P87C52UFPN [NXP]

80C51 8-bit microcontroller family 8K.64K/256.1K OTP/ROM/ROMless, low voltage 2.7V.5.5V, low power, high speed 33 MHz; 80C51的8位微控制器系列8K.64K / 256.1K OTP / ROM /无ROM ,低电压2.7V.5.5V ,低功耗,高速33兆赫
P87C52UFPN
型号: P87C52UFPN
厂家: NXP    NXP
描述:

80C51 8-bit microcontroller family 8K.64K/256.1K OTP/ROM/ROMless, low voltage 2.7V.5.5V, low power, high speed 33 MHz
80C51的8位微控制器系列8K.64K / 256.1K OTP / ROM /无ROM ,低电压2.7V.5.5V ,低功耗,高速33兆赫

微控制器和处理器 外围集成电路 光电二极管 可编程只读存储器 时钟
文件: 总56页 (文件大小:340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA +  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless,  
low voltage (2.7V–5.5V), low power, high speed (33 MHz)  
Product specification  
1999 Apr 01  
Supersedes data of 1998 Jun 04  
IC20 Data Handbook  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33 MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
DESCRIPTION  
FEATURES  
Three different Single-Chip 8-Bit Microcontroller families are  
presented in this datasheet:  
80C51 Central Processing Unit  
Speed up to 33MHz  
80C32/8XC52/8XC54/8XC58  
Full static operation  
80C51FA/8XC51FA/8XC51FB/8XC51FC  
80C51RA+/8XC51RA+/8XC51RB+/8XC51RC+/8XC51RD+  
Operating voltage range: 2.7V to 5.5V @ 16MHz  
Security bits:  
ROM – 2 bits  
For applications requiring 4K ROM/EPROM, see the 8XC51/80C31  
8-bit CMOS (low voltage, low power, and high speed)  
microcontroller families datasheet.  
OTP–EPROM – 3 bits  
Encryption array – 64 bytes  
RAM expandable to 64K bytes  
4 level priority interrupt  
All the families are Single-Chip 8-Bit Microcontrollers manufactured  
in advanced CMOS process and are derivatives of the 80C51  
microcontroller family. All the devices have the same instruction set  
as the 80C51.  
These devices provide architectural enhancements that make them  
applicable in a variety of applications for general control systems.  
6 or7 interrupt sources, depending on device  
Four 8-bit I/O ports  
ROM/EPROM  
Memory Size  
(X by 8)  
RAM Size  
(X by 8)  
Programmable  
Timer Counter  
(PCA)  
Hardware  
Watch Dog  
Timer  
Full-duplex enhanced UART  
Framing error detection  
Automatic address recognition  
80C31/8XC51  
Power control modes  
Clock can be stopped and resumed  
Idle mode  
0K/4K  
128  
No  
No  
No  
No  
80C32/8XC52/54/58  
0K/8K/16K/32K  
256  
Power down mode  
80C51FA/8XC51FA/FB/FC  
0K/8K/16K/32K 256  
80C51RA+/8XC51RA+/RB+/RC+  
Programmable clock out  
Second DPTR register  
Asynchronous port reset  
Low EMI (inhibit ALE)  
Yes  
Yes  
Yes  
No  
0K/8K/16K/32K  
8XC51RD+  
64K  
512  
Yes  
Yes  
1024  
The ROMless devices, 80C32, 80C51FA, and 80C51RA+ can  
address up to 64K of external memory. All the devices have four  
8-bit I/O ports, three 16-bit timer/event counters, a multi-source,  
four-priority-level, nested interrupt structure, an enhanced UART  
and on-chip oscillator and timing circuits. For systems that require  
extra memory capability up to 64k bytes, each can be expanded  
using standard TTL-compatible memories and logic.  
Its added features make it an even more powerful microcontroller for  
applications that require pulse width modulation, high-speed I/O and  
up/down counting capabilities such as motor control. It also has a  
more versatile serial channel that facilitates multiprocessor  
communications.  
2
1999 Apr 01  
853-2068 21142  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33 MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
BLOCK DIAGRAM  
P0.0–P0.7  
P2.0–P2.7  
PORT 0  
DRIVERS  
PORT 2  
DRIVERS  
V
V
CC  
SS  
RAM ADDR  
REGISTER  
PORT 0  
LATCH  
PORT 2  
LATCH  
ROM/EPROM  
RAM  
8
B
STACK  
POINTER  
ACC  
REGISTER  
PROGRAM  
ADDRESS  
REGISTER  
TMP1  
TMP2  
BUFFER  
ALU  
SFRs  
TIMERS  
PC  
INCRE-  
MENTER  
PSW  
P.C.A. (FA & RA+ only)  
8
16  
PROGRAM  
COUNTER  
PSEN  
ALE/PROG  
DPTR’S  
MULTIPLE  
TIMING  
AND  
CONTROL  
EAV  
PP  
RST  
PORT 1  
LATCH  
PORT 3  
LATCH  
PD  
OSCILLATOR  
PORT 1  
DRIVERS  
PORT 3  
DRIVERS  
XTAL1  
XTAL2  
P1.0–P1.7  
P3.0–P3.7  
SU00831B  
3
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33 MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
LOGIC SYMBOL  
PLASTIC LEADED CHIP CARRIER PIN FUNCTIONS  
6
1
40  
V
V
SS  
CC  
XTAL1  
7
39  
ADDRESS AND  
DATA BUS  
LCC  
XTAL2  
RST  
17  
29  
T2  
T2EX  
18  
28  
EA/V  
PP  
Pin Function  
Pin Function  
Pin Function  
PSEN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
NIC*  
P1.0/T2  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.7/RD  
XTAL2  
XTAL1  
V
SS  
NIC*  
P2.0/A8  
P2.1/A9  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
P2.7/A15  
PSEN  
ALE/PROG  
NIC*  
ALE/PROG  
RxD  
P1.1/T2EX  
P1.2/ECI  
P1.3/CEX0  
P1.4/CEX1  
P1.5/CEX2  
P1.6/CEX3  
P1.7/CEX4  
RST  
P3.0/RxD  
NIC*  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
TxD  
INT0  
EA/V  
PP  
INT1  
T0  
T1  
WR  
RD  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
ADDRESS BUS  
SU00830  
V
CC  
PIN CONFIGURATIONS  
DUAL IN-LINE PACKAGE PIN FUNCTIONS  
* NO INTERNAL CONNECTION  
SU00023  
PLASTIC QUAD FLAT PACK  
PIN FUNCTIONS  
T2/P1.0  
40  
39  
V
CC  
1
2
3
T2EX/P1.1  
P0.0/AD0  
ECI/P1.2  
38 P0.1/AD1  
37 P0.2/AD2  
44  
34  
CEX0/P1.3  
CEX1/P1.4  
4
5
36  
P0.3/AD3  
35 P0.4/AD4  
34  
1
33  
23  
CEX2/P1.5  
CEX3/P1.6  
CEX4/P1.7  
RST  
6
7
8
9
PQFP  
P0.5/AD5  
33 P0.6/AD6  
32  
11  
P0.7/AD7  
DUAL  
IN-LINE  
PACKAGE  
31 EA/V  
RxD/P3.0 10  
TxD/P3.1 11  
INT0/P3.2 12  
PP  
12  
22  
30  
ALE/PROG  
Pin Function  
Pin Function  
Pin Function  
1
2
3
P1.5/CEX2  
P1.6/CEX3  
P1.7/CEX4  
RST  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
NIC*  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
SS  
29 PSEN  
28  
13  
INT1/P3.3  
P2.7/A15  
27 P2.6/A14  
26  
P2.0/A8  
P2.1/A9  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
PSEN  
4
T0/P3.4 14  
T1/P3.5 15  
WR/P3.6 16  
RD/P3.7 17  
XTAL2 18  
XTAL1 19  
5
6
P3.0/RxD  
NIC*  
P2.5/A13  
7
8
9
10  
11  
12  
13  
14  
15  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.7/RD  
XTAL2  
V
CC  
25 P2.4/A12  
24 P2.3/A11  
NIC*  
P1.0/T2  
P1.1/T2EX  
P1.2/ECI  
P1.3/CEX0  
P1.4/CEX1  
23  
22  
P2.2/A10  
P2.1/A9  
P2.0/A8  
ALE/PROG  
NIC*  
EA/V  
PP  
XTAL1  
P0.7/AD7  
21  
V
20  
SS  
SU00024  
* NO INTERNAL CONNECTION  
SU00021  
4
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33 MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
PIN DESCRIPTIONS  
PIN NUMBER  
MNEMONIC DIP  
LCC  
22  
QFP  
16  
TYPE NAME AND FUNCTION  
V
SS  
V
CC  
20  
40  
I
I
Ground: 0V reference.  
44  
38  
Power Supply: This is the power supply voltage for normal, idle, and power-down operation.  
P0.0–0.7  
39–32 43–36 37–30  
I/O  
Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to  
them float and can be used as high-impedance inputs. Port 0 is also the multiplexed  
low-order address and data bus during accesses to external program and data memory. In  
this application, it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the  
code bytes during program verification and received code bytes during EPROM  
programming. External pull-ups are required during program verification.  
P1.0–P1.7  
1–8  
2–9  
40–44,  
1–3  
I/O  
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs,  
port 1 pins that are externally pulled low will source current because of the internal pull-ups.  
(See DC Electrical Characteristics: I ). Port 1 also receives the low-order address byte  
IL  
during program memory verification.  
Alternate functions for 8XC51FX and 8XC51RX+ Port 1 include:  
T2 (P1.0): Timer/Counter 2 external count input/Clockout (see Programmable Clock-Out)  
T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control  
ECI (P1.2): External Clock Input to the PCA  
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
9
40  
41  
42  
43  
44  
1
I/O  
I
I
I/O  
I/O  
I/O  
I/O  
I/O  
CEX0 (P1.3): Capture/Compare External I/O for PCA module 0  
CEX1 (P1.4): Capture/Compare External I/O for PCA module 1  
CEX2 (P1.5): Capture/Compare External I/O for PCA module 2  
CEX3 (P1.6): Capture/Compare External I/O for PCA module 3  
CEX4 (P1.7): Capture/Compare External I/O for PCA module 4  
2
3
P2.0–P2.7  
21–28 24–31 18–25  
I/O  
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs,  
port 2 pins that are externally being pulled low will source current because of the internal  
pull-ups. (See DC Electrical Characteristics: I ). Port 2 emits the high-order address byte  
IL  
during fetches from external program memory and during accesses to external data memory  
that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal  
pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses  
(MOV @Ri), port 2 emits the contents of the P2 special function register. Some Port 2 pins  
receive the high order address bits during EPROM programming and verification.  
P3.0–P3.7  
10–17  
11,  
5,  
I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs,  
port 3 pins that are externally being pulled low will source current because of the pull-ups.  
13–19 7–13  
(See DC Electrical Characteristics: I ). Port 3 also serves the special features of the 80C51  
IL  
family, as listed below:  
10  
11  
12  
13  
14  
15  
16  
17  
11  
13  
14  
15  
16  
17  
18  
19  
5
7
I
O
I
RxD (P3.0): Serial input port  
TxD (P3.1): Serial output port  
8
INT0 (P3.2): External interrupt  
INT1 (P3.3): External interrupt  
T0 (P3.4): Timer 0 external input  
T1 (P3.5): Timer 1 external input  
WR (P3.6): External data memory write strobe  
RD (P3.7): External data memory read strobe  
9
I
10  
11  
12  
13  
I
I
O
O
RST  
9
10  
4
I
Reset: A high on this pin for two machine cycles while the oscillator is running, resets the  
device. An internal diffused resistor to V permits a power-on reset using only an external  
SS  
capacitor to V  
.
CC  
ALE/PROG  
30  
33  
27  
O
Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the  
address during an access to external memory. In normal operation, ALE is emitted at a  
constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking.  
Note that one ALE pulse is skipped during each access to external data memory. This pin is  
also the program pulse input (PROG) during EPROM programming. ALE can be disabled by  
setting SFR auxiliary.0. With this bit set, ALE will be active only during a MOVX instruction.  
5
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33 MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
PIN DESCRIPTIONS (Continued)  
PIN NUMBER  
MNEMONIC DIP  
LCC  
QFP  
TYPE NAME AND FUNCTION  
PSEN  
29  
32  
26  
O
Program Store Enable: The read strobe to external program memory. When executing  
code from the external program memory, PSEN is activated twice each machine cycle,  
except that two PSEN activations are skipped during each access to external data memory.  
PSEN is not activated during fetches from internal program memory.  
EA/V  
31  
35  
29  
I
External Access Enable/Programming Supply Voltage: EA must be externally held low  
to enable the device to fetch code from external program memory locations starting with  
0000H. If EA is held high, the device executes from internal program memory unless the  
program counter contains an address greater than 8k Devices (IFFFH), 16k Devices  
(3FFFH) or 32k Devices (7FFFH). Since the RD+ has 64k Internal Memory, the RD+ will  
execute only from internal memory when EA is held high. This pin also receives the 12.75V  
PP  
programming supply voltage (V ) during EPROM programming. If security bit 1 is  
PP  
programmed, EA will be internally latched on Reset.  
XTAL1  
19  
18  
21  
20  
15  
14  
I
Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator  
circuits.  
XTAL2  
O
Crystal 2: Output from the inverting oscillator amplifier.  
NOTE:  
To avoid “latch-up” effect at power-on, the voltage on any pin at any time must not be higher than V + 0.5V or V – 0.5V, respectively.  
CC  
SS  
6
1999 Apr 01  
8XC52/54/58 AND 80C32 ORDERING INFORMATION  
MEMORY SIZE  
MEMORY SIZE  
MEMORY SIZE  
TEMPERATURE RANGE °C  
VOLTAGE  
RANGE  
FREQ.  
(MHz)  
DWG.  
#
ROMless  
P80C32SBPN  
P80C32SBAA  
P80C32SBBB  
P80C32SFPN  
P80C32SFA A  
P80C32SFBB  
P80C32UBAA  
P80C32UBPN  
P80C32UBBB  
P80C32UFAA  
P80C32UFPN  
P80C32UFBB  
8K × 8  
16K × 8  
32K × 8  
AND PACKAGE  
ROM P80C52SBPN  
OTP P87C52SBPN  
ROM P80C52SBAA  
OTP P87C52SBAA  
ROM P80C52SBBB  
OTP P87C52SBBB  
ROM P80C52SFPN  
OTP P87C52SFPN  
ROM P80C52SFA A  
OTP P87C52SFA A  
ROM P80C52SFBB  
OTP P87C52SFBB  
ROM P80C52UBAA  
OTP P87C52UBAA  
ROM P80C52UBPN  
OTP P87C52UBPN  
ROM P80C52UBBB  
OTP P87C52UBBB  
ROM P80C52UFAA  
OTP P87C52UFAA  
ROM P80C52UFPN  
OTP P87C52UFPN  
ROM P80C52UFBB  
OTP P87C52UFBB  
P80C54SBPN  
P87C54SBPN  
P80C54SBAA  
P87C54SBAA  
P80C54SBBB  
P87C54SBBB  
P80C54SFPN  
P87C54SFPN  
P80C54SFA A  
P87C54SFA A  
P80C54SFBB  
P87C54SFBB  
P80C54UBAA  
P87C54UBAA  
P80C54UBPN  
P87C54UBPN  
P80C54UBBB  
P87C54UBBB  
P80C54UFAA  
P87C54UFAA  
P80C54UFPN  
P87C54UFPN  
P80C54UFBB  
P87C54UFBB  
P80C58SBPN  
P87C58SBPN  
P80C58SBAA  
P87C58SBAA  
P80C58SBBB  
P87C58SBBB  
P80C58SFPN  
P87C58SFPN  
P80C58SFA A  
P87C58SFA A  
P80C58SFBB  
P87C58SFBB  
P80C58UBAA  
P87C58UBAA  
P80C58UBPN  
P87C58UBPN  
P80C58UBBB  
P87C58UBBB  
P80C58UFAA  
P87C58UFAA  
P80C58UFPN  
P87C58UFPN  
P80C58UFBB  
P87C58UFBB  
0 to +70, Plastic Dual In-line Package  
0 to +70, Plastic Leaded Chip Carrier  
0 to +70, Plastic Quad Flat Pack  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
5V  
0 to 16  
0 to 16  
0 to 16  
0 to 16  
0 to 16  
0 to 16  
0 to 33  
0 to 33  
0 to 33  
0 to 33  
0 to 33  
0 to 33  
SOT129-1  
SOT187-2  
SOT307-2  
SOT129-1  
SOT187-2  
SOT307-2  
SOT187-2  
SOT129-1  
SOT307-2  
SOT187-2  
SOT129-1  
SOT307-2  
–40 to +85, Plastic Dual In-line Package  
–40 to +85, Plastic Leaded Chip Carrier  
–40 to +85, Plastic Quad Flat Pack  
0 to +70, Plastic Leaded Chip Carrier  
0 to +70, Plastic Dual In-line Package  
0 to +70, Plastic Quad Flat Pack  
5V  
5V  
–40 to +85, Plastic Leaded Chip Carrier  
–40 to +85, Plastic Dual In-line Package  
–40 to +85, Plastic Quad Flat Pack  
5V  
5V  
5V  
Note: For Multi Time Programmable devices, See P89C51RX+ Flash datasheet.  
8XC51FA/FB/FC AND 80C51FA ORDERING INFORMATION  
MEMORY SIZE  
MEMORY SIZE  
MEMORY SIZE  
TEMPERATURE RANGE °C  
VOLTAGE  
RANGE  
FREQ.  
(MHz)  
DWG.  
#
ROMless  
8K × 8  
16K × 8  
32K × 8  
AND PACKAGE  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
P83C51FA–4N  
P87C51FA–4N  
P83C51FA–4A  
P87C51FA–4A  
P83C51FA–4B  
P87C51FA–4B  
P83C51FA–5N  
P87C51FA–5N  
P83C51FA–5A  
P87C51FA–5A  
P83C51FA–5B  
P87C51FA–5B  
P83C51FA–IN  
P87C51FA–IN  
P83C51FA–IA  
P87C51FA–IA  
P83C51FA–IB  
P87C51FA–IB  
P83C51FA–JN  
P87C51FA–JN  
P83C51FA–JA  
P87C51FA–JA  
P83C51FA–JB  
P87C51FA–JB  
P83C51FB–4N  
P87C51FB–4N  
P83C51FB–4A  
P87C51FB–4A  
P83C51FB–4B  
P87C51FB–4B  
P83C51FB–5N  
P87C51FB–5N  
P83C51FB–5A  
P87C51FB–5A  
P83C51FB–5B  
P87C51FB–5B  
P83C51FB–IN  
P87C51FB–IN  
P83C51FB–IA  
P87C51FB–IA  
P83C51FB–IB  
P87C51FB–IB  
P83C51FB–JN  
P87C51FB–JN  
P83C51FB–JA  
P87C51FB–JA  
P83C51FB–JB  
P87C51FB–JB  
P83C51FC–4N  
P87C51FC–4N  
P83C51FC–4A  
P87C51FC–4A  
P83C51FC–4B  
P87C51FC–4B  
P83C51FC–5N  
P87C51FC–5N  
P83C51FC–5A  
P87C51FC–5A  
P83C51FC–5B  
P87C51FC–5B  
P83C51FC–IN  
P87C51FC–IN  
P83C51FC–IA  
P87C51FC–IA  
P83C51FC–IB  
P87C51FC–IB  
P83C51FC–JN  
P87C51FC–JN  
P83C51FC–JA  
P87C51FC–JA  
P83C51FC–JB  
P87C51FC–JB  
P80C51FA–4N  
P80C51FA–4A  
P80C51FA–4B  
P80C51FA–5N  
P80C51FA–5A  
P80C51FA–5B  
P80C51FA–IN  
P80C51FA–IA  
P80C51FA–IB  
P80C51FA–JN  
P80C51FA–JA  
P80C51FA–JB  
0 to +70, 40-Pin Plastic Dual In-line Pkg.  
0 to +70, 44-Pin Plastic Leaded Chip Carrier  
0 to +70, 44-Pin Plastic Quad Flat Pack  
–40 to +85, 40-Pin Plastic Dual In-line Pkg.  
–40 to +85, 44-Pin Plastic Leaded Chip Carrier  
–40 to +85, 44-Pin Plastic Quad Flat Pack  
0 to +70, 40-Pin Plastic Dual In-line Pkg.  
0 to +70, 44-Pin Plastic Leaded Chip Carrier  
0 to +70, 44-Pin Plastic Quad Flat Pack  
–40 to +85, 40-Pin Plastic Dual In-line Pkg.  
–40 to +85, 44-Pin Plastic Leaded Chip Carrier  
–40 to +85, 44-Pin Plastic Quad Flat Pack  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
5V  
0 to 16  
0 to 16  
0 to 16  
0 to 16  
0 to 16  
0 to 16  
0 to 33  
0 to 33  
0 to 33  
0 to 33  
0 to 33  
0 to 33  
SOT129-1  
SOT187-2  
SOT307-2  
SOT129-1  
SOT187-2  
SOT307-2  
SOT129-1  
SOT187-2  
SOT307-2  
SOT129-1  
SOT187-2  
SOT307-2  
5V  
5V  
5V  
5V  
5V  
Note: For Multi Time Programmable devices, See P89C51RX+ Flash datasheet.  
87C51RA+/RB+/RC+/RD+ AND 80C51RA+ ORDERING INFORMATION  
MEMORY SIZE MEMORY SIZE MEMORY SIZE MEMORY SIZE  
TEMPERATURE RANGE °C  
VOLTAGE  
RANGE  
FREQ.  
(MHz)  
DWG.  
#
ROMless  
8K × 8  
16K × 8  
32K × 8  
64K × 8  
AND PACKAGE  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
P83C51RA+4N  
P87C51RA+4N  
P83C51RA+4A  
P87C51RA+4A  
P83C51RA+4B  
P87C51RA+4B  
P83C51RA+5N  
P87C51RA+5N  
P83C51RA+5A  
P87C51RA+5A  
P83C51RA+5B  
P87C51RA+5B  
P83C51RA+IN  
P83C51RB+4N P83C51RC+4N P83C51RD+4N  
P87C51RB+4N P87C51RC+4N P87C51RD+4N  
0 to +70,  
40-Pin Plastic Dual In-line Pkg.  
P80C51RA+4N  
2.7V to 5.5V 0 to 16 SOT129-1  
2.7V to 5.5V 0 to 16 SOT187-2  
2.7V to 5.5V 0 to 16 SOT307-2  
2.7V to 5.5V 0 to 16 SOT129-1  
2.7V to 5.5V 0 to 16 SOT187-2  
2.7V to 5.5V 0 to 16 SOT307-2  
P83C51RB+4A  
P87C51RB+4A  
P83C51RB+4B  
P87C51RB+4B  
P83C51RC+4A  
P87C51RC+4A  
P83C51RC+4B  
P87C51RC+4B  
P83C51RD+4A  
P87C51RD+4A  
P83C51RD+4B  
P87C51RD+4B  
0 to +70,  
44-Pin Plastic Leaded Chip Carrier  
P80C51RA+4A  
P80C51RA+4B  
P80C51RA+5N  
P80C51RA+5A  
P80C51RA+5B  
0 to +70,  
44-Pin Plastic Quad Flat Pack  
P83C51RB+5N P83C51RC+5N P83C51RD+5N  
P87C51RB+5N P87C51RC+5N P87C51RD+5N  
–40 to +85,  
40-Pin Plastic Dual In-line Pkg.  
P83C51RB+5A  
P87C51RB+5A  
P83C51RB+5B  
P87C51RB+5B  
P83C51RB+IN  
P83C51RC+5A  
P87C51RC+5A  
P83C51RC+5B  
P87C51RC+5B  
P83C51RC+IN  
P83C51RD+5A  
P87C51RD+5A  
P83C51RD+5B  
P87C51RD+5B  
P83C51RD+IN  
–40 to +85,  
44-Pin Plastic Leaded Chip Carrier  
–40 to +85,  
44-Pin Plastic Quad Flat Pack  
0 to +70,  
40-Pin Plastic Dual In-line Pkg.  
P80C51RA+IN  
P80C51RA+IA  
5V  
5V  
0 to 33 SOT129-1  
0 to 33 SOT187-2  
OTP  
P87C51RA+IN  
P83C51RA+IA  
P87C51RB+IN  
P83C51RB+IA  
P87C51RC+IN  
P83C51RC+IA  
P87C51RD+IN  
P83C51RD+IA  
ROM  
0 to +70,  
44-Pin Plastic Leaded Chip Carrier  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
ROM  
OTP  
P87C51RA+IA  
P83C51RA+IB  
P87C51RA+IB  
P83C51RA+JN  
P87C51RA+JN  
P83C51RA+JA  
P87C51RA+JA  
P83C51RA+JB  
P87C51RA+JB  
P87C51RB+IA  
P83C51RB+IB  
P87C51RB+IB  
P83C51RB+JN  
P87C51RB+JN  
P83C51RB+JA  
P87C51RB+JA  
P83C51RB+JB  
P87C51RB+JB  
P87C51RC+IA  
P83C51RC+IB  
P87C51RC+IB  
P83C51RC+JN  
P87C51RC+JN  
P83C51RC+JA  
P87C51RC+JA  
P83C51RC+JB  
P87C51RC+JB  
P87C51RD+IA  
P83C51RD+IB  
P87C51RD+IB  
P83C51RD+JN  
P87C51RD+JN  
P83C51RD+JA  
P87C51RD+JA  
P83C51RD+JB  
P87C51RD+JB  
0 to +70,  
44-Pin Plastic Quad Flat Pack  
P80C51RA+IB  
P80C51RA+JN  
P80C51RA+JA  
P80C51RA+JB  
5V  
5V  
5V  
5V  
0 to 33 SOT307-2  
0 to 33 SOT129-1  
0 to 33 SOT187-2  
0 to 33 SOT307-2  
–40 to +85,  
40-Pin Plastic Dual In-line Pkg.  
–40 to +85,  
44-Pin Plastic Leaded Chip Carrier  
–40 to +85,  
44-Pin Plastic Quad Flat Pack  
Note: For Multi Time Programmable devices, See P89C51RX+ Flash datasheet.  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
Table 1.  
8XC52/54/58/80C32 Special Function Registers  
DIRECT  
ADDRESS MSB  
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION  
RESET  
VALUE  
SYMBOL  
DESCRIPTION  
LSB  
ACC*  
Accumulator  
Auxiliary  
E0H  
8EH  
A2H  
F0H  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
E0  
00H  
AUXR#  
AUXR1#  
AO  
DPS  
F0  
xxxxxxx0B  
xxx0xxx0B  
00H  
3
Auxiliary 1  
LPEP  
F4  
GF3  
F3  
0
B*  
B register  
F7  
F6  
F5  
F2  
F1  
DPTR:  
DPH  
DPL  
Data Pointer (2 bytes)  
Data Pointer High  
Data Pointer Low  
83H  
82H  
00H  
00H  
AF  
EA  
BF  
AE  
AD  
ET2  
BD  
AC  
ES  
BC  
PS  
B4  
AB  
ET1  
BB  
AA  
EX1  
BA  
A9  
ET0  
B9  
A8  
EX0  
B8  
IE*  
Interrupt Enable  
Interrupt Priority  
Interrupt Priority High  
Port 0  
A8H  
B8H  
B7H  
80H  
90H  
A0H  
0x000000B  
xx000000B  
xx000000B  
FFH  
BE  
IP*  
PT2  
B5  
PT1  
B3  
PX1  
B2  
PT0  
B1  
PX0  
B0  
B7  
B6  
IPH#  
P0*  
P1*  
P2*  
P3*  
PT2H  
85  
PSH  
84  
PT1H  
83  
PX1H PT0H  
PX0H  
80  
87  
86  
82  
AD2  
92  
81  
AD1  
91  
AD7  
97  
AD6  
96  
AD5  
95  
AD4  
94  
AD3  
93  
AD0  
90  
Port 1  
T2EX  
A1  
T2  
FFH  
A7  
AD15  
B7  
RD  
A6  
AD14  
B6  
WR  
A5  
A4  
A3  
A2  
A0  
Port 2  
AD13  
B5  
AD12  
B4  
AD11  
B3  
AD10  
B2  
AD9  
B1  
AD8  
B0  
FFH  
Port 3  
B0H  
87H  
T1  
T0  
INT1  
INT0  
TxD  
RxD  
FFH  
1
2
PCON#  
Power Control  
SMOD1  
D7  
SMOD0  
D6  
POF  
GF1  
D3  
GF0  
D2  
PD  
D1  
IDL  
D0  
P
00xx0000B  
D5  
F0  
D4  
PSW*  
Program Status Word  
D0H  
CY  
AC  
RS1  
RS0  
OV  
000000x0B  
RCAP2H#  
RCAP2L#  
Timer 2 Capture High  
Timer 2 Capture Low  
CBH  
CAH  
00H  
00H  
SADDR#  
SADEN#  
Slave Address  
Slave Address Mask  
A9H  
B9H  
00H  
00H  
SBUF  
Serial Data Buffer  
99H  
xxxxxxxxB  
9F  
9E  
9D  
9C  
9B  
9A  
99  
TI  
98  
RI  
SM0/FE  
SCON*  
SP  
Serial Control  
Stack Pointer  
98H  
81H  
SM1  
SM2  
REN  
TB8  
RB8  
00H  
07H  
8F  
TF1  
CF  
TF2  
8E  
TR1  
CE  
8D  
TF0  
CD  
8C  
TR0  
CC  
8B  
IE1  
8A  
IT1  
CA  
TR2  
89  
IE0  
88  
IT0  
C8  
TCON*  
Timer Control  
88H  
00H  
CB  
C9  
T2CON*  
Timer 2 Control  
C8H  
EXF2  
RCLK  
TCLK  
EXEN2  
C/T2  
T2OE  
CP/RL2 00H  
DCEN xxxxxx00B  
T2MOD#  
TH0  
TH1  
TH2#  
TL0  
TL1  
Timer 2 Mode Control  
Timer High 0  
Timer High 1  
Timer High 2  
Timer Low 0  
C9H  
8CH  
8DH  
CDH  
8AH  
8BH  
CCH  
00H  
00H  
00H  
00H  
00H  
00H  
Timer Low 1  
Timer Low 2  
TL2#  
TMOD  
Timer Mode  
89H  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
00H  
*
SFRs are bit addressable.  
#
SFRs are modified from or added to the 80C51 SFRs.  
Reserved bits.  
1. Reset value depends on reset source.  
2. Bit will not be affected by Reset.  
3. LPEP – Low Power OTP–EPROM only operation.  
10  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
Table 2.  
8XC51FA/FB/FC, 8XC51RA+/RB+/RC+/RD+ Special Function Registers  
DIRECT  
ADDRESS MSB  
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION  
RESET  
VALUE  
SYMBOL  
DESCRIPTION  
LSB  
E0  
ACC*  
Accumulator  
E0H  
8EH  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
00H  
EXTRAM  
(RX+ only)  
AUXR#  
Auxiliary  
AO  
xxxxxx00B  
3
AUXR1#  
B*  
Auxiliary 1  
B register  
A2H  
F0H  
LPEP  
F4  
GF3  
F3  
0
DPS  
F0  
xxx0xxx0B  
00H  
F7  
F6  
F5  
F2  
F1  
CCAP0H# Module 0 Capture High  
CCAP1H# Module 1 Capture High  
CCAP2H# Module 2 Capture High  
CCAP3H# Module 3 Capture High  
CCAP4H# Module 4 Capture High  
CCAP0L# Module 0 Capture Low  
CCAP1L# Module 1 Capture Low  
CCAP2L# Module 2 Capture Low  
CCAP3L# Module 3 Capture Low  
CCAP4L# Module 4 Capture Low  
FAH  
FBH  
FCH  
FDH  
FEH  
EAH  
EBH  
ECH  
EDH  
EEH  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
xxxxxxxxB  
CCAPM0# Module 0 Mode  
CCAPM1# Module 1 Mode  
CCAPM2# Module 2 Mode  
CCAPM3# Module 3 Mode  
CCAPM4# Module 4 Mode  
DAH  
DBH  
DCH  
DDH  
DEH  
ECOM  
ECOM  
ECOM  
ECOM  
ECOM  
CAPP  
CAPP  
CAPP  
CAPP  
CAPP  
CAPN  
CAPN  
CAPN  
CAPN  
CAPN  
MAT  
MAT  
MAT  
MAT  
MAT  
TOG  
TOG  
TOG  
TOG  
TOG  
PWM  
PWM  
PWM  
PWM  
PWM  
ECCF  
ECCF  
ECCF  
ECCF  
ECCF  
x0000000B  
x0000000B  
x0000000B  
x0000000B  
x0000000B  
DF  
CF  
DE  
CR  
DD  
DC  
DB  
DA  
D9  
D8  
CCON*#  
CH#  
CL#  
PCA Counter Control  
PCA Counter High  
PCA Counter Low  
D8H  
F9H  
E9H  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
00x00000B  
00H  
00H  
CMOD#  
PCA Counter Mode  
D9H  
CIDL  
WDTE  
CPS1  
CPS0  
ECF  
00xxx000B  
DPTR:  
DPH  
DPL  
Data Pointer (2 bytes)  
Data Pointer High  
Data Pointer Low  
83H  
82H  
00H  
00H  
AF  
EA  
BF  
AE  
EC  
AD  
ET2  
BD  
AC  
ES  
AB  
ET1  
BB  
AA  
EX1  
BA  
A9  
ET0  
B9  
A8  
EX0  
B8  
IE*  
Interrupt Enable  
A8H  
B8H  
B7H  
00H  
BE  
BC  
PS  
IP*  
Interrupt Priority  
PPC  
B6  
PT2  
B5  
PT1  
B3  
PX1  
B2  
PT0  
B1  
PX0  
B0  
x0000000B  
x0000000B  
B7  
B4  
IPH#  
Interrupt Priority High  
PPCH  
PT2H  
PSH  
PT1H  
PX1H  
PT0H  
PX0H  
87  
AD7  
97  
86  
AD6  
96  
85  
AD5  
95  
84  
AD4  
94  
83  
AD3  
93  
82  
AD2  
92  
81  
AD1  
91  
80  
AD0  
90  
P0*  
P1*  
P2*  
P3*  
Port 0  
Port 1  
Port 2  
80H  
90H  
A0H  
FFH  
FFH  
FFH  
CEX4  
A7  
CEX3  
A6  
CEX2  
A5  
CEX1  
A4  
CEX0  
A3  
ECI  
A2  
T2EX  
A1  
T2  
A0  
AD15  
B7  
AD14  
B6  
AD13  
B5  
AD12  
B4  
AD11  
B3  
AD10  
B2  
AD9  
B1  
AD8  
B0  
Port 3  
B0H  
87H  
RD  
WR  
T1  
T0  
INT1  
INT0  
TxD  
RxD  
FFH  
1
2
PCON#  
Power Control  
SMOD1  
SMOD0  
POF  
GF1  
GF0  
PD  
IDL  
00xx0000B  
*
SFRs are bit addressable.  
#
SFRs are modified from or added to the 80C51 SFRs.  
Reserved bits.  
1. Reset value depends on reset source.  
2. Bit will not be affected by Reset.  
3. LPEP – Low Power OTP–EPROM only operation.  
11  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
Table 2.  
8XC51FA/FB/FC, 8XC51RA+/RB+/RC+/RD+ Special Function Registers (Continued)  
DIRECT  
ADDRESS MSB  
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION  
RESET  
VALUE  
SYMBOL  
DESCRIPTION  
LSB  
D0  
P
D7  
D6  
AC  
D5  
F0  
D4  
D3  
D2  
D1  
PSW*  
Program Status Word  
D0H  
CY  
RS1  
RS0  
OV  
000000x0B  
RACAP2H# Timer 2 Capture High  
CBH  
CAH  
00H  
00H  
RACAP2L#  
Timer 2 Capture Low  
SADDR#  
SADEN#  
Slave Address  
Slave Address Mask  
A9H  
B9H  
00H  
00H  
SBUF  
Serial Data Buffer  
99H  
xxxxxxxxB  
9F  
9E  
9D  
9C  
9B  
9A  
99  
TI  
98  
RI  
SM0/FE  
SCON*  
SP  
Serial Control  
Stack Pointer  
98H  
81H  
SM1  
SM2  
REN  
TB8  
RB8  
00H  
07H  
8F  
8E  
8D  
8C  
8B  
8A  
89  
88  
TCON*  
Timer Control  
88H  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
00H  
CF  
TF2  
CE  
EXF2  
CD  
RCLK  
CC  
TCLK  
CB  
EXEN2  
CA  
TR2  
C9  
C8  
T2CON*  
T2MOD#  
Timer 2 Control  
C8H  
C9H  
C/T2  
T2OE  
CP/RL2 00H  
DCEN xxxxxx00B  
Timer 2 Mode Control  
TH0  
TH1  
TH2#  
TL0  
TL1  
TL2#  
Timer High 0  
Timer High 1  
Timer High 2  
Timer Low 0  
Timer Low 1  
Timer Low 2  
8CH  
8DH  
CDH  
8AH  
8BH  
CCH  
00H  
00H  
00H  
00H  
00H  
00H  
TMOD  
Timer Mode  
89H  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
00H  
WDTRST  
HDW Watchdog  
Timer Reset (RX+ only)  
0A6H  
*
SFRs are bit addressable.  
#
SFRs are modified from or added to the 80C51 SFRs.  
Reserved bits.  
OSCILLATOR CHARACTERISTICS  
RESET  
XTAL1 and XTAL2 are the input and output, respectively, of an  
A reset is accomplished by holding the RST pin high for at least two  
machine cycles (24 oscillator periods), while the oscillator is running.  
To insure a good power-on reset, the RST pin must be high long  
enough to allow the oscillator time to start up (normally a few  
milliseconds) plus two machine cycles. At power-on, the voltage on  
inverting amplifier. The pins can be configured for use as an on-chip  
oscillator.  
To drive the device from an external clock source, XTAL1 should be  
driven while XTAL2 is left unconnected. There are no requirements  
on the duty cycle of the external clock signal, because the input to  
the internal clock circuitry is through a divide-by-two flip-flop.  
However, minimum and maximum high and low times specified in  
the data sheet must be observed.  
V
CC  
and RST must come up at the same time for a proper start-up.  
Ports 1, 2, and 3 will asynchronously be driven to their reset  
condition when a voltage above V (min.) is applied to RESET.  
IH1  
12  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
LOW POWER MODES  
POWER OFF FLAG  
The Power Off Flag (POF) is set by on-chip circuitry when the V  
CC  
Stop Clock Mode  
level on the 8XC51FX/8XC51RX+ rises from 0 to 5V. The POF bit  
can be set or cleared by software allowing a user to determine if the  
reset is the result of a power-on or a warm start after powerdown.  
The static design enables the clock speed to be reduced down to  
0 MHz (stopped). When the oscillator is stopped, the RAM and  
Special Function Registers retain their values. This mode allows  
step-by-step utilization and permits reduced system power  
consumption by lowering the clock frequency down to any value. For  
lowest power consumption the Power Down mode is suggested.  
The V level must remain above 3V for the POF to remain  
CC  
unaffected by the V level.  
CC  
Design Consideration  
When the idle mode is terminated by a hardware reset, the device  
normally resumes program execution, from where it left off, up to  
two machine cycles before the internal reset algorithm takes  
control. On-chip hardware inhibits access to internal RAM in this  
event, but access to the port pins is not inhibited. To eliminate the  
possibility of an unexpected write when Idle is terminated by reset,  
the instruction following the one that invokes Idle should not be  
one that writes to a port pin or to external memory.  
Idle Mode  
In the idle mode (see Table 3), the CPU puts itself to sleep while all  
of the on-chip peripherals stay active. The instruction to invoke the  
idle mode is the last instruction executed in the normal operating  
mode before the idle mode is activated. The CPU contents, the  
on-chip RAM, and all of the special function registers remain intact  
during this mode. The idle mode can be terminated either by any  
enabled interrupt (at which time the process is picked up at the  
interrupt service routine and continued), or by a hardware reset  
which starts the processor in the same manner as a power-on reset.  
ONCE Mode  
The ONCE (“On-Circuit Emulation”) Mode facilitates testing and  
debugging of systems without the device having to be removed from  
the circuit. The ONCE Mode is invoked by:  
Power-Down Mode  
To save even more power, a Power Down mode (see Table 3) can  
be invoked by software. In this mode, the oscillator is stopped and  
the instruction that invoked Power Down is the last instruction  
executed. The on-chip RAM and Special Function Registers retain  
1. Pull ALE low while the device is in reset and PSEN is high;  
2. Hold ALE low as RST is deactivated.  
While the device is in ONCE Mode, the Port 0 pins go into a float  
state, and the other port pins and ALE and PSEN are weakly pulled  
high. The oscillator circuit remains active. While the device is in this  
mode, an emulator or test CPU can be used to drive the circuit.  
Normal operation is restored when a normal reset is applied.  
their values down to 2.0V and care must be taken to return V to  
CC  
the minimum specified operating voltages before the Power Down  
Mode is terminated.  
Either a hardware reset or external interrupt can be used to exit from  
Power Down. Reset redefines all the SFRs but does not change the  
on-chip RAM. An external interrupt allows both the SFRs and the  
on-chip RAM to retain their values.  
Programmable Clock-Out  
A 50% duty cycle clock can be programmed to come out on P1.0.  
This pin, besides being a regular I/O pin, has two alternate  
functions. It can be programmed:  
To properly terminate Power Down the reset or external interrupt  
1. to input the external clock for Timer/Counter 2, or  
should not be executed before V is restored to its normal  
CC  
operating level and must be held active long enough for the  
oscillator to restart and stabilize (normally less than 10ms).  
2. to output a 50% duty cycle clock ranging from 61Hz to 4MHz at a  
16MHz operating frequency.  
With an external interrupt, INT0 and INT1 must be enabled and  
configured as level-sensitive. Holding the pin low restarts the oscillator  
but bringing the pin back high completes the exit. Once the interrupt  
is serviced, the next instruction to be executed after RETI will be the  
one following the instruction that put the device into Power Down.  
To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in  
T2CON) must be cleared and bit T20E in T2MOD must be set. Bit  
TR2 (T2CON.2) also must be set to start the timer.  
The Clock-Out frequency depends on the oscillator frequency and  
the reload value of Timer 2 capture registers (RCAP2H, RCAP2L)  
as shown in this equation:  
LPEP  
Oscillator Frequency  
The LPEP bit (AUXR.4), only needs to be set for applications  
4   (65536 * RCAP2H, RCAP2L)  
Where (RCAP2H,RCAP2L) = the content of RCAP2H and RCAP2L  
taken as a 16-bit unsigned integer.  
operating at V less than 4V.  
CC  
In the Clock-Out mode Timer 2 roll-overs will not generate an  
interrupt. This is similar to when it is used as a baud-rate generator.  
It is possible to use Timer 2 as a baud-rate generator and a clock  
generator simultaneously. Note, however, that the baud-rate and the  
Clock-Out frequency will be the same.  
Table 3. External Pin Status During Idle and Power-Down Mode  
MODE  
PROGRAM MEMORY  
Internal  
ALE  
PSEN  
PORT 0  
Data  
PORT 1  
Data  
PORT 2  
Data  
PORT 3  
Data  
Idle  
Idle  
1
1
0
0
1
1
0
0
External  
Float  
Data  
Address  
Data  
Data  
Power-down  
Power-down  
Internal  
Data  
Data  
Data  
External  
Float  
Data  
Data  
Data  
13  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
Figure 3). When reset is applied the DCEN=0 which means Timer 2  
will default to counting up. If DCEN bit is set, Timer 2 can count up  
or down depending on the value of the T2EX pin.  
TIMER 2 OPERATION  
Timer 2  
Timer 2 is a 16-bit Timer/Counter which can operate as either an  
event timer or an event counter, as selected by C/T2* in the special  
function register T2CON (see Figure 1). Timer 2 has three operating  
modes: Capture, Auto-reload (up or down counting), and Baud Rate  
Generator, which are selected by bits in the T2CON as shown in  
Table 4.  
Figure 4 shows Timer 2 which will count up automatically since  
DCEN=0. In this mode there are two options selected by bit EXEN2  
in T2CON register. If EXEN2=0, then Timer 2 counts up to 0FFFFH  
and sets the TF2 (Overflow Flag) bit upon overflow. This causes the  
Timer 2 registers to be reloaded with the 16-bit value in RCAP2L  
and RCAP2H. The values in RCAP2L and RCAP2H are preset by  
software means.  
Capture Mode  
In the capture mode there are two options which are selected by bit  
EXEN2 in T2CON. If EXEN2=0, then timer 2 is a 16-bit timer or  
counter (as selected by C/T2* in T2CON) which, upon overflowing  
sets bit TF2, the timer 2 overflow bit. This bit can be used to  
generate an interrupt (by enabling the Timer 2 interrupt bit in the  
IE register). If EXEN2= 1, Timer 2 operates as described above, but  
with the added feature that a 1-to-0 transition at external input T2EX  
causes the current value in the Timer 2 registers, TL2 and TH2, to  
be captured into registers RCAP2L and RCAP2H, respectively. In  
addition, the transition at T2EX causes bit EXF2 in T2CON to be  
set, and EXF2 like TF2 can generate an interrupt (which vectors to  
the same location as Timer 2 overflow interrupt. The Timer 2  
interrupt service routine can interrogate TF2 and EXF2 to determine  
which event caused the interrupt). The capture mode is illustrated in  
Figure 2. (There is no reload value for TL2 and TH2 in this mode.  
Even when a capture event occurs from T2EX, the counter keeps on  
counting T2EX pin transitions or osc/12 pulses.)  
If EXEN2=1, then a 16-bit reload can be triggered either by an  
overflow or by a 1-to-0 transition at input T2EX. This transition also  
sets the EXF2 bit. The Timer 2 interrupt, if enabled, can be  
generated when either TF2 or EXF2 are 1.  
In Figure 5 DCEN=1, which enables Timer 2 to count up or down.  
This mode allows pin T2EX to control the direction of count. When a  
logic 1 is applied at pin T2EX Timer 2 will count up. Timer 2 will  
overflow at 0FFFFH and set the TF2 flag, which can then generate  
an interrupt, if the interrupt is enabled. This timer overflow also  
causes the 16–bit value in RCAP2L and RCAP2H to be reloaded  
into the timer registers TL2 and TH2.  
When a logic 0 is applied at pin T2EX this causes Timer 2 to count  
down. The timer will underflow when TL2 and TH2 become equal to  
the value stored in RCAP2L and RCAP2H. Timer 2 underflow sets  
the TF2 flag and causes 0FFFFH to be reloaded into the timer  
registers TL2 and TH2.  
Auto-Reload Mode (Up or Down Counter)  
The external flag EXF2 toggles when Timer 2 underflows or  
overflows. This EXF2 bit can be used as a 17th bit of resolution if  
needed. The EXF2 flag does not generate an interrupt in this mode  
of operation.  
In the 16-bit auto-reload mode, Timer 2 can be configured (as either  
a timer or counter [C/T2* in T2CON]) then programmed to count up  
or down. The counting direction is determined by bit DCEN (Down  
Counter Enable) which is located in the T2MOD register (see  
(MSB)  
(LSB)  
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2  
CP/RL2  
Symbol  
Position  
Name and Significance  
TF2  
T2CON.7  
T2CON.6  
Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set  
when either RCLK or TCLK = 1.  
EXF2  
Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and  
EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2  
interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down  
counter mode (DCEN = 1).  
RCLK  
TCLK  
T2CON.5  
T2CON.4  
T2CON.3  
Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock  
in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.  
Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock  
in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.  
EXEN2  
Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative  
transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to  
ignore events at T2EX.  
TR2  
T2CON.2  
T2CON.1  
Start/stop control for Timer 2. A logic 1 starts the timer.  
C/T2  
Timer or counter select. (Timer 2)  
0 = Internal timer (OSC/12)  
1 = External event counter (falling edge triggered).  
CP/RL2  
T2CON.0  
Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When  
cleared, auto-reloads will occur either with Timer 2 overflows or negative transitions at T2EX when  
EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload  
on Timer 2 overflow.  
SU00728  
Figure 1. Timer/Counter 2 (T2CON) Control Register  
14  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
Table 4. Timer 2 Operating Modes  
RCLK + TCLK  
CP/RL2  
TR2  
1
MODE  
0
0
1
X
0
1
16-bit Auto-reload  
1
16-bit Capture  
Baud rate generator  
(off)  
X
X
1
0
OSC  
÷ 12  
C/T2 = 0  
TL2  
(8-bits)  
TH2  
(8-bits)  
TF2  
C/T2 = 1  
T2 Pin  
Control  
TR2  
Capture  
Transition  
Detector  
Timer 2  
Interrupt  
RCAP2L  
RCAP2H  
T2EX Pin  
EXF2  
Control  
EXEN2  
SU00066  
Figure 2. Timer 2 in Capture Mode  
T2MOD  
Symbol  
Address = 0C9H  
Not Bit Addressable  
Reset Value = XXXX XX00B  
6
5
4
3
2
T2OE  
1
DCEN  
0
Bit  
7
Function  
Not implemented, reserved for future use.*  
Timer 2 Output Enable bit.  
T2OE  
DCEN  
Down Count Enable bit. When set, this allows Timer 2 to be configured as an up/down counter.  
*
User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features.  
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is  
indeterminate.  
SU00729  
Figure 3. Timer 2 Mode (T2MOD) Control Register  
15  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
OSC  
÷ 12  
C/T2 = 0  
C/T2 = 1  
TL2  
(8-BITS)  
TH2  
(8-BITS)  
T2 PIN  
CONTROL  
TR2  
RELOAD  
TRANSITION  
DETECTOR  
RCAP2L  
RCAP2H  
TF2  
TIMER 2  
INTERRUPT  
T2EX PIN  
EXF2  
CONTROL  
EXEN2  
SU00067  
Figure 4. Timer 2 in Auto-Reload Mode (DCEN = 0)  
(DOWN COUNTING RELOAD VALUE)  
FFH  
FFH  
TOGGLE  
EXF2  
OSC  
÷12  
C/T2 = 0  
OVERFLOW  
TL2  
TH2  
TF2  
INTERRUPT  
C/T2 = 1  
T2 PIN  
CONTROL  
TR2  
COUNT  
DIRECTION  
1 = UP  
0 = DOWN  
RCAP2L  
RCAP2H  
(UP COUNTING RELOAD VALUE)  
T2EX PIN  
SU00730  
Figure 5. Timer 2 Auto Reload Mode (DCEN = 1)  
16  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
Timer 1  
Overflow  
÷ 2  
NOTE: OSC. Freq. is divided by 2, not 12.  
“0”  
“0”  
“1”  
OSC  
÷ 2  
C/T2 = 0  
C/T2 = 1  
SMOD  
RCLK  
“1”  
TL2  
(8-bits)  
TH2  
(8-bits)  
T2 Pin  
Control  
÷ 16  
RX Clock  
“1”  
“0”  
TR2  
Reload  
TCLK  
Transition  
Detector  
RCAP2L  
RCAP2H  
÷ 16  
TX Clock  
Timer 2  
Interrupt  
T2EX Pin  
EXF2  
Control  
EXEN2  
Note availability of additional external interrupt.  
SU00068  
Figure 6. Timer 2 in Baud Rate Generator Mode  
The baud rates in modes 1 and 3 are determined by Timer 2’s  
overflow rate given below:  
Table 5. Timer 2 Generated Commonly Used  
Baud Rates  
Timer 2 Overflow Rate  
Modes 1 and 3 Baud Rates +  
Timer 2  
16  
Baud Rate  
Osc Freq  
RCAP2H  
RCAP2L  
The timer can be configured for either “timer” or “counter” operation.  
In many applications, it is configured for “timer” operation (C/T2*=0).  
Timer operation is different for Timer 2 when it is being used as a  
baud rate generator.  
375K  
9.6K  
2.8K  
2.4K  
1.2K  
300  
110  
300  
110  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
6MHz  
FF  
FF  
FF  
FF  
FE  
FB  
F2  
FD  
F9  
FF  
D9  
B2  
64  
C8  
1E  
AF  
8F  
57  
Usually, as a timer it would increment every machine cycle (i.e., 1/12  
the oscillator frequency). As a baud rate generator, it increments  
every state time (i.e., 1/2 the oscillator frequency). Thus the baud  
rate formula is as follows:  
Modes 1 and 3 Baud Rates =  
6MHz  
Oscillator Frequency  
[32   [65536 * (RCAP2H, RCAP2L)]]  
Baud Rate Generator Mode  
Where: (RCAP2H, RCAP2L)= The content of RCAP2H and  
RCAP2L taken as a 16-bit unsigned integer.  
Bits TCLK and/or RCLK in T2CON (Table 5) allow the serial port  
transmit and receive baud rates to be derived from either Timer 1 or  
Timer 2. When TCLK= 0, Timer 1 is used as the serial port transmit  
baud rate generator. When TCLK= 1, Timer 2 is used as the serial  
port transmit baud rate generator. RCLK has the same effect for the  
serial port receive baud rate. With these two bits, the serial port can  
have different receive and transmit baud rates – one generated by  
Timer 1, the other by Timer 2.  
The Timer 2 as a baud rate generator mode shown in Figure 6, is  
valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a  
rollover in TH2 does not set TF2, and will not generate an interrupt.  
Thus, the Timer 2 interrupt does not have to be disabled when  
Timer 2 is in the baud rate generator mode. Also if the EXEN2  
(T2 external enable flag) is set, a 1-to-0 transition in T2EX  
(Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but  
will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2).  
Therefore when Timer 2 is in use as a baud rate generator, T2EX  
can be used as an additional external interrupt, if needed.  
Figure 6 shows the Timer 2 in baud rate generation mode. The baud  
rate generation mode is like the auto-reload mode,in that a rollover  
in TH2 causes the Timer 2 registers to be reloaded with the 16-bit  
value in registers RCAP2H and RCAP2L, which are preset by  
software.  
17  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
When Timer 2 is in the baud rate generator mode, one should not try  
to read or write TH2 and TL2. As a baud rate generator, Timer 2 is  
incremented every state time (osc/2) or asynchronously from pin T2;  
under these conditions, a read or write of TH2 or TL2 may not be  
accurate. The RCAP2 registers may be read, but should not be  
written to, because a write might overlap a reload and cause write  
and/or reload errors. The timer should be turned off (clear TR2)  
before accessing the Timer 2 or RCAP2 registers.  
If Timer 2 is being clocked internally , the baud rate is:  
fOSC  
Baud Rate +  
[32   [65536 * (RCAP2H, RCAP2L)]]  
Where f  
= Oscillator Frequency  
OSC  
To obtain the reload value for RCAP2H and RCAP2L, the above  
equation can be rewritten as:  
fOSC  
Table 5 shows commonly used baud rates and how they can be  
obtained from Timer 2.  
RCAP2H, RCAP2L + 65536 * ǒ  
Ǔ
32   Baud Rate  
Summary Of Baud Rate Equations  
Timer 2 is in baud rate generating mode. If Timer 2 is being clocked  
through pin T2(P1.0) the baud rate is:  
Timer/Counter 2 Set-up  
Except for the baud rate generator mode, the values given for  
T2CON do not include the setting of the TR2 bit. Therefore, bit TR2  
must be set, separately, to turn the timer on. See Table 6 for set-up  
of Timer 2 as a timer. Also see Table 7 for set-up of Timer 2 as a  
counter.  
Timer 2 Overflow Rate  
Baud Rate +  
16  
Table 6. Timer 2 as a Timer  
T2CON  
MODE  
INTERNAL CONTROL  
(Note 1)  
EXTERNAL CONTROL  
(Note 2)  
16-bit Auto-Reload  
00H  
01H  
34H  
24H  
14H  
08H  
09H  
36H  
26H  
16H  
16-bit Capture  
Baud rate generator receive and transmit same baud rate  
Receive only  
Transmit only  
Table 7. Timer 2 as a Counter  
TMOD  
MODE  
INTERNAL CONTROL  
(Note 1)  
EXTERNAL CONTROL  
(Note 2)  
16-bit  
02H  
03H  
0AH  
0BH  
Auto-Reload  
NOTES:  
1. Capture/reload occurs only on timer/counter overflow.  
2. Capture/reload occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate  
generator mode.  
18  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
Slave 1  
SADDR  
SADEN  
Given  
=
=
=
1100 0000  
1111 1110  
1100 000X  
Enhanced UART  
The UART operates in all of the usual modes that are described in  
the first section of Data Handbook IC20, 80C51-Based 8-Bit  
Microcontrollers. In addition the UART can perform framing error  
In the above example SADDR is the same and the SADEN data is  
used to differentiate between the two slaves. Slave 0 requires a 0 in  
bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is  
ignored. A unique address for Slave 0 would be 1100 0010 since  
slave 1 requires a 0 in bit 1. A unique address for slave 1 would be  
1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be  
selected at the same time by an address which has bit 0 = 0 (for  
slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed  
with 1100 0000.  
detect by looking for missing stop bits, and automatic address  
recognition. The UART also fully supports multiprocessor  
communication as does the standard 80C51 UART.  
When used for framing error detect the UART looks for missing stop  
bits in the communication. A missing bit will set the FE bit in the  
SCON register. The FE bit shares the SCON.7 bit with SM0 and the  
function of SCON.7 is determined by PCON.6 (SMOD0) (see  
Figure 7). If SMOD0 is set then SCON.7 functions as FE. SCON.7  
functions as SM0 when SMOD0 is cleared. When used as FE  
SCON.7 can only be cleared by software. Refer to Figure 8.  
In a more complex system the following could be used to select  
slaves 1 and 2 while excluding slave 0:  
Automatic Address Recognition  
Slave 0  
Slave 1  
Slave 2  
SADDR  
SADEN  
Given  
=
=
=
1100 0000  
1111 1001  
1100 0XX0  
Automatic Address Recognition is a feature which allows the UART  
to recognize certain addresses in the serial bit stream by using  
hardware to make the comparisons. This feature saves a great deal  
of software overhead by eliminating the need for the software to  
examine every serial address which passes by the serial port. This  
feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART  
modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be  
automatically set when the received byte contains either the “Given”  
address or the “Broadcast” address. The 9 bit mode requires that  
the 9th information bit is a 1 to indicate that the received information  
is an address and not data. Automatic address recognition is shown  
in Figure 9.  
SADDR  
SADEN  
Given  
=
=
=
1110 0000  
1111 1010  
1110 0X0X  
SADDR  
SADEN  
Given  
=
=
=
1110 0000  
1111 1100  
1110 00XX  
In the above example the differentiation among the 3 slaves is in the  
lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be  
uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and  
it can be uniquely addressed by 1110 and 0101. Slave 2 requires  
that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0  
and 1 and exclude Slave 2 use address 1110 0100, since it is  
necessary to make bit 2 = 1 to exclude slave 2.  
The 8 bit mode is called Mode 1. In this mode the RI flag will be set  
if SM2 is enabled and the information received has a valid stop bit  
following the 8 address bits and the information is either a Given or  
Broadcast address.  
Mode 0 is the Shift Register mode and SM2 is ignored.  
The Broadcast Address for each slave is created by taking the  
logical OR of SADDR and SADEN. Zeros in this result are trended  
as don’t-cares. In most cases, interpreting the don’t-cares as ones,  
the broadcast address will be FF hexadecimal.  
Using the Automatic Address Recognition feature allows a master to  
selectively communicate with one or more slaves by invoking the  
Given slave address or addresses. All of the slaves may be  
contacted by using the Broadcast address. Two special Function  
Registers are used to define the slave’s address, SADDR, and the  
address mask, SADEN. SADEN is used to define which bits in the  
SADDR are to b used and which bits are “don’t care”. The SADEN  
mask can be logically ANDed with the SADDR to create the “Given”  
address which the master will use for addressing each of the slaves.  
Use of the Given address allows multiple slaves to be recognized  
while excluding others. The following examples will help to show the  
versatility of this scheme:  
Upon reset SADDR (SFR address 0A9H) and SADEN (SFR  
address 0B9H) are leaded with 0s. This produces a given address  
of all “don’t cares” as well as a Broadcast address of all “don’t  
cares”. This effectively disables the Automatic Addressing mode and  
allows the microcontroller to use standard 80C51 type UART drivers  
which do not make use of this feature.  
Slave 0  
SADDR  
SADEN  
Given  
=
=
=
1100 0000  
1111 1101  
1100 00X0  
19  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
SCON Address = 98H  
Reset Value = 0000 0000B  
Bit Addressable  
SM0/FE  
SM1  
SM2  
REN  
TB8  
RB8  
Tl  
Rl  
Bit:  
7
6
5
4
3
2
1
0
(SMOD0 = 0/1)*  
Symbol  
FE  
Function  
Framing Error bit. This bit is set by the receiver when an invalid stop bit is detected. The FE bit is not cleared by valid  
frames but should be cleared by software. The SMOD0 bit must be set to enable access to the FE bit.  
SM0  
SM1  
Serial Port Mode Bit 0, (SMOD0 must = 0 to access bit SM0)  
Serial Port Mode Bit 1  
SM0  
SM1  
Mode  
Description  
Baud Rate**  
f /12  
OSC  
0
0
1
1
0
1
0
1
0
1
2
3
shift register  
8-bit UART  
9-bit UART  
9-bit UART  
variable  
/64 or f  
f
/32  
OSC  
OSC  
variable  
SM2  
Enables the Automatic Address Recognition feature in Modes 2 or 3. If SM2 = 1 then Rl will not be set unless the  
received 9th data bit (RB8) is 1, indicating an address, and the received byte is a Given or Broadcast Address.  
In Mode 1, if SM2 = 1 then Rl will not be activated unless a valid stop bit was received, and the received byte is a  
Given or Broadcast Address. In Mode 0, SM2 should be 0.  
REN  
TB8  
RB8  
Enables serial reception. Set by software to enable reception. Clear by software to disable reception.  
The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired.  
In modes 2 and 3, the 9th data bit that was received. In Mode 1, if SM2 = 0, RB8 is the stop bit that was received.  
In Mode 0, RB8 is not used.  
Tl  
Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the  
other modes, in any serial transmission. Must be cleared by software.  
Rl  
Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or halfway through the stop bit time in  
the other modes, in any serial reception (except see SM2). Must be cleared by software.  
NOTE:  
*SMOD0 is located at PCON6.  
**f = oscillator frequency  
OSC  
SU00043  
Figure 7. SCON: Serial Port Control Register  
20  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
START  
BIT  
DATA BYTE  
ONLY IN  
MODE 2, 3  
STOP  
BIT  
SET FE BIT IF STOP BIT IS 0 (FRAMING ERROR)  
SM0 TO UART MODE CONTROL  
SCON  
(98H)  
SM0 / FE  
SMOD1  
SM1  
SM2  
REN  
POF  
TB8  
GF1  
RB8  
GF0  
TI  
RI  
PCON  
(87H)  
SMOD0  
PD  
IDL  
0 : SCON.7 = SM0  
1 : SCON.7 = FE  
SU01191  
Figure 8. UART Framing Error Detection  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
SCON  
(98H)  
SM0  
SM1  
SM2  
REN  
1
TB8  
X
RB8  
TI  
RI  
1
1
1
0
1
RECEIVED ADDRESS D0 TO D7  
PROGRAMMED ADDRESS  
COMPARATOR  
IN UART MODE 2 OR MODE 3 AND SM2 = 1:  
INTERRUPT IF REN=1, RB8=1 AND “RECEIVED ADDRESS” = “PROGRAMMED ADDRESS”  
– WHEN OWN ADDRESS RECEIVED, CLEAR SM2 TO RECEIVE DATA BYTES  
– WHEN ALL DATA BYTES HAVE BEEN RECEIVED: SET SM2 TO WAIT FOR NEXT ADDRESS.  
SU00045  
Figure 9. UART Multiprocessor Communication, Automatic Address Recognition  
21  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
The priority scheme for servicing the interrupts is the same as that  
for the 80C51, except there are four interrupt levels rather than two  
as on the 80C51. An interrupt will be serviced as long as an interrupt  
of equal or higher priority is not already being serviced. If an  
interrupt of equal or higher level priority is being serviced, the new  
interrupt will wait until it is finished before being serviced. If a lower  
priority level interrupt is being serviced, it will be stopped and the  
new interrupt serviced. When the new interrupt is finished, the lower  
priority level interrupt that was stopped will be completed.  
Interrupt Priority Structure  
The 8XC51FA/FB/FC and 8XC51RA+/RB+/RC+/RD+ have a  
7-source four-level interrupt structure (see Table 8). The  
80C52/54/58 and 80C32 only have a 6-source four-level interrupt  
structure because these devices do not have a PCA.  
There are 3 SFRs associated with the four-level interrupt. They are  
the IE, IP, and IPH. (See Figures 10, 11, and 12.) The IPH (Interrupt  
Priority High) register makes the four-level interrupt structure  
possible. The IPH is located at SFR address B7H. The structure of  
the IPH register and a description of its bits is shown in Figure 12.  
The function of the IPH SFR is simple and when combined with the  
IP SFR determines the priority of each interrupt. The priority of each  
interrupt is determined as shown in the following table:  
PRIORITY BITS  
INTERRUPT PRIORITY LEVEL  
IPH.x  
IP.x  
0
0
0
1
1
Level 0 (lowest priority)  
Level 1  
1
0
Level 2  
1
Level 3 (highest priority)  
Table 8.  
Interrupt Table  
SOURCE  
POLLING PRIORITY  
REQUEST BITS  
HARDWARE CLEAR?  
VECTOR ADDRESS  
1
2
X0  
T0  
1
2
3
4
5
IE0  
TF0  
IE1  
N (L) Y (T)  
03H  
0B  
13  
Y
X1  
N (L) Y (T)  
T1  
TF1  
Y
N
1B  
33  
PCA  
CF, CCFn  
n = 0–4  
SP  
T2  
6
7
RI, TI  
N
N
23  
2B  
TF2, EXF2  
NOTES:  
1. L = Level activated  
2. T = Transition activated  
7
6
5
4
3
2
1
0
IE (0A8H)  
EA  
EC  
ET2  
ES  
ET1  
EX1  
ET0  
EX0  
Enable Bit = 1 enables the interrupt.  
Enable Bit = 0 disables it.  
BIT  
SYMBOL FUNCTION  
IE.7  
EA  
Global disable bit. If EA = 0, all interrupts are disabled. If EA = 1, each interrupt can be individually  
enabled or disabled by setting or clearing its enable bit.  
PCA interrupt enable bit for FX and RX+ only – otherwise it is not implemented.  
Timer 2 interrupt enable bit.  
Serial Port interrupt enable bit.  
Timer 1 interrupt enable bit.  
IE.6  
IE.5  
IE.4  
IE.3  
IE.2  
IE.1  
IE.0  
EC  
ET2  
ES  
ET1  
EX1  
ET0  
EX0  
External interrupt 1 enable bit.  
Timer 0 interrupt enable bit.  
External interrupt 0 enable bit.  
SU00840  
Figure 10. IE Registers  
22  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
7
6
5
4
3
2
1
0
IP (0B8H)  
PPC  
PT2  
PS  
PT1  
PX1  
PT0  
PX0  
Priority Bit = 1 assigns high priority  
Priority Bit = 0 assigns low priority  
BIT  
IP.7  
IP.6  
IP.5  
IP.4  
IP.3  
IP.2  
IP.1  
IP.0  
SYMBOL FUNCTION  
Not implemented, reserved for future use.  
PPC  
PT2  
PS  
PCA interrupt priority bit for FX and RX+ only, otherwise it is not implemented.  
Timer 2 interrupt priority bit.  
Serial Port interrupt priority bit.  
PT1  
PX1  
PT0  
PX0  
Timer 1 interrupt priority bit.  
External interrupt 1 priority bit.  
Timer 0 interrupt priority bit.  
External interrupt 0 priority bit.  
SU00841  
Figure 11. IP Registers  
7
6
5
4
3
2
1
0
IPH (B7H)  
PPCH  
PT2H  
PSH  
PT1H  
PX1H  
PT0H  
PX0H  
Priority Bit = 1 assigns higher priority  
Priority Bit = 0 assigns lower priority  
BIT  
SYMBOL FUNCTION  
IPH.7  
IPH.6  
IPH.5  
IPH.4  
IPH.3  
IPH.2  
IPH.1  
IPH.0  
Not implemented, reserved for future use.  
PCA interrupt priority bit high for FX and RX+ only, otherwise it is not implemented.  
Timer 2 interrupt priority bit high.  
Serial Port interrupt priority bit high.  
Timer 1 interrupt priority bit high.  
External interrupt 1 priority bit high.  
Timer 0 interrupt priority bit high.  
External interrupt 0 priority bit high.  
PPCH  
PT2H  
PSH  
PT1H  
PX1H  
PT0H  
PX0H  
SU00881  
Figure 12. IPH Registers  
23  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
be quickly toggled simply by executing an INC DPTR instruction  
without affecting the GF3 or LPEP bits.  
Reduced EMI Mode  
The AO bit (AUXR.0) in the AUXR register when set disables the  
ALE output.  
Reduced EMI Mode  
DPS  
BIT0  
AUXR (8EH)  
AUXR1  
7
6
5
4
3
2
1
0
DPTR1  
EXTRAM  
AO  
DPTR0  
DPH  
(83H)  
DPL  
(82H)  
AUXR.1  
AUXR.0  
EXTRAM  
AO  
(RX+ only)  
Turns off ALE output.  
EXTERNAL  
DATA  
MEMORY  
SU00745A  
Figure 13.  
Dual DPTR  
The dual DPTR structure (see Figure 13) is a way by which the chip  
will specify the address of an external data memory location. There  
are two 16-bit DPTR registers that address the external memory,  
and a single bit called DPS = AUXR1/bit0 that allows the program  
code to switch between them.  
DPTR Instructions  
The instructions that refer to DPTR refer to the data pointer that is  
currently selected using the AUXR1/bit 0 register. The six  
instructions that use the DPTR are as follows:  
New Register Name: AUXR1#  
SFR Address: A2H  
INC DPTR  
Increments the data pointer by 1  
Reset Value: xxxx00x0B  
MOV DPTR, #data16 Loads the DPTR with a 16-bit constant  
7
6
5
4
3
2
0
1
0
MOV A, @ A+DPTR  
MOVX A, @ DPTR  
Move code byte relative to DPTR to ACC  
LPEP  
GF3  
DPS  
Move external RAM (16-bit address) to  
ACC  
Where:  
DPS = AUXR1/bit0 = Switches between DPTR0 and DPTR1.  
MOVX @ DPTR , A  
JMP @ A + DPTR  
Move ACC to external RAM (16-bit  
address)  
Select Reg  
DPS  
Jump indirect relative to DPTR  
DPTR0  
DPTR1  
0
1
The data pointer can be accessed on a byte-by-byte basis by  
specifying the low or high byte in an instruction which accesses the  
SFRs. See application note AN458 for more details.  
The DPS bit status should be saved by software when switching  
between DPTR0 and DPTR1.  
The GF3 bit is a general purpose user–defined flag. Note that bit 2 is  
not writable and is always read as a zero. This allows the DPS bit to  
24  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
(8XC51FX and 8XC51RX+ ONLY)  
ECF bit in the CMOD register is set, The CF bit can only be cleared  
by software. Bits 0 through 4 of the CCON register are the flags for  
the modules (bit 0 for module 0, bit 1 for module 1, etc.) and are set  
by hardware when either a match or a capture occurs. These flags  
also can only be cleared by software. The PCA interrupt system  
shown in Figure 16.  
Programmable Counter Array (PCA)  
(8XC51FX and 8XC51RX+ only)  
The Programmable Counter Array available on the 8XC51FX and  
8XC51RX+ is a special 16-bit Timer that has five 16-bit  
capture/compare modules associated with it. Each of the modules  
can be programmed to operate in one of four modes: rising and/or  
falling edge capture, software timer, high-speed output, or pulse  
width modulator. Each module has a pin associated with it in port 1.  
Module 0 is connected to P1.3(CEX0), module 1 to P1.4(CEX1), etc.  
The basic PCA configuration is shown in Figure 14.  
Each module in the PCA has a special function register associated  
with it. These registers are: CCAPM0 for module 0, CCAPM1 for  
module 1, etc. (see Figure 19). The registers contain the bits that  
control the mode that each module will operate in. The ECCF bit  
(CCAPMn.0 where n=0, 1, 2, 3, or 4 depending on the module)  
enables the CCF flag in the CCON SFR to generate an interrupt  
when a match or compare occurs in the associated module. PWM  
(CCAPMn.1) enables the pulse width modulation mode. The TOG  
bit (CCAPMn.2) when set causes the CEX output associated with  
the module to toggle when there is a match between the PCA  
counter and the module’s capture/compare register. The match bit  
MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON  
register to be set when there is a match between the PCA counter  
and the module’s capture/compare register.  
The PCA timer is a common time base for all five modules and can  
be programmed to run at: 1/12 the oscillator frequency, 1/4 the  
oscillator frequency, the Timer 0 overflow, or the input on the ECI pin  
(P1.2). The timer count source is determined from the CPS1 and  
CPS0 bits in the CMOD SFR as follows (see Figure 17):  
CPS1 CPS0 PCA Timer Count Source  
0
0
1
1
0
1
0
1
1/12 oscillator frequency  
1/4 oscillator frequency  
Timer 0 overflow  
External Input at ECI pin  
The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5)  
determine the edge that a capture input will be active on. The CAPN  
bit enables the negative edge, and the CAPP bit enables the  
positive edge. If both bits are set both edges will be enabled and a  
capture will occur for either transition. The last bit in the register  
ECOM (CCAPMn.6) when set enables the comparator function.  
Figure 20 shows the CCAPMn settings for the various PCA  
functions.  
In the CMOD SFR are three additional bits associated with the PCA.  
They are CIDL which allows the PCA to stop during idle mode,  
WDTE which enables or disables the watchdog function on  
module 4, and ECF which when set causes an interrupt and the  
PCA overflow flag CF (in the CCON SFR) to be set when the PCA  
timer overflows. These functions are shown in Figure 15.  
The watchdog timer function is implemented in module 4 (see  
Figure 24).  
There are two additional registers associated with each of the PCA  
modules. They are CCAPnH and CCAPnL and these are the  
registers that store the 16-bit count when a capture occurs or a  
compare should occur. When a module is used in the PWM mode  
these registers are used to control the duty cycle of the output.  
The CCON SFR contains the run control bit for the PCA and the  
flags for the PCA timer (CF) and each module (refer to Figure 18).  
To run the PCA the CR bit (CCON.6) must be set by software. The  
PCA is shut off by clearing this bit. The CF bit (CCON.7) is set when  
the PCA counter overflows and an interrupt will be generated if the  
16 BITS  
P1.3/CEX0  
P1.4/CEX1  
P1.5/CEX2  
P1.6/CEX3  
MODULE 0  
MODULE 1  
MODULE 2  
MODULE 3  
MODULE 4  
16 BITS  
PCA TIMER/COUNTER  
TIME BASE FOR PCA MODULES  
MODULE FUNCTIONS:  
16-BIT CAPTURE  
16-BIT TIMER  
P1.7/CEX4  
SU00032  
16-BIT HIGH SPEED OUTPUT  
8-BIT PWM  
WATCHDOG TIMER (MODULE 4 ONLY)  
Figure 14. Programmable Counter Array (PCA)  
25  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
(8XC51FX and 8XC51RX+ ONLY)  
TO PCA  
MODULES  
OSC/12  
OSC/4  
OVERFLOW  
INTERRUPT  
CH  
CL  
16–BIT UP COUNTER  
TIMER 0  
OVERFLOW  
EXTERNAL INPUT  
(P1.2/ECI)  
00  
01  
10  
11  
DECODE  
IDLE  
CMOD  
(D9H)  
CIDL  
CF  
WDTE  
––  
––  
––  
––  
CPS1  
CCF2  
CPS0  
ECF  
CCON  
(D8H)  
CR  
CCF4  
CCF3  
CCF1  
CCF0  
SU00033  
Figure 15. PCA Timer/Counter  
CCON  
(D8H)  
CF  
CR  
––  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
PCA TIMER/COUNTER  
MODULE 0  
IE.7  
EA  
IE.6  
EC  
TO  
MODULE 1  
MODULE 2  
INTERRUPT  
PRIORITY  
DECODER  
MODULE 3  
MODULE 4  
CCAPMn.0  
ECCFn  
CMOD.0  
ECF  
SU00034  
Figure 16. PCA Interrupt System  
26  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
(8XC51FX and 8XC51RX+ ONLY)  
CMOD Address = OD9H  
Reset Value = 00XX X000B  
CIDL  
WDTE  
CPS1  
CPS0  
ECF  
Bit:  
Function  
7
6
5
4
3
2
1
0
Symbol  
CIDL  
Counter Idle control: CIDL = 0 programs the PCA Counter to continue functioning during idle Mode. CIDL = 1 programs  
it to be gated off during idle.  
WDTE  
Watchdog Timer Enable: WDTE = 0 disables Watchdog Timer function on PCA Module 4. WDTE = 1 enables it.  
Not implemented, reserved for future use.*  
CPS1  
CPS0  
PCA Count Pulse Select bit 1.  
PCA Count Pulse Select bit 0.  
CPS1  
CPS0  
Selected PCA Input**  
0
0
1
1
0
1
0
1
0
1
2
3
Internal clock, f  
÷ 12  
÷ 4  
OSC  
Internal clock, f  
OSC  
Timer 0 overflow  
External clock at ECI/P1.2 pin (max. rate = f  
÷ 8)  
OSC  
ECF  
PCA Enable Counter Overflow interrupt: ECF = 1 enables CF bit in CCON to generate an interrupt. ECF = 0 disables  
that function of CF.  
NOTE:  
*
User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the  
new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.  
**  
f
= oscillator frequency  
OSC  
SU00035  
Figure 17. CMOD: PCA Counter Mode Register  
CCON Address = OD8H  
Reset Value = 00X0 0000B  
Bit Addressable  
CF  
CR  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
Bit:  
7
6
5
4
3
2
1
0
Symbol  
CF  
Function  
PCA Counter Overflow flag. Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF in CMOD is  
set. CF may be set by either hardware or software but can only be cleared by software.  
CR  
PCA Counter Run control bit. Set by software to turn the PCA counter on. Must be cleared by software to turn the PCA  
counter off.  
Not implemented, reserved for future use*.  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
PCA Module 4 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.  
PCA Module 3 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.  
PCA Module 2 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.  
PCA Module 1 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.  
PCA Module 0 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.  
NOTE:  
*
User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the  
new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.  
SU00036  
Figure 18. CCON: PCA Counter Control Register  
27  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
(8XC51FX and 8XC51RX+ ONLY)  
CCAPMn Address  
CCAPM0  
CCAPM1  
CCAPM2  
CCAPM3  
CCAPM4  
0DAH  
0DBH  
0DCH  
0DDH  
0DEH  
Reset Value = X000 0000B  
Not Bit Addressable  
ECOMn CAPPn  
CAPNn  
MATn  
TOGn  
PWMn  
ECCFn  
Bit:  
7
6
5
4
3
2
1
0
Symbol  
Function  
Not implemented, reserved for future use*.  
ECOMn  
CAPPn  
CAPNn  
MATn  
Enable Comparator. ECOMn = 1 enables the comparator function.  
Capture Positive, CAPPn = 1 enables positive edge capture.  
Capture Negative, CAPNn = 1 enables negative edge capture.  
Match. When MATn = 1, a match of the PCA counter with this module’s compare/capture register causes the CCFn bit  
in CCON to be set, flagging an interrupt.  
TOGn  
Toggle. When TOGn = 1, a match of the PCA counter with this module’s compare/capture register causes the CEXn  
pin to toggle.  
PWMn  
ECCFn  
Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width modulated output.  
Enable CCF interrupt. Enables compare/capture flag CCFn in the CCON register to generate an interrupt.  
NOTE:  
*User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new  
bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.  
SU00037  
Figure 19. CCAPMn: PCA Modules Compare/Capture Registers  
X
X
X
X
X
X
X
X
ECOMn CAPPn CAPNn  
MATn  
TOGn  
PWMn  
ECCFn  
MODULE FUNCTION  
0
X
X
X
1
1
1
1
0
1
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
0
X
0
0
0
0
0
0
1
0
0
X
X
X
X
X
0
No operation  
16-bit capture by a positive-edge trigger on CEXn  
16-bit capture by a negative trigger on CEXn  
16-bit capture by a transition on CEXn  
16-bit Software Timer  
16-bit High Speed Output  
8-bit PWM  
X
Watchdog Timer  
Figure 20. PCA Module Modes (CCAPMn Register)  
PCA Capture Mode  
High Speed Output Mode  
To use one of the PCA modules in the capture mode either one or  
both of the CCAPM bits CAPN and CAPP for that module must be  
set. The external CEX input for the module (on port 1) is sampled for  
a transition. When a valid transition occurs the PCA hardware loads  
the value of the PCA counter registers (CH and CL) into the  
In this mode the CEX output (on port 1) associated with the PCA  
module will toggle each time a match occurs between the PCA  
counter and the module’s capture registers. To activate this mode  
the TOG, MAT, and ECOM bits in the module’s CCAPMn SFR must  
be set (see Figure 23).  
module’s capture registers (CCAPnL and CCAPnH). If the CCFn bit  
for the module in the CCON SFR and the ECCFn bit in the CCAPMn  
SFR are set then an interrupt will be generated. Refer to Figure 21.  
Pulse Width Modulator Mode  
All of the PCA modules can be used as PWM outputs. Figure 24  
shows the PWM function. The frequency of the output depends on  
the source for the PCA timer. All of the modules will have the same  
frequency of output because they all share the PCA timer. The duty  
cycle of each module is independently variable using the module’s  
capture register CCAPLn. When the value of the PCA CL SFR is  
less than the value in the module’s CCAPLn SFR the output will be  
low, when it is equal to or greater than the output will be high. When  
CL overflows from FF to 00, CCAPLn is reloaded with the value in  
CCAPHn. the allows updating the PWM without glitches. The PWM  
and ECOM bits in the module’s CCAPMn register must be set to  
enable the PWM mode.  
16-bit Software Timer Mode  
The PCA modules can be used as software timers by setting both  
the ECOM and MAT bits in the modules CCAPMn register. The PCA  
timer will be compared to the module’s capture registers and when a  
match occurs an interrupt will occur if the CCFn (CCON SFR) and  
the ECCFn (CCAPMn SFR) bits for the module are both set (see  
Figure 22).  
28  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
(8XC51FX and 8XC51RX+ ONLY)  
CCON  
CF  
CR  
––  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
(D8H)  
PCA INTERRUPT  
(TO CCFn)  
PCA TIMER/COUNTER  
CH  
CL  
CAPTURE  
CEXn  
CCAPnH  
CCAPnL  
CCAPMn, n= 0 to 4  
(DAH – DEH)  
––  
ECOMn  
0
CAPPn  
CAPNn  
MATn  
0
TOGn  
0
PWMn  
ECCFn  
0
SU00749  
Figure 21. PCA Capture Mode  
CCON  
(D8H)  
CF  
CR  
––  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
WRITE TO  
CCAPnH  
RESET  
PCA INTERRUPT  
CCAPnH  
CCAPnL  
WRITE TO  
CCAPnL  
(TO CCFn)  
0
1
ENABLE  
MATCH  
16–BIT COMPARATOR  
CH  
CL  
PCA TIMER/COUNTER  
CCAPMn, n= 0 to 4  
(DAH – DEH)  
––  
ECOMn  
CAPPn  
0
CAPNn  
0
MATn  
TOGn  
0
PWMn  
0
ECCFn  
SU00750  
Figure 22. PCA Compare Mode  
29  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
(8XC51FX and 8XC51RX+ ONLY)  
CCON  
(D8H)  
CF  
CR  
––  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
WRITE TO  
CCAPnH  
RESET  
PCA INTERRUPT  
CCAPnH  
CCAPnL  
WRITE TO  
CCAPnL  
(TO CCFn)  
0
1
MATCH  
ENABLE  
16–BIT COMPARATOR  
TOGGLE  
CEXn  
CH  
CL  
PCA TIMER/COUNTER  
CCAPMn, n: 0..4  
(DAH – DEH)  
––  
ECOMn  
CAPPn  
0
CAPNn  
0
MATn  
TOGn  
PWMn  
0
ECCFn  
1
SU00751  
Figure 23. PCA High Speed Output Mode  
CCAPnH  
CCAPnL  
0
CL < CCAPnL  
ENABLE  
8–BIT  
CEXn  
COMPARATOR  
CL >= CCAPnL  
1
CL  
OVERFLOW  
PCA TIMER/COUNTER  
CCAPMn, n: 0..4  
(DAH – DEH)  
––  
ECOMn  
CAPPn  
0
CAPNn  
MATn  
0
TOGn  
0
PWMn  
ECCFn  
0
0
SU00752  
Figure 24. PCA PWM Mode  
30  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
(8XC51FX and 8XC51RX+ ONLY)  
CMOD  
(D9H)  
CIDL  
WDTE  
––  
––  
MODULE 4  
MATCH  
––  
CPS1  
CPS0  
ECF  
WRITE TO  
CCAP4H  
RESET  
CCAP4H  
CCAP4L  
WRITE TO  
CCAP4L  
0
1
ENABLE  
16–BIT COMPARATOR  
RESET  
CH  
CL  
PCA TIMER/COUNTER  
CCAPM4  
(DEH)  
––  
ECOMn  
CAPPn  
0
CAPNn  
0
MATn  
1
TOGn  
X
PWMn  
0
ECCFn  
X
SU00832  
Figure 25. PCA Watchdog Timer m(Module 4 only)  
PCA Watchdog Timer  
The first two options are more reliable because the watchdog timer  
is never disabled as in option #3. If the program counter ever goes  
astray, a match will eventually occur and cause an internal reset.  
The second option is also not recommended if other PCA modules  
are being used. Remember, the PCA timer is the time base for all  
modules; changing the time base for other modules would not be a  
good idea. Thus, in most applications the first solution is the best  
option.  
An on-board watchdog timer is available with the PCA to improve  
the reliability of the system without increasing chip count. Watchdog  
timers are useful for systems that are susceptible to noise, power  
glitches, or electrostatic discharge. Module 4 is the only PCA  
module that can be programmed as a watchdog. However, this  
module can still be used for other modes if the watchdog is not  
needed.  
Figure 25 shows a diagram of how the watchdog works. The user  
pre-loads a 16-bit value in the compare registers. Just like the other  
compare modes, this 16-bit value is compared to the PCA timer  
value. If a match is allowed to occur, an internal reset will be  
generated. This will not cause the RST pin to be driven high.  
Figure 26 shows the code for initializing the watchdog timer.  
Module 4 can be configured in either compare mode, and the WDTE  
bit in CMOD must also be set. The user’s software then must  
periodically change (CCAP4H,CCAP4L) to keep a match from  
occurring with the PCA timer (CH,CL). This code is given in the  
WATCHDOG routine in Figure 26.  
In order to hold off the reset, the user has three options:  
1. periodically change the compare value so it will never match the  
PCA timer,  
This routine should not be part of an interrupt service routine,  
because if the program counter goes astray and gets stuck in an  
infinite loop, interrupts will still be serviced and the watchdog will  
keep getting reset. Thus, the purpose of the watchdog would be  
2. periodically change the PCA timer value so it will never match  
the compare values, or  
defeated. Instead, call this subroutine from the main program within  
3. disable the watchdog by clearing the WDTE bit before a match  
occurs and then re-enable it.  
16  
2
count of the PCA timer.  
31  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
(8XC51FX and 8XC51RX+ ONLY)  
INIT_WATCHDOG:  
MOV CCAPM4, #4CH  
MOV CCAP4L, #0FFH  
MOV CCAP4H, #0FFH  
; Module 4 in compare mode  
; Write to low byte first  
; Before PCA timer counts up to  
; FFFF Hex, these compare values  
; must be changed  
ORL CMOD, #40H  
; Set the WDTE bit to enable the  
; watchdog timer without changing  
; the other bits in CMOD  
;
;********************************************************************  
;
; Main program goes here, but CALL WATCHDOG periodically.  
;
;********************************************************************  
;
WATCHDOG:  
CLR EA  
; Hold off interrupts  
MOV CCAP4L, #00  
MOV CCAP4H, CH  
SETB EA  
; Next compare value is within  
; 255 counts of the current PCA  
; timer value  
RET  
Figure 26. PCA Watchdog Timer Initialization Code  
32  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
(8XC51RX+ ONLY)  
For example:  
MOV @R0,#data  
Expanded Data RAM Addressing  
(8XC51RX+ ONLY)  
The 8XC51RX+ have internal data memory that is mapped into four  
separate segments: the lower 128 bytes of RAM, upper 128 bytes of  
RAM, 128 bytes Special Function Register (SFR), and 256 bytes  
(768 for RD+) expanded RAM (EXTRAM).  
where R0 contains 0A0H, accesses the data byte at address 0A0H,  
rather than P2 (whose address is 0A0H).  
The EXTRAM can be accessed by indirect addressing, with  
EXTRAM bit cleared and MOVX instructions. This part of memory is  
physically located on-chip, logically occupies the first 256-bytes (768  
for RD+) of external data memory.  
The four segments are:  
1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are  
directly and indirectly addressable.  
With EXTRAM = 0, the EXTRAM is indirectly addressed, using the  
MOVX instruction in combination with any of the registers R0, R1 of  
the selected bank or DPTR. An access to EXTRAM will not affect  
ports P0, P3.6 (WR#) and P3.7 (RD#). P2 SFR is output during  
external addressing. For example, with EXTRAM = 0,  
2. The Upper 128 bytes of RAM (addresses 80H to FFH) are  
indirectly addressable only.  
3. The Special Function Registers, SFRs, (addresses 80H to FFH)  
are directly addressable only.  
MOVX @R0,#data  
4. The 256-bytes (768 for RD+) expanded RAM ((EXTRAM  
(256-bytes) 00H–FFH)) and ((EXTRAM (768-bytes for RD+)  
00H – 2FFH)) are indirectly accessed by move external instruction,  
MOVX, and with the EXTRAM bit cleared, see Figure 27.  
where R0 contains 0A0H, access the EXTRAM at address 0A0H  
rather than external memory. An access to external data memory  
locations higher than FFH (2FF for RD+) (i.e., 0100H to FFFFH) will  
be performed with the MOVX DPTR instructions in the same way as  
in the standard 80C51, so with P0 and P2 as data/address bus, and  
P3.6 and P3.7 as write and read timing signals. Refer to Figure 28.  
The Lower 128 bytes can be accessed by either direct or indirect  
addressing. The Upper 128 bytes can be accessed by indirect  
addressing only. The Upper 128 bytes occupy the same address  
space as the SFR. That means they have the same address, but are  
physically separate from SFR space.  
With EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar  
to the standard 80C51. MOVX @ Ri will provide an 8-bit address  
multiplexed with data on Port 0 and any output port pins can be  
used to output higher order address bits. This is to provide the  
external paging capability. MOVX @DPTR will generate a 16-bit  
address. Port 2 outputs the high-order eight address bits (the  
contents of DPH) while Port 0 multiplexes the low-order eight  
address bits (DPL) with data. MOVX @Ri and MOVX @DPTR will  
generate either read or write signals on P3.6 (#WR) and P3.7 (#RD).  
When an instruction accesses an internal location above address  
7FH, the CPU knows whether the access is to the upper 128 bytes  
of data RAM or to SFR space by the addressing mode used in the  
instruction. Instructions that use direct addressing access SFR  
space. For example:  
MOV 0A0H,#data  
The stack pointer (SP) may be located anywhere in the 256 bytes  
RAM (lower and upper RAM) internal data memory. The stack may  
not be located in the EXTRAM.  
accesses the SFR at location 0A0H (which is P2). Instructions that  
use indirect addressing access the Upper 128 bytes of data RAM.  
AUXR  
Address = 8EH  
Reset Value = xxxx xx00B  
Not Bit Addressable  
6
5
4
3
2
EXTRAM  
AO  
Bit:  
Function  
Disable/Enable ALE  
7
1
0
Symbol  
AO  
AO  
0
1
Operating Mode  
ALE is emitted at a constant rate of 1/6 the oscillator frequency.  
ALE is active only during a MOVX or MOVC instruction.  
EXTRAM  
Internal/External RAM access using MOVX @Ri/@DPTR  
EXTRAM  
Operating Mode  
0
1
Internal ERAM (00H–FFH) (00H–2FFH for RD+) access using MOVX @Ri/@DPTR  
External data memory access.  
Not implemented, reserved for future use*.  
NOTE:  
*User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new  
bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.  
SU01003  
Figure 27. AUXR: Auxiliary Register (RX+ only)  
33  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
(8XC51RX+ ONLY)  
2FF  
(RD TO RD+)  
FF  
FF  
FF  
FFFF  
UPPER  
128 BYTES  
INTERNAL RAM  
SPECIAL  
FUNCTION  
REGISTER  
EXTERNAL  
DATA  
MEMORY  
80  
80  
ERAM  
256 BYTES  
LOWER  
128 BYTES  
INTERNAL RAM  
300 (RD+ only)  
0100  
00  
00  
00  
0000  
SU00834  
Figure 28. Internal and External Data Memory Address Space with EXTRAM = 0  
In applications using the Hardware Watchdog Timer of the  
P8xC51RD+, a series resistor (1KW "20%) needs to be included  
between the reset pin and any external components. Without this  
resistor the watchdog timer will not function.  
HARDWARE WATCHDOG TIMER (ONE-TIME  
ENABLED WITH RESET-OUT FOR 89C51RC+/RD+)  
The WDT is intended as a recovery method in situations where the  
CPU may be subjected to software upset. The WDT consists of a  
14-bit counter and the WatchDog Timer reset (WDTRST) SFR. The  
WDT is disabled at reset. To enable the WDT, user must write 01EH  
and 0E1H in sequence to the WDTRST, SFR location 0A6H. When  
WDT is enabled, it will increment every machine cycle while the  
oscillator is running and there is no way to disable the WDT except  
through reset (either hardware reset or WDT overflow reset). When  
WDT overflows, it will drive an output reset HIGH pulse at the  
RST-pin.  
Using the WDT  
To enable the WDT, user must write 01EH and 0E1H in sequence to  
the WDTRST, SFR location 0A6H. When WDT is enabled, the user  
needs to service it by writing to 01EH and 0E1H to WDTRST to  
avoid WDT overflow. The 14-bit counter overflows when it reaches  
16383 (3FFFH) and this will reset the device. When using the WDT,  
a 1Kohm resistor must be inserted between RST of the device and  
the Power On Reset circuitry. When WDT is enabled, it will  
increment every machine cycle while the oscillator is running. This  
means the user must reset the WDT at least every 16383 machine  
cycles. To reset the WDT, the user must write 01EH and 0E1H to  
WDTRST. WDTRST is a write only register. The WDT counter  
cannot be read or written. When WDT overflows, it will generate an  
output RESET pulse at the reset pin. The RESET pulse duration is  
98 × T  
, where T  
= 1/f  
. To make the best use of the WDT,  
OSC  
OSC  
OSC  
it should be serviced in those sections of code that will periodically  
be executed within the time required to prevent a WDT reset.  
34  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
1, 2, 3  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
Operating temperature under bias  
RATING  
0 to +70 or –40 to +85  
–65 to +150  
0 to +13.0  
–0.5 to +6.5  
15  
UNIT  
°C  
°C  
V
Storage temperature range  
Voltage on EA/V pin to V  
PP  
SS  
Voltage on any other pin to V  
V
SS  
Maximum I per I/O pin  
mA  
W
OL  
Power dissipation (based on package heat transfer limitations, not device power consumption)  
NOTES:  
1.5  
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section  
of this specification is not implied.  
2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static  
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.  
3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V unless otherwise  
SS  
noted.  
AC ELECTRICAL CHARACTERISTICS  
T
amb  
= 0°C to +70°C or –40°C to +85°C  
CLOCK FREQUENCY  
RANGE –f  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
MIN  
MAX  
UNIT  
33  
Oscillator frequency  
CLCL  
Speed versions : 4:5:S (16MHz)  
I:J:U (33MHz)  
0
0
16  
33  
MHz  
MHz  
35  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
DC ELECTRICAL CHARACTERISTICS  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 2.7V to 5.5V, V = 0V (16MHz devices)  
CC SS  
LIMITS  
TEST  
CONDITIONS  
SYMBOL  
PARAMETER  
UNIT  
1
MIN  
–0.5  
–0.5  
TYP  
MAX  
4.0V < V < 5.5V  
0.2V –0.1  
V
V
V
V
CC  
CC  
V
IL  
Input low voltage  
2.7V<V < 4.0V  
0.7  
CC  
V
V
Input high voltage (ports 0, 1, 2, 3, EA)  
Input high voltage, XTAL1, RST  
0.2V +0.9  
V
V
+0.5  
+0.5  
IH  
CC  
CC  
CC  
0.7V  
IH1  
CC  
V
OL  
= 2.7V  
= 1.6mA  
CC  
8
V
Output low voltage, ports 1, 2  
0.4  
V
V
V
V
OL  
2
I
I
V
CC  
= 2.7V  
8, 7  
V
OL1  
Output low voltage, port 0, ALE, PSEN  
0.4  
2
= 3.2mA  
OL  
V
CC  
= 2.7V  
= –20µA  
V
CC  
V
CC  
V
CC  
– 0.7  
– 0.7  
– 0.7  
I
OH  
3
V
V
Output high voltage, ports 1, 2, 3  
OH  
V
CC  
= 4.5V  
= –30µA  
I
OH  
Output high voltage (port 0 in external bus mode),  
V
CC  
= 2.7V  
= –3.2mA  
V
OH1  
9
3
ALE , PSEN  
I
OH  
I
I
Logical 0 input current, ports 1, 2, 3  
V
V
= 0.4V  
= 2.0V  
–1  
–50  
–650  
±10  
µA  
µA  
µA  
IL  
IN  
IN  
6
Logical 1-to-0 transition current, ports 1, 2, 3  
TL  
See note 4  
I
I
Input leakage current, port 0  
0.45 < V < V – 0.3  
LI  
IN  
CC  
Power supply current (see Figure 36):  
See note 5  
CC  
Active mode @ 16MHz (all except 8XC51RD+)  
87C51RD+  
15  
16  
mA  
mA  
Idle mode @ 16MHz  
Power-down mode or clock stopped (see Figure 40  
for conditions)  
4
50  
75  
mA  
µA  
µA  
T
= 0°C to 70°C  
= –40°C to +85°C  
3
amb  
T
amb  
R
C
Internal reset pull-down resistor  
40  
225  
15  
kΩ  
RST  
IO  
10  
Pin capacitance (except EA)  
pF  
NOTES:  
1. Typical ratings are not guaranteed. The values listed are at room temperature, 5V.  
2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V s of ALE and ports 1 and 3. The noise is due  
OL  
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the  
worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify  
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I can exceed these conditions provided that no  
OL  
single output sinks more than 5mA and no more than two outputs exceed the test conditions.  
3. Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily fall below the V –0.7 specification when the  
OH  
CC  
address bits are stabilizing.  
4. Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its  
maximum value when V is approximately 2V.  
IN  
5. See Figures 37 through 40 for I test conditions, and Figure 36 for I vs Freq.  
CC  
CC  
Active mode:  
Idle mode:  
I
I
= (0.9 × FREQ. + 1.1)mA for all devices except 8XC51RD+; 8XC51RD+ I = (0.9 x Freq +2.1) mA  
= (0.18 × FREQ. +1.01)mA  
CC  
CC  
CC  
6. This value applies to T  
= 0°C to +70°C. For T = –40°C to +85°C, I = –750µA.  
amb TL  
amb  
7. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
8. Under steady state (non-transient) conditions, I must be externally limited as follows:  
OL  
Maximum I per port pin:  
15mA (*NOTE: This is 85°C specification.)  
OL  
Maximum I per 8-bit port:  
26mA  
71mA  
OL  
Maximum total I for all outputs:  
OL  
If I exceeds the test condition, V may exceed the related specification. Pins are not guaranteed to sink current greater than the listed  
OL  
OL  
test conditions.  
9. ALE is tested to V  
, except when ALE is off then V is the voltage specification.  
OH  
OH1  
10.Pin capacitance is characterized but not tested. Pin capacitance is less than 25pF. Pin capacitance of ceramic package is less than 15pF  
(except EA is 25pF).  
36  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
DC ELECTRICAL CHARACTERISTICS  
T
amb  
= 0°C to +70°C or –40°C to +85°C, 33MHz devices; 5V ±10%; V = 0V  
SS  
LIMITS  
TEST  
CONDITIONS  
SYMBOL  
PARAMETER  
UNIT  
1
MIN  
TYP  
MAX  
0.2V –0.1  
V
V
V
Input low voltage  
4.5V < V < 5.5V  
–0.5  
V
V
V
IL  
CC  
CC  
Input high voltage (ports 0, 1, 2, 3, EA)  
Input high voltage, XTAL1, RST  
0.2V +0.9  
V
CC  
V
CC  
+0.5  
+0.5  
IH  
CC  
0.7V  
IH1  
CC  
V
OL  
= 4.5V  
= 1.6mA  
CC  
8
V
V
V
V
Output low voltage, ports 1, 2, 3  
0.4  
V
V
V
OL  
2
I
I
V
CC  
= 4.5V  
7, 8  
Output low voltage, port 0, ALE, PSEN  
0.4  
OL1  
OH  
2
= 3.2mA  
OL  
V
CC  
= 4.5V  
= –30µA  
3
Output high voltage, ports 1, 2, 3  
V
V
– 0.7  
– 0.7  
CC  
I
OH  
Output high voltage (port 0 in external bus mode),  
V
CC  
= 4.5V  
= –3.2mA  
V
OH1  
CC  
9
3
ALE , PSEN  
I
OH  
I
I
Logical 0 input current, ports 1, 2, 3  
Logical 1-to-0 transition current, ports 1, 2, 3  
Input leakage current, port 0  
V
V
= 0.4V  
= 2.0V  
–1  
–50  
–650  
±10  
µA  
µA  
µA  
IL  
IN  
IN  
6
TL  
See note 4  
I
I
0.45 < V < V – 0.3  
LI  
IN  
CC  
Power supply current (see Figure 36):  
Active mode (see Note 5)  
See note 5  
CC  
Idle mode (see Note 5)  
Power-down mode or clock stopped  
(see Figure 40 for conditions)  
T
= 0°C to 70°C  
= –40°C to +85°C  
3
50  
75  
µA  
µA  
amb  
T
amb  
R
C
Internal reset pull-down resistor  
40  
225  
15  
kΩ  
RST  
IO  
10  
Pin capacitance (except EA)  
pF  
NOTES:  
1. Typical ratings are not guaranteed. The values listed are at room temperature, 5V.  
2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V s of ALE and ports 1 and 3. The noise is due  
OL  
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the  
worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify  
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I can exceed these conditions provided that no  
OL  
single output sinks more than 5mA and no more than two outputs exceed the test conditions.  
3. Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily fall below the V –0.7 specification when the  
OH  
CC  
address bits are stabilizing.  
4. Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its  
maximum value when V is approximately 2V.  
IN  
5. See Figures 37 through 40 for I test conditions and Figure 36 for I vs Freq.  
CC  
CC  
Active mode:  
Idle mode:  
I
I
= (0.9 × FREQ. + 1.1)mA. for all devices except 8XC51RD+; 8XC51RD+ I = (0.9 x Freq +2.1) mA  
= (0.18 × FREQ. +1.0)mA  
CC(MAX)  
CC  
CC(MAX)  
6. This value applies to T  
= 0°C to +70°C. For T = –40°C to +85°C, I = –750µA.  
amb TL  
amb  
7. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
8. Under steady state (non-transient) conditions, I must be externally limited as follows:  
OL  
Maximum I per port pin:  
15mA (*NOTE: This is 85°C specification.)  
OL  
Maximum I per 8-bit port:  
26mA  
71mA  
OL  
Maximum total I for all outputs:  
OL  
If I exceeds the test condition, V may exceed the related specification. Pins are not guaranteed to sink current greater than the listed  
OL  
OL  
test conditions.  
9. ALE is tested to V  
, except when ALE is off then V is the voltage specification.  
OH  
OH1  
10.Pin capacitance is characterized but not tested. Pin capacitance is less than 25pF. Pin capacitance of ceramic package is less than 15pF  
(except EA is 25pF).  
37  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
AC ELECTRICAL CHARACTERISTICS  
1, 2, 3  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = +2.7V to +5.5V, V = 0V  
CC SS  
16MHz CLOCK  
VARIABLE CLOCK  
MIN MAX  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
MIN  
MAX  
UNIT  
5
29  
Oscillator frequency  
Speed versions : 4; 5;S  
CLCL  
3.5  
16  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
29  
29  
29  
29  
29  
29  
29  
29  
29  
29  
29  
ALE pulse width  
85  
22  
32  
2t  
–40  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
t
–40  
–30  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
t
150  
82  
4t  
3t  
–100  
CLCL  
32  
t
–30  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
CLCL  
PSEN pulse width  
142  
3t  
–45  
CLCL  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–105  
CLCL  
0
0
37  
207  
10  
t
–25  
CLCL  
5
5t  
–105  
AVIV  
CLCL  
10  
PLAZ  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
31  
RD pulse width  
275  
275  
6t  
–100  
–100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
6t  
CLCL  
RD low to valid data in  
Data hold after RD  
147  
5t  
–165  
CLCL  
0
0
Data float after RD  
65  
2t  
–60  
CLCL  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data hold after WR  
350  
397  
239  
8t  
–150  
–165  
CLCL  
CLCL  
9t  
AVDV  
LLWL  
137  
122  
13  
3t  
–50  
3t  
+50  
CLCL  
CLCL  
4t  
t
–130  
–50  
AVWL  
QVWX  
WHQX  
QVWH  
RLAZ  
WHLH  
CLCL  
CLCL  
CLCL  
CLCL  
13  
t
–50  
Data valid to WR high  
RD low to address float  
RD or WR high to ALE high  
287  
7t  
–150  
30, 31  
30, 31  
0
0
23  
103  
t
–40  
t
+40  
CLCL  
CLCL  
External Clock  
t
t
t
t
33  
33  
33  
33  
High time  
Low time  
Rise time  
Fall time  
20  
20  
20  
20  
t
–t  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
CLCL CLCX  
t
–t  
CLCL CHCX  
20  
20  
20  
20  
Shift Register  
t
t
t
t
t
32  
32  
32  
32  
32  
Serial port clock cycle time  
750  
492  
8
12t  
ns  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
Output data setup to clock rising edge  
10t  
–133  
QVXH  
XHQX  
XHDX  
XHDV  
CLCL  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
2t  
CLCL  
–117  
0
0
492  
10t  
–133  
CLCL  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. Interfacing the microcontroller to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0  
drivers.  
4. See application note AN457 for external memory interface.  
5. Parts are guaranteed to operate down to 0Hz.  
38  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
AC ELECTRICAL CHARACTERISTICS  
1, 2, 3  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 5V ±10%, V = 0V  
CC SS  
4
VARIABLE CLOCK  
MIN  
2t –40  
CLCL  
33MHz CLOCK  
SYMBOL  
FIGURE  
29  
PARAMETER  
MAX  
MIN  
21  
5
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
t
t
t
t
ALE pulse width  
LHLL  
AVLL  
LLAX  
LLIV  
29  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
t
t
–25  
ns  
CLCL  
CLCL  
29  
–25  
ns  
29  
4t  
3t  
–65  
55  
30  
ns  
CLCL  
29  
t
–25  
5
ns  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
29  
PSEN pulse width  
3t  
–45  
45  
ns  
CLCL  
29  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–60  
ns  
CLCL  
29  
0
0
ns  
29  
t
–25  
5
ns  
CLCL  
29  
5t  
CLCL  
–80  
70  
10  
ns  
29  
10  
ns  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
30, 31  
31  
RD pulse width  
6t  
–100  
–100  
82  
82  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
6t  
CLCL  
RD low to valid data in  
Data hold after RD  
5t  
2t  
–90  
–28  
60  
CLCL  
0
0
Data float after RD  
32  
90  
CLCL  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data hold after WR  
8t  
–150  
–165  
CLCL  
CLCL  
9t  
105  
140  
AVDV  
LLWL  
3t  
–50  
–75  
3t  
CLCL  
+50  
40  
45  
0
CLCL  
4t  
AVWL  
QVWX  
WHQX  
QVWH  
RLAZ  
WHLH  
CLCL  
t
t
–30  
CLCL  
CLCL  
CLCL  
–25  
5
Data valid to WR high  
RD low to address float  
RD or WR high to ALE high  
7t  
–130  
80  
30, 31  
30, 31  
0
0
t
–25  
t
+25  
5
55  
CLCL  
CLCL  
External Clock  
t
t
t
t
33  
33  
33  
33  
High time  
Low time  
Rise time  
Fall time  
0.38t  
0.38t  
t –t  
CLCL CLCX  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
CLCL  
t
–t  
CLCL  
CLCL CHCX  
5
5
Shift Register  
t
t
t
t
t
32  
32  
32  
32  
32  
Serial port clock cycle time  
12t  
360  
167  
ns  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
Output data setup to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
10t  
–133  
–80  
QVXH  
XHQX  
XHDX  
XHDV  
CLCL  
2t  
CLCL  
0
0
10t  
–133  
167  
CLCL  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. Interfacing the microcontroller to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0  
drivers.  
4. For frequencies equal or less than 16MHz, see 16MHz “AC Electrical Characteristics”, page 38.  
5. Parts are guaranteed to operate down to 0Hz.  
39  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
EXPLANATION OF THE AC SYMBOLS  
Each timing symbol has five characters. The first character is always  
P – PSEN  
‘t’ (= time). The other characters, depending on their positions,  
indicate the name of a signal or the logical status of that signal. The  
designations are:  
Q – Output data  
R – RD signal  
t – Time  
A – Address  
V – Valid  
C – Clock  
W– WR signal  
D – Input data  
X – No longer a valid logic level  
Z – Float  
H – Logic level high  
I – Instruction (program memory contents)  
L – Logic level low, or ALE  
Examples: t  
= Time for address valid to ALE low.  
=Time for ALE low to PSEN low.  
AVLL  
t
LLPL  
t
LHLL  
ALE  
t
t
LLPL  
AVLL  
t
PLPH  
t
LLIV  
t
PLIV  
PSEN  
t
LLAX  
t
PXIZ  
t
PLAZ  
t
PXIX  
A0–A7  
INSTR IN  
A0–A7  
PORT 0  
PORT 2  
t
AVIV  
A0–A15  
A8–A15  
SU00006  
Figure 29. External Program Memory Read Cycle  
ALE  
PSEN  
RD  
t
WHLH  
t
LLDV  
t
t
LLWL  
RLRH  
t
RHDZ  
t
LLAX  
t
t
RLDV  
AVLL  
t
RLAZ  
t
RHDX  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA IN  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
t
AVDV  
P2.0–P2.7 OR A8–A15 FROM DPF  
A0–A15 FROM PCH  
SU00025  
Figure 30. External Data Memory Read Cycle  
40  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
ALE  
t
WHLH  
PSEN  
t
t
WLWH  
LLWL  
WR  
t
LLAX  
t
t
WHQX  
t
AVLL  
QVWX  
t
QVWH  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA OUT  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
P2.0–P2.7 OR A8–A15 FROM DPF  
A0–A15 FROM PCH  
SU00026  
Figure 31. External Data Memory Write Cycle  
INSTRUCTION  
ALE  
0
1
2
3
4
5
6
7
8
t
XLXL  
CLOCK  
t
XHQX  
t
QVXH  
OUTPUT DATA  
0
1
2
3
4
5
6
7
WRITE TO SBUF  
t
XHDX  
t
SET TI  
VALID  
XHDV  
INPUT DATA  
CLEAR RI  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET RI  
SU00027  
Figure 32. Shift Register Mode Timing  
V
–0.5  
CC  
0.7V  
CC  
CC  
0.45V  
0.2V  
–0.1  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
t
CLCL  
SU00009  
Figure 33. External Clock Drive  
41  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
V
–0.5  
CC  
V
V
+0.1V  
LOAD  
V
V
–0.1V  
TIMING  
REFERENCE  
POINTS  
OH  
0.2V  
0.2V  
+0.9  
–0.1  
CC  
V
LOAD  
CC  
–0.1V  
LOAD  
+0.1V  
OL  
0.45V  
NOTE:  
NOTE:  
For timing purposes, a port is no longer floating when a 100mV change from  
load voltage occurs, and begins to float when a 100mV change from the loaded  
AC inputs during testing are driven at V –0.5 for a logic ‘1’ and 0.45V for a logic ‘0’.  
Timing measurements are made at V min for a logic ‘1’ and V max for a logic ‘0’.  
CC  
IH  
IL  
V
/V level occurs. I /I ≥ ±20mA.  
OH OL  
OH OL  
SU00717  
SU00718  
Figure 34. AC Testing Input/Output  
Figure 35. Float Waveform  
35  
30  
25  
MAX ACTIVE  
MODE (EXCEPT  
8XC51RD+)  
I
ACTIVE MODE  
(8XC51RD+)  
= 0.9 X FREQ + 2.1  
CCMAX  
20  
15  
10  
5
I
MAX = 0.9 X  
CC  
I
FREQ. + 1.1  
CCMAX  
TYP ACTIVE MODE  
MAX IDLE MODE  
TYP IDLE MODE  
24 28 32  
FREQ AT XTAL1 (MHz)  
4
8
12  
16  
20  
36  
SU00837A  
Figure 36. I vs. FREQ  
CC  
Valid only within frequency specifications of the device under test  
42  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
V
V
CC  
CC  
I
I
CC  
CC  
V
V
CC  
CC  
V
RST  
V
V
CC  
CC  
CC  
P0  
EA  
P0  
EA  
RST  
(NC)  
XTAL2  
XTAL1  
(NC)  
XTAL2  
XTAL1  
CLOCK SIGNAL  
CLOCK SIGNAL  
V
V
SS  
SS  
SU00719  
SU00720  
Figure 37. I Test Condition, Active Mode  
Figure 38. I Test Condition, Idle Mode  
CC  
CC  
All other pins are disconnected  
All other pins are disconnected  
V
–0.5  
CC  
0.7V  
CC  
–0.1  
0.45V  
0.2V  
CC  
t
CHCX  
t
t
t
CLCH  
CHCL  
CLCX  
t
CLCL  
SU00009  
Figure 39. Clock Signal Waveform for I Tests in Active and Idle Modes  
CC  
t
= t  
= 5ns  
CHCL  
CLCH  
V
CC  
CC  
I
CC  
V
CC  
V
RST  
P0  
EA  
(NC)  
XTAL2  
XTAL1  
V
SS  
SU00016  
Figure 40. I Test Condition, Power Down Mode  
CC  
All other pins are disconnected. V = 2V to 5.5V  
CC  
43  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
address of the program memory locations to be read is applied to  
ports 1 and 2 as shown in Figure 43. The other pins are held at the  
‘Verify Code Data’ levels indicated in Table 9. The contents of the  
address location will be emitted on port 0. External pull-ups are  
required on port 0 for this operation.  
EPROM CHARACTERISTICS  
All these devices can be programmed by using a modified Improved  
Quick-Pulse Programming algorithm. It differs from older methods  
in the value used for V (programming supply voltage) and in the  
PP  
width and number of the ALE/PROG pulses.  
If the 64 byte encryption table has been programmed, the data  
presented at port 0 will be the exclusive NOR of the program byte  
with one of the encryption bytes. The user will have to know the  
encryption table contents in order to correctly decode the verification  
data. The encryption table itself cannot be read out.  
The family contains two signature bytes that can be read and used  
by an EPROM programming system to identify the device. The  
signature bytes identify the device as being manufactured by  
Philips.  
Table 9 shows the logic levels for reading the signature byte, and for  
programming the program memory, the encryption table, and the  
security bits. The circuit configuration and waveforms for quick-pulse  
programming are shown in Figures 41 and 42. Figure 43 shows the  
circuit configuration for normal program memory verification.  
Reading the Signature Bytes  
The signature bytes are read by the same procedure as a normal  
verification of locations 030H and 031H, except that P3.6 and P3.7  
need to be pulled to a logic low. The values are:  
(030H) = 15H indicates manufactured by Philips  
(031H) = 97H indicates 87C52  
BBH indicates 87C54  
Quick-Pulse Programming  
The setup for microcontroller quick-pulse programming is shown in  
Figure 41. Note that the device is running with a 4 to 6MHz  
oscillator. The reason the oscillator needs to be running is that the  
device is executing internal address and program data transfers.  
BDH indicates 87C58  
B1H indicates 87C51FA  
B2H indicates 87C51FB  
B3H indicates 87C51FC  
The address of the EPROM location to be programmed is applied to  
ports 1 and 2, as shown in Figure 41. The code byte to be  
programmed into that location is applied to port 0. RST, PSEN and  
pins of ports 2 and 3 specified in Table 9 are held at the ‘Program  
Code Data’ levels indicated in Table 9. The ALE/PROG is pulsed  
low 5 times as shown in Figure 42.  
CAH indicates 87C51RA+  
CBH indicates 87C51RB+  
CCH indicates 87C51RC+  
CDH indicates 87C51RD+  
(060H) = NA  
Program/Verify Algorithms  
Any algorithm in agreement with the conditions listed in Table 9, and  
which satisfies the timing specifications, is suitable.  
To program the encryption table, repeat the 5 pulse programming  
sequence for addresses 0 through 1FH, using the ‘Pgm Encryption  
Table’ levels. Do not forget that after the encryption table is  
programmed, verification cycles will produce only encrypted data.  
Security Bits  
With none of the security bits programmed the code in the program  
memory can be verified. If the encryption table is programmed, the  
code will be encrypted when verified. When only security bit 1 (see  
Table 10) is programmed, MOVC instructions executed from  
external program memory are disabled from fetching code bytes  
from the internal memory, EA is latched on Reset and all further  
programming of the EPROM is disabled. When security bits 1 and 2  
are programmed, in addition to the above, verify mode is disabled.  
When all three security bits are programmed, all of the conditions  
above apply and all external program memory execution is disabled.  
To program the security bits, repeat the 5 pulse programming  
sequence using the ‘Pgm Security Bit’ levels. After one security bit is  
programmed, further programming of the code memory and  
encryption table is disabled. However, the other security bits can still  
be programmed.  
Note that the EA/V pin must not be allowed to go above the  
PP  
maximum specified V level for any amount of time. Even a narrow  
PP  
glitch above that voltage can cause permanent damage to the  
device. The V source should be well regulated and free of glitches  
PP  
and overshoot.  
Encryption Array  
Program Verification  
64 bytes of encryption array are initially unprogrammed (all 1s).  
If security bits 2 and 3 have not been programmed, the on-chip  
program memory can be read out for program verification. The  
Trademark phrase of Intel Corporation.  
1999 Apr 01  
44  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
Table 9. EPROM Programming Modes  
MODE  
Read signature  
RST  
1
PSEN  
ALE/PROG  
EA/V  
P2.7  
P2.6  
P3.7  
P3.6  
PP  
0
0
0
0
0
0
0
1
1
0
1
0
1
1
1
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
0
1
1
0
1
0
1
Program code data  
Verify code data  
1
0*  
1
V
PP  
1
1
Pgm encryption table  
Pgm security bit 1  
Pgm security bit 2  
1
0*  
0*  
0*  
0*  
V
PP  
PP  
PP  
PP  
1
V
V
V
1
Pgm security bit 3  
1
NOTES:  
1. ‘0’ = Valid low for that pin, ‘1’ = valid high for that pin.  
2. V = 12.75V ±0.25V.  
PP  
3. V = 5V±10% during programming and verification.  
CC  
*
ALE/PROG receives 5 programming pulses for code data (also for user array; 5 pulses for encryption or security bits) while V is held at  
PP  
12.75V. Each programming pulse is low for 100µs (±10µs) and high for a minimum of 10µs.  
Table 10. Program Security Bits for EPROM Devices  
1, 2  
PROGRAM LOCK BITS  
SB1  
SB2  
SB3  
PROTECTION DESCRIPTION  
1
2
U
U
U
No Program Security features enabled. (Code verify will still be encrypted by the Encryption Array if  
programmed.)  
P
U
U
MOVC instructions executed from external program memory are disabled from fetching code bytes  
from internal memory, EA is sampled and latched on Reset, and further programming of the EPROM  
is disabled.  
3
P
P
P
P
U
P
Same as 2, also verify is disabled.  
4
Same as 3, external execution is disabled.  
NOTES:  
1. P – programmed. U – unprogrammed.  
2. Any other combination of the security bits is not defined.  
45  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
+5V  
V
CC  
P0  
A0–A7  
P1  
PGM DATA  
1
1
1
RST  
P3.6  
+12.75V  
EA/V  
PP  
5 PULSES TO GROUND  
ALE/PROG  
PSEN  
P3.7  
0
1
OTP  
XTAL2  
P2.7  
0
P2.6  
4–6MHz  
XTAL1  
A8–A13  
P2.0–P2.5  
A14  
V
P3.4  
P3.5  
SS  
A15 (RD+ ONLY)  
A8–A15 are programming addresses  
(not external memory addresses per  
device pin out)  
SU00838A  
Figure 41. Programming Configuration  
5 PULSES  
1
0
1
2
3
4
5
ALE/PROG:  
SEE EXPLODED VIEW BELOW  
t
= 10µs MIN  
GHGL  
t
= 100µs±10µs  
GLGH  
1
0
1
ALE/PROG:  
SU00875  
Figure 42. PROG Waveform  
+5V  
V
CC  
P0  
A0–A7  
PGM DATA  
P1  
1
1
1
RST  
P3.6  
1
1
EA/V  
PP  
ALE/PROG  
PSEN  
P3.7  
0
OTP  
0 ENABLE  
XTAL2  
P2.7  
0
P2.6  
4–6MHz  
XTAL1  
A8–A13  
P2.0–P2.5  
A14  
V
P3.4  
P3.5  
SS  
A15 (RD+ ONLY)  
A8–A15 are programming addresses  
(not external memory addresses per  
device pin out)  
SU00870  
Figure 43. Program Verification  
46  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS  
T
amb  
= 21°C to +27°C, V = 5V±10%, V = 0V (See Figure 44)  
CC SS  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
V
V
PP  
Programming supply voltage  
Programming supply current  
Oscillator frequency  
12.5  
13.0  
1
I
PP  
50  
mA  
MHz  
1/t  
CLCL  
4
6
t
t
t
t
t
t
t
t
t
t
t
t
Address setup to PROG low  
Address hold after PROG  
Data setup to PROG low  
Data hold after PROG  
48t  
AVGL  
CLCL  
CLCL  
CLCL  
CLCL  
CLCL  
48t  
48t  
48t  
48t  
GHAX  
DVGL  
GHDX  
EHSH  
SHGL  
GHSL  
GLGH  
AVQV  
ELQZ  
EHQZ  
GHGL  
P2.7 (ENABLE) high to V  
PP  
V
PP  
V
PP  
setup to PROG low  
hold after PROG  
10  
10  
90  
µs  
µs  
µs  
PROG width  
110  
Address to data valid  
48t  
CLCL  
CLCL  
CLCL  
ENABLE low to data valid  
Data float after ENABLE  
PROG high to PROG low  
48t  
48t  
0
10  
µs  
NOTE:  
1. Not tested.  
PROGRAMMING*  
VERIFICATION*  
ADDRESS  
P1.0–P1.7  
P2.0–P2.5  
P3.4  
ADDRESS  
(A0 – A14)  
t
AVQV  
PORT 0  
P0.0 – P0.7  
(D0 – D7)  
DATA IN  
DATA OUT  
t
t
t
DVGL  
GHDX  
GHAX  
t
AVGL  
ALE/PROG  
t
t
GLGH  
GHGL  
t
t
SHGL  
GHSL  
LOGIC 1  
LOGIC 1  
EA/V  
PP  
LOGIC 0  
t
t
t
EHSH  
ELQV  
EHQZ  
P2.7  
**  
SU00871  
NOTES:  
*
FOR PROGRAMMING CONFIGURATION SEE FIGURE 41.  
FOR VERIFICATION CONDITIONS SEE FIGURE 43.  
** SEE TABLE 9.  
Figure 44. EPROM Programming and Verification  
47  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
MASK ROM DEVICES  
internal memory, EA is latched on Reset and all further programming  
of the EPROM is disabled. When security bits 1 and 2 are  
programmed, in addition to the above, verify mode is disabled.  
Security Bits  
With none of the security bits programmed the code in the program  
memory can be verified. If the encryption table is programmed, the  
code will be encrypted when verified. When only security bit 1 (see  
Table 11) is programmed, MOVC instructions executed from external  
program memory are disabled from fetching code bytes from the  
Encryption Array  
64 bytes of encryption array are initially unprogrammed (all 1s).  
Table 11. Program Security Bits  
1, 2  
PROGRAM LOCK BITS  
SB1  
SB2  
PROTECTION DESCRIPTION  
1
U
U
No Program Security features enabled.  
(Code verify will still be encrypted by the Encryption Array if programmed.)  
2
P
U
MOVC instructions executed from external program memory are disabled from fetching code bytes from  
internal memory, EA is sampled and latched on Reset, and further programming of the EPROM is disabled.  
NOTES:  
1. P – programmed. U – unprogrammed.  
2. Any other combination of the security bits is not defined.  
ROM CODE SUBMISSION FOR 8K ROM DEVICES (80C52, 83C51FA, AND 83C51RA+)  
When submitting ROM code for the 8k ROM devices, the following must be specified:  
1. 8k byte user ROM data  
2. 64 byte ROM encryption key  
3. ROM security bits.  
ADDRESS  
CONTENT  
DATA  
BIT(S)  
7:0  
COMMENT  
0000H to 1FFFH  
2000H to 203FH  
User ROM Data  
KEY  
7:0  
ROM Encryption Key  
FFH = no encryption  
2040H  
2040H  
SEC  
SEC  
0
1
ROM Security Bit 1  
0 = enable security  
1 = disable security  
ROM Security Bit 2  
0 = enable security  
1 = disable security  
Security Bit 1: When programmed, this bit has two effects on masked ROM parts:  
1. External MOVC is disabled, and  
2. EA is latched on Reset.  
Security Bit 2: When programmed, this bit inhibits Verify User ROM.  
NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.  
If the ROM Code file does not include the options, the following information must be included with the ROM code.  
For each of the following, check the appropriate box, and send to Philips along with the code:  
Security Bit #1:  
Security Bit #2:  
Encryption:  
V Enabled  
V Enabled  
V No  
V Disabled  
V Disabled  
V Yes  
If Yes, must send key file.  
48  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
ROM CODE SUBMISSION FOR 16K ROM DEVICES (80C54, 83C51FB AND 83C51RB+)  
When submitting ROM code for the 16K ROM devices, the following must be specified:  
1. 16k byte user ROM data  
2. 64 byte ROM encryption key  
3. ROM security bits.  
ADDRESS  
CONTENT  
DATA  
BIT(S)  
7:0  
COMMENT  
0000H to 3FFFH  
4000H to 403FH  
User ROM Data  
KEY  
7:0  
ROM Encryption Key  
FFH = no encryption  
4040H  
4040H  
SEC  
SEC  
0
1
ROM Security Bit 1  
0 = enable security  
1 = disable security  
ROM Security Bit 2  
0 = enable security  
1 = disable security  
Security Bit 1: When programmed, this bit has two effects on masked ROM parts:  
1. External MOVC is disabled, and  
2. EA is latched on Reset.  
Security Bit 2: When programmed, this bit inhibits Verify User ROM.  
NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.  
If the ROM Code file does not include the options, the following information must be included with the ROM code.  
For each of the following, check the appropriate box, and send to Philips along with the code:  
Security Bit #1:  
Security Bit #2:  
Encryption:  
V Enabled  
V Enabled  
V No  
V Disabled  
V Disabled  
V Yes  
If Yes, must send key file.  
49  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
ROM CODE SUBMISSION FOR 32K ROM DEVICES (80C58, 83C51FC, AND 83C51RC+)  
When submitting ROM code for the 32K ROM devices, the following must be specified:  
1. 32k byte user ROM data  
2. 64 byte ROM encryption key  
3. ROM security bits.  
ADDRESS  
CONTENT  
DATA  
BIT(S)  
7:0  
COMMENT  
0000H to 7FFFH  
8000H to 803FH  
User ROM Data  
KEY  
7:0  
ROM Encryption Key  
FFH = no encryption  
8040H  
8040H  
SEC  
SEC  
0
1
ROM Security Bit 1  
0 = enable security  
1 = disable security  
ROM Security Bit 2  
0 = enable security  
1 = disable security  
Security Bit 1: When programmed, this bit has two effects on masked ROM parts:  
1. External MOVC is disabled, and  
2. EA is latched on Reset.  
Security Bit 2: When programmed, this bit inhibits Verify User ROM.  
NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.  
If the ROM Code file does not include the options, the following information must be included with the ROM code.  
For each of the following, check the appropriate box, and send to Philips along with the code:  
Security Bit #1:  
Security Bit #2:  
Encryption:  
V Enabled  
V Enabled  
V No  
V Disabled  
V Disabled  
V Yes  
If Yes, must send key file.  
50  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
ROM CODE SUBMISSION FOR 64K ROM DEVICE (83C51RD+)  
When submitting ROM code for the 64K ROM devices, the following must be specified:  
1. 64k byte user ROM data  
2. 64 byte ROM encryption key  
3. ROM security bits.  
ADDRESS  
CONTENT  
DATA  
BIT(S)  
7:0  
COMMENT  
0000H to FFFFH  
10000H to 1003FH  
User ROM Data  
KEY  
7:0  
ROM Encryption Key  
FFH = no encryption  
10040H  
10040H  
SEC  
SEC  
0
1
ROM Security Bit 1  
0 = enable security  
1 = disable security  
ROM Security Bit 2  
0 = enable security  
1 = disable security  
Security Bit 1: When programmed, this bit has two effects on masked ROM parts:  
1. External MOVC is disabled, and  
2. EA is latched on Reset.  
Security Bit 2: When programmed, this bit inhibits Verify User ROM.  
NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.  
If the ROM Code file does not include the options, the following information must be included with the ROM code.  
For each of the following, check the appropriate box, and send to Philips along with the code:  
Security Bit #1:  
Security Bit #2:  
Encryption:  
V Enabled  
V Enabled  
V No  
V Disabled  
V Disabled  
V Yes  
If Yes, must send key file.  
51  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm  
SOT307-2  
52  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
PLCC44: plastic leaded chip carrier; 44 leads  
SOT187-2  
53  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
DIP40: plastic dual in-line package; 40 leads (600 mil)  
SOT129-1  
54  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
NOTES  
55  
1999 Apr 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller family  
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),  
low power, high speed (33MHz)  
8XC52/54/58/80C32  
8XC51FA/FB/FC/80C51FA  
8XC51RA+/RB+/RC+/RD+/80C51RA+  
Data sheet status  
[1]  
Data sheet  
status  
Product  
status  
Definition  
Objective  
specification  
Development  
This data sheet contains the design target or goal specifications for product development.  
Specification may change in any manner without notice.  
Preliminary  
specification  
Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date.  
Philips Semiconductors reserves the right to make chages at any time without notice in order to  
improve design and supply the best possible product.  
Product  
specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make  
changes at any time without notice in order to improve design and supply the best possible product.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1999  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Date of release: 04-99  
Document order number:  
9397 750 05509  
Philips  
Semiconductors  

相关型号:

P87C52X2

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP 128B/256B RAM low voltage 2.7 to 5.5 V, low power, high speed 30/33 MHz
NXP

P87C52X2BA

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP 128B/256B RAM low voltage 2.7 to 5.5 V, low power, high speed 30/33 MHz
NXP

P87C52X2BA

Microcontroller, 8-Bit, UVPROM, 8051 CPU, 33MHz, CMOS, PQCC44,
PHILIPS

P87C52X2BA,512

P80C31X2/32X2 - 80C51 8-bit microcontroller family LCC 44-Pin
NXP

P87C52X2BA,529

P80C31X2/32X2 - 80C51 8-bit microcontroller family LCC 44-Pin
NXP

P87C52X2BBD

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP 128B/256B RAM low voltage 2.7 to 5.5 V, low power, high speed 30/33 MHz
NXP

P87C52X2BBD

Microcontroller, 8-Bit, UVPROM, 8051 CPU, 33MHz, CMOS, PQFP44
PHILIPS

P87C52X2BN

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP 128B/256B RAM low voltage 2.7 to 5.5 V, low power, high speed 30/33 MHz
NXP

P87C52X2BN,112

P80C31X2/32X2 - 80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP 128B/256B RAM low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz) DIP 40-Pin
NXP

P87C52X2FA

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP 128B/256B RAM low voltage 2.7 to 5.5 V, low power, high speed 30/33 MHz
NXP

P87C52X2FA,512

P80C31X2/32X2 - 80C51 8-bit microcontroller family LCC 44-Pin
NXP

P87C52X2FBD

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP 128B/256B RAM low voltage 2.7 to 5.5 V, low power, high speed 30/33 MHz
NXP