NX5P1000UKZ [NXP]

NX5P1000 - Logic controlled high-side power switch CSP 12-Pin;
NX5P1000UKZ
型号: NX5P1000UKZ
厂家: NXP    NXP
描述:

NX5P1000 - Logic controlled high-side power switch CSP 12-Pin

文件: 总19页 (文件大小:737K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NX5P1000  
Logic controlled high-side power switch  
Rev. 2 — 14 January 2014  
Product data sheet  
1. General description  
The NX5P1000 is an advanced power switch and ESD- protection device for USB OTG  
applications. The device includes under voltage and over voltage lockout, over-current,  
over-temperature, reverse bias and in-rush current protection circuits. These circuits are  
designed to isolate a VBUS OTG voltage source automatically from a VBUS interface pin  
when a fault condition occurs. The device features two power switch terminals, one input  
(VINT) and one output (VBUS). It has a current limit input (ILIM) for defining the  
over-current and in-rush current limit. A voltage detect output (VDET) is used to determine  
when VINT is in the correct voltage range. An open-drain fault output (FAULT) indicates  
when a fault condition has occurred and an enable input (EN) controls the state of the  
switch. When EN is set LOW the device enters a low-power mode, disabling all protection  
circuits except the undervoltage lockout. The low-power mode can be entered at anytime  
unless the over temperature protection circuit has been triggered.  
Designed for operation from 3 V to 5.5 V, it is used in power domain isolation applications  
to protect from out of range operation. The enable input includes integrated logic level  
translation making the device compatible with lower voltage processors and controllers.  
2. Features and benefits  
Wide supply voltage range from 3 V to 5.5 V  
30 V tolerant on VBUS  
ISW maximum 1 A continuous current  
Very low ON resistance: 100 m(maximum) at a supply voltage of 4.0 V  
Low-power mode (ground current 20 A typical)  
1.8 V control logic  
Soft start turn-on slew rate  
Protection circuitry  
Over-temperature protection  
Over-current protection with low current output mode  
Reverse bias current/Back drive protection  
Overvoltage lockout  
Undervoltage lockout  
Analog voltage limited VBUS monitor path  
ESD protection:  
HBM ANSI/ESDA/JEDEC JS-001 Class 2 exceeds 2 kV  
IEC61000-4-2 contact discharge exceeds 8 kV for pins VBUS, D, D+ and ID  
Specified from 40 C to +85 C  
 
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
3. Applications  
USB OTG applications  
4. Ordering information  
Table 1.  
Type number Package  
Temperature range Name  
Ordering information  
Description  
Version  
NX5P1000UK 40 C to +85 C  
WLCSP12 wafer level chip-scale package; 12 bumps;  
1.36 1.66 0.51 mm, 0.4 mm pitch (Backside Coating  
included)  
NX5P1000  
5. Marking  
Table 2.  
Marking codes  
Type number  
Marking code  
NX5P1000UK  
NX5P1  
6. Functional diagram  
(1  
9%86  
'ꢀ  
9,17  
9'(7  
,/,0  
'ꢁ  
,'  
)$8/7  
DDDꢀꢁꢁꢂꢃꢄꢂ  
Fig 1. Logic symbol  
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
2 of 19  
 
 
 
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
10 mA  
CURRENT SOURCE  
REVERSE-CURRENT  
PROTECTION  
ILIM  
OVER-CURRENT  
PROTECTION  
VBUS  
VINT  
UVLO/OVLO  
PROT  
VDET  
EN  
CONTROL  
D-  
D+  
ID  
FAULT  
125 °C  
PROT  
aaa-007136  
Fig 2. Logic diagram (simplified schematic)  
7. Pinning information  
7.1 Pinning  
1;ꢀ3ꢁꢂꢂꢂ  
1;ꢀ3ꢁꢂꢂꢂ  
EDOOꢅ$ꢂ  
LQGH[ꢅDUHD  
$
9,17 9'(7 9%86  
9,17 )$8/7 9%86  
$
%
%
&
'
(1  
*1'  
'ꢀ  
,'  
&
'
,/,0  
'ꢁ  
DDDꢀꢁꢁꢂꢃꢄꢆ  
DDDꢀꢁꢁꢂꢃꢄꢅ  
7UDQVSDUHQWꢅWRSꢅYLHZ  
7UDQVSDUHQWꢅWRSꢅYLHZ  
Fig 3. Pin configuration WLCSP12 package  
Fig 4. Ball mapping for WLCSP12  
7.2 Pin description  
Table 3.  
Symbol  
VINT  
Pin description  
Pin  
Description  
A1, B1  
A3, B3  
C1  
internal circuitry voltage I  
external connector voltage O  
enable input (active HIGH) I  
current limiter I/O  
VBUS  
EN  
ILIM  
D1  
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
3 of 19  
 
 
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
Table 3.  
Symbol  
VDET  
FAULT  
GND  
D-  
Pin description …continued  
Pin  
A2  
B2  
C2  
D2  
D3  
C3  
Description  
VBUS voltage level indicator O  
fault condition indicator (open-drain; active LOW)  
ground (0 V)  
ESD-protection I/O  
D+  
ESD-protection I/O  
ID  
ESD-protection I/O  
8. Functional description  
Table 4.  
Function table[1]  
EN  
X
VINT  
VBUS  
Z
FAULT Operation mode  
0 V  
0 V  
L
Z
L
L
L
Z
Z
L
L
no supply  
X
< 30 V  
disabled; switch open  
X
< 3.2 V  
Z
undervoltage lockout; switch open  
overvoltage lockout; switch open  
over-temperature; switch open  
disabled; switch open  
H
H
L
> 5.5 V  
Z
3.2 V to 5.5 V  
3.2 V to 5.5 V  
3.2 V to 5.5 V  
3.2 V to 5.5 V  
3.2 V to 5.5 V  
Z
Z
H
H
H
VBUS = VINT  
0 V to VINT  
0 V to VINT  
enabled; switch closed; active  
over-current; switch open; constant current on VBUS  
when ILIM is connected to GND, VBUS is supplied with  
10 mA current source  
H
H
3.2 V to 5.5 V  
3.2 V to 5.5 V  
VINT + 30 mV < VBUS < VINT +  
0.45 V (> 4 ms)  
L
L
reverse bias current/back drive; switch open  
VBUS > VINT + 0.45 V  
reverse bias current/back drive; switch open  
[1] H = HIGH voltage level; L = LOW voltage level, Z = high-impedance OFF-state, X = Don’t care.  
Table 5.  
VBUS  
Function table VDET versus VBUS[1]  
VDET  
Operation mode  
3 V < VBUS < 30 V  
1.5 < VDET < 5.5 V VDET detects VBUS voltage  
[1] See Figure 22.  
8.1 EN input  
When the EN is set LOW, the N-channel MOSFET is disabled. The device enters  
low-power mode disabling all protection circuits except the undervoltage lockout circuit  
and setting the FAULT output high impedance. When EN is set HIGH, all protection  
circuits are enabled. If an RILIM current limit resistor is detected and no fault conditions  
exist, the N-channel MOSFET is enabled.  
8.2 Undervoltage lockout  
Independent of the logic level on the EN pin, the undervoltage lockout (UVLO) circuit  
disables the N-channel MOSFET. It sets the FAULT output LOW and enters low-power  
mode until VINT > 3.2 V. Once VINT > 3.2 V, the state of the N-channel MOSFET controls  
the EN pin. The UVLO circuit remains active in low-power mode.  
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
4 of 19  
 
 
 
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
8.3 Overvoltage lockout  
When EN is set HIGH, the overvoltage lockout (OVLO) circuit disables the N-channel  
MOSFET. If VINT > 5.75 V, the FAULT output is set LOW. The OVLO circuit is disabled in  
low-power mode and does not influence the FAULT output state. If the OVLO circuit is  
active, setting the EN pin LOW returns the device to low-power mode.  
8.4 ILIM  
The over-current protection circuit's (OCP) trigger value Iocp, can be set using an external  
resistor RILIM connected to the ILIM pin (see Figure 6). When EN is set HIGH and the ILIM  
pin is grounded, the N-channel MOSFET is disabled. In addition, VBUS is supplied by the  
10 mA current source and the FAULT output set LOW.  
8.5 Over-current protection  
If the current through the N-channel MOSFET exceeds Iocp for 20 s or VBUS < VINT   
200 mV, the over-current protection (OCP) circuit disables the N-channel MOSFET within  
2 s. It supplies VBUS from the 10 mA current source and indicates a fault condition by  
setting the FAULT pin LOW. The OCP circuit is automatically reset when VINT > VBUS >  
VINT 200 mV for 20 s. The N-channel MOSFET assumes the state defined by the EN  
input, the 10 mA current source is disconnected and the FAULT pin is set high impedance.  
If the OCP circuit is active, setting the EN pin LOW returns the device to low-power mode.  
8.6 Over-temperature protection  
When EN is set HIGH and the device temperature exceeds 125 °C, the Over-temperature  
protection (OTP) circuit disables the N-channel MOSFET. It indicates a fault condition by  
setting the FAULT pin LOW. Any transition on the EN pin has no effect. Once the device  
temperature decreases to below 115 °C, the device returns to the defined state. The OTP  
circuit is disabled in low-power mode. However, if the OTP circuit is active, setting the EN  
pin LOW does not return the device to low-power mode.  
8.7 Reverse bias current/back drive protection  
When EN is set HIGH, if (VINT + 30 mV) < VBUS < (VINT + 0.45 V) for longer than 4 ms,  
or if VBUS > (VINT + 0.45 V), the reverse-bias current protection circuit (RCP) disables  
the N-channel MOSFET. It indicates a fault condition by setting the FAULT pin LOW. Once  
VBUS < VINT for longer than 4 ms the device returns to the defined state. If the RCP  
circuit is active, setting the EN pin LOW returns the device to low-power mode.  
8.8 FAULT output  
The FAULT output is an open-drain output that requires an external pull-up resistor. If any  
of the UVLO, OVLO, RCP, OCP or OTP circuits are activated the FAULT output is set  
LOW to indicate a fault has occurred. The FAULT output returns to the high impedance  
state automatically once the fault condition is removed.  
8.9 VDET output  
VDET is an analog output that allows a controller to monitor the voltage level on VBUS.  
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
5 of 19  
 
 
 
 
 
 
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
8.10 In-rush current protection  
When either the EN pin or a recovered fault condition enables the N-channel MOSFET,  
the in-rush current protection circuit affects the switch. It causes the switch to behave as a  
current source during the time VBUS ramps up to VINT - 200 mV. The resistor connected  
to ILIM determines the current. The in-rush current protection circuit is disabled in  
low-power mode.  
9. Application diagram  
The NX5P1000 typically connects a voltage source on VINT to the VBUS of a USB  
connector supporting USB3 OTG in a portable, battery operated device. The external  
resistor RILIM sets the maximum current limit threshold. The FAULT signal requires an  
additional external pull-up resistor. This resistor should be connected to a supply voltage  
matching the logic input pin supply level it is connected to.  
ꢂꢆꢅP$  
&855(17ꢅ6285&(  
5(9(56(ꢀ&855(17  
3527(&7,21  
,/,0  
29(5ꢀ&855(17  
3527(&7,21  
9,17  
9%86  
86%ꢅ27*ꢅ9%86  
89/2ꢇ29/2  
&ꢂꢅ•  
&ꢃ  
92/7$*(  
6285&(  
$1'  
5
3527  
SX  
ꢂꢆꢆꢅQ)  
ꢈꢉꢊꢅ )ꢅꢅ  
9'(7  
(1  
&21752/  
'ꢀ  
'ꢁ  
,'  
&21752/  
)$8/7  
ꢂꢃꢋꢅƒ&  
3527  
5
,/,0  
*1'  
DDDꢀꢁꢁꢂꢃꢇꢁ  
Fig 5. NX5P1000 application diagram  
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
6 of 19  
 
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
10. Limiting values  
Table 6.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).  
Symbol  
Parameter  
Conditions  
VBUS  
Min  
0.5  
0.5  
0.5  
0.5  
0.5  
50  
50  
-
Max  
+32  
Unit  
V
[1]  
[1]  
[2]  
[1]  
VI  
input voltage  
VINT  
+6.0  
VINT + 0.5  
+6.0  
+6.0  
-
V
EN, ILIM  
D-, D+, ID  
FAULT  
V
V
VO  
output voltage  
V
IIK  
input clamping current  
EN: VI < 0.5 V  
mA  
mA  
mA  
C  
ISK  
switch clamping current VBUS; VINT; VI < 0.5 V  
-
ISW  
Tj(max)  
switch current  
Tamb = 85 °C  
1000  
+125  
maximum junction  
temperature  
40  
Tstg  
Ptot  
storage temperature  
total power dissipation  
65  
+150  
100  
C  
[3]  
-
mW  
[1] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed.  
[2] The minimum input voltage rating may be exceeded if the input current rating is observed.  
[3] The (absolute) maximum power dissipation depends on the junction temperature Tj. Higher power dissipation is allowed in conjunction  
with lower ambient temperatures. The conditions to determine the specified values are Tamb = 85 °C and the use of a two layer PCB.  
11. Recommended operating conditions  
Table 7.  
Recommended operating conditions  
Symbol Parameter  
Conditions  
VINT  
Min  
3.0  
0
Max  
5.5  
Unit  
V
VI  
input voltage  
EN, ILIM  
VINT  
30  
V
VO  
output voltage  
VBUS; EN = LOW  
D-, D+, ID  
0
V
VI/O  
Tamb  
input/output voltage  
ambient temperature  
0
5.5  
V
40  
+85  
C  
12. Thermal characteristics  
Table 8.  
Symbol  
Rth(j-a)  
Thermal characteristics  
Parameter  
Conditions  
Typ  
Unit  
K/W  
[1][2]  
thermal resistance from junction to ambient  
73  
[1] The overall Rth(j-a) can vary depending on the board layout. To minimize the effective Rth(j-a), all pins must have a solid connection to  
larger Cu layer areas e.g. to the power and ground layer. In multi-layer PCB applications, the second layer should be used to create a  
large heat spreader area right below the device. If this layer is either ground or power, it should be connected with several vias to the top  
layer connecting to the device ground or supply. Try not to use any solder-stop varnish under the chip.  
[2] Rely on the measurement data given for a rough estimation of the Rth(j-a) in your application. The actual Rth(j-a) value may vary in  
applications using different layer stacks and layouts  
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
7 of 19  
 
 
 
 
 
 
 
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
13. Static characteristics  
Table 9.  
Static characteristics  
VI(VINT) = 4.0 V to 5.5 V; unless otherwise specified; Voltages are referenced to GND (ground = 0 V).  
Symbol  
Parameter  
Conditions  
Tamb = 25 C  
Tamb = 40 C to +85 C Unit  
Min Typ[1] Max  
Min  
Max  
VIH  
VIL  
VO  
VOL  
IO  
HIGH-level input  
voltage  
EN input  
EN input  
1.2  
-
-
-
-
-
1.2  
-
V
V
V
V
LOW-level input  
voltage  
-
0.4  
5.5  
0.5  
-
1.5  
-
0.4  
5.5  
0.5  
output voltage  
VDET; IVDET = 2 mA;  
3V < VBUS < 30 V  
1.5  
-
LOW-level output  
voltage  
FAULT, IO = 8 mA  
output current  
Current source  
-
-
-
10  
-
-
IOS  
-
8
-
15  
IOS  
-
mA  
mA  
mA  
EN = HIGH; FAULT = Hi-Z  
EN = HIGH; see Figure 6  
Iocp  
overcurrent  
-
-
protection current  
Rpu  
pull-up resistance  
pull-up voltage  
FAULT  
FAULT  
ILIM  
20  
-
-
-
-
200  
VINT  
300  
-
-
-
k  
V
Vpu  
VINT  
300  
RILIM  
current limit  
resistance  
40  
40  
k  
IGND  
ground current  
VBUS open; EN = LOW;  
see Figure 7 and Figure 8  
-
20  
220  
2
-
-
40  
330  
20  
20  
3.4  
6.0  
-
A  
A  
A  
A  
V
VBUS open; EN = HIGH;  
see Figure 7 and Figure 8  
-
-
-
[2]  
[2]  
IOFF  
power-off leakage  
current  
VBUS = 0 V to 30 V;  
VINT = 0 V; see Figure 9  
-
-
-
-
-
-
IS(OFF)  
VUVLO  
VOVLO  
OFF-state leakage  
current  
VBUS = 0 V to 30 V;  
see Figure 10 and Figure 11  
2
undervoltage lockout  
voltage  
3.0  
5.5  
-
3.2  
5.75  
150  
3
3.4  
6.0  
-
3.0  
5.5  
-
overvoltage lockout  
voltage  
V
Vhys(OVLO) overvoltage lockout  
hysteresis voltage  
mV  
pF  
CI/O  
input/output  
capacitance  
D-, D+, ID  
EN  
-
-
-
-
CI  
input capacitance  
-
-
2
-
-
-
-
-
pF  
nF  
CS(ON)  
ON-state  
1
1
capacitance  
[1] Typical values are measured at Tamb = 25 C and VI(VINT) = 5.0 V.  
[2] Typical value is measured at Tamb = 25 C and VI(VBUS) = 5.0 V.  
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
8 of 19  
 
 
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
13.1 Graphs  
DDDꢀꢁꢁꢈꢉꢊꢉ  
DDDꢀꢁꢁꢈꢉꢊꢃ  
ꢂꢉꢎ  
ꢃꢈꢆ  
ꢌꢂꢍ  
&XUUHQW  
OLPLW  
ꢌ$ꢍ  
,
*1'  
ꢌ—$ꢍ  
ꢂꢉꢃ  
ꢆꢉꢏ  
ꢆꢉꢈ  
ꢂꢏꢆ  
ꢂꢃꢆ  
ꢎꢆ  
ꢌꢃꢍ  
ꢂꢆꢆ  
ꢃꢆꢆ  
ꢄꢆꢆ  
ꢀꢋꢆ  
ꢀꢄꢆ  
ꢀꢂꢆ  
ꢂꢆ  
ꢄꢆ  
ꢋꢆ  
ꢊꢆ  
ꢅꢌƒ&ꢍ  
ꢐꢆ  
5
,/,0  
ꢅꢌNȍꢍ  
7
DPE  
(1) Enabled  
(2) Disabled  
Fig 6. Typical over-current and in-rush current limit  
versus the external resistor value.  
Fig 7. Typical ground current versus temperature  
DDDꢀꢁꢁꢈꢉꢊꢄ  
DDDꢀꢁꢁꢂꢃꢇꢃ  
ꢊꢆꢆ  
ꢃꢆ  
,
*1'  
,
2))  
ꢌ $ꢍ  
ꢌ—$ꢍ  
ꢎꢆꢆ  
ꢌꢂꢍ  
ꢂꢎ  
ꢋꢆꢆ  
ꢈꢆꢆ  
ꢄꢆꢆ  
ꢃꢆꢆ  
ꢂꢆꢆ  
ꢌꢃꢍ  
ꢌꢄꢍ  
ꢂꢃ  
ꢂꢆ  
ꢃꢆ  
ꢄꢆ  
9
ꢅꢌ9ꢍ  
9
ꢅꢌ9ꢍ  
,ꢌ9%86ꢍ  
,ꢌ(1ꢍ  
(1) Tamb = 85 C  
(2) Tamb = 25 C  
(3) Tamb = 40 C  
Fig 8. Typical ground current versus input voltage  
Fig 9. Typical power-off leakage current versus input  
voltage on pin VBUS  
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
9 of 19  
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
DDDꢀꢁꢁꢈꢉꢊꢊ  
DDDꢀꢁꢁꢈꢉꢊꢇ  
ꢃꢆ  
,
6ꢌ2))ꢍ  
,
6ꢌ2))ꢍ  
ꢌ—$ꢍ  
ꢌꢂꢍ  
ꢌꢃꢍ  
ꢌꢄꢍ  
ꢌ—$ꢍ  
ꢌꢂꢍ  
ꢂꢎ  
ꢂꢃ  
ꢌꢃꢍ  
ꢌꢄꢍ  
ꢂꢆ  
ꢃꢆ  
ꢄꢆ  
ꢀꢋꢆ  
ꢀꢄꢆ  
ꢀꢂꢆ  
ꢂꢆ  
ꢄꢆ  
ꢋꢆ  
ꢊꢆ  
ꢅꢌƒ&ꢍ  
ꢐꢆ  
9
ꢅꢌ9ꢍ  
,ꢌ9%86ꢍ  
7
DPE  
(1) Tamb = 85 C  
(2) amb = 25 C  
(3) Tamb = 40 C  
(1)  
(2)  
V
V
I(VBUS) = 15.0 V  
I(VBUS) = 10.0 V  
T
(3) VI(VBUS) = 5.0 V  
Fig 10. Typical OFF-state leakage current versus input  
voltage on pin VBUS  
Fig 11. Typical OFF-state leakage current versus  
temperature  
13.2 ON resistance  
Table 10. ON resistance  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V)  
Symbol Parameter  
Conditions  
Tamb = 25 C  
Tamb = 40 C to +85 C Unit  
Min Typ Max  
Min  
Max  
RON  
ON resistance switch enabled; ILOAD = 200 mA;  
see Figure 12, Figure 13 and  
Figure 14  
VI(VINT) = 4.0 V to 5.5 V  
-
60  
-
-
100  
m  
13.3 ON resistance test circuit and waveforms  
9
6:  
(1  
ꢂꢉꢋꢅ9  
9%86  
9,17  
,
9
,
*1'  
/2$'  
DDDꢀꢁꢁꢈꢉꢊꢈ  
RON = VSW / ILOAD  
.
Fig 12. Test circuit for measuring ON resistance  
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
10 of 19  
 
 
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
DDDꢀꢁꢁꢈꢉꢊꢂ  
DDDꢀꢁꢁꢈꢉꢊꢅ  
ꢏꢆ  
ꢏꢆ  
5
5
21  
21  
ꢌꢂꢍ  
ꢌꢂꢍ  
ꢌꢃꢍ  
ꢌPȍꢍ  
ꢌPȍꢍ  
ꢊꢆ  
ꢊꢆ  
ꢌꢃꢍ  
ꢌꢄꢍ  
ꢎꢆ  
ꢋꢆ  
ꢈꢆ  
ꢎꢆ  
ꢋꢆ  
ꢈꢆ  
ꢀꢈꢆ  
ꢀꢃꢆ  
ꢃꢆ  
ꢈꢆ  
ꢎꢆ  
ꢏꢆ  
ꢅꢌƒ&ꢍ  
ꢂꢆꢆ  
ꢄꢉꢋ  
ꢈꢉꢋ  
ꢋꢉꢋ  
9,17ꢅꢌ9ꢍ  
7
DPE  
(1) VI(VINT) = 5.5 V  
(2) VI(VINT) = 4.0 V  
(1) Tamb = 85 C  
(2) amb = 25 C  
(3) Tamb = 40 C  
T
Fig 13. Typical ON resistance versus temperature  
Fig 14. Typical ON resistance versus input voltage  
14. Dynamic characteristics  
Table 11. Dynamic characteristics  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Figure 16.  
VI(VINT) = 4.0 V to 5.5 V.  
Symbol Parameter  
Conditions  
Tamb = 25 C  
Tamb = 40 C to +85 C Unit  
Min  
Typ  
0.24  
1.5  
Max  
Min  
0.16  
-
Max  
ten  
enable time  
disable time  
turn-on time  
turn-off time  
EN to VBUS; see Figure 15  
EN to VBUS; see Figure 15  
EN to VBUS; see Figure 15  
EN to VBUS; see Figure 15  
VBUS; see Figure 15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ms  
ms  
ms  
ms  
ms  
tdis  
ton  
0.63  
34.5  
0.39  
0.52  
-
toff  
tTLH  
LOW to HIGH  
output transition  
time  
0.16  
tTHL  
HIGH to LOW  
output transition  
time  
VBUS; see Figure 15  
-
33  
-
-
-
ms  
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
11 of 19  
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
14.1 Waveforms, graphs and test circuit  
9
,
(1ꢅLQSXW  
*1'  
9
0
W
W
RQ  
RII  
W
GLV  
W
HQ  
9
2+  
9
;
9%86ꢅRXWSXW  
*1'  
9
<
W
W
7/+  
7+/  
DDDꢀꢁꢁꢈꢉꢊꢆ  
Measurement points are given in Table 12.  
Logic level: VOH is the typical output voltage that occurs with the output load.  
Fig 15. Switching times  
Table 12. Measurement points  
Supply voltage  
EN Input  
VM  
Output  
VX  
VI(VINT)  
VY  
4.0 V to 5.5 V  
0.5 VI  
0.9 VOH  
0.1 VOH  
(1  
9%86  
9,17  
*
9
,
9
(;7  
&
/
5
/
DDDꢀꢁꢁꢈꢉꢄꢁ  
Test data is given in Table 13.  
Definitions test circuit:  
RL = Load resistance.  
CL = Load capacitance including jig and probe capacitance.  
EXT = External voltage for measuring switching times.  
V
Fig 16. Test circuit for measuring switching times  
Table 13. Test data  
Supply voltage  
VEXT  
Input  
VI  
Load  
CL  
RL  
4.0 V to 5.5 V  
1.5 V  
100 F  
150   
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
12 of 19  
 
 
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
DDDꢀꢁꢁꢈꢉꢄꢃ  
DDDꢀꢁꢁꢈꢉꢄꢊ  
ꢂꢉꢃ  
ꢂꢉꢎ  
ꢌꢄꢍ  
ꢌꢃꢍ  
,
ꢌ9,17ꢍ  
ꢌ$ꢍ  
(1ꢑ  
9%86  
ꢌ9ꢍ  
,
(1ꢑ  
ꢌ9,17ꢍ  
ꢌ$ꢍ  
9%86  
ꢌ9ꢍ  
ꢂꢉꢃ  
ꢆꢉꢏ  
ꢆꢉꢈ  
ꢌꢄꢍ  
ꢌꢃꢍ  
ꢆꢉꢏ  
ꢆꢉꢈ  
ꢌꢂꢍ  
ꢌꢂꢍ  
ꢆꢉꢈ  
ꢆꢉꢏ  
ꢂꢉꢃ  
ꢂꢉꢎ  
ꢆꢉꢈ  
ꢆꢉꢏ  
ꢂꢉꢃ  
ꢂꢉꢎ  
WꢅꢌPVꢍ  
WꢅꢌPVꢍ  
EN = 1.5 V; VINT = 4 V; RL = 150 ; CL = 220 F;  
RILIM = 50 k; Tamb = 25 C.  
EN = 1.5 V; VINT = 5.5 V; RL = 150 ; CL = 220 F;  
RILIM = 50 k; Tamb = 25 C.  
(1) EN  
(1) EN  
(2) VBUS  
(3) II(VINT)  
(2) VBUS  
(3) II(VINT)  
Fig 17. Typical enable time and in-rush current  
Fig 18. Typical enable time and in-rush current  
DDDꢀꢁꢁꢈꢉꢄꢄ  
DDDꢀꢁꢁꢈꢉꢄꢇ  
ꢄꢋꢆ  
9%86  
ꢌ9ꢍ  
W
HQ  
ꢌ—Vꢍ  
ꢄꢄꢆ  
ꢄꢂꢆ  
ꢃꢐꢆ  
ꢃꢊꢆ  
ꢋꢆ  
ꢂꢆꢆ  
ꢂꢋꢆ  
ꢃꢆꢆ  
ꢃꢋꢆ  
ꢄꢆꢆ  
ꢅꢌNȍꢍ  
ꢄꢋꢆ  
ꢃꢆ  
ꢈꢆ  
ꢎꢆ  
ꢏꢆ  
ꢂꢆꢆ  
5
WꢅꢌPVꢍ  
,/,0  
EN = 1.5 V; VINT = 4 V; RL = 150 ; CL = 100 F;  
amb = 25 C.  
EN = 1.5 V; VINT = 4 V; RL = 150 ; CL = 100 F;  
ILIM = 50 k; Tamb = 25 C.  
T
R
Fig 19. Typical enable time versus current limit  
resistance (RILIM  
Fig 20. Typical disable time  
)
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
13 of 19  
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
DDDꢀꢁꢁꢈꢉꢄꢉ  
DDDꢀꢁꢁꢈꢉꢄꢈ  
9'(7  
ꢌ9ꢍ  
9%86  
ꢌ9ꢍ  
ꢃꢆ  
ꢈꢆ  
ꢎꢆ  
ꢏꢆ  
ꢂꢆꢆ  
ꢂꢆ  
ꢃꢆ  
ꢄꢆ  
WꢅꢌPVꢍ  
9%86ꢅꢌ9ꢍ  
EN = 1.5 V; VINT = 5.5 V; RL = 150 ; CL = 100 F;  
RILIM = 50 k; Tamb = 25 C.  
Fig 21. Typical disable time  
Fig 22. Typical VDET versus VBUS  
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
14 of 19  
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
15. Package outline  
:/&63ꢁꢃꢄꢅZDIHUꢅOHYHOꢅFKLSꢆVFDOHꢅSDFNDJHꢇ  
ꢁꢃꢅEXPSVꢇꢅꢁꢈꢉꢊꢅ[ꢅꢁꢈꢊꢊꢅ[ꢅꢂꢈꢀꢁꢅPPꢋꢅꢂꢈꢌꢅPPꢅSLWFKꢅꢍ%DFNVLGHꢅFRDWLQJꢅLQFOXGHGꢎ  
1;ꢀ3ꢁꢂꢂꢂ  
$
%
(
$
EDOOꢅ$ꢂ  
LQGH[ꢅDUHD  
$
'
$
GHWDLOꢅ;  
H
&
‘ꢅY  
‘ꢅZ  
&
&
$ %  
\
H
E
'
H
&
%
$
H
ꢂꢇꢃꢅH  
EDOOꢅ$ꢂ  
LQGH[ꢅDUHD  
;
ꢃꢅPP  
VFDOH  
'LPHQVLRQVꢅꢌPPꢅDUHꢅWKHꢅRULJLQDOꢅGLPHQVLRQVꢍ  
8QLW  
$
$
$
E
'
(
H
H
H
Y
Z
\
PD[ ꢆꢉꢋꢋ ꢆꢉꢃꢄ ꢆꢉꢄꢈ ꢆꢉꢃꢐ ꢂꢉꢎꢐ ꢂꢉꢄꢐ  
QRP  
PP  
ꢆꢉꢋꢂ ꢆꢉꢃꢆ ꢆꢉꢄꢂ ꢆꢉꢃꢎ ꢂꢉꢎꢎ ꢂꢉꢄꢎ  
ꢆꢉꢈ  
ꢆꢉꢏ  
ꢂꢉꢃ ꢆꢉꢆꢋ ꢆꢉꢂꢋ ꢆꢉꢆꢄ  
PLQ ꢆꢉꢈꢊ ꢆꢉꢂꢊ ꢆꢉꢃꢐ ꢆꢉꢃꢄ ꢂꢉꢎꢄ ꢂꢉꢄꢄ  
ZOFVSꢃꢊBQ[ꢉSꢃꢁꢁꢁBSR  
5HIHUHQFHV  
2XWOLQH  
YHUVLRQ  
(XURSHDQ  
SURMHFWLRQ  
,VVXHꢅGDWH  
,(&  
-('(&  
-(,7$  
ꢂꢄꢀꢆꢄꢀꢃꢎ  
ꢂꢄꢀꢆꢄꢀꢃꢐ  
1;ꢋ3ꢂꢆꢆꢆ  
Fig 23. Package outline NX5P1000 (WLCSP12)  
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
15 of 19  
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
16. Abbreviations  
Table 14. Abbreviations  
Acronym  
CDM  
Description  
Charged Device Model  
DUT  
Device Under Test  
ESD  
ElectroStatic Discharge  
Human Body Model  
HBM  
MOSFET  
OCP  
Metal-Oxide Semiconductor Field Effect Transistor  
Overcurrent Protection  
OTP  
Overtemperature Protection  
Reverse Current Protection  
Universal Serial Bus On-The-Go  
Undervoltage lockout  
RCP  
USB OTG  
UVLO  
VBUS  
OVLO  
USB Power Supply  
Overvoltage lockout  
17. Revision history  
Table 15. Revision history  
Document ID  
NX5P1000 v.2  
Modifications:  
NX5P1000 v.1  
Release date  
20140114  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
NX5P1000 v.1  
IOS changed into Iocp (errata).  
20130429 Product data sheet  
-
-
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
16 of 19  
 
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
18.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
18.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
17 of 19  
 
 
 
 
 
 
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
18.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
19. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
NX5P1000  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2 — 14 January 2014  
18 of 19  
 
 
NX5P1000  
NXP Semiconductors  
Logic controlled high-side power switch  
20. Contents  
1
2
3
4
5
6
General description. . . . . . . . . . . . . . . . . . . . . . 1  
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
8
Functional description . . . . . . . . . . . . . . . . . . . 4  
ENinput. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Undervoltage lockout . . . . . . . . . . . . . . . . . . . . 4  
Overvoltage lockout . . . . . . . . . . . . . . . . . . . . . 5  
ILIM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Over-current protection. . . . . . . . . . . . . . . . . . . 5  
Over-temperature protection . . . . . . . . . . . . . . 5  
Reverse bias current/back drive protection . . . 5  
FAULToutput . . . . . . . . . . . . . . . . . . . . . . . . . 5  
VDEToutput . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
In-rush current protection . . . . . . . . . . . . . . . . . 6  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
8.10  
9
Application diagram . . . . . . . . . . . . . . . . . . . . . 6  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Recommended operating conditions. . . . . . . . 7  
Thermal characteristics . . . . . . . . . . . . . . . . . . 7  
10  
11  
12  
13  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 8  
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
ON resistance. . . . . . . . . . . . . . . . . . . . . . . . . 10  
ON resistance test circuit and waveforms . . . 10  
13.1  
13.2  
13.3  
14  
14.1  
15  
Dynamic characteristics . . . . . . . . . . . . . . . . . 11  
Waveforms, graphs and test circuit . . . . . . . . 12  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 15  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 16  
16  
17  
18  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 17  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 17  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
18.1  
18.2  
18.3  
18.4  
19  
20  
Contact information. . . . . . . . . . . . . . . . . . . . . 18  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2014.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 14 January 2014  
Document identifier: NX5P1000  
 

相关型号:

NX5P2090UKZ

NX5P2090 - Logic controlled high-side power switch CSP 9-Pin
NXP

NX5P2924BUKZ

NX5P2924B - Logic controlled high-side power switch
NXP

NX5P2924UKZ

NX5P2924 - Logic controlled high-side power switch
NXP

NX5P3001UKZ

NX5P3001 - Bidirectional high-side power switch for charger and USB‑OTG combined applications
NXP

NX5P3090

USB PD and type C current-limited power switch
NXP

NX5P3090UK

USB PD and type C current-limited power switch
NXP

NX6

P CLIP BLACK PACK 100 Inhalt pro Packung: 100 Stk.
ETC

NX6008NBK

60 V, N-channel Trench MOSFETProduction
NEXPERIA

NX6008NBKS

60 V, dual N-channel Trench MOSFETProduction
NEXPERIA

NX6008NBKW

60 V, N-channel Trench MOSFETProduction
NEXPERIA

NX6020CAKS

60 V / 50 V, 170 mA / 160 mA N/P-channel Trench MOSFETProduction
NEXPERIA

NX6035SA

Crystal Units For Mobile Communications
NDK