR_ANA level.  
If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter  
requirements. See Section 4.2.6, On-chip oscillators and relevant interface specifications chapters  
for details.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
20  
Modules list  
Table 4. Special signal considerations (continued)  
Remarks  
Signal Name  
JTAG_nnnn  
External resistors can be used with all JTAG signals except for JTAG_TDO, but they are not  
required. See Table 5 for a summary of the JTAG interface.  
JTAG_TDO is configured with an on-chip keeper circuit, such that the floating condition is actively  
eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is  
detrimental. See Table 5 for a summary of the JTAG interface.  
When JTAG_MOD is low, the JTAG interface is configured for a common software debug, adding  
all the system TAPs to the chain.  
When JTAG_MOD is high, the JTAG interface is configured to a mode compliant with the IEEE  
1149.1 standard.  
NC  
These signals are No Connect (NC) and should not be connected by the user.  
POR_B  
See the System Boot chapter in the reference manual for the correct boot configuration. Note that  
an incorrect setting may result from an improper boot sequence.  
POR_B signal has internal 100 kpull up to SNVS domain, should pull up to VDD_SNVS_ANA if  
need to add external pull up resistor, otherwise it will cause additional leakage during SNVS mode.  
It is recommended to add the external reset IC to the circuit to guarantee POR_B is properly  
processed during power up/down, please refer to the EVK design for details.  
Note:  
• As the Low DCDC_IN detection threshold is 2.6 V, the reset IC’s reset threshold must be higher  
than 2.6 V, then the whole chip is reset before the internal DCDC module reset to guarantee the  
chip safety during power down.  
• For power on reset, on any conditions ones need to make sure the voltage on DCDC_PSWITCH  
pin is below 0.5 V before power up.  
ONOFF  
Abrief connection to GND in the OFF mode causes the internal power management state machine  
to change the state to ON. In the ON mode, a brief connection to GND generates an interrupt  
(intended to be a software-controllable power-down). Approximately five seconds (or more) to GND  
causes a forced OFF. Both boot mode inputs can be disconnected.  
TEST_MODE  
WAKEUP  
This input is reserved for NXP manufacturing use. The user must tie this pin directly to GND.  
A GPIO powered by SNVS domain power supply which can be configured as wakeup source in  
SNVS mode.  
Table 5. JTAG controller interface summary  
JTAG  
I/O Type  
On-chip Termination  
JTAG_TCK  
JTAG_TMS  
JTAG_TDI  
Input  
Input  
20–50 kpull-down  
20–50 kpull-up  
20–50 kpull-up  
High-impedance  
Input  
JTAG_TDO  
JTAG_TRSTB  
JTAG_MOD  
3-state output  
Input  
20–50 kpull-up  
20–50 kpull-down  
Input  
3.2  
Recommended connections for unused analog interfaces  
Table 6 shows the recommended connections for unused analog interfaces.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
21  
Modules list  
hi  
Table 6. Recommended connections for unused analog interfaces  
Recommendations  
Module  
Pad Name  
if Unused  
32 kHz RTC_XTALI, RTC_XTALO  
OSC  
Not connected  
It is recommended that  
RTC_XTALI ties to GND if  
external crystal is not  
connected.  
ADC  
ADC_VREFH  
10 Kresistor to ground  
10 Kresistor to ground  
10 Kresistor to ground  
Not connected  
VDDA_ADC_1P8  
VDDA_ADC_3P3  
CLK1_N, CLK1_P  
DAC_OUT  
CCM  
DAC  
MIPI  
Not connected  
VDD_MIPI_1P0  
VDD_MIPI_1P8  
10 Kresistor to ground  
10 Kresistor to ground  
Not connected  
MIPI_DSI_CKN, MIPI_DSI_CKP, MIPI_DSI_DN0, MIPI_DSI_DP0,  
MIPI_DSI_DN1, MIPI_DSI_DP1  
MIPI_CSI_CKN, MIPI_CSI_CKP, MIPI_CSI_DN0, MIPI_CSI_DP0,  
MIPI_CSI_DN1, MIPI_CSI_DP1  
Not connected  
DCDC  
USB  
DCDC_IN, DCDC_IN_Q, DCDC_DIG, DCDC_ANA  
DCDC_DIG_SENSE, DCDC_ANA_SENSE, DCDC_LP, DCDC_LN  
DCDC_PSWITCH, DCDC_MODE  
Not connected  
Not connected  
To ground  
USB1_DN, USB1_DP, USB1_VBUS, USB2_DN, USB2_DP, USB2_VBUS  
VDD_USB_1P8  
Not connected  
Powered with 1.8 V  
Powered with 3.3 V  
Not connected  
VDD_USB_3P3  
SYS OSC XTALI, XTALO  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
22  
Electrical characteristics  
4 Electrical characteristics  
This section provides the device and module-level electrical characteristics for the i.MX RT1160  
processors.  
4.1  
Chip-level conditions  
This section provides the device-level electrical characteristics for the IC. See Table 7 for a quick reference  
to the individual tables and sections.  
Table 7. i.MX RT1160 chip-Level conditions  
For these characteristics  
Topic appears  
Absolute maximum ratings  
Thermal characteristics  
Operating ranges  
on page 23  
on page 25  
on page 25  
on page 28  
on page 29  
on page 32  
Maximum supply currents  
Typical power mode supply currents  
System power and clocks  
4.1.1  
Absolute maximum ratings  
CAUTION  
Stress beyond those listed under Table 8 may cause permanent damage to the device. These are stress  
ratings only. Functional operation of the device at these or any other conditions beyond those indicated  
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated  
conditions for extended periods may affect device reliability.  
Table 8 shows the absolute maximum operating ratings.  
Table 8. Absolute maximum ratings  
Parameter Description  
Core supplies input voltage  
Symbol  
Min  
Max  
Unit  
VDD_SOC_IN  
VDD_LPSR_IN  
DCDC_IN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
1.2  
V
V
V
V
V
Power for LPSR domain  
Power for DCDC  
3.96  
3.96  
1.98  
3.96  
Power for PLL, OSC, and LDOs  
VDDA_1P8_IN  
VDD_SNVS_IN  
Supply input voltage to Secure Non-Volatile Storage  
and Real Time Clock  
USB VBUS supply  
USB1_VBUS  
USB2_VBUS  
-0.3  
5.6  
V
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
23  
Electrical characteristics  
Table 8. Absolute maximum ratings (continued)  
Power for USB OTG PHYs  
VDD_USB_1P8  
VDD_USB_3P3  
VDDA_ADC_1P8  
VDDA_ADC_3P3  
VDD_MIPI_1P8  
VDD_MIPI_1P0  
NVCC_SD1  
-0.3  
1.98  
3.96  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
o C  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.5  
-40  
Power for ADC, DAC, and ACMP  
Power for MIPI CSI/DSI PHY  
1.98  
3.96  
1.98  
1.2  
IO supply for GPIO in SDIO1 bank (3.3 V mode)  
IO supply for GPIO in SDIO1 bank (1.8 V mode)  
IO supply for GPIO in SDIO2 bank (3.3 V mode)  
IO supply for GPIO in SDIO2 bank (1.8 V mode)  
IO supply for GPIO in EMC bank1 (3.3 V mode)  
IO supply for GPIO in EMC bank1 (1.8 V mode)  
IO supply for GPIO in EMC bank2 (3.3 V mode)  
IO supply for GPIO in EMC bank2 (1.8 V mode)  
IO power for GPIO in GPIO AD bank (3.3 V mode)  
IO power for GPIO in GPIO AD bank (1.8 V mode)  
IO supply for GPIO in DISP1 bank (3.3 V mode)  
IO supply for GPIO in DISP1 bank1 (1.8 V mode)  
IO supply for GPIO in DISP2 bank (3.3 V mode)  
IO supply for GPIO in DISP2 bank1 (1.8 V mode)  
IO power for GPIO in LPSR bank (3.3 V mode)  
IO power for GPIO in LPSR bank (1.8 V mode)  
IO power for GPIO in SNVS bank (1.8 V mode)  
Input/Output Voltage range  
3.96  
1.98  
NVCC_SD2  
NVCC_EMC1  
NVCC_EMC2  
NVCC_GPIO  
NVCC_DISP1  
NVCC_DISP2  
NVCC_LPSR  
3.96  
1.98  
3.96  
1.98  
3.96  
1.98  
3.96  
1.98  
3.96  
1.98  
3.96  
1.98  
3.96  
1.98  
NVCC_SNVS  
Vin/Vout  
1.98  
NVCC + 0.31  
150  
Storage Temperature range  
TSTORAGE  
1
NVCC is the I/O supply voltage.  
Table 9. Electrostatic discharge and latch-up characteristics  
Symbol  
VHBM  
Description  
Min  
Max  
Unit  
Notes  
1
Electrostatic discharge voltage, human body model  
-2000  
+2000  
V
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
24  
Electrical characteristics  
Table 9. Electrostatic discharge and latch-up characteristics (continued)  
Symbol  
VESD  
Description  
Min  
Max  
Unit  
Notes  
Electrostatic discharge voltage, charged-device model  
All pins except the corner pins  
2
-500  
-750  
-100  
+500  
+750  
+100  
V
V
Corner pins only  
3
ILAT  
Immunity level  
mA  
• Class II @125 oC ambient temperature  
1
2
3
Determined according to JEDEC Standard JS001, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model  
(HBM).  
Determined according to JEDEC Standard JS002, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
Determined according to JEDEC Standard JESD78, IC Latch-up Test.  
4.1.2  
Thermal characteristics  
Table 10 displays the 14 x 14 mm package thermal characteristics.  
Table 10. 14 x 14 mm thermal characteristics  
Rating  
Board Type1  
JESD51-9, 2s2p  
Symbol  
Value  
Unit  
Junction to Ambient Thermal Resistance2  
RJA  
31.6  
1.4  
oC/W  
oC/W  
3
4
Junction to Top of Package  
JESD51-9, 2s2p  
JT  
Thermal Characterization Parameter2  
6
Junction to Case Thermal Resistance5  
JESD51-9, 1s  
RJC  
10  
oC/W  
1
Thermal test board meets JEDEC specification for this package (JESD51-9).  
2
Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is  
solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not  
meant to predict the performance of a package in an application-specific environment.  
RJA = (Tj - Ta)/P [unit: oC/W], where Tj = junction temperature, Ta = ambient temperature, P = device power.  
Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature is taken at the package top  
side centre surface temperature.  
RJC = (Tj - Tc)/P [unit: oC/W], where Tj = junction temperature, Tc = case temperature, P = device power.  
3
4
5
JT = (Tj - Tt)/P [unit: oC/W], where Tj = junction temperature, Tt = temperature at top of package, P = device power.  
6
4.1.3  
Operating ranges  
Table 11 provides the operating ranges of the i.MX RT1160 processors. For details on the chip's power  
structure, see the “Power Management Unit (PMU)” chapter of the i.MX RT1160 Reference Manual  
(IMXRT1160RM).  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
25  
Electrical characteristics  
Table 11. Operating ranges  
Operating  
Parameter  
Description  
Symbol  
Min  
Max1 Unit  
Comment  
Conditions  
Run Mode  
VDD_SOC_IN  
M7 core at 500  
MHz  
0.975 1.15  
V
V
V
V
V
Powered by external power supply  
M7 core at 500  
MHz  
0.975 1.025  
Powered by on-chip DCDC  
M7 core at 240  
MHz  
0.9  
1.15  
VDD_LPSR_DIG  
M4 core at 240  
MHz  
0.975 1.15  
M4 core at 120  
MHz  
0.9  
1.15  
STANDBY Mode  
Power for DCDC  
VDD_SOC_IN  
VDD_LPSR_DIG  
DCDC_IN  
M7 core  
M4 core  
0.8  
0.8  
1.15  
1.15  
3.6  
V
V
V
V
3.0  
Power for PLL,  
OSC, and LDOs  
VDDA_1P8_IN  
1.71  
1.89  
Power for LPSR  
domain  
VDD_LPSR_IN  
VDD_SNVS_IN  
3.0  
2.4  
3.6  
3.6  
V
V
Power for SNVS  
and RTC  
Power for USB  
OTG PHYs  
VDD_USB_1P8  
VDD_USB_3P3  
VDDA_ADC_1P8  
VDDA_ADC_3P3  
ADC_VREFH  
1.65  
3.0  
1.95  
3.6  
V
V
V
V
V
V
V
Power for ADC,  
DAC, and ACMP  
1.65  
3.0  
1.95  
3.6  
1.0  
1.89  
1.95  
1.1  
Power for MIPI  
CSI/DSI PHY  
VDD_MIPI_1P8  
VDD_MIPI_1P0  
1.65  
0.9  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
26  
Electrical characteristics  
Table 11. Operating ranges (continued)  
GPIO supplies  
NVCC_SD1  
NVCC_SD2  
3.0  
1.65  
3.0  
3.6  
1.95  
3.6  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
IO power for GPIO in SDIO1 bank  
(3.3 V mode)  
IO power for GPIO in SDIO1 bank  
(1.8 V mode)  
IO power for GPIO in SDIO2 bank  
(3.3 V mode)  
1.65  
3.0  
1.95  
3.6  
IO power for GPIO in SDIO2 bank  
(1.8 V mode)  
NVCC_EMC1  
NVCC_EMC2  
NVCC_GPIO  
NVCC_DISP1  
NVCC_DISP2  
NVCC_LPSR  
IO power for GPIO in EMC bank1 (3.3  
V mode)  
1.65  
3.0  
1.95  
3.6  
IO power for GPIO in EMC bank1 (1.8  
V mode)  
IO power for GPIO in EMC bank2 (3.3  
V mode)  
1.65  
3.0  
1.95  
3.6  
IO power for GPIO in EMC bank2 (1.8  
V mode)  
IO power for GPIO in GPIO AD bank  
(3.3 V mode)  
1.65  
3.0  
1.95  
3.6  
IO power for GPIO in GPIO AD bank  
(1.8 V mode)  
IO power for GPIO in DISP1 bank  
(3.3 V mode)  
1.65  
3.0  
1.95  
3.6  
IO power for GPIO in DISP1 bank  
(1.8 V mode)  
IO power for GPIO in DISP2 bank  
(3.3 V mode)  
1.65  
3.0  
1.95  
3.6  
IO power for GPIO in DISP2 bank  
(1.8 V mode)  
IO power for GPIO in LPSR bank (3.3  
V mode)  
1.65  
1.65  
1.95  
1.95  
IO power for GPIO in LPSR bank (1.8  
V mode)  
NVCC_SNVS  
Tj  
IO power for GPIO in SNVS bank (1.8  
V mode)  
Temperature Operating Ranges  
Junction  
temperature  
Extended  
Industrial  
-40  
125  
oC See the application note, i.MX  
RT1160 Product Lifetime Usage  
Estimates for information on product  
lifetime (power-on years) for this  
processor.  
1
Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set  
point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
27  
Electrical characteristics  
4.1.4  
Maximum supply currents  
The data shown in Table 12 represent a use case designed specifically to show the maximum current  
consumption possible. All cores are running at the defined maximum frequency and are limited to L1  
cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited  
practical use case, if at all, and be limited to an extremely low duty cycle unless the intention were to  
specifically show the worst case power consumption.  
Table 12. Maximum supply currents  
Power Rail  
Comments  
Max Current  
Unit  
DCDC_IN  
Max power for chip at 125 oC  
500  
100  
mA  
mA  
VDDA_1P8_IN  
1.8 V power supply for PLL, OSC, and  
LDOs  
VDD_SOC_IN  
VDD_LPSR_IN  
VDD_SNVS_IN  
VDD_USB_1P8  
VDD_USB_3P3  
VDDA_ADC_1P8  
Power supply for digital logic  
850  
75  
1
mA  
mA  
mA  
mA  
mA  
mA  
3.3 V power supply for LPSR domain  
Power supply for SNVS domain  
1.8 V power supply for USB OTG PHYs  
3.3 V power supply for USB OTG PHYs  
50  
60  
10  
1.8 V power supply for ADC, DAC, and  
ACMP  
VDDA_ADC_3P3  
ADC_VREFH  
3.3 V power supply for ADC, DAC, and  
ACMP  
2
mA  
VDD_MIPI_1P8  
VDD_MIPI_1P0  
1.8 V power supply for MIPI CSI/DSI PHY  
1.0 V power supply for MIPI CSI/DSI PHY  
100  
30  
mA  
mA  
NVCC_SD1  
NVCC_SD2  
Imax = N x C x V x (0.5 x F)  
Where:  
NVCC_EMC1  
NVCC_EMC2  
NVCC_GPIO  
NVCC_DISP1  
NVCC_DISP2  
NVCC_LPSR  
NVCC_SNVS  
N—Number of IO pins supplied by the power line  
C—Equivalent external capacitive load  
V—IO voltage  
(0.5 x F)—Data change rate. Up to 0.5 of the clock rate (F)  
In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
28  
Electrical characteristics  
4.1.5  
Typical power mode supply currents  
Table 13 shows the current and power consumption (not including I/O) of i.MX RT1160 processors in  
selected power modes.  
Table 13. Typical power modes current and power consumption (Dual core)  
Power supplies at 3.3 V (Typical)1  
Modes  
Test conditions  
Units  
25 oC Tj  
125 oC Tj  
Set Point #0 • CM7 runs at 500 MHz, drive voltage to 1.0 V; CM4  
DCDC_IN  
VDD_LPSR_IN  
VDD_SNVS_IN  
Total  
83.4  
28.1  
174.8  
34.2  
mA  
A  
Active  
runs at 240 MHz, drive voltage to 1.0 V  
• CM7 domain bus frequency at 200 MHz; CM4  
domain bus frequency at 120 MHz  
• Enables ECC for cache, TCM, and OCRAM  
• LDO_LPSR_ANA and LDO_LPSR_DIG are  
bypassed  
4
22.1  
A  
275.326  
577.026  
mW  
• 16 MHz, 400 MHz, external 24 MHz crystal, and  
external 32 kHz crystal are enabled  
• All PLLs are enabled  
• All peripherals are enabled and run at their  
maximum clock root frequency under normal  
drive mode  
Set Point #5 • CM7 runs at 240 MHz, lower voltage to 0.9 V;  
DCDC_IN  
VDD_LPSR_IN  
VDD_SNVS_IN  
Total  
43.3  
28.1  
97.6  
33.6  
mA  
A  
Active  
CM4 runs at 120 MHz, lower voltage to 0.9 V  
• CM7 domain bus frequency at 100 MHz; CM4  
domain bus frequency at 60 MHz  
• Enables ECC for cache, TCM, and OCRAM  
• LDO_LPSR_ANA and LDO_LPSR_DIG are  
bypassed  
3.9  
20.4  
A  
142.996  
322.258  
mW  
• 16 MHz, 400 MHz, external 24 MHz crystal, and  
external 32 kHz crystal are enabled  
• All PLLs are enabled  
• All peripherals are enabled and run at their  
maximum clock root frequency under underdrive  
mode  
Set Point #7 • CM7 runs at 200 MHz, lower voltage to 0.9 V;  
DCDC_IN  
VDD_LPSR_IN  
VDD_SNVS_IN  
Total  
24.9  
28.1  
74.4  
33.1  
mA  
A  
Active  
CM4 is clock gated, lower voltage to 0.9 V  
• CM7 domain bus frequency at 100 MHz  
• Enables ECC for cache, TCM, and OCRAM  
• LDO_LPSR_ANA and LDO_LPSR_DIG are  
bypassed  
3.9  
19.7  
A  
82.276  
245.694  
mW  
• 16 MHz, 400 MHz, and external 32 kHz crystal  
are enabled  
• All PLLs are power gated  
• All peripherals controlled by CM4 core are clock  
gated, but remain powered  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
29  
Electrical characteristics  
Table 13. Typical power modes current and power consumption (Dual core) (continued)  
Set Point #9 • CM7 is clock gated, lower voltage to 0.9 V; CM4  
DCDC_IN  
VDD_LPSR_IN  
VDD_SNVS_IN  
Total  
14.5  
28.2  
59.9  
33.1  
mA  
A  
Active  
runs at 100 MHz, lower voltage to 0.9 V  
• CM4 domain bus frequency at 50 MHz  
• Enables ECC for cache, TCM, and OCRAM  
• LDO_LPSR_ANA and LDO_LPSR_DIG are  
bypassed  
3.9  
19.4  
A  
47.956  
197.843  
mW  
• 16 MHz, 400 MHz, and external 32 kHz crystal  
are enabled  
• All PLLs are power gated  
• All peripherals controlled by CM7 core are clock  
gated, but remain powered  
Set Point  
#11 Active  
• CM7 is power off; CM4 runs at 200 MHz, drive  
voltage to 1.0 V  
• CM4 domain bus frequency at 100 MHz  
• Enables ECC for CM4 TCM and OCRAM  
• DCDC is off, LDO_LPSR_ANA and  
LDO_LPSR_DIG are active  
DCDC_IN  
VDD_LPSR_IN  
VDD_SNVS_IN  
Total  
26.5  
38.2  
54.3  
52.6  
A  
mA  
A  
3.9  
19.8  
126.160  
173.825  
mW  
• 16 MHz, 400 MHz, and external 32 kHz crystal  
are enabled  
• All PLLs are power gated  
• The WAKEUPMIX domain, MEGAMIX domain,  
and DISPLAYMIX domain are power gated  
• All peripherals in LPSRMIX domain are clocked  
Set Point  
#12 Active  
• CM7 is power off; CM4 runs at 100 MHz, lower  
voltage to 0.9 V  
• CM4 domain bus frequency at 50 MHz  
• Enables ECC for CM4 TCM and OCRAM  
• DCDC is off, LDO_LPSR_ANA and  
LDO_LPSR_DIG are active  
DCDC_IN  
VDD_LPSR_IN  
VDD_SNVS_IN  
Total  
26.2  
22.9  
53.2  
33.3  
A  
mA  
A  
3.9  
19  
75.669  
110.128  
mW  
• 16 MHz, 400 MHz, and external 32 kHz crystal  
are enabled  
• All PLLs are power gated  
• The WAKEUPMIX domain, MEGAMIX domain,  
and DISPLAYMIX domain are power gated  
• All peripherals in LPSRMIX domain are clocked  
Set Point #0 • System is on STANDBY mode  
DCDC_IN  
VDD_LPSR_IN  
VDD_SNVS_IN  
Total  
3
33.1  
43.5  
mA  
A  
Standby  
Suspend  
• Both CM7 and CM4 are on SUSPEND mode  
29.9  
3.9  
• TCM with ECC is on retention  
• LDO_LPSR_ANA and LDO_LPSR_DIG are  
bypassed  
18.8  
A  
10.012  
109.436  
mW  
• All clock sources are turned off except for 32 kHz  
RTC  
• All PLLs are power gated  
• All peripherals are clock gated, but remain  
powered  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
30  
Electrical characteristics  
Table 13. Typical power modes current and power consumption (Dual core) (continued)  
Set Point #5 • System is on STANDBY mode  
DCDC_IN  
VDD_LPSR_IN  
VDD_SNVS_IN  
Total  
2.3  
29.8  
3.8  
24.8  
43.5  
mA  
A  
Standby  
Suspend  
• Both CM7 and CM4 are on SUSPEND mode  
• TCM with ECC is on retention  
• LDO_LPSR_ANA and LDO_LPSR_DIG are  
bypassed  
18.6  
A  
7.701  
82.045  
mW  
• All clock sources are turned off except for 32 kHz  
RTC  
• All PLLs are power gated  
• All peripherals are clock gated, but remain  
powered  
Set Point #7 • System is on STANDBY mode  
DCDC_IN  
VDD_LPSR_IN  
VDD_SNVS_IN  
Total  
2.3  
29.8  
3.8  
24.8  
43.5  
mA  
A  
Standby  
Suspend  
• Both CM7 and CM4 are on SUSPEND mode  
• TCM with ECC is on retention  
• LDO_LPSR_ANA and LDO_LPSR_DIG are  
bypassed  
18.6  
A  
7.701  
82.045  
mW  
• All clock sources are turned off except for 32 kHz  
RTC  
• All PLLs are power gated  
• All peripherals are clock gated, but remain  
powered  
Set Point  
#10 Standby  
Suspend  
• Lower voltage to 0.8 V with RBB mode for both  
SOC and LPSR domains  
DCDC_IN  
VDD_LPSR_IN  
VDD_SNVS_IN  
Total  
1.8  
29.7  
3.8  
18.7  
43.5  
mA  
A  
• System is on STANDBY mode  
• Both CM7 and CM4 are on SUSPEND mode  
• TCM with ECC is on retention  
• LDO_LPSR_ANA and LDO_LPSR_DIG are  
bypassed  
18.4  
A  
6.051  
61.914  
mW  
• All clock sources are turned off except for 32 kHz  
RTC  
• All PLLs are power gated  
• All peripherals are clock gated, but remain  
powered  
Set Point  
• System is on STANDBY mode  
DCDC_IN  
VDD_LPSR_IN  
VDD_SNVS_IN  
Total  
26.1  
0.893  
3.8  
52.6  
11.8  
A  
mA  
A  
#11 Standby • CM7 is power off, CM4 is on SUSPEND mode  
Suspend  
• CM4 TCM with ECC is on retention  
• DCDC is off, LDO_LPSR_ANA and  
LDO_LPSR_DIG are active  
• All clock sources are turned off except for 32 kHz  
RTC  
18.2  
3.046  
39.174  
mW  
• All PLLs are power gated  
• The WAKEUPMIX domain, MEGAMIX domain,  
and DISPLAYMIX domain are power gated  
• All peripherals in LPSRMIX domain are clock  
gated, but remain powered  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
31  
Electrical characteristics  
Table 13. Typical power modes current and power consumption (Dual core) (continued)  
Set Point  
#15 Standby  
Suspend  
• Lower voltage to 0.8 V with RBB mode for LPSR  
domain  
DCDC_IN  
VDD_LPSR_IN  
VDD_SNVS_IN  
Total  
26.1  
0.503  
3.8  
52.4  
7.9  
A  
mA  
A  
• System is on STANDBY mode  
• CM7 is power off, CM4 is on SUSPEND mode  
• CM4 TCM with ECC is on retention  
• DCDC is off, LDO_LPSR_ANA and  
LDO_LPSR_DIG are active  
18.1  
1.759  
26.303  
mW  
• All clock sources are turned off except for 32 kHz  
RTC  
• All PLLs are power gated  
• The WAKEUPMIX domain, MEGAMIX domain,  
and DISPLAYMIX domain are power gated  
• All peripherals in LPSRMIX domain are clock  
gated, but remain powered  
SNVS  
• Only SNVS domain is powered  
• 32 kHz RTC is alive  
• DCDC_IN and VDD_LPSR_IN are power gated  
DCDC_IN  
VDD_LPSR_IN  
VDD_SNVS_IN  
Total  
0
0
0
0
A  
A  
A  
W  
3.8  
12.54  
18.4  
60.72  
1
Code runs in the ITCM; typical values are the average values on typical process wafers.  
Table 14 shows the typical wakeup time.  
1
Table 14. Typical wakeup time  
Description  
Typical wakeup time  
Unit  
From Set Point #0 Standby Suspend to Set Point #0 normal drive RUN  
From Set Point #5 Standby Suspend to Set Point #0 normal drive RUN  
From Set Point #10 Standby Suspend to Set Point #0 normal drive RUN  
From Set Point #15 Standby Stop to Set Point #0 normal drive RUN  
4.13  
4.79  
5.47  
7.6  
ms  
ms  
ms  
ms  
ms  
From SNVS mode to ROM exit  
8.97  
1
Please refer to Table 13 for Set Point modes definition, and the only difference between Set Point #15 Standby Suspend mode  
and Set Point #15 Standby Stop mode is the Suspend mode versus Stop mode on CM4 core.  
4.2  
System power and clocks  
This section provides the information about the system power and clocks.  
4.2.1  
Power supplies requirements and restrictions  
The system design must comply with power-up sequence, power-down sequence, and steady state  
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation  
from these sequences may result in the following situations:  
Excessive current during power-up phase  
Prevention of the device from booting  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
32  
NXP Semiconductors  
Electrical characteristics  
Irreversible damage to the processor (worst-case scenario)  
Figure 4 shows the power sequence.  
VDD_SNVS_IN  
VDD_SNVS_ANA  
VDD_SNVS_DIG  
VDD_LPSR_IN  
VDD_LPSR_ANA  
VDD_LPSR_DIG  
DCDC_IN  
1ms  
DCDC_PSWITCH  
VDDA_1P8  
VDD_SOC_IN  
ONOFF  
POR_B  
Figure 4. Power sequence  
4.2.1.1  
Power-up sequence  
The below restrictions must be followed:  
VDD_SNVS_IN supply must be turned on before any other power supply or be connected  
(shorted) with VDD_LPSR_IN and DCDC_IN supply.  
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other  
supply is switched on.  
When internal DCDC is enabled, external delay circuit is required to delay the  
“DCDC_PSWITCH” signal at least 1 ms after DCDC_IN is stable.  
Need to ensure DCDC_IN ramps to 3.0 V within 0.2 x RC, RC is from external delay circuit used  
for DCDC_PSWITCH and must be longer than 1 ms.  
POR_B (if used) must be held low during the entire power up sequence.  
NOTE  
The POR_B input (if used) must be immediately asserted at power-up and  
remain asserted until after the last power rail reaches its working voltage. In  
the absence of an external reset feeding the POR_B input, the internal POR  
module takes control. See the i.MX RT1160 Reference Manual  
(IMXRT1160RM) for further details and to ensure that all necessary  
requirements are being met.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
33  
Electrical characteristics  
NOTE  
The voltage on DCDC_PSWITCH pin should be below 0.5 V before  
ramping up the voltage on DCDC_PSWITCH.  
NOTE  
The power rail VDD_SNVS_DIG is controlled by software.  
NOTE  
Need to ensure that there is no back voltage (leakage) from any supply on  
the board towards the 3.3 V supply (for example, from the external  
components that use both the 1.8 V and 3.3 V supplies).  
NOTE  
USB1_VBUS, USB2_VBUS, and VDDA_ADC_3P3 are not part of the  
power supply sequence and may be powered at any time.  
4.2.1.2  
Power-down sequence  
The following restrictions must be followed:  
VDD_SNVS_IN supply must be turned off after any other power supply or be connected (shorted)  
with VDD_LPSR_IN and DCDC_IN supply.  
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is removed after any other supply  
is switched off.  
4.2.1.3  
Power supplies usage  
I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_XXXX) is OFF.  
This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O  
power supply of each pin, see “Power Rail” columns in pin list tables of Section 6, Package information  
and contact assignments.”  
4.2.2  
Internal POR and power detect  
Internal detector monitors VDD_SOC_IN and VDD_LPSR_DIG. Internal POR will be asserted whenever  
VDD_SOC_IN or VDD_LPSR_DIG are lower than the valid voltage values shown in the Table 15.  
Table 15. Internal POR and power detect  
Symbol  
Description  
Value  
Unit  
Vdetlpsr1p0_H  
Vdetsoc1p0_H  
Hystdet1p0  
1.0 V supply valid  
1.0 V supply valid  
0.75  
0.75  
100  
V
V
The detector hysteresis  
mV  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
34  
Electrical characteristics  
4.2.3  
Integrated LDO voltage regulator parameters  
Various internal supplies can be powered ON from internal LDO voltage regulators. The on-chip LDOs  
are intended for internal use only and should not be used to power any external circuitry. See the i.MX  
RT1160 Reference Manual (IMXRT1160RM) for details on the power tree scheme.  
4.2.3.1  
LDO_SNVS_ANA  
Table 16 shows the parameters of LDO_SNVS_ANA.  
Table 16. LDO_SNVS_ANA specification  
Specification  
Min  
Typ  
Max  
Unit  
VDD_SNVS_IN  
VDD_SNVS_ANA  
I_out  
2.4  
1.65  
3
3.6  
1.95  
1
V
V
1.75  
mA  
F  
External decoupling capacitor  
2.2  
4.2.3.2  
LDO_SNVS_DIG  
Table 17 shows the parameters of LDO_SNVS_DIG.  
Table 17. LDO_SNVS_DIG specification  
Specification  
Min  
Typ  
Max  
Unit  
VDD_SNVS_ANA  
VDD_SNVS_DIG  
I_out  
1.65  
0.65  
1.75  
0.85  
1.95  
0.95  
1
V
V
mA  
F  
External decoupling capacitor  
0.22  
4.2.3.3  
LDO_PLL  
Table 18 shows the parameters of LDO_PLL.  
Table 18. LDO_PLL specification  
Min  
Specification  
Typ  
Max  
Unit  
VDDA_1P8_IN  
VDDA_1P0  
I_out  
1.71  
0.9  
1.8  
1
1.89  
1.2  
70  
V
V
2.2  
mA  
F  
External decoupling capacitor  
4.2.3.4  
LPSR_LDO_DIG  
LPSR_LDO_DIG provides 1.0 V power source (VDD_LPSR_DIG) from 1.8V power domain  
(VDD_LPSR_ANA). The trim voltage range of LDO output is from 0.7 V to 1.15 V. There are two work  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
35  
Electrical characteristics  
modes: Low Power mode and High Power mode. In typical PVT case, the static current consumption is  
less than 3 A in Low Power mode. The maximum drive strength of this LDO regulator is 50 mA in High  
Power mode.  
Table 19. LPSR_LDO_DIG specification  
Specification  
Min  
Typ  
Max  
Unit  
VDD_LPSR_ANA  
VDD_LPSR_DIG  
I_out  
1.71  
0.7  
1.8  
1
1.89  
1.15  
50  
V
V
2.2  
mA  
F  
External decoupling capacitor  
4.2.3.5  
LPSR_LDO_ANA  
LPSR_LDO_ANA provides 1.8 V power source (VDD_LPSR_ANA) from 3.3 V power domain  
(VDD_LPSR_IN). Its default output value is 1.8 V. Two work modes are supported by this LDO: Low  
Power mode and High Power mode. In Low Power mode, the LDO provides 2 mA (maximum value) by  
consuming only 4 A current. In High Power mode, the LDO provides 75 mA current capacity with 40 A  
static power dissipation.  
Table 20. LPSR_LDO_ANA specification  
Specification  
Min  
Typ  
Max  
Unit  
VDD_LPSR_IN  
VDD_LPSR_ANA  
I_out  
3
3.3  
1.8  
3.6  
V
V
75  
mA  
F  
External decoupling capacitor  
4.7  
4.2.4  
DCDC  
DCDC can be configured to operate on power-save mode when the load current is less than 50 mA. During  
the power-save mode, the converter operates with reduced switching frequency in PFM mode and with a  
minimum quiescent current to maintain high efficiency.  
DCDC can detect the peak current in the P-channel switch. When the peak current exceeds the threshold,  
DCDC will give an alert signal, and the threshold can be configured. By this way, DCDC can roughly  
detect the current loading.  
DCDC also includes the following protection functions:  
Over current protection. In run mode, DCDC shuts down when detecting abnormal large current in  
the P-type power switch.  
Over voltage protection. DCDC shuts down when detecting the output voltage is too high.  
Low voltage detection. DCDC shuts down when detecting the input voltage is too low.  
Table 21 shows DCDC characteristics.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
36  
Electrical characteristics  
Table 21. DCDC characteristics  
Min Typ Max  
Description  
Input voltage  
Unit  
Comments  
3
3.3  
3.6  
V
Output voltage  
• 1.0 V output  
• 1.8 V output  
Loading  
0.6  
1.5  
1
1.375  
2.275  
V
V
25 mV per step  
25 mV per step  
1.8  
• 1.0 V output  
• 1.8 V output  
Efficiency  
150  
80  
850  
150  
mA  
mA  
• DCDC run mode  
80%  
80%  
150 mA@vdd1p0  
80 mA@vdd1p8  
• DCDC low power mode  
300 A@vdd1p0  
300 A@vdd1p8  
Output voltage accuracy  
• DCDC Run mode  
-2.5%  
2.5%  
Maximum 50 mV  
Vp-p@vdd1p0  
• DCDC Low power mode  
Over current detection  
-6%  
6%  
A
1.5  
The typical value can be  
configured as 1.5 A and  
2 A by register.  
Over voltage detection  
• Output 1.8 V  
2.5  
1.5  
2.6  
3
2.75  
1.65  
2.8  
V
• Output 1.0 V  
V
• Low DCDC_IN detection  
Leakage current  
V
A  
DCDC off  
Quiescent current  
• DCDC Run mode  
• DCDC Low power mode  
Capacitor value  
150  
5
A  
A  
F  
33  
High frequency  
capacitor are also  
required.  
(DCDC_ANA)  
66  
(DCDC_DIG)  
Inductor value  
4.7  
1
H  
• Saturation current  
A
For additional information, see the i.MX RT1160 Reference Manual (IMXRT1160RM).  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
37  
Electrical characteristics  
4.2.5  
PLL’s electrical characteristics  
This section provides PLL electrical characteristics.  
4.2.5.1  
Audio/Video PLL’s electrical parameters  
Table 22. Audio/Video PLL’s electrical parameters  
Parameter  
Min  
Typ  
Max  
Unit  
Clock output range  
Reference clock  
Lock time  
650  
24  
50  
1300  
MHz  
MHz  
11250  
reference cycles  
Period jitter (p2p)  
Duty cycle  
ps  
%
48.5  
51.5  
4.2.5.2  
528 MHz PLL  
Table 23. 528 MHz PLL’s electrical parameters  
Parameter  
Min  
Typ  
Max  
Unit  
Clock output range  
Reference clock  
Lock time  
45  
24  
528  
MHz  
MHz  
11250  
reference cycles  
Period jitter (p2p)  
PFD period jitter (p2p)  
Duty cycle  
50  
100  
ps  
ps  
%
55  
4.2.5.3  
Ethernet PLL  
Table 24. Ethernet PLL’s electrical parameters  
Parameter  
Min  
Typ  
Max  
Unit  
Clock output range  
Reference clock  
Lock time  
24  
50  
1000  
MHz  
MHz  
11250  
reference cycles  
Period jitter (p2p)  
Duty cycle  
ps  
%
47.5  
52.5  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
38  
Electrical characteristics  
4.2.5.4  
480 MHz PLL  
Table 25. 480 MHz PLL’s electrical parameters  
Parameter  
Min  
Typ  
Max  
Unit  
Clock output range  
Reference clock  
Lock time  
45  
24  
480  
MHz  
MHz  
383  
reference cycles  
Period jitter (p2p)  
PFD period jitter (p2p)  
Duty cycle  
40  
125  
ps  
ps  
%
55  
4.2.5.5  
Arm PLL  
Table 26. Arm PLL’s electrical parameters  
Parameter  
Min  
Typ  
Max  
Unit  
Clock output range  
Reference clock  
Lock time  
648  
24  
15  
1296  
MHz  
MHz  
2250  
reference cycles  
Period jitter (p2p)  
Duty cycle  
ps  
%
45  
55  
4.2.6  
On-chip oscillators  
The system oscillator (SYS OSC) is a crystal oscillator. The SYS OSC, in conjunction with an external  
crystal or resonator, generates a reference clock for this chip. It also provides the option for an external  
input clock to XTALI signal directly.  
Table 27. System oscillator frequency specifications  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IVDDA (Low power mode) Analog supply current  
IVDDA (High gain mode) Analog supply current  
24 MHz  
24 MHz  
0.5  
1.3  
mA  
mA  
RF  
Feedback resistor  
Low-power mode  
High-gain mode  
No need  
1
0
M  
k  
RS  
Series resistor1  
CXCY  
Cpara  
XTALI/XTALO load capacitance  
See crystal or resonator manufacture’s recommendation  
1.5 2.0 pF  
Parasitically capacitance of  
XTALI and XTALO  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
39  
Electrical characteristics  
Table 27. System oscillator frequency specifications (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Clock output  
FOSC  
Oscillator crystal or resonator  
frequency  
24  
50  
MHz  
%
tdcy  
Duty-cycle of the output clock  
40  
60  
Dynamic parameters  
VPP  
Peak-peak amplitude of  
oscillation  
Low-power mode  
High gain mode  
0.8  
V
V
0.75x  
0.8 x  
VDDA_ VDDA_  
1P8_IN 1P8_IN  
tstart  
Start-up time  
24 MHz low-power  
mode  
250  
s  
s  
24 MHz high-gain  
mode  
250  
1
Depends on the drive level of external crystal device  
Each i.MX RT1160 processor has two external input system clocks: a low frequency (RTC_XTALI) and  
a high frequency (XTALI).  
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,  
power-down real time clock operation, and slow system and watch-dog counters. The clock input can be  
connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is  
an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important.  
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other  
peripherals. The system clock input can be connected to either external oscillator or a crystal using internal  
oscillator amplifier.  
Table 28. 32 kHz oscillator DC electrical specifications  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
Note  
Cpara  
Parasitically capacitance of RTC_XTALI  
and RTC_XTALO  
1.5  
2.0  
pF  
1
Vpp  
fosc_lo  
Peak-to-peak amplitude of oscillator  
Oscillator crystal  
0.6  
32.768  
500  
V
kHz  
ms  
V
1
tstart  
Crystal startup time  
2,3  
Vec_extal32  
Externally provided input clock amplitude  
0.7  
VDD_SNVS  
_ANA  
1
2
Proper PCB layout procedures must be followed to achieve specifications.  
This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The  
oscillator remains enabled and XTAL32 must be left unconnected.  
3
The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock  
must be within the range of VSS to VDD_SNVS_ANA.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
40  
NXP Semiconductors  
Electrical characteristics  
The RTC OSC module provides the clock source for the Real-Time Clock module. The RTC OSC module,  
in conjunction with an external crystal, generates a 32.768 kHz reference clock for the RTC.  
Table 29. RC oscillator with 16 MHz internal reference frequency  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Clock output  
Fclkout_16M  
Clock frequency  
15.1  
16  
50  
2
16.9  
MHz  
s  
Dynamic parameters  
Tstart_16M  
Power-down mode  
IVDDA  
Start-up time  
Supply current in power-down  
1
95  
nA  
Table 30. RC oscillator with 48 MHz internal reference frequency  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
General  
IVDDA  
Analog supply current  
Clock frequency  
-2  
350  
48  
500  
2
A  
MHz  
s  
Clock output  
Fclkout  
Dynamic parameters  
Tstart Start-up time  
Accuracy  
2.5  
Ttarget  
Trimmed  
%
Table 31. RC oscillator with 400 MHz internal reference frequency  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
General  
IVDD_1P8V_ON  
IVDD_ON  
Analog supply current  
Digital supply current  
60  
80  
A  
A  
Clock output  
F_tuned  
Tuned clock frequency  
400  
0.1  
MHz  
%
ΔF/F  
Frequency error after tuning  
Dynamic parameters  
JPP-CC Peak-peak, period jitter  
tstart  
1
50  
1
ns  
s  
s  
Start-up time  
Tuning time  
ttune  
256  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
41  
Electrical characteristics  
Table 32. RC oscillator with 32 kHz internal reference frequency  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
Note  
firc32k  
Internal reference frequency  
Deviation of IRC32K frequency  
32  
kHz  
Δfirc32k  
-25%  
25%  
%firc32k  
4.3  
I/O parameters  
This section provides parameters on I/O interfaces.  
4.3.1  
I/O DC parameters  
This section includes the DC parameters of the following I/O types:  
XTALI and RTC_XTALI (Clock Inputs) DC Parameters  
General Purpose I/O (GPIO)  
NOTE  
The term ‘NVCC_XXXXin this section refers to the associated supply rail  
of an input or output.  
NOTE  
When enable the open drain for I/O pad, the external pull-up voltage cannot  
exceed the associated supply rail.  
Figure 5. Circuit for parameters Voh and Vol for I/O cells  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
42  
NXP Semiconductors  
Electrical characteristics  
4.3.1.1  
XTALI and RTC_XTALI (clock inputs) DC parameters  
Table 33 shows the DC parameters for the clock inputs.  
1
Table 33. XTALI and RTC_XTALI DC parameters  
Symbol Test Conditions Min  
Parameter  
Max  
Unit  
XTALI high-level DC input voltage  
XTALI low-level DC input voltage  
Vih  
Vil  
VDDA_1P8_IN - 0.5  
0
VDDA_1P8_IN  
0.5  
V
V
V
V
RTC_XTALI high-level DC input voltage  
RTC_XTALI low-level DC input voltage  
Vih  
Vil  
VDD_SNVS_ANA - 0.5 VDD_SNVS_ANA  
0.5  
0
1
The DC parameters are for external clock input only.  
4.3.1.2  
General purpose I/O (GPIO) DC parameters  
Following section introduces the GPIO DC parameters, respectively, for GPIO pads. These parameters are  
guaranteed per the operating ranges in Table 11 unless otherwise noted.  
Table 34. DC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1  
bank  
Value  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
Receiver 3.3 V  
High level input voltage  
Low level input voltage  
VIH  
VIL  
0.625 x NVCC  
-0.3  
NVCC + 0.3  
0.25 x NVCC  
V
V
Receiver 1.8 V  
High level input voltage  
Low level input voltage  
VIH  
VIL  
0.65 x NVCC  
-0.3  
NVCC + 0.3  
0.35 x NVCC  
V
V
Driver 3.3 V and driver 1.8 V for PDRV = L and PDRV = H  
Output high current  
Output low current  
IOH  
IOL  
-6  
6
mA  
mA  
mA  
VOH = 0.8 x NVCC  
VOL = 0.2 x NVCC  
Output low/high current total  
for each IO bank  
IOCT  
100  
Weak pull-up and pull-down  
Pull-up / pull-down resistance  
Pull-up / pull-down resistance  
RHigh  
10  
100  
50  
k  
k  
High voltage range  
(2.7 V - 3.6 V)  
RLow  
20  
Low voltage range  
(1.65 V - 1.95 V)  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
43  
Electrical characteristics  
Table 35. DC specification for GPIO_SNVS bank  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
High level input voltage  
VIH  
0.7 x  
NVCC_SNVS  
NVCC_SNVS+  
0.1  
V
Low level input voltage  
Output high current  
Output low current  
VIL  
-0.3  
170  
0.3 x  
NVCC_SNVS  
V
IOH  
A  
VOH =  
NVCC_SNVS - 0.3  
IOL  
270  
A  
VOL = 0.3  
Output low/high current total for  
each IO bank  
IOCT  
100  
mA  
Weak pull-up and pull-down  
Pull-up resistance  
RHigh  
RLow  
1000  
850  
3500  
3500  
Pull-down resistance  
Table 36. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank  
NO.  
Characteristics  
Test Conditions  
Min  
Max  
Units  
1
Input high voltage (VIH)  
Normal voltage range  
Derated voltage range  
Derated2 voltage range  
Low voltage range  
0.7 x NVCC  
0.75 x NVCC  
0.75 x NVCC  
0.7 x NVCC  
0.7 x NVCC  
- 0.3  
NVCC + 0.1  
NVCC + 0.1  
NVCC + 0.1  
NVCC + 0.1  
NVCC + 0.1  
0.3 x NVCC  
0.25 x NVCC  
0.25 x NVCC  
0.3 x NVCC  
0.3 x NVCC  
V
V
V
V
V
V
V
V
V
V
V
V
High voltage range  
Normal voltage range  
Derated voltage range  
Derated2 voltage range  
Low voltage range  
2
Input low voltage (VIL)  
- 0.3  
- 0.3  
- 0.3  
High voltage range  
All voltage range  
- 0.3  
3
4
Input Hysteresis (VHYSN)  
0.06 x NVCC  
NVCC - 0.5  
Output high voltage (VOH  
)
Normal voltage range  
IOH = -10 mA  
DSE = 1  
Derated voltage range  
IOH = -6 mA  
NVCC - 0.5  
NVCC - 0.5  
NVCC - 0.5  
NVCC - 0.5  
V
V
V
V
Derated2 voltage range  
IOH = -5 mA  
Low voltage range  
IOH = -10 mA  
High voltage range  
IOH = -10 mA  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
44  
Electrical characteristics  
Table 36. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued)  
NO.  
Characteristics  
Test Conditions  
Min  
Max  
Units  
5
Output high voltage (VOH  
)
Normal voltage range  
IOH = -5 mA  
NVCC - 0.5  
V
DSE = 0  
Derated voltage range  
NVCC - 0.5  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
I
OH = -3 mA  
Derated2 voltage range  
IOH = -2.5 mA  
NVCC - 0.5  
Low voltage range  
IOH = -5 mA  
NVCC - 0.5  
High voltage range  
NVCC - 0.5  
I
OH = -5 mA  
6
7
8
Output low voltage (VOL  
)
Normal voltage range  
IOL = 10 mA  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
DSE = 1  
Derated voltage range  
IOL = 6 mA  
Derated2 voltage range  
IOL = 5 mA  
Low voltage range  
IOL = 10 mA  
High voltage range  
IOL = 10 mA  
Output low voltage (VOL  
)
Normal voltage range  
IOL = 5 mA  
DSE = 0  
Derated voltage range  
IOL = 3 mA  
Derated2 voltage range  
IOL = 2.5 mA  
Low voltage range  
IOL = 5 mA  
High voltage range  
IOL = 5 mA  
NVCC  
Normal voltage range  
Derated voltage range  
Derated2 voltage range  
Low voltage range  
2.7  
1.98  
1.71  
1.71  
3
3.6  
2.7  
V
V
1.98  
1.98  
3.6  
V
V
High voltage range  
All voltage range  
V
11  
12  
Pull-up resistor range (RPU  
)
25  
50  
k  
Measure @VDD  
Pull-down resistor range  
All voltage range  
25  
50  
k  
(RPD  
)
Measure @VSS  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
45  
Electrical characteristics  
Table 36. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued)  
NO.  
Characteristics  
Test Conditions  
Min  
Max  
Units  
13  
14  
15  
16  
Input leakage current  
Output capacitance (CL)  
Input capacitance (Cin)  
All voltage range  
All voltage range  
All voltage range  
All voltage range  
1
15  
5
A  
pF  
pF  
Output low/high current  
100  
mA  
total for each IO bank (IOCT  
)
4.3.2  
I/O AC parameters  
The GPIO and DDR I/O load circuit and output transition time waveform are shown in Figure 6 and  
Figure 7.  
From Output  
Under Test  
Test Point  
CL  
CL includes package, probe and fixture capacitance  
Figure 6. Load circuit for output  
OVDD  
0 V  
80%  
20%  
80%  
20%  
tr  
Output (at pad)  
tf  
Figure 7. Output transition time waveform  
4.3.2.1  
General purpose I/O (GPIO) AC parameters  
The I/O AC parameters for GPIO are presented in the Table 37 and Table 38, respectively.  
Table 37. AC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1  
bank  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
Driver 1.8 V application  
fmax  
Maximum frequency  
Load = 21 pF (PDRV = L, high drive,  
208  
MHz  
33  
Load = 15 pF (PDRV = H, low drive,  
50   
tr  
tf  
Rise time  
Fall time  
Measured between VOL and VOH  
Measured between VOH and VOL  
Driver 3.3 V application  
0.4  
0.4  
1.32  
1.32  
ns  
ns  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
46  
Electrical characteristics  
Table 37. AC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1  
bank (continued)  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
fmax  
tr  
Maximum frequency  
Rise time  
Load = 20 pF  
200  
3
MHz  
ns  
Measured between VOL and VOH  
Measured between VOH and VOL  
tf  
Fall time  
3
ns  
Table 38. Dynamic input characteristics for  
GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank  
Symbol  
Parameter  
Test Condition1, 2  
Min  
Max  
Unit  
Dynamic Input Characteristics for 3.3 V Application  
fop  
Input frequency of operation  
200  
3.5  
MHz  
ns  
INPSL Slope of input signal at I/O  
Measured between 10% to 90% of the I/O swing  
Dynamic Input Characteristics for 1.8 V Application  
fop  
Input frequency of operation  
208  
1.5  
MHz  
ns  
INPSL Slope of input signal at I/O  
For all supply ranges of operation.  
Measured between 10% to 90% of the I/O swing  
1
2
The dynamic input characteristic specifications are applicable for the digital bidirectional cells.  
Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank  
NO.  
Characteristic  
Condition  
Max  
Unit  
1
Pad rise/fall time (DSE = 0, SRE = 0)  
Normal voltage range  
(Cload = 15 pF)  
3
ns  
Derated voltage range  
(Cload = 15 pF)  
5
6
3
3
ns  
ns  
ns  
ns  
Derated2 voltage range  
(Cload = 15 pF)  
Low voltage range  
(Cload = 15 pF)  
High voltage range  
(Cload = 15 pF)  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
47  
Electrical characteristics  
Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued)  
NO.  
Characteristic  
Condition  
Max  
Unit  
2
Pad rise/fall time (DSE = 0, SRE = 1)  
Normal voltage range  
(Cload = 15 pF)  
6
ns  
Derated voltage range  
(Cload = 15 pF)  
10  
12  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Derated2 voltage range  
(Cload = 15 pF)  
Low voltage range  
(Cload = 15 pF)  
High voltage range  
(Cload = 15 pF)  
6
3
4
5
Pad rise/fall time (DSE = 1, SRE = 0)  
Normal voltage range  
(Cload = 15 pF)  
2.5  
4.5  
5
Derated voltage range  
(Cload = 15 pF)  
Derated2 voltage range  
(Cload = 15 pF)  
Low voltage range  
(Cload = 15 pF)  
2.5  
2.5  
5
High voltage range  
(Cload = 15 pF)  
Pad rise/fall time (DSE = 1, SRE = 1)  
Normal voltage range  
(Cload = 15 pF)  
Derated voltage range  
(Cload = 15 pF)  
9
Derated2 voltage range  
(Cload = 15 pF)  
10  
5
Low voltage range  
(Cload = 15 pF)  
High voltage range  
(Cload = 15 pF)  
5
IPP_DO to pad propagation delay:  
(DSE = 0, SRE = 0)  
Normal voltage range  
(Cload = 15 pF)  
2.5  
4.5  
5
Derated voltage range  
(Cload = 15 pF)  
Derated2 voltage range  
(Cload = 15 pF)  
Low voltage range  
(Cload = 15 pF)  
2.5  
4
High voltage range  
(Cload = 15 pF)  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
48  
Electrical characteristics  
Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued)  
NO.  
Characteristic  
Condition  
Max  
Unit  
6
IPP_DO to pad propagation delay:  
(DSE = 0, SRE = 1)  
Normal voltage range  
(Cload = 15 pF)  
7
ns  
Derated voltage range  
(Cload = 15 pF)  
12  
14  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Derated2 voltage range  
(Cload = 15 pF)  
Low voltage range  
(Cload = 15 pF)  
High voltage range  
(Cload = 15 pF)  
8.5  
2
7
8
9
IPP_DO to pad propagation delay:  
(DSE = 1, SRE = 0)  
Normal voltage range  
(Cload = 15 pF)  
Derated voltage range  
(Cload = 15 pF)  
3.6  
4
Derated2 voltage range  
(Cload = 15 pF)  
Low voltage range  
(Cload = 15 pF)  
2
High voltage range  
(Cload = 15 pF)  
4
IPP_DO to pad propagation delay:  
(DSE = 1, SRE = 1)  
Normal voltage range  
(Cload = 15 pF)  
6
Derated voltage range  
(Cload = 15 pF)  
11  
12  
6
Derated2 voltage range  
(Cload = 15 pF)  
Low voltage range  
(Cload = 15 pF)  
High voltage range  
(Cload = 15 pF)  
7.5  
2
Pad to IPP_IND propagation delay  
Normal voltage range  
(100 F load on IPP_IND)  
Derated voltage range  
(100 F load on IPP_IND)  
3.5  
4
Derated2 voltage range  
(100 F load on IPP_IND)  
Low voltage range  
(100 F load on IPP_IND)  
4
High voltage range  
2
(100 F load on IPP_IND)  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
49  
Electrical characteristics  
Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued)  
NO.  
Characteristic  
IPP_IND rise/fall time  
Condition  
Max  
Unit  
10  
Normal voltage range  
(100 F load on IPP_IND)  
0.3  
ns  
Derated voltage range  
(100 F load on IPP_IND)  
0.4  
0.5  
0.3  
0.3  
ns  
ns  
ns  
ns  
Derated2 voltage range  
(100 F load on IPP_IND)  
Low voltage range  
(100 F load on IPP_IND)  
High voltage range  
(100 F load on IPP_IND)  
Figure 8 is the GPIO block diagram.  
IPP_OBE  
IPP_DSE  
IPP_DO  
IPP_SRE  
Pad  
IPP_PUE  
IPP_PUS  
IOMUX/IOMUXC  
PU/PD logic  
PU/PD device  
IPP_IBE  
IPP_IND  
IPP_HYS  
INPUT RECEIVER  
Figure 8. GPIO block diagram  
4.4  
System modules  
This section contains the timing and electrical parameters for the modules in the i.MX RT1160 processor.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
50  
NXP Semiconductors  
Electrical characteristics  
4.4.1  
Reset timing parameters  
Figure 9 shows the POR reset timing and Table 40 lists the timing parameters.  
POR_B  
(Input)  
CC1  
Figure 9. POR reset timing diagram  
Table 40. POR reset timing parameters  
ID  
Parameter  
Min Max  
Unit  
CC1  
Duration of POR_B to be qualified as valid.  
1
RTC_XTALI cycle  
4.4.2  
WDOG reset timing parameters  
Figure 10 shows the WDOG reset timing and Table 41 lists the timing parameters.  
WDOGn_B  
(Output)  
CC3  
Figure 10. WDOGn_B timing diagram  
Table 41. WDOGn_B timing parameters  
ID  
Parameter  
Duration of WDOGn_B Assertion  
Min  
Max  
Unit  
CC3  
1
RTC_XTALI cycle  
NOTE  
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or  
approximately 30 s.  
NOTE  
WDOGn_B output signals (for each one of the Watchdog modules) do not  
have dedicated pins, but are muxed out through the IOMUX. See the IOMUX  
manual for detailed information.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
51  
Electrical characteristics  
4.4.3  
JTAG Controller timing parameters  
Figure 11 depicts the JTAG controller timing. Figure 12 depicts the JTAG TRST_B timing.  
J1  
J2  
J2  
TCK (input)  
J4  
J3  
TDI / TMS (input)  
J5  
TDO (output)  
TDO (output)  
J6  
Figure 11. JTAG controller timing  
TCK (input)  
J7  
J8  
TRST_B (input)  
TRST_B (input)  
J8  
Figure 12. JTAG_TRST_B timing  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
52  
Electrical characteristics  
Table 42. JTAG timing parameters  
Parameter  
Value  
ID  
Unit  
Min  
Max  
J0  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
TCK frequency  
40  
20  
5
25  
MHz  
ns  
TCK cycle time  
TCK pulse width  
ns  
Input data setup time  
Input data hold time  
Output data valid time  
Output high impedance time  
TRST_B assert time  
ns  
5
ns  
100  
18  
15.2  
15.2  
ns  
ns  
ns  
TRST_B setup time to TCK edge  
ns  
4.4.4  
SWD timing parameters  
Figure 13 depicts the SWD timing.  
S1  
S2  
S2  
SWD_CLK (input)  
SWD_DIO  
S4  
S3  
S5  
S6  
SWD_DIO  
SWD_DIO  
Figure 13. SWD timing  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
53  
Electrical characteristics  
Symbol  
Table 43. SWD timing parameters  
Description  
Min  
Max  
Unit  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
SWD_CLK frequency  
20  
10  
5
50  
MHz  
ns  
SWD_CLK cycle time  
SWD_CLK pulse width  
Input data setup time  
Input data hold time  
Output data valid time  
ns  
ns  
1
ns  
14.4  
14.4  
ns  
Output high impedance time  
ns  
4.4.5  
Trace timing parameters  
Figure 14 depicts the trace timing.  
T1  
T2  
T2  
TRACE_CLK (output)  
TRACE0-3 (output)  
T4  
T4  
T3  
T3  
Figure 14. Trace timing  
Table 44. Trace timing parameters  
Description  
Symbol  
Min  
Max  
Unit  
T0  
T1  
T2  
T3  
T4  
TRACE_CLK frequency  
TRACE_CLK cycle time  
TRACE_CLK pulse width  
TRACE data setup time  
TRACE data hold time  
1/T0  
6
70  
MHz  
ns  
ns  
2
ns  
0.7  
ns  
4.5  
External memory interface  
The following sections provide information about external memory interfaces.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
54  
Electrical characteristics  
4.5.1  
SEMC specifications  
The following sections provide information on SEMC interface.  
Measurements are with a load of 15 pf and an input slew rate of 1 V/ns.  
4.5.1.1  
SEMC output timing  
There are ASYNC and SYNC modes for SEMC output timing.  
4.5.1.1.1  
SEMC output timing in ASYNC mode  
Table 45 shows SEMC output timing in ASYNC mode.  
Table 45. SEMC output timing in ASYNC mode  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Comment  
Frequency of operation  
Internal clock period  
Address output valid time  
Address output hold time  
Active low time  
5
200  
2
MHz  
ns  
TCK  
TAVO  
TAHO  
TADVL  
TDVO  
TDHO  
TWEL  
ns  
These timing parameters  
apply to Address and ADV#  
for NOR/PSRAM in ASYNC  
mode.  
(TCK - 2) 1  
(TCK - 1) 2  
ns  
Data output valid time  
Data output hold time  
WE# low time  
2
ns  
ns  
ns  
These timing parameters  
apply to Data/CLE/ALE and  
WE# for NAND, apply to  
Data/DM/CRE for  
NOR/PSRAM, apply to  
Data/DCX and WRX for DBI  
interface.  
(TCK - 2) 3  
(TCK - 1) 4  
1
2
3
4
Address output hold time is configurable by SEMC_*CR0.AH. AH field setting value is 0x0 in above table. When AH is set  
with value N, TAHO min time should be ((N + 1) x TCK). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more  
detail about SEMC_*CR0.AH register field.  
ADV# low time is configurable by SEMC_*CR0.AS. AS field setting value is 0x0 in above table. When AS is set with value N,  
TADL min time should be ((N + 1) x TCK - 1). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more detail about  
SEMC_*CR0.AS register field.  
Data output hold time is configurable by SEMC_*CR0.WEH. WEH field setting value is 0x0 in above table. When WEH is set  
with value N, TDHO min time should be ((N + 1) x TCK). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more  
detail about SEMC_*CR0.WEH register field.  
WE# low time is configurable by SEMC_*CR0.WEL. WEL field setting value is 0x0 in above table. When WEL is set with value  
N, TWEL min time should be ((N + 1) x TCK - 1). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more detail  
about SEMC_*CR0.WEL register field.  
Figure 15 shows the output timing in ASYNC mode.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
55  
Electrical characteristics  
4#+  
)NTERNAL CLOCK  
!$$2  
!
$
4!(/  
4$(/  
4!6/  
!$6ꢀ  
$!4!  
7%ꢀ  
4$6/  
Figure 15. SEMC output timing in ASYNC mode  
4.5.1.1.2  
SEMC output timing in SYNC mode  
Table 46 shows SEMC output timing in SYNC mode.  
Table 46. SEMC output timing in SYNC mode  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Comment  
Frequency of operation  
Internal clock period  
Data output valid time  
Data output hold time  
5
200  
MHz  
ns  
TCK  
TDVO  
TDHO  
0.6  
ns  
These timing parameters apply to  
Address/Data/DM/CKE/control  
signals with SEMC_CLK for  
SDRAM.  
-0.7  
ns  
Figure 16 shows the output timing in SYNC mode.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
56  
Electrical characteristics  
3%-#?#,+  
$!4!  
4$6/  
4
$(/  
$
Figure 16. SEMC output timing in SYNC mode  
4.5.1.2  
SEMC input timing  
There are ASYNC and SYNC modes for SEMC input timing.  
4.5.1.2.1  
SEMC input timing in ASYNC mode  
Table 47 shows SEMC input timing in ASYNC mode.  
Table 47. SEMC input timing in ASYNC mode  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Comment  
TIS  
TIH  
Data input setup  
Data input hold  
7.1  
0
ns  
ns  
ForNAND/NOR/PSRAM/DBI,  
thesetimingparametersapply  
to RE# and Read Data.  
Figure 17 shows the input timing in ASYNC mode.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
57  
Electrical characteristics  
.!.$ NONꢃ%$/ MODE AND ./2ꢄ032!-ꢄꢅꢁꢅꢁ TIMING  
/%ꢀ  
$!4!  
$ꢁ  
$ꢂ  
4)3  
4)(  
.!.$ %$/ MODE TIMING  
/%ꢀ  
$!4!  
$ꢁ  
$ꢂ  
4
)3  
4)(  
Figure 17. SEMC input timing in ASYNC mode  
4.5.1.2.2  
SEMC input timing in SYNC mode  
Table 48 and Table 49 show SEMC input timing in SYNC mode.  
Table 48. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x0)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Comment  
TIS  
TIH  
Data input setup  
Data input hold  
8.67  
0
ns  
ns  
Table 49. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x1)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Comment  
TIS  
TIH  
Data input setup  
Data input hold  
2
1
ns  
ns  
Figure 18 shows the input timing in SYNC mode.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
58  
Electrical characteristics  
3%-#?#,+  
$!4!  
$ꢁ  
4)3  
3%-#?$13  
4)(  
Figure 18. SEMC input timing in SYNC mode  
4.5.2  
FlexSPI parameters  
Measurements are with a load 15 pf and input slew rate of 1 V/ns.  
4.5.2.1  
FlexSPI input/read timing  
There are three sources for the internal sample clock for FlexSPI read data:  
Dummy read strobe generated by FlexSPI controller and looped back internally  
(FlexSPIn_MCR0[RXCLKSRC] = 0x0)  
Dummy read strobe generated by FlexSPI controller and looped back through the  
DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1)  
Read strobe provided by memory device and input from DQS pad  
(FlexSPIn_MCR0[RXCLKSRC] = 0x3)  
The following sections describe input signal timing for each of these three internal sample clock sources.  
4.5.2.1.1  
SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
Table 50. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
8.67  
0
60  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
ns  
Table 51. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X1  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
2
133  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
1
ns  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
59  
Electrical characteristics  
SCK  
TIS  
TIH  
TIS  
TIH  
SIO[0:7]  
Internal Sample Clock  
Figure 19. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0, 0X1  
NOTE  
Timing shown is based on the memory generating read data on the SCK  
falling edge, and FlexSPI controller sampling read data on the falling edge.  
4.5.2.1.2  
SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3  
There are two cases when the memory provides both read data and the read strobe in SDR mode:  
A1Memory generates both read data and read strobe on SCK rising edge (or falling  
edge)  
A2Memory generates read data on SCK falling edge and generates read strobe on  
SCK rising edge  
Table 52. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A1)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Frequency of operation  
Time delta between TSCKD and TSCKDQS  
-2  
166  
2
MHz  
ns  
TSCKD - TSCKDQS  
SCK  
TSCKD  
TSCKD  
SIO[0:7]  
TSCKDQS  
TSCKDQS  
DQS  
Figure 20. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A1)  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
60  
NXP Semiconductors  
Electrical characteristics  
NOTE  
Timing shown is based on the memory generating read data and read strobe  
on the SCK rising edge. The FlexSPI controller samples read data on the  
DQS falling edge.  
Table 53. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A2)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Frequency of operation  
Time delta between TSCKD and TSCKDQS  
-2  
166  
2
MHz  
ns  
TSCKD - TSCKDQS  
SCK  
TSCKD  
TSCKD  
TSCKD  
SIO[0:7]  
TSCKDQS  
TSCKDQS  
TSCKDQS  
DQS  
Internal Sample Clock  
Figure 21. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A2)  
NOTE  
Timing shown is based on the memory generating read data on the SCK  
falling edge and read strobe on the SCK rising edge. The FlexSPI controller  
samples read data on a half cycle delayed DQS falling edge.  
4.5.2.1.3  
DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
Table 54. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
8.67  
0
30  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
ns  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
61  
Electrical characteristics  
Table 55. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
2
66  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
1
ns  
SCLK  
TIS  
TIH  
TIS  
TIH  
SIO[0:7]  
Internal Sample Clock  
Figure 22. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
4.5.2.1.4  
DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3  
There are two cases when the memory provides both read data and the read strobe in DDR mode:  
B1Memory generates both read data and read strobe on SCK edges  
B2Memory generates read data on SCK edges and generates read strobe on SCK2  
edges  
Table 56. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1)  
Symbol  
Parameter  
Min  
Max  
Unit  
Frequency of operation  
Time delta between TSCKD and TSCKDQS  
-1  
166  
1
MHz  
ns  
TSCKD - TSCKDQS  
SCK  
TSCKD  
SIO[0:7]  
TSCKDQS  
DQS  
Figure 23. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1)  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
62  
NXP Semiconductors  
Electrical characteristics  
Table 57. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2)  
Symbol  
Parameter  
Min  
Max  
Unit  
Frequency of operation  
Time delta between TSCKD and TSCKDQS  
-1  
166  
1
MHz  
ns  
TSCKD - TSCKDQS  
SCK  
SIO[0:7]  
SCK2  
TSCKD  
TSCK2DQS  
DQS  
Figure 24. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2)  
4.5.2.2  
FlexSPI output/write timing  
The following sections describe output signal timing for the FlexSPI controller including control signals  
and data outputs.  
4.5.2.2.1  
SDR mode  
Table 58. FlexSPI output timing in SDR mode  
Parameter Min  
Frequency of operation  
Symbol  
Max  
Unit  
6.0  
1
1661  
MHz  
ns  
Tck  
SCK clock period  
TDVO  
TDHO  
TCSS  
TCSH  
Output data valid time  
Output data hold time  
Chip select output setup time  
Chip select output hold time  
1
ns  
ns  
3 x TCK - 1  
3 x TCK + 2  
ns  
ns  
1
The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing  
specifications.  
NOTE  
T
and T  
are configured by the FlexSPIn_FLSHAxCR1 register, the  
CSS  
CSH  
default values are shown above. Please refer to the i.MXRT1160 Reference  
Manual (IMXRT1160RM) for more details.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
63  
Electrical characteristics  
SCK  
TCSH  
T
CSS  
T
CK  
CS  
TDVO  
TDVO  
SIO[0:7]  
TDHO  
TDHO  
Figure 25. FlexSPI output timing in SDR mode  
4.5.2.2.2  
DDR mode  
Table 59. FlexSPI output timing in DDR mode  
Symbol  
Parameter  
Min  
Max  
Unit  
Frequency of operation1  
166  
MHz  
ns  
Tck  
SCK clock period (FlexSPIn_MCR0[RXCLKSRC] = 0x0)  
Output data valid time  
6.0  
TDVO  
TDHO  
TCSS  
2.2  
ns  
Output data hold time  
0.8  
ns  
Chip select output setup time  
Chip select output hold time  
3 x TCK / 2 - 0.7  
ns  
TCSH  
3 x TCK / 2 + 0.8 —  
ns  
1
The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing  
specifications.  
NOTE  
T
and T  
are configured by the FlexSPIn_FLSHAxCR1 register, the  
CSS  
CSH  
default values are shown above. Please refer to the i.MXRT1160 Reference  
Manual (IMXRT1160RM) for more details.  
SCK  
CS  
T
CSS  
T
CK  
TCSH  
TDVO  
TDVO  
SIO[0:7]  
TDHO  
TDHO  
Figure 26. FlexSPI output timing in DDR mode  
4.6  
Display and graphics  
The following sections provide information about display and graphic interfaces.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
64  
Electrical characteristics  
4.6.1  
MIPI D-PHY electrical characteristics  
The i.MX RT1160 conforms to the MIPI CSI-2 and D-PHY standards for protocol and electrical  
specifications.  
Compliant with standards:  
MIPI Alliance Specification for Display Serial Interface Version 1.1 (MIPI DSI controller)  
MIPI Standard 1.1 for D-PHY (MIPI DSI D-PHY)  
Compatible with MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) Version 1.1  
4.6.1.1  
MIPI HS-TX specifications  
Table 60. MIPI high-speed transmitter DC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1
VCMTX  
High Speed Transmit Static Common Mode Voltage  
VCMTX mismatch when Output is Differential-1 or Differential-0  
High Speed Transmit Differential Voltage  
150  
200  
250  
5
mV  
mV  
mV  
mV  
mV  
|VCMTX (1,0)  
|
1
|VOD  
|
140  
200  
270  
14  
|VOD  
|
VOD mismatch when Output is Differential-1 or Differential-0  
High Speed Output High Voltage  
1
VOHHS  
ZOS  
360  
62.5  
10  
Single Ended Output Impedance  
40  
50  
ZOS  
Single Ended Output Impedance Mismatch  
%
1
Value when driving into load impedance anywhere in the ZID (Differential input impedance) range.  
Table 61. MIPI high-speed transmitter AC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VCMTX(HF)  
VCMTX(LF)  
Common-level variations above 450 MHz  
Common-level variation between 50-450 MHz  
Rise Time and Fall Time (20% to 80%)  
15  
25  
mVRMS  
mVPEAK  
ps  
1
tR and tF  
150  
0.3 x UI  
1
UI is the long-term average unit interval.  
4.6.1.2  
MIPI LP-TX specifications  
Table 62. MIPI low-power transmitter DC specifications  
Symbol  
Parameter  
Thevenin Output High Level  
Min  
Typ  
Max  
Unit  
1
VOH  
1.1  
-50  
110  
1.2  
1.3  
50  
V
mV  
VOL  
Thevenin Output Low Level  
2
ZOLP  
Output Impedance of Low Power Transmitter  
1
This specification can only be met when limiting the core supply variation from 1.1 V to 1.3 V.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
65  
Electrical characteristics  
2
Though there is no specified maximum for ZOLP, the LP transmitter output impedance ensures the TRLP/TFLP specification is  
met.  
Table 63. MIPI low-power transmitter AC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1
TRLP /TFLP  
15% to 85% Rise Time and Fall Time  
30% to 85% Rise Time and Fall Time  
40  
25  
35  
ns  
ns  
ns  
1,2,3  
TREOT  
TLP-PULSE-TX  
4
Pulse width of the LP exclusive-OR clock: First LP exclusive-OR  
clock pulse after Stop state or last pulse before Stop state  
Pulse width of the LP exclusive-OR clock: All other pulses  
Period of the LP exclusive-OR clock  
Slew Rate @ CLOAD = 0 pF  
20  
90  
30  
30  
30  
30  
0
ns  
TLP-PER-TX  
ns  
1,5,6,7  
V/tSR  
500  
200  
150  
100  
70  
mV/ns  
mV/ns  
mV/ns  
mV/ns  
pF  
Slew Rate @ CLOAD = 5 pF  
Slew Rate @ CLOAD = 20 pF  
Slew Rate @ CLOAD = 70 pF  
1
CLOAD  
Load Capacitance  
1
2
CLOAD includes the low equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be  
< 10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2 ns delay.  
The rise-time of TREOT starts from the HS common-level at the moment of the differential amplitude drops below 70 mV, due  
to stopping of the differential drive.  
3
4
With an additional load capacitance CCM between 0 to 60 pF on the termination center tap at RX side of the lane.  
This parameter value can be lower than TLPX (MIPI D-PHY low power states), due to differences in rise vs. fall signal slopes,  
trip levels, and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT  
(transition from HS level to LP-11) is glitch behavior as described in Low-Power Receiver section.  
5
6
7
When the output voltage is between 15% and 85% of the fully settled LP signal levels.  
Measured as average across any 50 mV segment of the output signal transition.  
This value represents a corner point in a piecewise linear curve.  
4.6.1.3  
MIPI LP-RX specifications  
Table 64. MIPI low power receiver DC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VIH  
VIL  
Logic 1 input voltage  
880  
1300  
550  
300  
mV  
mV  
mV  
mV  
Logic 0 input voltage, not in ULP state  
Logic 0 input voltage, ULP state  
Input hysteresis  
VIL-ULPS  
VHYST  
25  
Table 65. MIPI low power receiver AC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1,2  
eSPIKE  
Input pulse rejection  
300  
V.ps  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
66  
Electrical characteristics  
Table 65. MIPI low power receiver AC specifications (continued)  
3
TMIN-RX  
VINT  
Minimum pulse width response  
Peak Interference amplitude  
Interference frequency  
20  
200  
ns  
mV  
fINT  
450  
MHz  
1
2
3
Time-voltage integration of a spike above VIL when being in LP-0 state or below VIH when being in LP-1 state.  
An impulse below this value will not change the receiver state.  
An input pulse greater than this value will toggle the output.  
4.6.1.4  
MIPI LP-CD specifications  
Table 66. MIPI contention detector DC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VIHCD  
VILCD  
Logic 1 contention threshold  
Logic 0 contention threshold  
450  
mV  
mV  
200  
4.6.1.5  
MIPI DC specifications  
Table 67. MIPI input characteristics DC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VPIN  
Pad signal voltage range  
Pin leakage current  
Ground shift  
-50  
-10  
1350  
10  
mV  
A  
mV  
V
1
ILEAK  
VGNDSH  
-50  
50  
2
VPIN(absmax)  
Maximum pin voltage level  
-0.15  
1.45  
20  
3
TVPIN(absmax)  
Maximum transient time above VPIN(max) or below VPIN(min)  
ns  
1
When the pad voltage is within the signal voltage range between VGNDSH(min) to VOH + VGNDSH(max) and the Lane Module is  
in LP receive mode.  
2
3
This value includes ground shift.  
The voltage overshoot and undershoot beyond the VPIN is only allowed during a single 20 ns window after any LP-0 to LP-1  
transition or vice versa. For all other situations it must stay within the VPIN range.  
4.6.2  
CMOS Sensor Interface (CSI) timing parameters  
The following sections describe the CSI timing in gated and ungated clock modes.  
4.6.2.1 Gated clock mode timing  
Figure 27 and Figure 28 shows the gated clock mode timings for CSI, and Table 68 describes the timing  
parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
67  
Electrical characteristics  
(VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock,  
CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted.  
CSI_VSYNC  
P1  
CSI_HSYNC  
P7  
P2  
P5 P6  
CSI_PIXCLK  
P3 P4  
CSI_DATA[23:00]  
Figure 27. CSI Gated clock mode—sensor data at falling edge, latch data at rising edge  
CSI_VSYNC  
P1  
CSI_HSYNC  
P7  
P2  
P6 P5  
CSI_PIXCLK  
P3 P4  
CSI_DATA[23:00]  
Figure 28. CSI Gated clock mode—sensor data at rising edge, latch data at falling edge  
Table 68. CSI gated clock mode timing parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
Units  
P1  
P2  
P3  
CSI_VSYNC to CSI_HSYNC time  
CSI_HSYNC setup time  
CSI DATA setup time  
tV2H  
tHsu  
tDsu  
33.5  
2.6  
ns  
ns  
ns  
2.6  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
68  
Electrical characteristics  
Table 68. CSI gated clock mode timing parameters (continued)  
ID  
Parameter  
CSI DATA hold time  
Symbol  
Min.  
Max.  
Units  
P4  
P5  
P6  
P7  
tDh  
0
80  
ns  
ns  
CSI pixel clock high time  
CSI pixel clock low time  
CSI pixel clock frequency  
tCLKh  
tCLKl  
fCLK  
3.75  
3.75  
ns  
MHz  
4.6.2.2  
Ungated clock mode timing  
Figure 29 shows the ungated clock mode timings of CSI, and Table 69 describes the timing parameters  
(P1–P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are  
used, and the CSI_HSYNC signal is ignored.  
CSI_VSYNC  
P1  
P6  
P4 P5  
CSI_PIXCLK  
P2 P3  
CSI_DATA[23:00]  
Figure 29. CSI ungated clock mode—sensor data at falling edge, latch data at rising edge  
Table 69. CSI ungated clock mode timing parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
Units  
P1  
P2  
P3  
P4  
P5  
P6  
CSI_VSYNC to pixel clock time  
CSI DATA setup time  
tVSYNC  
tDsu  
33.5  
2.6  
0
80  
ns  
ns  
CSI DATA hold time  
tDh  
ns  
CSI pixel clock high time  
CSI pixel clock low time  
CSI pixel clock frequency  
tCLKh  
tCLKl  
fCLK  
3.75  
3.75  
ns  
ns  
MHz  
The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as  
dumb or smart as follows:  
Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync  
(HSYNC)) and output-only Bayer and statistics data.  
Smart sensors support CCIR656 video decoder formats and perform additional processing of the  
image (for example, image compression, image pre-filtering, and various data output formats).  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
69  
Electrical characteristics  
4.6.3  
LCD Controller timing parameters  
Figure 30 shows the LCD timing and Table 70 lists the timing parameters.  
L1  
L2  
L3  
LCDn_CLK  
(falling edge capture)  
LCDn_CLK  
(rising edge capture)  
LCDn_DATA[23:00]  
LCDn Control Signals  
L4  
L5  
L6  
L7  
Figure 30. LCD timing  
Table 70. LCD timing parameters  
Parameter  
ID  
Symbol  
Min  
Max  
Unit  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
LCD pixel clock frequency  
tCLK(LCD)  
tCLKH(LCD)  
tCLKL(LCD)  
td(CLKH-DV)  
td(CLKL-DV)  
3
75/1501 MHz  
LCD pixel clock high (falling edge capture)  
1
ns  
ns  
ns  
ns  
ns  
ns  
LCD pixel clock low (rising edge capture)  
3
LCD pixel clock high to data valid (falling edge capture)  
LCD pixel clock low to data valid (rising edge capture)  
-1  
-1  
-1  
-1  
1
LCD pixel clock high to control signal valid (falling edge capture) td(CLKH-CTRLV)  
LCD pixel clock low to control signal valid (rising edge capture) td(CLKL-CTRLV)  
1
1
1
For eLCDIF or LCDIFv2, the maximum pixel clock frequency of parallel IO interface is 75 MHz, while it is 150 MHz for MIPI  
DSI interface.  
4.7  
Audio  
This section provides information about SAI/I2S.  
4.7.1  
SAI/I2S switching specifications  
This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes.  
All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP]  
= 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock  
and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal  
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
70  
NXP Semiconductors  
Electrical characteristics  
Table 71. Master mode SAI timing  
Characteristic Min  
Num  
Max  
Unit  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
SAI_MCLK cycle time  
15  
40%  
40  
40%  
ns  
SAI_MCLK pulse width high/low  
SAI_BCLK cycle time  
60%  
MCLK period  
ns  
SAI_BCLK pulse width high/low  
SAI_BCLK to SAI_FS output valid  
SAI_BCLK to SAI_FS output invalid  
SAI_BCLK to SAI_TXD valid  
60%  
8.4  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
0
10  
SAI_BCLK to SAI_TXD invalid  
SAI_RXD/SAI_FS input setup before SAI_BCLK  
SAI_RXD/SAI_FS input hold after SAI_BCLK  
1
14  
0
Figure 31. SAI timing—Master modes  
Table 72. Slave mode SAI timing  
Num  
Characteristic  
SAI_BCLK cycle time (input)  
Min  
Max  
Unit  
S11  
S12  
S13  
S14  
S15  
S16  
40  
40%  
6
ns  
SAI_BCLK pulse width high/low (input)  
SAI_FS input setup before SAI_BCLK  
SAI_FA input hold after SAI_BCLK  
60%  
BCLK period  
ns  
ns  
ns  
ns  
2
SAI_BCLK to SAI_TXD/SAI_FS output valid  
SAI_BCLK to SAI_TXD/SAI_FS output invalid  
20  
-1.5  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
71  
Electrical characteristics  
Num  
Table 72. Slave mode SAI timing  
Characteristic Min  
Max  
Unit  
S17  
S18  
SAI_RXD setup before SAI_BCLK  
SAI_RXD hold after SAI_BCLK  
6
2
ns  
ns  
Figure 32. SAI timing—Slave mode  
4.8  
Analog  
The following sections provide information about analog interfaces.  
4.8.1  
12-bit ADC electrical specifications  
All ADC channels meet the 12-bit single-ended accuracy specifications.  
1
Table 73. ADC electrical specifications (VREFH = VDD_ANA_18 and VADIN  
VREFH)  
max  
Symbol  
VADIN  
Description  
Input voltage  
Min  
VREFL  
Typ  
Max  
VREFH  
Unit  
Notes  
V
V
VREFH  
ADC high reference supply  
input  
1.0  
1.8  
1.89  
CADIN  
RADIN  
RAS  
Input capacitance  
8
4.5  
500  
5
pF  
Input resistance  
2
Analog source resistance  
K  
MHz  
fADCK  
ADC conversion clock  
frequency  
88  
3
Csample  
Sample cycles  
3.5  
131.5  
Cycles  
Cycles  
Cycles  
Ccompare  
Cconversion  
Fixed compare cycles  
Conversion cycles  
17.5  
Cconversion = Csample + Ccompare  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
72  
Electrical characteristics  
1
Table 73. ADC electrical specifications (VREFH = VDD_ANA_18 and VADIN  
VREFH) (continued)  
max  
Symbol  
TUE  
Description  
Min  
Typ  
Max  
Unit  
Notes  
4
Total unadjusted Error  
Differential nonlinearity  
Integral nonlinearity  
Effective number of bits  
Single-ended mode  
Avg = 1  
-14 to -2  
±1.2  
LSB  
4,5  
4,5  
6
DNL  
INL  
LSB  
LSB  
±1.2  
ENOB  
10.3  
10.6  
11.3  
Avg = 2  
Avg = 16  
Differential mode  
Avg = 1  
11.2  
Avg = 2  
Avg = 16  
SINAD  
EFS  
Signal to noise plus distortion SINAD = 6.02 x ENOB + 1.76  
dB  
LSB  
LSB  
nA  
4
Full-scale error  
Zero-scale error  
-4  
4
EZS  
0.05  
30  
lin_ext_leak  
External channel leakage  
current  
500  
EIL  
Input leakage error  
Setup time  
RAS * lin_ext_leak  
mV  
tADCSETUP  
5
s  
1
The range is from 1.71 V to 1.89 V.  
2
This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The RAS and  
CAS time constant should be kept to < 1 ns.  
3
4
5
6
See Figure 33, "Sample time VS. RAS".  
1 LSB = (VREFH - VREFL) / 2^N, N = 12  
ADC conversion clock at max frequency and using linear histogram.  
Input data used for test is 1 kHz sine wave.  
Table 74. ADC electrical specifications (VREFFH = 1.68 V and VADIN  
NVCC_GPIO  
)
max  
max  
Symbol  
VADIN  
Description  
Input voltage  
Min  
VREFL  
Typ1  
Max  
Unit  
Notes  
NVCC_GPIOmax  
1.89  
V
V
VREFH  
ADC high reference supply  
input  
1.0  
1.8  
CADIN  
RADIN  
RAS  
Input capacitance  
4.5  
1
5
pF  
Input resistance  
K  
K  
2
Analog source resistance  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
73  
Electrical characteristics  
Table 74. ADC electrical specifications (VREFFH = 1.68 V and VADIN  
NVCC_GPIO  
) (continued)  
max  
max  
Symbol  
fADCK  
Description  
Min  
Typ1  
Max  
Unit  
Notes  
ADC conversion clock  
frequency  
8
88  
MHz  
3
Csample  
Ccompare  
Cconversion  
TUE  
Sample cycles  
Fixed compare cycles  
Conversion cycles  
Total unadjusted Error  
Differential nonlinearity  
Integral nonlinearity  
Effective number of bits  
Single-ended mode  
Avg = 1  
3.5  
131.5  
Cycles  
Cycles  
Cycles  
LSB  
17.5  
Cconversion = Csample + Ccompare  
4
-14 to -2  
±1.2  
4,5  
4,5  
6
DNL  
LSB  
INL  
±1.2  
LSB  
ENOB  
10.3  
10.6  
11.3  
Avg = 2  
Avg = 16  
Differential mode  
Avg = 1  
11.2  
Avg = 2  
Avg = 16  
SINAD  
EFS  
Signal to noise plus distortion SINAD = 6.02 x ENOB + 1.76  
dB  
LSB  
LSB  
nA  
4
Full-scale error  
Zero-scale error  
-4  
4
EZS  
0.05  
30  
lin_ext_leak  
External channel leakage  
current  
500  
EIL  
Input leakage error  
Setup time  
RAS * lin_ext_leak  
mV  
tADCSETUP  
5
s  
1
Typical values assume Temp = 25 °C and fACLK = Max, unless otherwise stated. Typical values are for reference only, and are  
not tested in production.  
2
This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The RAS and  
CAS time constant should be kept to < 1 ns.  
3
4
5
6
See Figure 33, "Sample time VS. RAS".  
1 LSB = (VREFH - VREFL) / 2^N, N = 12  
ADC conversion clock at max frequency and using linear histogram.  
Input data used for test is 1 kHz sine wave.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
74  
NXP Semiconductors  
Electrical characteristics  
2
1
Table 75. ADC electrical specifications (1 V VREFFH < VDD_ANA_18  
and VADIN  
VREFH)  
max  
min  
Symbol  
VADIN  
Description  
Input voltage  
Min  
VREFL  
Typ3  
Max  
VREFH  
Unit  
Notes  
V
V
VREFH  
ADC high reference supply  
input  
1.0  
1.8  
1.89  
CADIN  
RADIN  
RAS  
Input capacitance  
8
4.5  
500  
5
pF  
Input resistance  
4
Analog source resistance  
K  
MHz  
fADCK  
ADC conversion clock  
frequency  
88  
5
Csample  
Ccompare  
Cconversion  
TUE  
Sample cycles  
Fixed compare cycles  
Conversion cycles  
Total unadjusted Error  
Differential nonlinearity  
Integral nonlinearity  
Effective number of bits  
Single-ended mode  
Avg = 1  
3.5  
131.5  
Cycles  
Cycles  
Cycles  
LSB  
17.5  
Cconversion = Csample + Ccompare  
6
-14 to -2  
±1.2  
6,7  
6,7  
8
DNL  
LSB  
INL  
±1.2  
LSB  
ENOB  
10.3  
10.6  
11.3  
Avg = 2  
Avg = 16  
Differential mode  
Avg = 1  
11.2  
Avg = 2  
Avg = 16  
SINAD  
EFS  
Signal to noise plus distortion SINAD = 6.02 x ENOB + 1.76  
dB  
LSB  
LSB  
nA  
6
Full-scale error  
Zero-scale error  
-4  
6
EZS  
0.05  
30  
lin_ext_leak  
External channel leakage  
current  
500  
EIL  
Input leakage error  
Setup time  
RAS * lin_ext_leak  
mV  
tADCSETUP  
5
s  
1
VDD_ANA_18min = 1.71 V  
2
3
Values in this table are based on design simulations.  
Typical values assume Temp = 25 °C and fACLK = Max, unless otherwise stated. Typical values are for reference only, and are  
not tested in production.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
75  
Electrical characteristics  
4
This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The RAS and  
C
AS time constant should be kept to < 1 ns.  
5
6
7
8
See Figure 33, "Sample time VS. RAS".  
1 LSB = (VREFH - VREFL) / 2^N, N = 12  
ADC conversion clock at max frequency and using linear histogram.  
Input data used for test is 1 kHz sine wave.  
The following figure shows a plot of the ADC sample time versus R .  
AS  
Figure 33. Sample time VS. R  
AS  
4.8.1.1  
12-bit ADC input impedance equivalent circuit diagram  
The following figure shows 12-bit ADC input impedance equivalent circuit diagram.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
76  
NXP Semiconductors  
Electrical characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
ZAS  
ADC SAR  
ENGINE  
R
AS  
R
ADIN  
VADIN  
C
AS  
VAS  
R
R
R
ADIN  
ADIN  
ADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
C
ADIN  
Figure 34. ADC input impedance equivalent circuit diagram  
4.8.2  
12-bit DAC electrical characteristics  
12-bit DAC operating requirements  
4.8.2.1  
Table 76. 12-bit DAC operating conditions  
Symbol  
Description  
Min Typ Max  
Unit  
Notes  
1
2
CL  
IL  
Output load capacitance  
Output load current  
50  
100  
1
pF  
mA  
1
The DAC output can drive R and C loading. The user should consider both DC and dynamic application requirements. 50 pF  
CL provides the best dynamic performance, while 100 pF provides the best DC performance.  
2
Sink or source current ability.  
Table 77. DAC characteristics  
Symbol  
Description  
Test Conditions  
Min  
VSS  
Typ  
Max  
0.15  
Unit  
Notes  
1
VDACOUTL DAC low level output  
voltage  
ADC_VREFH selected,  
Rload = 18 k, Cload = 50  
pF  
V
V
VDACOUTH DAC high level output  
voltage  
VDDA_AD —  
C_1P8 -  
0.15  
VDDA_AD  
C_1P8  
DNL  
Differential nonlinearity  
error  
Code 100h — F00h best fit —  
curve  
±0.5  
±1  
LSB  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
77  
Electrical characteristics  
Table 77. DAC characteristics (continued)  
Symbol  
INL  
Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
LSB  
Notes  
2
Integral nonlinearity error Code 100h — F00h best fit  
curve  
±1  
±2  
3
LSB  
EO  
Offset error  
Code 100h  
±0.6  
%FSR  
(Full-sc  
ale  
range)  
TEO  
Offset error temperature Code 100h  
coefficient  
±30  
V/oC  
EG  
Gain error  
Code F00h  
Code F00h  
±0.4  
±10  
%FSR  
TEG  
Gain error temperature  
coefficient  
ppm of  
FSR/oC  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
78  
Electrical characteristics  
Table 77. DAC characteristics (continued)  
Test Conditions Min Typ  
Full scale setting time in Code 100h — F00h or  
Symbol  
TFS_LS  
Description  
Max  
Unit  
s  
Notes  
4
5
Low Speed mode  
F00h — 100h @ZTC  
current  
Code 100h — F00h or  
F00h —100h @PTAT  
current  
5
TFS_MS  
TFS_HS  
TCC_LS  
TCC_MS  
TCC_HS  
Full scale setting time in Code 100h — F00h or  
Middle Speed mode  
1
F00h — 100h @ZTC  
current  
Code 100h — F00h or  
F00h — 100h @PTAT  
current  
1
Full scale setting time in Code 100h — F00h or  
High Speed mode  
0.5  
0.5  
1
F00h — 100h @ZTC  
current  
Code 100h — F00h or  
F00h — 100h @PTAT  
current  
Code to code setting  
time in Low Speed mode 807h — 7F7h @ZTC  
current  
Code 7F7h — 807h or  
Code 7F7h — 807h or  
807h — 7F7h @PTAT  
current  
1
Code to code setting  
time in Middle Speed  
mode  
Code 7F7h — 807h or  
807h — 7F7h @ZTC  
current  
0.5  
0.5  
0.3  
0.3  
Code 7F7h — 807h or  
807h — 7F7h @PTAT  
current  
Code to code setting  
time in Middle Speed  
mode  
Code 7F7h — 807h or  
807h — 7F7h @ZTC  
current  
Code 7F7h — 807h or  
807h — 7F7h @PTAT  
current  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
79  
Electrical characteristics  
Table 77. DAC characteristics (continued)  
Symbol  
SR_LS  
Description  
Test Conditions  
Min  
Typ  
0.24  
Max  
Unit  
V/s  
Notes  
5
Slew rate in Low Speed Code 100h — F00h or  
mode  
F00h — 100h @ZTC  
current  
Code 100h — F00h or  
F00h —100h @PTAT  
current  
0.24  
1.2  
1.2  
2.4  
2.4  
70  
SR_MS  
SR_HS  
Slew rate in Middle  
Speed mode  
Code 100h — F00h or  
F00h — 100h @ZTC  
current  
Code 100h — F00h or  
F00h —100h @PTAT  
current  
Slew rate in High Speed Code 100h — F00h or  
mode  
F00h — 100h @ZTC  
current  
Code 100h — F00h or  
F00h —100h @PTAT  
current  
6
PSRR  
Glitch  
Power supply rejection  
ratio  
Code 800h,  
ΔVDD_ANA18 = 100 mV,  
VREFH_ANA12 selected  
dB  
Glitch energy  
Code 100h — F00h —  
100h  
30  
30  
nV-s  
Code 7FFh — 800h —  
7FFh  
7
8
CT  
Channel to channel  
crosstalk  
-80  
dB  
ROP  
Output resistance  
Code 100h — F00h and  
200  
Rload = 18 k  
1
It is recommended to operate the DAC in the output voltage range between 0.15 V and (VDDA_ADC_1P8 - 0.15 V) for best  
accuracy. Linearity of the output voltage outside this range will be affected as current load increases.  
2
3
4
When ADC_VREFH is selected as the reference (DAC_CR[DACRFS] = 0b).  
When the internal 1.2 V source is selected as the reference (DAC_CR[DACRFS] = 1b).  
The DAC output remains within ±0.5 LSB of the final measured value for digital input code change. Noise on the power supply  
can cause this performance to degrade to ±1 LSB. This parameter represents both rising edge and falling edge settling time.  
5
6
7
8
Time for the DAC output to transition from 10% to 90% signal amplitude (rising edge or falling edge).  
PSRR = 20 x log{ΔVDD_ANA18 /ΔVDAC_OUT}  
If two DACs are used and sharing the same VREFH.  
Based on design simulation.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
80  
NXP Semiconductors  
Electrical characteristics  
4.8.3  
ACMP electrical specifications  
Table 78. ACMP operating conditions  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
VREFH_EXT  
VREFH_INT1  
External reference voltage  
Internal reference voltage  
1
1.98  
V
V
1.3  
1
This is an internal reference voltage generated by PMC0.  
Table 79. ACMP characteristics  
Condition Min  
Symbol  
VAIN  
Description  
Typ  
Max  
Unit  
Analog input voltage  
0
NVCC_GPIO1  
20  
V
VAIO  
Analog input offset  
voltage  
mV  
VH  
Analog comparator  
hysteresis  
Hystrl[1:0] = 00  
Hystrl[1:0] = 01  
Hystrl[1:0] = 10  
Hystrl[1:0] = 11  
Normal supply  
5
50  
mV  
mV  
mV  
mV  
ns  
10  
20  
30  
TDHS  
TDHS  
Propagation delay,  
high-speed mode  
Propagation delay,  
low-speed mode  
-1  
-1  
5
s  
Analog comparator  
initialization delay  
20  
1
s  
INL  
8-bit DAC integral  
non-linearity  
LSB  
LSB  
DNL  
8-bit DAC differential  
non-linearity  
1
1
The maximum input voltage for CMP analog inputs associated with GPIO_AD bank is NVCC_GPIO.  
4.8.4  
Temperature sensor  
Table 80 lists the parameters of temperature sensor.  
Table 80. Temperature sensor parameters  
Parameter  
Min  
Max  
Unit  
C  
Temperature range1  
-40  
125  
1
Accuracy of measurement: ± 5C for 25C and above, while ± 10C for below 25C.  
4.9  
Communication interfaces  
The following sections provide the information about communication interfaces.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
81  
Electrical characteristics  
4.9.1  
LPSPI timing parameters  
The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and  
slave operations. Many of the transfer attributes are programmable. The following tables provide timing  
characteristics for classic LPSPI timing modes.  
All timing is shown with respect to 20% V and 80% V thresholds, unless noted, as well as input  
DD  
DD  
signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins.  
Table 81. LPSPI Master mode timing  
Number  
Symbol  
Description  
Frequency of operation  
Min.  
Max.  
Units  
Note  
1
1
2
3
4
5
6
7
8
9
fSCK  
tSCK  
tLead  
tLag  
tWSCK  
tSU  
fperiph / 2  
MHz  
ns  
2
SCK period  
2 x tperiph  
8
Enable lead time  
1
tperiph  
tperiph  
ns  
Enable lag time  
1
Clock (SCK) high or low time  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SCK edge)  
Data hold time (outputs)  
tSCK / 2 - 3  
10  
2
ns  
tHI  
ns  
tV  
0
ns  
tHO  
ns  
1
2
Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must guaranteed  
this limit is not exceeded.  
tperiph = 1000 / fperiph  
1
PCS  
(OUTPUT)  
3
2
4
SCK  
(CPOL=0)  
(OUTPUT)  
5
5
SCK  
(CPOL=1)  
(OUTPUT)  
6
7
SIN  
(INPUT)  
2
LSB IN  
BIT 6 . . . 1  
MSB IN  
8
9
SOUT  
(OUTPUT)  
2
MSB OUT  
BIT 6 . . . 1  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 35. LPSPI Master mode timing (CPHA = 0)  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
82  
Electrical characteristics  
1
PCS  
(OUTPUT)  
2
4
3
SCK  
(CPOL=0)  
(OUTPUT)  
5
5
SCK  
(CPOL=1)  
(OUTPUT)  
6
7
SIN  
(INPUT)  
MSB IN2  
BIT 6 . . . 1  
LSB IN  
9
8
SOUT  
(OUTPUT)  
PORT DATA  
BIT 6 . . . 1  
PORT DATA  
MASTER MSB OUT  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 36. LPSPI Master mode timing (CPHA = 1)  
s
Table 82. LPSPI Slave mode timing  
Number  
Symbol  
Description  
Frequency of operation  
Min.  
Max.  
Units  
Note  
1
1
2
fSCK  
tSCK  
tLead  
tLag  
tWSCK  
tSU  
0
fperiph / 2  
MHz  
ns  
2
SCK period  
2 x tperiph  
3
Enable lead time  
1
tperiph  
tperiph  
ns  
4
Enable lag time  
1
5
Clock (SCK) high or low time  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
tSCK / 2 - 5  
6
2.7  
3.8  
0
ns  
7
tHI  
ns  
3
8
ta  
tperiph  
tperiph  
14.5  
ns  
4
9
tdis  
Slave MISO disable time  
Data valid (after SCK edge)  
Data hold time (outputs)  
ns  
10  
11  
tV  
ns  
tHO  
ns  
1
Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be  
guaranteed this limit is not exceeded.  
2
3
4
tperiph = 1000 / fperiph  
Time to data active from high-impedance state  
Hold time to high-impedance state  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
83  
Electrical characteristics  
PCS  
(INPUT)  
2
4
SCK  
(CPOL=0)  
(INPUT)  
5
5
3
SCK  
(CPOL=1)  
(INPUT)  
9
8
10  
BIT 6 . . . 1  
11  
11  
see  
SEE  
NOTE  
SIN  
(OUTPUT)  
SLAVE MSB  
7
SLAVE LSB OUT  
note  
6
SOUT  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 37. LPSPI Slave mode timing (CPHA = 0)  
PCS  
(INPUT)  
4
2
3
SCK  
(CPOL=0)  
(INPUT)  
5
5
SCK  
(CPOL=1)  
(INPUT)  
11  
BIT 6 . . . 1  
9
10  
see  
SIN  
SLAVE MSB OUT  
SLAVE LSB OUT  
LSB IN  
note  
(OUTPUT)  
8
6
7
SOUT  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
NOTE: Not defined  
Figure 38. LPSPI Slave mode timing (CPHA = 1)  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
84  
Electrical characteristics  
4.9.2  
LPI2C module timing parameters  
This section describes the timing parameters of the LPI2C module.  
Table 83. LPI2C module timing parameters  
Symbol  
Description  
Standard mode (Sm)  
Min  
Max  
100  
Unit  
Notes  
1
fSCL  
SCL clock frequency  
0
0
0
0
0
kHz  
Fast mode (Fm)  
400  
Fast mode Plus (Fm+)  
High speed mode (Hs-mode)  
Ultra Fast mode (UFm)  
1000  
3400  
5000  
1
Hs-mode and Ultra Fast mode are supported in slave mode.  
4.9.3  
Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC  
timing  
This section describes the electrical information of the uSDHC, which includes SD3.0 (Single Data Rate)  
timing and eMMC5.0 (up to 200 MHz) timing.  
4.9.3.1  
SD3.0/eMMC4.3 (Single Data Rate) specifications  
Figure 39 depicts the timing of SD3.0/eMMC4.3, and Table 84 lists the SD/eMMC4.3 timing  
characteristics.  
SD4  
SD2  
SD1  
SD5  
SDx_CLK  
SD3  
SD6  
Output from uSDHC to card  
SDx_DATA[7:0]  
SD7  
SD8  
Input from card to uSDHC  
SDx_DATA[7:0]  
Figure 39. SD/eMMC4.3 timing  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
85  
Electrical characteristics  
Table 84. SD/eMMC4.3 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
1
SD1 Clock Frequency (Low Speed)  
fPP  
0
0
400  
25/50  
20/52  
400  
kHz  
MHz  
MHz  
kHz  
ns  
2
Clock Frequency (SD/SDIO Full Speed/High Speed)  
Clock Frequency (MMC Full Speed/High Speed)  
Clock Frequency (Identification Mode)  
fPP  
3
fPP  
0
fOD  
tWL  
100  
7
SD2 Clock Low Time  
SD3 Clock High Time  
SD4 Clock Rise Time  
SD5 Clock Fall Time  
tWH  
tTLH  
tTHL  
7
ns  
3
ns  
3
ns  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD6 uSDHC Output Delay tOD -6.6  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
3.6  
ns  
SD7 uSDHC Input Setup Time  
SD8 uSDHC Input Hold Time4  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
1
2
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In high-speed mode,  
clock frequency can be any value between 050 MHz.  
3
4
In normal (full) speed mode for MMC card, clock frequency can be any value between 020 MHz. In high-speed mode, clock  
frequency can be any value between 052 MHz.  
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.  
4.9.3.2  
eMMC4.4/4.41/SD3.0 (Dual Data Rate) AC timing)  
Figure 40 depicts the timing of eMMC4.4/4.41/SD3.0. Table 85 lists the eMMC4.4/4.41/SD3.0 timing  
characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
86  
NXP Semiconductors  
Electrical characteristics  
SD1  
SDx_CLK  
SD2  
SD2  
Output from eSDHCv3 to card  
SDx_DATA[7:0]  
......  
......  
SD3  
SD4  
Input from card to eSDHCv3  
SDx_DATA[7:0]  
Figure 40. eMMC4.4/4.41/SD3.0 timing  
Table 85. eMMC4.4/4.41/SD3.0 interface timing specification  
ID  
Parameter  
Symbols  
Card Input Clock  
Min  
Max  
Unit  
SD1  
SD1  
Clock Frequency (eMMC4.4/4.41 DDR)  
Clock Frequency (SD3.0 DDR)  
fPP  
fPP  
0
0
52  
50  
MHz  
MHz  
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
uSDHC Output Delay tOD 2.8  
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD2  
6.8  
ns  
SD3  
SD4  
uSDHC Input Setup Time  
uSDHC Input Hold Time  
tISU  
tIH  
2.4  
1.2  
ns  
ns  
4.9.3.3  
SDR50/SDR104 AC timing  
Figure 41 depicts the timing of SDR50/SDR104, and Table 86 lists the SDR50/SDR104 timing  
characteristics.  
SD1  
SD2  
SD3  
SCK  
4-bit output from uSDHC to card  
4-bit input from card to uSDHC  
SD4/SD5  
SD6  
SD7  
SD8  
Figure 41. SDR50/SDR104 timing  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
87  
Electrical characteristics  
Table 86. SDR50/SDR104 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1  
SD2  
SD3  
Clock Frequency Period  
tCLK  
tCL  
5.0  
ns  
ns  
ns  
Clock Low Time  
Clock High Time  
0.46 x tCLK  
0.46 x tCLK  
0.54 x tCLK  
0.54 x tCLK  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
uSDHC Output Delay tOD –3  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)  
uSDHC Output Delay tOD –1.6  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
SD4  
SD5  
1
ns  
ns  
1
uSDHC Input Setup Time  
uSDHC Input Hold Time  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
SD6  
SD7  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1  
Card Output Data Window tODW 0.5 x tCLK  
ns  
SD8  
1Data window in SDR104 mode is variable.  
4.9.3.4  
HS200 mode timing  
Figure 42 depicts the timing of HS200 mode, and Table 87 lists the HS200 timing characteristics.  
SD1  
SD2  
SD3  
SCK  
SD5  
8-bit output from uSDHC to eMMC  
8-bit input from eMMC to uSDHC  
SD8  
Figure 42. HS200 mode timing  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
88  
Electrical characteristics  
Table 87. HS200 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1  
SD2  
SD3  
Clock Frequency Period  
tCLK  
tCL  
5.0  
ns  
ns  
ns  
Clock Low Time  
Clock High Time  
0.46 x tCLK  
0.46 x tCLK  
0.54 x tCLK  
0.54 x tCLK  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)  
uSDHC Output Delay tOD –1.6 0.74  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1  
Card Output Data Window tODW 0.5 x tCLK  
ns  
ns  
SD5  
SD8  
1HS200 is for 8 bits while SDR104 is for 4 bits.  
4.9.3.5  
HS400 specifications - eMMC 5.0 only  
Be aware that only data are sampled on both edges of the clock (not applicable to CMD). The CMD  
input/output timing for HS400 mode is the same as CMD input/output timing for HS200 mode. Check SD5  
and SD8 parameters in the HS200 interface timing specifications table for CMD input/output timing of  
HS400 mode.  
Table 87 lists the HS400 timing characteristics.  
Table 88. HS400 interface timing specification  
Symbol  
Description  
Min  
Max  
Unit  
Operating voltage  
1.71  
1.95  
V
Card input clock  
Clock frequency  
Clock period  
0
200  
MHz  
ns  
SD1  
SD2  
SD3  
5.0  
Clock Low time  
Clock High time  
0.46 x SD1  
0.46 x SD1  
0.54 x SD1  
0.54 x SD1  
ns  
ns  
SDHC output / card Inputs SDHC_CMD, SDHC_Dn (reference to SDHC_CLK)  
Output skew from data to edge of SCK  
Output skew from edge of SCK to data  
0.45  
0.45  
ns  
ns  
SD4  
SD5  
SDHC input / card outputs (reference to strobe)  
SDHC input skew  
SDHC hold skew  
0.45  
0.45  
ns  
ns  
SD6  
SD7  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
89  
Electrical characteristics  
Figure 42 depicts the timing of HS400.  
SD1  
SD3  
SD2  
SCK  
SD4  
SD5  
SD5  
SD4  
DAT0  
Output from  
uSDHC to eMMC  
DAT1  
...  
DAT7  
Strobe  
DAT0  
SD6  
SD7  
Input from  
eMMC to uSDHC  
DAT1  
...  
DAT7  
Figure 43. HS400 timing  
4.9.3.6  
Bus operation condition for 3.3 V and 1.8 V signaling  
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of  
SDR104/SDR50/HS200/HS400 mode is 1.8 V.  
4.9.4  
Ethernet controller (ENET) AC electrical specifications  
ENET MII mode timing  
4.9.4.1  
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal  
timings.  
4.9.4.1.1  
MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,  
ENET_RX_ER, and ENET_RX_CLK)  
The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There  
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the  
ENET_RX_CLK frequency.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
90  
NXP Semiconductors  
Electrical characteristics  
Figure 44 shows MII receive signal timings. Table 89 describes the timing parameters (M1–M4) shown in  
the figure.  
M3  
ENET_RX_CLK (input)  
M4  
ENET_RX_DATA3,2,1,0  
(inputs)  
ENET_RX_EN  
ENET_RX_ER  
M1  
M2  
Figure 44. MII receive signal timing diagram  
Table 89. MII receive signal timing  
ID  
Characteristic1  
Min.  
Max.  
Unit  
M1  
M2  
ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to  
ENET_RX_CLK setup  
5
ns  
ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,  
ENET_RX_ER hold  
5
ns  
M3  
M4  
ENET_RX_CLK pulse width high  
ENET_RX_CLK pulse width low  
35%  
35%  
65%  
65%  
ENET_RX_CLK period  
ENET_RX_CLK period  
1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.  
4.9.4.1.2  
MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER, and ENET_TX_CLK)  
The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%.  
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed  
twice the ENET_TX_CLK frequency.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
91  
Electrical characteristics  
Figure 45 shows MII transmit signal timings. Table 90 describes the timing parameters (M5–M8) shown  
in the figure.  
M7  
ENET_TX_CLK (input)  
M5  
M8  
ENET_TX_DATA3,2,1,0  
(outputs)  
ENET_TX_EN  
ENET_TX_ER  
M6  
Figure 45. MII transmit signal timing diagram  
Table 90. MII transmit signal timing  
ID  
Characteristic1  
Min.  
Max.  
Unit  
M5  
M6  
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER invalid  
5
ns  
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER valid  
20  
ns  
M7  
M8  
ENET_TX_CLK pulse width high  
ENET_TX_CLK pulse width low  
35%  
35%  
65%  
65%  
ENET_TX_CLK period  
ENET_TX_CLK period  
1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.  
4.9.4.1.3  
MII asynchronous inputs signal timing (ENET_CRS and ENET_COL)  
Figure 46 shows MII asynchronous input timings. Table 91 describes the timing parameter (M9) shown in  
the figure.  
ENET_CRS, ENET_COL  
M9  
Figure 46. MII asynchronous inputs timing diagram  
Table 91. MII asynchronous inputs signal timing  
ID  
M91  
Characteristic  
Min.  
Max.  
Unit  
ENET_CRS to ENET_COL minimum pulse width  
1.5  
ENET_TX_CLK period  
1 ENET_COL has the same timing in 10-Mbit 7-wire interface mode.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
92  
Electrical characteristics  
4.9.4.1.4  
MII serial management channel timing (ENET_MDIO and ENET_MDC)  
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3  
MII specification. However the ENET can function correctly with a maximum MDC frequency of  
15 MHz.  
Figure 47 shows MII asynchronous input timings. Table 92 describes the timing parameters (M10–M15)  
shown in the figure.  
M14  
M15  
ENET_MDC (output)  
M10  
ENET_MDIO (output)  
M11  
ENET_MDIO (input)  
M12  
M13  
Figure 47. MII serial management channel timing diagram  
Table 92. MII serial management channel timing  
ID  
M10  
Characteristic  
Min.  
Max.  
Unit  
ENET_MDC falling edge to ENET_MDIO output invalid (min.  
propagation delay)  
0
ns  
M11  
ENET_MDC falling edge to ENET_MDIO output valid (max.  
propagation delay)  
5
ns  
M12  
M13  
M14  
M15  
ENET_MDIO (input) to ENET_MDC rising edge setup  
ENET_MDIO (input) to ENET_MDC rising edge hold  
ENET_MDC pulse width high  
18  
0
ns  
ns  
40%  
40%  
60%  
60%  
ENET_MDC period  
ENET_MDC period  
ENET_MDC pulse width low  
4.9.4.2  
RMII mode timing  
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference  
clock.  
Figure 48 shows RMII mode timings. Table 93 describes the timing parameters (M16–M21) shown in the  
figure.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
93  
Electrical characteristics  
M16  
M17  
ENET_CLK (input)  
M18  
ENET_TX_DATA (output)  
ENET_TX_EN  
M19  
ENET_RX_EN (input)  
ENET_RX_DATA[1:0]  
ENET_RX_ER  
M20  
M21  
Figure 48. RMII mode signal timing diagram  
Table 93. RMII signal timing  
ID  
Characteristic  
Min.  
Max.  
Unit  
M16  
M17  
M18  
M19  
M20  
ENET_CLK pulse width high  
ENET_CLK pulse width low  
35%  
35%  
4
65%  
65%  
ENET_CLK period  
ENET_CLK period  
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid  
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid  
ns  
ns  
ns  
13  
ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER  
to ENET_CLK setup  
2
M21  
ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER  
hold  
2
ns  
4.9.4.3  
RGMII signal switching specifications  
The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver  
devices.  
1
Table 94. RGMII signal switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
2
Tcyc  
Clock cycle duration  
Data to clock output skew at transmitter  
7.2  
8.8  
ns  
ps  
3
TskewT  
-500  
500  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
94  
Electrical characteristics  
1
Table 94. RGMII signal switching specifications (continued)  
Symbol  
Description  
Data to clock input skew at receiver  
Min.  
Max.  
Unit  
3
TskewR  
1
2.6  
85  
ns  
%
%
ns  
Duty_G4  
Duty_T4  
Tr/Tf  
Duty cycle for Gigabit  
Duty cycle for 10/100T  
Rise/fall time (20–80%)  
45  
40  
90  
0.98  
1
The timings assume the following configuration:  
DDR_SEL = (11)b  
DSE (drive-strength) = (111)b  
2
3
For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns 40 ns and 40 ns 4 ns respectively.  
For all versions of RGMII prior to 2.0; this implies that PC board design will require clocks to be routed such that an additional  
trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value  
is unspecified.  
4
Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long  
as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned  
between.  
2'-))?48# ꢆAT TRANSMITTERꢇ  
4SKEW4  
2'-))?48$N ꢆN ꢈ ꢁ TO ꢉ ꢇ  
2'-))?48?#4,  
48%.  
48%22  
4SKEW2  
2'-))?48# ꢆAT RECEIVERꢇ  
Figure 49. RGMII transmit signal timing diagram  
2'-))?28# ꢆAT TRANSMITTERꢇ  
4SKEW4  
2'-))?28$N ꢆN ꢈ ꢁ TO ꢉ ꢇ  
2'-))?28?#4,  
28$6  
28%22  
4SKEW2  
2'-))?28# ꢆAT RECEIVERꢇ  
Figure 50. RGMII receive signal timing diagram  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
95  
Electrical characteristics  
)NTERNAL DELAY  
2'-))?28# ꢆSOURCE OF DATAꢇ  
4SETUP 4  
4 HOLD 4  
2'-))?28$N ꢆN ꢈ ꢁ TO ꢉ ꢇ  
28$6  
28%22  
2'-))?28?#4,  
4 SETUP 2  
4 HOLD 2  
2'-))?28# ꢆAT RECEIVERꢇ  
Figure 51. RGMII receive signal timing diagram with internal delay  
4.9.5  
Controller Area Network (CAN) AC electrical specifications  
The Controller Area Network (CAN) module is a communication controller implementing the CAN  
protocol according to the CAN with Flexible Data rate (CAN FD) protocol and the CAN 2.0B protocol  
specification. The processor has three CAN modules available. Tx and Rx ports are multiplexed with other  
I/O pins. See the IOMUXC chapter of the device reference manual to see which pins expose Tx and Rx  
pins; these ports are named CAN_TX and CAN_RX, respectively.  
Please refer to Section 4.3.2.1, General purpose I/O (GPIO) AC parameters.  
4.9.6  
LPUART electrical specifications  
Please refer to Section 4.3.2.1, General purpose I/O (GPIO) AC parameters.  
4.9.7  
USB PHY parameters  
This section describes the USB-OTG PHY parameters.  
The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision  
2.0 OTG with the following amendments.  
USB ENGINEERING CHANGE NOTICE  
— Title: 5V Short Circuit Withstand Requirement Change  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000  
USB ENGINEERING CHANGE NOTICE  
— Title: Pull-up/Pull-down resistors  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: Suspend Current Limit Changes  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
96  
NXP Semiconductors  
Electrical characteristics  
— Title: USB 2.0 Phase Locked SOFs  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification  
— Revision 2.0 plus errata and ecn June 4, 2010  
Battery Charging Specification (available from USB-IF)  
— Revision 1.2, December 7, 2010  
— Portable device only  
4.10 Timers  
This section provides information on timers.  
4.10.1 Pulse Width Modulator (PWM) characteristics  
This section describes the electrical information of the PWM.  
Table 95. PWM timing parameters  
Parameter  
PWM Clock Frequency  
Symbol  
Typ  
Max  
Unit  
240  
2
MHz  
ns  
Output skew  
4.10.2 Quad timer timing  
Table 96 lists the quad timer parameters.  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
97  
Electrical characteristics  
Characteristic  
Table 96. Quad timer timing  
Symbo  
Min1  
Max  
Unit  
See Figure  
Timer input period  
TIN  
2T + 6  
1T + 3  
33  
ns  
ns  
ns  
ns  
Timer input high/low period  
Timer output period  
TINHL  
TOUT  
Timer output high/low period  
TOUTHL  
16.7  
1
T = clock cycle. For 60 MHz operation, T = 16.7 ns.  
4IMER )NPUTS  
4
4
).(,  
).(,  
4
).  
4IMER /UTPUTS  
4
4
/54(,  
/54(,  
4
/54  
Figure 52. Quad timer timing  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
98  
Boot mode configuration  
5 Boot mode configuration  
This section provides information on boot mode configuration pins allocation and boot devices interfaces  
allocation.  
5.1  
Boot mode configuration pins  
Table 97 provides boot options, functionality, fuse values, and associated pins. Several input pins are also  
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.  
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an  
unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX RT1160  
Fuse Map and the System Boot chapter in i.MX RT1160 Reference Manual (IMXRT1160RM).  
Table 97. Fuses and associated pins used for boot  
Pad  
Default setting on reset  
eFuse name  
Details  
GPIO_LPSR_02  
35 K pull-down  
35 K pull-down  
HighZ  
BOOT_MODE[0]  
BOOT_MODE[1]  
BT_CFG[0]  
BT_CFG[1]  
BT_CFG[2]  
BT_CFG[3]  
BT_CFG[4]  
BT_CFG[5]  
BT_CFG[6]  
BT_CFG[7]  
BT_CFG[8]  
BT_CFG[9]  
BT_CFG[10]  
BT_CFG[11]  
GPIO_LPSR_03  
GPIO_DISP_B1_06  
GPIO_DISP_B1_07  
GPIO_DISP_B1_08  
GPIO_DISP_B1_09  
GPIO_DISP_B1_10  
GPIO_DISP_B1_11  
GPIO_DISP_B2_00  
GPIO_DISP_B2_01  
GPIO_DISP_B2_02  
GPIO_DISP_B2_03  
GPIO_DISP_B2_04  
GPIO_DISP_B2_05  
Boot Options, Pin value overrides  
fuse settings for BT_FUSE_SEL = ‘0’.  
Signal Configuration as Fuse  
Override Input at Power Up.  
These are special I/O lines that  
control the boot up configuration  
during product development. In  
production, the boot configuration can  
be controlled by fuses.  
HighZ  
HighZ  
HighZ  
HighZ  
HighZ  
HighZ  
HighZ  
HighZ  
HighZ  
HighZ  
HighZ  
5.2  
Boot device interface allocation  
The following tables list the interfaces that can be used by the boot process in accordance with the specific  
boot mode configuration. The tables also describe the interface’s specific modes and IOMUXC allocation,  
which are configured during boot when appropriate.  
Table 98. Boot through NAND  
PAD Name  
IO Function  
ALT  
Comments  
GPIO_EMC_B1_00  
GPIO_EMC_B1_01  
GPIO_EMC_B2_02  
semc.DATA[0]  
semc.DATA[1]  
semc.DATA[2]  
ALT 0  
ALT 0  
ALT 0  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
99  
Boot mode configuration  
Table 98. Boot through NAND  
GPIO_EMC_B1_03  
GPIO_EMC_B1_04  
GPIO_EMC_B1_05  
GPIO_EMC_B1_06  
GPIO_EMC_B1_07  
GPIO_EMC_B1_30  
GPIO_EMC_B1_31  
GPIO_EMC_B1_32  
GPIO_EMC_B1_33  
GPIO_EMC_B1_34  
GPIO_EMC_B1_35  
GPIO_EMC_B1_36  
GPIO_EMC_B1_37  
GPIO_EMC_B1_18  
GPIO_EMC_B1_19  
GPIO_EMC_B1_20  
GPIO_EMC_B1_22  
GPIO_EMC_B1_41  
semc.DATA[3]  
semc.DATA[4]  
semc.DATA[5]  
semc.DATA[6]  
semc.DATA[7]  
semc.DATA[8]  
semc.DATA[9]  
semc.DATA[10]  
semc.DATA[11]  
semc.DATA[12]  
semc.DATA[13]  
semc.DATA[14]  
semc.DATA[15]  
semc.ADDR[9]  
semc.ADDR[11]  
semc.ADDR[12]  
semc.BA1  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
semc.CSX[0]  
Table 99. Boot through FlexSPI1  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_SD_B2_00  
GPIO_SD_B2_01  
GPIO_SD_B2_02  
GPIO_SD_B2_03  
GPIO_SD_B2_04  
GPIO_SD_B1_05  
GPIO_SD_B1_04  
GPIO_SD_B1_03  
GPIO_SD_B2_05  
GPIO_EMC_B2_18  
flexspi1.B_DATA[3]  
flexspi1.B_DATA[2]  
flexspi1.B_DATA[1]  
flexspi1.B_DATA[0]  
flexspi1.B_SCLK  
flexspi1.B_DQS  
ALT 1  
ALT 1  
ALT 1  
ALT 1  
ALT 1  
ALT 8  
ALT 8  
ALT 9  
ALT 1  
ALT 6  
flexspi1.B_SS0_B  
flexspi1.B_SS1_B  
flexspi1.A_DQS  
flexspi1.A_DQS  
Secondary  
option for DQS  
GPIO_SD_B2_06  
GPIO_SD_B1_02  
flexspi1.A_SS0_B  
flexspi1.A_SS1_B  
ALT 1  
ALT 9  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
100  
Boot mode configuration  
Mux Mode Comments  
Table 99. Boot through FlexSPI1 (continued)  
PAD Name  
IO Function  
GPIO_SD_B2_07  
GPIO_SD_B2_08  
GPIO_SD_B2_09  
GPIO_SD_B2_10  
GPIO_SD_B2_11  
flexspi1.A_SCLK  
flexspi1.A_DATA[0]  
flexspi1.A_DATA[1]  
flexspi1.A_DATA[2]  
flexspi1.A_DATA[3]  
ALT 1  
ALT 1  
ALT 1  
ALT 1  
ALT 1  
Table 100. Boot through FlexSPI2 (QSPI/HyperFLASH)  
PAD Name  
IO Function  
ALT  
Comments  
GPIO_EMC_B1_41  
GPIO_EMC_B2_00  
GPIO_EMC_B2_01  
GPIO_EMC_B2_02  
GPIO_EMC_B2_03  
GPIO_EMC_B2_04  
GPIO_EMC_B2_05  
GPIO_EMC_B2_06  
GPIO_EMC_B2_07  
GPIO_EMC_B2_08  
GPIO_EMC_B2_09  
GPIO_EMC_B2_10  
GPIO_EMC_B2_11  
GPIO_EMC_B2_12  
GPIO_EMC_B2_13  
GPIO_EMC_B2_14  
GPIO_EMC_B2_15  
GPIO_EMC_B2_16  
GPIO_EMC_B2_17  
GPIO_EMC_B2_18  
GPIO_EMC_B2_19  
GPIO_EMC_B2_20  
flexspi2.B_DATA[7]  
flexspi2.B_DATA[6]  
flexspi2.B_DATA[5]  
flexspi2.B_DATA[4]  
flexspi2.B_DATA[3]  
flexspi2.B_DATA[2]  
flexspi2.B_DATA[1]  
flexspi2.B_DATA[0]  
flexspi2.B_DQS  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
flexspi2.B_SS0_B  
flexspi2.B_SCLK  
flexspi2.A_SCLK  
flexspi2.A_SS0_B  
flexspi2.A_DQS  
flexspi2.A_DATA[0]  
flexspi2.A_DATA[1]  
flexspi2.A_DATA[2]  
flexspi2.A_DATA[3]  
flexspi2.A_DATA[4]  
flexspi2.A_DATA[5]  
flexspi2.A_DATA[6]  
flexspi2.A_DATA[7]  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
101  
Boot mode configuration  
PAD Name  
Table 101. FlexSPI reset  
IO Function  
Mux Mode  
Comments  
GPIO_SD_B1_00  
gpio_mux4.IO[3]  
gpio_mux2.IO[8]  
ALT 5  
ALT 5  
GPIO_EMC_B1_40  
Secondary  
option  
Table 102. Boot through SAI1  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_AD_17  
GPIO_AD_18  
GPIO_AD_19  
GPIO_AD_20  
GPIO_AD_21  
GPIO_AD_22  
GPIO_AD_23  
sai1.MCLK  
sai1.RX_SYNC  
sai1.RX_BCLK  
sai1.RX_DATA[0]  
sai1.TX_DATA[0]  
sai1.TX_BCLK  
sai1.TX_SYNC  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
Table 103. Boot through SD1  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_AD_32  
GPIO_AD_33  
usdhc1.CD_B  
usdhc1.WP  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
GPIO_AD_34  
usdhc1.VSELECT  
usdhc1.RESET_B  
usdhc1.CMD  
GPIO_AD_35  
GPIO_SD_B1_00  
GPIO_SD_B1_01  
GPIO_SD_B1_02  
GPIO_SD_B1_03  
GPIO_SD_B1_04  
GPIO_SD_B1_05  
usdhc1.CLK  
usdhc1.DATA0  
usdhc1.DATA1  
usdhc1.DATA2  
usdhc1.DATA3  
Table 104. Boot through SD2  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_AD_26  
GPIO_AD_27  
usdhc2.CD_B  
usdhc2.WP  
ALT 11  
ALT 11  
ALT 11  
ALT 0  
GPIO_AD_28  
usdhc2.VSELECT  
usdhc2.DATA3  
usdhc2.DATA2  
GPIO_SD_B2_00  
GPIO_SD_B2_01  
ALT 0  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
102  
Boot mode configuration  
Mux Mode Comments  
Table 104. Boot through SD2 (continued)  
PAD Name  
IO Function  
GPIO_SD_B2_02  
GPIO_SD_B2_03  
GPIO_SD_B2_04  
GPIO_SD_B2_05  
GPIO_SD_B2_06  
GPIO_SD_B2_08  
GPIO_SD_B2_09  
GPIO_SD_B2_10  
GPIO_SD_B2_11  
usdhc2.DATA1  
usdhc2.DATA0  
usdhc2.CLK  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
usdhc2.CMD  
usdhc2.RESET_B  
usdhc2.DATA4  
usdhc2.DATA5  
usdhc2.DATA6  
usdhc2.DATA7  
Table 105. Boot through SPI1  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_AD_28  
GPIO_AD_29  
GPIO_AD_30  
GPIO_AD_31  
lpspi1.SCK  
lpspi1.PCS0  
lpspi1.SDO  
lpspi1.SDI  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
Table 106. Boot through SPI2  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_SD_B2_07  
GPIO_SD_B2_08  
GPIO_SD_B2_09  
GPIO_SD_B2_10  
lpspi2.SCK  
lpspi2.PCS0  
lpspi2.SDO  
lpspi2.SDI  
ALT 6  
ALT 6  
ALT 6  
ALT 6  
Table 107. Boot through SPI3  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_DISP_B1_04  
GPIO_DISP_B1_07  
GPIO_DISP_B1_06  
GPIO_DISP_B1_05  
lpspi3.SCK  
lpspi3.PCS0  
lpspi3.SDO  
lpspi3.SDI  
ALT 9  
ALT 9  
ALT 9  
ALT 9  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
103  
Boot mode configuration  
PAD Name  
Table 108. Boot through SPI4  
IO Function  
Mux Mode  
Comments  
GPIO_DISP_B2_12  
GPIO_DISP_B2_15  
GPIO_DISP_B2_14  
GPIO_DISP_B2_13  
lpspi4.SCK  
lpspi4.PCS0  
lpspi4.SDO  
lpspi4.SDI  
ALT 9  
ALT 9  
ALT 9  
ALT 9  
Table 109. Boot through UART1  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_AD_24  
GPIO_AD_25  
GPIO_AD_26  
GPIO_AD_27  
lpuart1.TX  
lpuart1.RX  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
lpuart1.CTS_B  
lpuart1.RTS_B  
Table 110. Boot through UART12  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_LPSR_04  
GPIO_LPSR_05  
GPIO_LPSR_06  
GPIO_LPSR_07  
lpuart12.RTS_B  
lpuart12.CTS_B  
lpuart12.TX  
ALT 3  
ALT 3  
ALT 3  
ALT 3  
lpuart12.RX  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
104  
Package information and contact assignments  
6 Package information and contact assignments  
This section includes the contact assignment information and mechanical package drawing.  
6.1  
14 x 14 mm package information  
14 x 14 mm, 0.8 mm pitch, ball matrix  
6.1.1  
Figure 53 shows the top, bottom, and side views of the 14 x 14 mm MAPBGA package.  
Figure 53. 14 x 14 mm BGA, case x package top, bottom, and side Views  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
105  
Package information and contact assignments  
6.1.2  
14 x 14 mm supplies contact assignments and functional contact  
assignments  
Table 111 shows the device connection list for ground, sense, and reference contact signals.  
Table 111. 14 x 14 mm supplies contact assignment  
Supply Rail Name  
Ball(s) Position(s)  
Remark  
G16  
H16  
ADC_VREFH  
DAC_OUT  
DCDC_ANA  
M7, M8  
M6  
DCDC_ANA_SENSE  
DCDC_DIG  
K8, K9, L8  
L7  
DCDC_DIG_SENSE  
DCDC_GND  
K6, K7, L6  
M5, N5  
L5  
DCDC_IN  
DCDC_IN_Q  
DCDC_LN  
T4, U4  
T3, U3  
DCDC_LP  
DCDC_MODE  
DCDC_PSWITCH  
NVCC_DISP1  
NVCC_DISP2  
NVCC_EMC1  
NVCC_EMC2  
NVCC_GPIO  
NVCC_LPSR  
NVCC_SNVS  
NVCC_SD1  
N4  
P3  
D12  
E7  
F6, F7, G6  
H6, J6  
M12  
P7  
U11  
D14  
G13  
P12  
P11  
R12  
F10  
F9  
NVCC_SD2  
VDD_LPSR_ANA  
VDD_LPSR_DIG  
VDD_LPSR_IN  
VDD_MIPI_1P0  
VDD_MIPI_1P8  
VDD_USB_1P8  
VDD_USB_3P3  
H12  
G12  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
106  
Package information and contact assignments  
Table 111. 14 x 14 mm supplies contact assignment (continued)  
Supply Rail Name  
Ball(s) Position(s)  
Remark  
H8, H9, H10, J8, J9, J10, K10  
VDD_SOC_IN  
VDD_SNVS_ANA  
VDD_SNVS_DIG  
VDD_SNVS_IN  
VDDA_1P0  
U14  
T14  
U12  
N11  
M11  
K15  
J13  
VDDA_1P8_IN  
VDDA_ADC_1P8  
VDDA_ADC_3P3  
VSS  
A1, A17, B7, C8, C10, C12, C14, D4, F11, F12, F13, G3, G7, G8, G9,  
G10, G11, G15, H7, H11, J7, J11, K11, L3, L10, L11, L15, P4, P14, R4,  
R7, T12, U1, U17  
Table 112 shows an alpha-sorted list of functional contact assignments of the 14 x 14 mm package.  
Table 112. 14 x 14 mm functional contact assignment  
Default setting  
14x14  
ball  
Ball  
Ball name  
Power group  
Types Default  
modes  
Input/  
output  
Default function  
Value  
CLK1_N  
CLK1_P  
T15  
U15  
N12  
GPIO_AD_00  
GPIO_AD_01  
GPIO_AD_02  
GPIO_AD_03  
GPIO_AD_04  
GPIO_AD_05  
GPIO_AD_06  
GPIO_AD_07  
GPIO_AD_08  
NVCC_GPIO  
Digital  
GPIO  
ALT 5  
GPIO_MUX2_IO31  
GPIO_MUX3_IO0  
GPIO_MUX3_IO1  
GPIO_MUX3_IO2  
GPIO_MUX3_IO3  
GPIO_MUX3_IO4  
GPIO_MUX3_IO5  
GPIO_MUX3_IO6  
GPIO_MUX3_IO7  
Input  
35K PU1  
R14  
R13  
P15  
M13  
P13  
N13  
T17  
R15  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
Digital  
GPIO  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
35K PU  
35K PD2  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
107  
Package information and contact assignments  
Table 112. 14 x 14 mm functional contact assignment (continued)  
Default setting  
14x14  
ball  
Ball  
Ball name  
Power group  
Types Default  
modes  
Input/  
output  
Default function  
Value  
GPIO_AD_09  
R16  
R17  
P16  
P17  
L12  
N14  
M14  
N17  
N15  
M16  
L16  
K13  
K14  
K12  
J12  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
Digital  
GPIO  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
GPIO_MUX3_IO8  
GPIO_MUX3_IO9  
GPIO_MUX3_IO10  
GPIO_MUX3_IO11  
GPIO_MUX3_IO12  
GPIO_MUX3_IO13  
GPIO_MUX3_IO14  
GPIO_MUX3_IO15  
GPIO_MUX3_IO16  
GPIO_MUX3_IO17  
GPIO_MUX3_IO18  
GPIO_MUX3_IO19  
GPIO_MUX3_IO20  
GPIO_MUX3_IO21  
GPIO_MUX3_IO22  
GPIO_MUX3_IO23  
GPIO_MUX3_IO24  
GPIO_MUX3_IO25  
GPIO_MUX3_IO26  
Input  
35K PD  
GPIO_AD_10  
GPIO_AD_11  
GPIO_AD_12  
GPIO_AD_13  
GPIO_AD_14  
GPIO_AD_15  
GPIO_AD_16  
GPIO_AD_17  
GPIO_AD_18  
GPIO_AD_19  
GPIO_AD_20  
GPIO_AD_21  
GPIO_AD_22  
GPIO_AD_23  
GPIO_AD_24  
GPIO_AD_25  
GPIO_AD_26  
GPIO_AD_27  
Digital  
GPIO  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PU  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PU  
35K PU  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
L13  
M15  
L14  
N16  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
108  
Package information and contact assignments  
Table 112. 14 x 14 mm functional contact assignment (continued)  
Default setting  
14x14  
ball  
Ball  
Ball name  
Power group  
Types Default  
modes  
Input/  
output  
Default function  
Value  
GPIO_AD_28  
L17  
M17  
K17  
J17  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_DISP1  
NVCC_DISP1  
NVCC_DISP1  
NVCC_DISP1  
NVCC_DISP1  
NVCC_DISP1  
NVCC_DISP1  
NVCC_DISP1  
NVCC_DISP1  
NVCC_DISP1  
NVCC_DISP1  
Digital  
GPIO  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
GPIO_MUX3_IO27  
GPIO_MUX3_IO28  
GPIO_MUX3_IO29  
GPIO_MUX3_IO30  
GPIO_MUX3_IO31  
GPIO_MUX4_IO0  
GPIO_MUX4_IO1  
GPIO_MUX4_IO2  
GPIO_MUX4_IO21  
GPIO_MUX4_IO22  
GPIO_MUX4_IO23  
GPIO_MUX4_IO24  
GPIO_MUX4_IO25  
GPIO_MUX4_IO26  
GPIO_MUX4_IO27  
GPIO_MUX4_IO28  
GPIO_MUX4_IO29  
GPIO_MUX4_IO30  
GPIO_MUX4_IO31  
Input  
35K PD  
GPIO_AD_29  
Digital  
GPIO  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PU  
GPIO_AD_30  
Digital  
GPIO  
GPIO_AD_31  
Digital  
GPIO  
GPIO_AD_32  
K16  
H17  
J16  
Digital  
GPIO  
GPIO_AD_33  
Digital  
GPIO  
GPIO_AD_34  
Digital  
GPIO  
GPIO_AD_35  
G17  
E13  
D13  
D11  
E11  
E10  
C11  
D10  
E12  
A15  
C13  
B14  
Digital  
GPIO  
GPIO_DISP_B1_00  
GPIO_DISP_B1_01  
GPIO_DISP_B1_02  
GPIO_DISP_B1_03  
GPIO_DISP_B1_04  
GPIO_DISP_B1_05  
GPIO_DISP_B1_06  
GPIO_DISP_B1_07  
GPIO_DISP_B1_08  
GPIO_DISP_B1_09  
GPIO_DISP_B1_10  
Digital  
GPIO  
50/35K  
PD3  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
Highz  
Highz  
Highz  
Highz  
Highz  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
109  
Package information and contact assignments  
Table 112. 14 x 14 mm functional contact assignment (continued)  
Default setting  
14x14  
ball  
Ball  
Ball name  
Power group  
Types Default  
modes  
Input/  
output  
Default function  
Value  
Highz  
GPIO_DISP_B1_11  
GPIO_DISP_B2_00  
GPIO_DISP_B2_01  
GPIO_DISP_B2_02  
GPIO_DISP_B2_03  
GPIO_DISP_B2_04  
GPIO_DISP_B2_05  
GPIO_DISP_B2_06  
GPIO_DISP_B2_07  
GPIO_DISP_B2_08  
GPIO_DISP_B2_09  
GPIO_DISP_B2_10  
GPIO_DISP_B2_11  
GPIO_DISP_B2_12  
GPIO_DISP_B2_13  
GPIO_DISP_B2_14  
GPIO_DISP_B2_15  
GPIO_EMC_B1_00  
GPIO_EMC_B1_01  
A14  
E8  
F8  
E9  
D7  
C7  
C9  
C6  
D6  
B5  
D8  
D9  
A6  
B6  
A5  
A7  
A4  
F3  
F2  
NVCC_DISP1  
NVCC_DISP2  
NVCC_DISP2  
NVCC_DISP2  
NVCC_DISP2  
NVCC_DISP2  
NVCC_DISP2  
NVCC_DISP2  
NVCC_DISP2  
NVCC_DISP2  
NVCC_DISP2  
NVCC_DISP2  
NVCC_DISP2  
NVCC_DISP2  
NVCC_DISP2  
NVCC_DISP2  
NVCC_DISP2  
NVCC_EMC1  
NVCC_EMC1  
Digital  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
GPIO_MUX5_IO0  
GPIO_MUX5_IO1  
GPIO_MUX5_IO2  
GPIO_MUX5_IO3  
GPIO_MUX5_IO4  
GPIO_MUX5_IO5  
GPIO_MUX5_IO6  
GPIO_MUX5_IO7  
GPIO_MUX5_IO8  
GPIO_MUX5_IO9  
GPIO_MUX5_IO10  
GPIO_MUX5_IO11  
GPIO_MUX5_IO12  
GPIO_MUX5_IO13  
GPIO_MUX5_IO14  
GPIO_MUX5_IO15  
GPIO_MUX5_IO16  
GPIO_MUX1_IO0  
GPIO_MUX1_IO1  
Input  
GPIO  
Digital  
GPIO  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Highz  
Digital  
GPIO  
Highz  
Digital  
GPIO  
Highz  
Digital  
GPIO  
Highz  
Digital  
GPIO  
Highz  
Digital  
GPIO  
Highz  
Digital  
GPIO  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PU  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
110  
Package information and contact assignments  
Table 112. 14 x 14 mm functional contact assignment (continued)  
Default setting  
14x14  
ball  
Ball  
Ball name  
Power group  
Types Default  
modes  
Input/  
output  
Default function  
Value  
GPIO_EMC_B1_02  
GPIO_EMC_B1_03  
GPIO_EMC_B1_04  
GPIO_EMC_B1_05  
GPIO_EMC_B1_06  
GPIO_EMC_B1_07  
GPIO_EMC_B1_08  
GPIO_EMC_B1_09  
GPIO_EMC_B1_10  
GPIO_EMC_B1_11  
GPIO_EMC_B1_12  
GPIO_EMC_B1_13  
GPIO_EMC_B1_14  
GPIO_EMC_B1_15  
GPIO_EMC_B1_16  
GPIO_EMC_B1_17  
GPIO_EMC_B1_18  
GPIO_EMC_B1_19  
GPIO_EMC_B1_20  
G4  
E4  
H5  
F4  
H4  
H3  
F5  
A3  
A2  
C2  
C5  
D5  
B1  
C1  
D3  
B3  
B4  
C4  
C3  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
Digital  
GPIO  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
GPIO_MUX1_IO2  
GPIO_MUX1_IO3  
GPIO_MUX1_IO4  
GPIO_MUX1_IO5  
GPIO_MUX1_IO6  
GPIO_MUX1_IO7  
GPIO_MUX1_IO8  
GPIO_MUX1_IO9  
GPIO_MUX1_IO10  
GPIO_MUX1_IO11  
GPIO_MUX1_IO12  
GPIO_MUX1_IO13  
GPIO_MUX1_IO14  
GPIO_MUX1_IO15  
GPIO_MUX1_IO16  
GPIO_MUX1_IO17  
GPIO_MUX1_IO18  
GPIO_MUX1_IO19  
GPIO_MUX1_IO20  
Input  
50/35K  
PD  
Digital  
GPIO  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
111  
Package information and contact assignments  
Table 112. 14 x 14 mm functional contact assignment (continued)  
Default setting  
14x14  
ball  
Ball  
Ball name  
Power group  
Types Default  
modes  
Input/  
output  
Default function  
Value  
GPIO_EMC_B1_21  
GPIO_EMC_B1_22  
GPIO_EMC_B1_23  
GPIO_EMC_B1_24  
GPIO_EMC_B1_25  
GPIO_EMC_B1_26  
GPIO_EMC_B1_27  
GPIO_EMC_B1_28  
GPIO_EMC_B1_29  
GPIO_EMC_B1_30  
GPIO_EMC_B1_31  
GPIO_EMC_B1_32  
GPIO_EMC_B1_33  
GPIO_EMC_B1_34  
GPIO_EMC_B1_35  
GPIO_EMC_B1_36  
GPIO_EMC_B1_37  
GPIO_EMC_B1_38  
GPIO_EMC_B1_39  
G2  
H2  
B2  
J5  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC1  
Digital  
GPIO  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
GPIO_MUX1_IO21  
GPIO_MUX1_IO22  
GPIO_MUX1_IO23  
GPIO_MUX1_IO24  
GPIO_MUX1_IO25  
GPIO_MUX1_IO26  
GPIO_MUX1_IO27  
GPIO_MUX1_IO28  
GPIO_MUX1_IO29  
GPIO_MUX1_IO30  
GPIO_MUX1_IO31  
GPIO_MUX2_IO0  
GPIO_MUX2_IO1  
GPIO_MUX2_IO2  
GPIO_MUX2_IO3  
GPIO_MUX2_IO4  
GPIO_MUX2_IO5  
GPIO_MUX2_IO6  
GPIO_MUX2_IO7  
Input  
50/35K  
PD  
Digital  
GPIO  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
J4  
Digital  
GPIO  
50/35K  
PD  
J3  
Digital  
GPIO  
50/35K  
PD  
G5  
E5  
E6  
E3  
D2  
D1  
E2  
E1  
F1  
G1  
H1  
J1  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
J2  
Digital  
GPIO  
50/35K  
PD  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
112  
Package information and contact assignments  
Table 112. 14 x 14 mm functional contact assignment (continued)  
Default setting  
14x14  
ball  
Ball  
Ball name  
Power group  
Types Default  
modes  
Input/  
output  
Default function  
Value  
GPIO_EMC_B1_40  
GPIO_EMC_B1_41  
GPIO_EMC_B2_00  
GPIO_EMC_B2_01  
GPIO_EMC_B2_02  
GPIO_EMC_B2_03  
GPIO_EMC_B2_04  
GPIO_EMC_B2_05  
GPIO_EMC_B2_06  
GPIO_EMC_B2_07  
GPIO_EMC_B2_08  
GPIO_EMC_B2_09  
GPIO_EMC_B2_10  
GPIO_EMC_B2_11  
GPIO_EMC_B2_12  
GPIO_EMC_B2_13  
GPIO_EMC_B2_14  
GPIO_EMC_B2_15  
GPIO_EMC_B2_16  
K1  
L1  
NVCC_EMC1  
NVCC_EMC1  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
Digital  
GPIO  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
GPIO_MUX2_IO8  
GPIO_MUX2_IO9  
GPIO_MUX2_IO10  
GPIO_MUX2_IO11  
GPIO_MUX2_IO12  
GPIO_MUX2_IO13  
GPIO_MUX2_IO14  
GPIO_MUX2_IO15  
GPIO_MUX2_IO16  
GPIO_MUX2_IO17  
GPIO_MUX2_IO18  
GPIO_MUX2_IO19  
GPIO_MUX2_IO20  
GPIO_MUX2_IO21  
GPIO_MUX2_IO22  
GPIO_MUX2_IO23  
GPIO_MUX2_IO24  
GPIO_MUX2_IO25  
GPIO_MUX2_IO26  
Input  
50/35K  
PD  
Digital  
GPIO  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
50/35K  
PD  
K2  
K4  
K3  
R1  
M1  
N1  
T1  
M3  
P1  
N2  
R2  
L4  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PU  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PU  
M2  
K5  
M4  
L2  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
P2  
Digital  
GPIO  
50/35K  
PD  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
113  
Package information and contact assignments  
Table 112. 14 x 14 mm functional contact assignment (continued)  
Default setting  
14x14  
ball  
Ball  
Ball name  
Power group  
Types Default  
modes  
Input/  
output  
Default function  
Value  
GPIO_EMC_B2_17  
GPIO_EMC_B2_18  
GPIO_EMC_B2_19  
GPIO_EMC_B2_20  
GPIO_LPSR_00  
GPIO_LPSR_01  
GPIO_LPSR_02  
GPIO_LPSR_03  
GPIO_LPSR_04  
GPIO_LPSR_05  
GPIO_LPSR_06  
GPIO_LPSR_07  
GPIO_LPSR_08  
GPIO_LPSR_09  
GPIO_LPSR_10  
GPIO_LPSR_11  
GPIO_LPSR_12  
GPIO_LPSR_13  
GPIO_LPSR_14  
T2  
N3  
U2  
R3  
N6  
R6  
P6  
T7  
N7  
N8  
P8  
R8  
U8  
P5  
R5  
T5  
U5  
U6  
T6  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_EMC2  
NVCC_LPSR  
NVCC_LPSR  
NVCC_LPSR  
NVCC_LPSR  
NVCC_LPSR  
NVCC_LPSR  
NVCC_LPSR  
NVCC_LPSR  
NVCC_LPSR  
NVCC_LPSR  
NVCC_LPSR  
NVCC_LPSR  
NVCC_LPSR  
NVCC_LPSR  
NVCC_LPSR  
Digital  
GPIO  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
GPIO_MUX2_IO27  
GPIO_MUX2_IO28  
GPIO_MUX2_IO29  
GPIO_MUX2_IO30  
Input  
50/35K  
PD  
Digital  
GPIO  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
ALT 10 GPIO12_IO0  
ALT 10 GPIO12_IO1  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PD  
35K PU  
Highz  
Digital  
GPIO  
Digital  
GPIO  
ALT 0  
ALT 0  
BOOT_MODE0  
BOOT_MODE1  
Digital  
GPIO  
Digital  
GPIO  
ALT 10 GPIO12_IO4  
ALT 10 GPIO12_IO5  
ALT 10 GPIO12_IO6  
ALT 10 GPIO12_IO7  
ALT 10 GPIO12_IO8  
ALT 10 GPIO12_IO9  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
JTAG_MUX_TRSTB  
Digital  
GPIO  
JTAG_MUX_TDO  
JTAG_MUX_TDI  
JTAG_MUX_MOD  
JTAG_MUX_TCK  
Digital  
GPIO  
35K PU  
35K PD  
35K PD  
Digital  
GPIO  
Digital  
GPIO  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
114  
Package information and contact assignments  
Table 112. 14 x 14 mm functional contact assignment (continued)  
Default setting  
14x14  
ball  
Ball  
Ball name  
Power group  
Types Default  
modes  
Input/  
output  
Default function  
Value  
GPIO_LPSR_15  
U7  
NVCC_LPSR  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
Digital  
GPIO  
ALT 0  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
ALT 5  
JTAG_MUX_TMS  
GPIO_MUX4_IO3  
GPIO_MUX4_IO4  
GPIO_MUX4_IO5  
GPIO_MUX4_IO6  
GPIO_MUX4_IO7  
GPIO_MUX4_IO8  
GPIO_MUX4_IO9  
GPIO_MUX4_IO10  
GPIO_MUX4_IO11  
GPIO_MUX4_IO12  
GPIO_MUX4_IO13  
GPIO_MUX4_IO14  
GPIO_MUX4_IO15  
GPIO_MUX4_IO16  
GPIO_MUX4_IO17  
GPIO_MUX4_IO18  
GPIO_MUX4_IO19  
GPIO_MUX4_IO20  
Input  
35K PU  
GPIO_SD_B1_00  
GPIO_SD_B1_01  
GPIO_SD_B1_02  
GPIO_SD_B1_03  
GPIO_SD_B1_04  
GPIO_SD_B1_05  
GPIO_SD_B2_00  
GPIO_SD_B2_01  
GPIO_SD_B2_02  
GPIO_SD_B2_03  
GPIO_SD_B2_04  
GPIO_SD_B2_05  
GPIO_SD_B2_06  
GPIO_SD_B2_07  
GPIO_SD_B2_08  
GPIO_SD_B2_09  
GPIO_SD_B2_10  
GPIO_SD_B2_11  
B16  
D15  
C15  
B17  
B15  
A16  
J15  
J14  
H13  
E15  
F14  
E14  
F17  
G14  
F15  
H15  
H14  
F16  
Digital  
GPIO  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
50/35K  
PU  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PU  
Digital  
GPIO  
50/35K  
PU  
Digital  
GPIO  
50/35K  
PU  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PU  
Digital  
GPIO  
50/35K  
PU  
Digital  
GPIO  
50/35K  
PU  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
Digital  
GPIO  
50/35K  
PD  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
115  
Package information and contact assignments  
Table 112. 14 x 14 mm functional contact assignment (continued)  
Default setting  
14x14  
ball  
Ball  
Ball name  
Power group  
Types Default  
modes  
Input/  
output  
Default function  
Value  
PD  
GPIO_SNVS_00  
R10  
P10  
L9  
NVCC_SNVS  
NVCC_SNVS  
NVCC_SNVS  
NVCC_SNVS  
NVCC_SNVS  
NVCC_SNVS  
NVCC_SNVS  
NVCC_SNVS  
NVCC_SNVS  
NVCC_SNVS  
ANALOG ALT 5  
GPIO  
GPIO13_IO3  
GPIO13_IO4  
GPIO13_IO5  
GPIO13_IO6  
GPIO13_IO7  
GPIO13_IO8  
GPIO13_IO9  
GPIO13_IO10  
GPIO13_IO11  
GPIO13_IO12  
Input  
GPIO_SNVS_01  
GPIO_SNVS_02  
GPIO_SNVS_03  
GPIO_SNVS_04  
GPIO_SNVS_05  
GPIO_SNVS_06  
GPIO_SNVS_07  
GPIO_SNVS_08  
GPIO_SNVS_09  
ANALOG ALT 5  
GPIO  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
ANALOG ALT 5  
GPIO  
M10  
N10  
P9  
ANALOG ALT 5  
GPIO  
ANALOG ALT 5  
GPIO  
ANALOG ALT 5  
GPIO  
M9  
ANALOG ALT 5  
GPIO  
R9  
ANALOG ALT 5  
GPIO  
N9  
ANALOG ALT 5  
GPIO  
R11  
ANALOG ALT 5  
GPIO  
MIPI_CSI_CKP  
MIPI_CSI_CKN  
MIPI_CSI_DN0  
MIPI_CSI_DN1  
MIPI_CSI_DP0  
MIPI_CSI_DP1  
MIPI_DSI_CKP  
MIPI_DSI_CKN  
MIPI_DSI_DN0  
MIPI_DSI_DN1  
MIPI_DSI_DP0  
MIPI_DSI_DP1  
ONOFF  
B12  
A12  
A11  
A13  
B11  
B13  
B9  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
NVCC_SNVS  
CSI  
CSI  
CSI  
CSI  
CSI  
CSI  
DSI  
DSI  
DSI  
DSI  
DSI  
DSI  
A9  
A8  
A10  
B8  
B10  
U10  
ANALOG ALT 0  
GPIO  
RESET_B  
Input  
PU  
PMIC_ON_REQ  
U9  
NVCC_SNVS  
ANALOG ALT 0  
GPIO  
SNVS_LP_PMIC_ON Output  
_REQ  
Output  
high  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
116  
Package information and contact assignments  
Table 112. 14 x 14 mm functional contact assignment (continued)  
Default setting  
14x14  
ball  
Ball  
Ball name  
Power group  
Types Default  
modes  
Input/  
output  
Default function  
Value  
PMIC_STBY_REQ  
POR_B  
T9  
NVCC_SNVS  
NVCC_SNVS  
ANALOG ALT 0  
GPIO  
CCM_PMIC_VSTBY_ Output  
REQ  
Output  
low  
T10  
ANALOG ALT 0  
GPIO  
POR_B  
PU  
RTC_XTALI  
RTC_XTALO  
TEST_MODE  
T13  
U13  
T11  
NVCC_SNVS  
ANALOG ALT 0  
GPIO  
TEST_MODE  
Input  
PD  
USB1_DN  
USB1_DP  
USB2_DN  
USB2_DP  
USB1_VBUS  
USB2_VBUS  
XTALI  
E16  
E17  
C16  
C17  
D17  
D16  
U16  
T16  
T8  
XTALO  
WAKEUP  
NVCC_SNVS  
ANALOG ALT 5  
GPIO  
GPIO13_IO0  
Input  
PU  
1
Pull-up  
2
3
Pull-down  
Typical resistance value is 50 kfor 3.3 V and 35 kfor 1.8 V. The range is from 10 kto 100 k(3.3 V) and 20 kto 50 k  
(1.8 V).  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
117  
Package information and contact assignments  
6.1.3  
14 x 14 mm, 0.8 mm pitch, ball map  
Table 113 shows the 14 x 14 mm, 0.8 mm pitch ball map for the i.MX RT1160.  
Table 113. 14 x 14 mm, 0.8 mm pitch, ball map  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
GPIO_  
EMC_  
B1_10  
GPIO_  
EMC_  
B1_09  
GPIO_  
DISP_  
B2_15  
GPIO_  
DISP_  
B2_13  
GPIO_  
DISP_  
B2_11  
GPIO_  
DISP_  
B2_14  
MIPI_  
DSI_  
DN0  
MIPI_  
DSI_  
CKN  
MIPI_  
DSI_  
DN1  
MIPI_  
CSI_  
DN0  
MIPI_  
CSI_  
CKN  
MIPI_  
CSI_  
DN1  
GPIO_  
DISP_  
B1_11  
GPIO_  
DISP_  
B1_08  
GPIO_  
SD_  
B1_05  
VSS  
VSS  
A
B
C
D
E
F
GPIO_  
EMC_  
B1_14  
GPIO_  
EMC_  
B1_23  
GPIO_  
EMC_  
B1_17  
GPIO_  
EMC_  
B1_18  
GPIO_  
DISP_  
B2_08  
GPIO_  
DISP_  
B2_12  
VSS  
MIPI_  
DSI_  
DP0  
MIPI_  
DSI_  
CKP  
MIPI_  
DSI_  
DP1  
MIPI_  
CSI_  
DP0  
MIPI_  
CSI_  
CKP  
MIPI_  
CSI_  
DP1  
GPIO_  
DISP_  
B1_10  
GPIO_  
SD_  
B1_04  
GPIO_  
SD_  
B1_00  
GPIO_  
SD_  
B1_03  
GPIO_  
EMC_  
B1_15  
GPIO_  
EMC_  
B1_11  
GPIO_  
EMC_  
B1_20  
GPIO_  
EMC_  
B1_19  
GPIO_  
EMC_  
B1_12  
GPIO_  
DISP_  
B2_06  
GPIO_  
DISP_  
B2_04  
VSS  
GPIO_  
DISP_  
B2_05  
VSS  
GPIO_  
DISP_  
B1_05  
VSS  
GPIO_  
DISP_  
B1_09  
VSS  
GPIO_  
SD_  
B1_02  
USB2_  
DN  
USB2_  
DP  
GPIO_  
EMC_  
B1_32  
GPIO_  
EMC_  
B1_31  
GPIO_  
EMC_  
B1_16  
VSS  
GPIO_  
EMC_  
B1_13  
GPIO_  
DISP_  
B2_07  
GPIO_  
DISP_  
B2_03  
GPIO_  
DISP_  
B2_09  
GPIO_  
DISP_  
B2_10  
GPIO_  
DISP_  
B1_06  
GPIO_  
DISP_  
B1_02  
NVCC_  
DISP1  
GPIO_  
DISP_  
B1_01  
NVCC_  
SD1  
GPIO_  
SD_  
B1_01  
USB2_  
VBUS  
USB1_  
VBUS  
GPIO_  
EMC_  
B1_34  
GPIO_  
EMC_  
B1_33  
GPIO_  
EMC_  
B1_30  
GPIO_  
EMC_  
B1_03  
GPIO_  
EMC_  
B1_28  
GPIO_  
EMC_  
B1_29  
NVCC_  
DISP2  
GPIO_  
DISP_  
B2_00  
GPIO_  
DISP_  
B2_02  
GPIO_  
DISP_  
B1_04  
GPIO_  
DISP_  
B1_03  
GPIO_  
DISP_  
B1_07  
GPIO_  
DISP_  
B1_00  
GPIO_  
SD_  
B2_05  
GPIO_  
SD_  
B2_03  
USB1_  
DN  
USB1_  
DP  
GPIO_  
EMC_  
B1_35  
GPIO_  
EMC_  
B1_01  
GPIO_  
EMC_  
B1_00  
GPIO_  
EMC_  
B1_05  
GPIO_  
EMC_  
B1_08  
NVCC_ NVCC_  
EMC1  
GPIO_  
DISP_  
B2_01  
VDD_  
MIPI_  
1P8  
VDD_M  
IPI_  
1P0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
GPIO_  
SD_  
B2_04  
GPIO_  
SD_  
B2_08  
GPIO_  
SD_  
B2_11  
GPIO_  
SD_  
B2_06  
EMC1  
GPIO_  
EMC_  
B1_36  
GPIO_  
EMC_  
B1_21  
VSS  
GPIO_  
EMC_  
B1_02  
GPIO_  
EMC_  
B1_27  
NVCC_  
EMC1  
VSS  
VSS  
VSS  
VSS  
VDD_  
USB_  
3P3  
NVCC_  
SD2  
GPIO_  
SD_  
B2_07  
VSS  
ADC_  
VREFH  
GPIO_  
AD_35  
G
H
J
GPIO_  
EMC_  
B1_37  
GPIO_  
EMC_  
B1_22  
GPIO_  
EMC_  
B1_07  
GPIO_  
EMC_  
B1_06  
GPIO_  
EMC_  
B1_04  
NVCC_  
EMC2  
VSS  
VSS  
VDD_  
SOC_  
IN  
VDD_  
SOC_  
IN  
VDD_  
SOC_  
IN  
VDD_  
USB_  
1P8  
GPIO_  
SD_  
B2_02  
GPIO_  
SD_  
B2_10  
GPIO_  
SD_  
B2_09  
DAC_  
OUT  
GPIO_  
AD_33  
GPIO_  
EMC_  
B1_38  
GPIO_  
EMC_  
B1_39  
GPIO_  
EMC_  
B1_26  
GPIO_  
EMC_  
B1_25  
GPIO_  
EMC_  
B1_24  
NVCC_  
EMC2  
VDD_  
SOC_  
IN  
VDD_  
SOC_  
IN  
VDD_  
SOC_  
IN  
GPIO_  
AD_23  
VDDA_  
ADC_  
3P3  
GPIO_  
SD_  
B2_01  
GPIO_  
SD_  
B2_00  
GPIO_  
AD_34  
GPIO_  
AD_31  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
118  
NXP Semiconductors  
Package information and contact assignments  
Table 113. 14 x 14 mm, 0.8 mm pitch, ball map (continued)  
GPIO_  
EMC_  
B1_40  
GPIO_  
EMC_  
B2_00  
GPIO_  
EMC_  
B2_02  
GPIO_  
EMC_  
B2_01  
GPIO_  
EMC_  
B2_13  
DCDC  
_GND  
DCDC  
_GND  
DCDC  
_DIG  
DCDC  
_DIG  
VDD_  
SOC_  
IN  
VSS  
GPIO_  
AD_22  
GPIO_  
AD_20  
GPIO_  
AD_21  
VDDA_  
ADC_  
1P8  
GPIO_  
AD_32  
GPIO_  
AD_30  
K
L
GPIO_  
EMC_  
B1_41  
GPIO_  
EMC_  
B2_15  
VSS  
GPIO_  
EMC_  
B2_11  
DCDC  
_IN_Q  
DCDC  
_GND  
DCDC  
_DIG_  
SENSE  
DCDC  
_DIG  
GPIO_  
SNVS_  
02  
VSS  
VSS  
GPIO_  
AD_13  
GPIO_  
AD_24  
GPIO_  
AD_26  
VSS  
GPIO_  
AD_19  
GPIO_  
AD_28  
GPIO_  
EMC_  
B2_04  
GPIO_  
EMC_  
B2_12  
GPIO_  
EMC_  
B2_07  
GPIO_  
EMC_  
B2_14  
DCDC  
_IN  
DCDC  
_ANA_  
SENSE  
DCDC  
_ANA  
DCDC  
_ANA  
GPIO_  
SNVS_  
06  
GPIO_  
SNVS_  
03  
VDDA_ NVCC_  
GPIO_  
AD_04  
GPIO_  
AD_15  
GPIO_  
AD_25  
GPIO_  
AD_18  
GPIO_  
AD_29  
M
N
P
R
T
1P8_IN  
GPIO  
GPIO_  
EMC_  
B2_05  
GPIO_  
EMC_  
B2_09  
GPIO_  
EMC_  
B2_18  
DCDC_  
MODE  
DCDC  
_IN  
GPIO_  
LPSR_  
00  
GPIO_  
LPSR_  
04  
GPIO_  
LPSR_  
05  
GPIO_  
SNVS_  
08  
GPIO_  
SNVS_  
04  
VDDA_  
1P0  
GPIO_  
AD_00  
GPIO_  
AD_06  
GPIO_  
AD_14  
GPIO_  
AD_17  
GPIO_  
AD_27  
GPIO_  
AD_16  
GPIO_  
EMC_  
B2_08  
GPIO_  
EMC_  
B2_16  
DCDC  
_PSWI  
TCH  
VSS  
VSS  
GPIO_  
LPSR_  
09  
GPIO_  
LPSR_  
02  
NVCC_  
LPSR  
GPIO_  
LPSR_  
06  
GPIO_  
SNVS_  
05  
GPIO_  
SNVS_  
01  
VDD_  
LPSR_  
DIG  
VDD_  
LPSR_  
ANA  
GPIO_  
AD_05  
VSS  
GPIO_  
AD_03  
GPIO_  
AD_11  
GPIO_  
AD_12  
GPIO_  
EMC_  
B2_03  
GPIO_  
EMC_  
B2_10  
GPIO_  
EMC_  
B2_20  
GPIO_  
LPSR_  
10  
GPIO_  
LPSR_  
01  
VSS  
GPIO_  
LPSR_  
07  
GPIO_  
SNVS_  
07  
GPIO_  
SNVS_  
00  
GPIO_  
SNVS_  
09  
VDD_  
LPSR_  
IN  
GPIO_  
AD_02  
GPIO_  
AD_01  
GPIO_  
AD_08  
GPIO_  
AD_09  
GPIO_  
AD_10  
GPIO_  
EMC_  
B2_06  
GPIO_  
EMC_  
B2_17  
DCDC  
_LP  
DCDC_  
LN  
GPIO_  
LPSR_  
11  
GPIO_  
LPSR_  
14  
GPIO_  
LPSR_  
03  
WAKE  
UP  
PMIC_  
STBY_  
REQ  
POR_B  
TEST_  
MODE  
VSS  
RTC_  
XTALI  
VDD_  
SNVS_  
DIG  
CLK1_  
N
XTALO  
XTALI  
GPIO_  
AD_07  
VSS  
GPIO_  
EMC_  
B2_19  
DCDC  
_LP  
DCDC_  
LN  
GPIO_  
LPSR_  
12  
GPIO_  
LPSR_  
13  
GPIO_  
LPSR_  
15  
GPIO_  
LPSR_  
08  
PMIC_  
ON_  
REQ  
ONOFF NVCC_  
SNVS  
VDD_  
RTC_  
VDD_  
CLK1_  
P
VSS  
U
SNVS_ XTALO SNVS_  
IN  
ANA  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
119  
Revision history  
7 Revision history  
Table 114 provides a revision history for this data sheet.  
Table 114. i.MX RT1160 Data Sheet document revision history (continued)  
Rev.  
Number  
Date  
Substantive Change(s)  
Rev. 0  
04/2021  
• Initial version  
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 0, 04/2021  
NXP Semiconductors  
120  
How To Reach Us  
Home Page:  
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,  
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the consequences of use of such information. NXP  
Semiconductors takes no responsibility for the content in this document if provided by an information source outside  
of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special  
or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related  
to the removal or replacement of any products or rework charges) whether or not such damages are based on tort  
(including negligence), warranty, breach of contract or any other legal theory.  
nxp.com  
Web Support:  
nxp.com/support  
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate  
and cumulative liability towards customer for the products described herein shall be limited in accordance with the  
Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this  
document, including without limitation specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the publication hereof.  
Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.  
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to  
reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also  
extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications.  
NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow  
up appropriately.  
Customer shall select products with security features that best meet rules, regulations, and standards of the intended  
application and make the ultimate design decisions regarding its products and is solely responsible for compliance  
with all legal, regulatory, and security related requirements concerning its products, regardless of any information or  
support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable  
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of  
NXP products.  
Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in  
automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to  
be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure  
or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death  
or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion  
and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use  
is at the customer's own risk.  
Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors  
product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in  
accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion  
and/or use of non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in automotive applications to automotive  
specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b) whenever customer uses the product for  
automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk,  
and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting  
from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard  
warranty and NXP Semiconductors’ product specifications.  
Suitability for use – Automotive Product (Functional Safety) Suitability for use in automotive applications —This NXP  
product has been qualified for use in automotive applications. It has been developed in accordance with ISO 26262,  
and has been ASIL-classified accordingly. If this product is used by customer in the development of, or for incorporation  
into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal  
injury, or severe physical or environmental damage (such products and services hereinafter referred to as “Critical  
Table continues on the next page...  
Applications”), then customer makes the ultimate design decisions regarding its products and is solely responsible  
for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless  
of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of  
any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer.  
Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated  
costs and expenses (including attorneys’ fees) that NXP may incur related to customer’s incorporation of any product  
in a Critical Application.  
Non-automotive products for restricted use in automotive onlySuitability for use in automotive applications — The use  
of this NXP Semiconductors product is restricted to automotive applications only. It has not been fully qualified for use  
in automotive applications. The customer of this NXP Semiconductors product therefore understands and accepts that:  
The Customer shall only use this NXP Semiconductors product for automotive applications.  
This product was not originally designed for automotive use. It will therefore, not be possible to achieve the levels  
of quality and failure analysis that are normally associated with products explicitly designed for automotive use.  
With respect to test-coverage, this product is not fully compliant to AEC-Q100.  
All product manufacturing locations are certified according to ISO/TS16949.  
Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in  
life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of  
an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property  
or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at  
the customer's own risk.  
Applications — Applications that are described herein for any of these products are for illustrative purposes only.  
NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use  
without further testing or modification.  
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors  
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit  
for the customer’s applications and products planned, as well as for the planned application and use of customer’s  
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks  
associated with their applications and products.  
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on  
any weakness or default in the customer’s applications or products, or the application or use by customer’s third party  
customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using  
NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or  
use by customer’s third party customer(s). NXP does not accept any liability in this respect.  
Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of  
IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation  
of the device at these or any other conditions above those given in the Recommended operating conditions section (if  
present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting  
values will permanently and irreversibly affect the quality and reliability of the device.  
Terms and conditions of commerical sale — NXP Semiconductors products are sold subject to the general terms  
and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a  
valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the  
respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general  
terms and conditions with regard to the purchase of NXP Semiconductors products by customer.  
Table continues on the next page...  
No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that  
is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other  
industrial or intellectual property rights.  
Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V  
may appear when operating this product, depending on settings and application. Customers incorporating or otherwise  
using these products in applications where such high voltages may appear during operation, assembly, test etc. of such  
application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting  
from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60  
950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.  
Bare die — All die are tested on compliance with their related technical specifications as stated in this data sheet up  
to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation  
conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are  
no post-packing tests performed on individual die or wafers.  
NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die.  
Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems  
after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and  
qualify their application in which the die is used. All die sales are conditioned upon and subject to the customer entering  
into a written die sale agreement with NXP Semiconductors through its legal department.  
Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and  
Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.  
Export control — This document as well as the item(s) described herein may be subject to export control regulations.  
Export might require a prior authorization from competent authorities.  
Evaluation products —This product is provided on an “as is” and “with all faults” basis for evaluation purposes only.  
NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or  
statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a  
particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with  
customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special,  
indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business,  
business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the  
product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or  
any other theory, even if advised of the possibility of such damages.  
Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all  
damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates  
and their suppliers and customer’s exclusive remedy for all of the foregoing shall be limited to actual damages incurred  
by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product  
or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent  
permitted by applicable law, even if any remedy fails of its essential purpose.  
Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail  
in case of any discrepancy between the translated and English versions.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE,  
GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE  
PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,  
SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, CodeWarrior, ColdFire,  
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, mobileGT, PEG, PowerQUICC, Processor Expert,  
QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,  
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock,  
eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their  
respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,  
Table continues on the next page...  
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,  
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks  
or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may  
be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are  
registered trademarks of Oracle and/or its affiliates. M, M Mobileye and other Mobileye trademarks or logos appearing  
herein are trademarks of Mobileye Vision Technologies Ltd. in the United States, the EU and/or other jurisdictions.  
©
NXP B.V. 2021.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release:26 April2021  
Document identifier:  
IMXRT1160XEC  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY