NE592N8 [NXP]

Video amplifier; 视频放大器
NE592N8
型号: NE592N8
厂家: NXP    NXP
描述:

Video amplifier
视频放大器

视频放大器
文件: 总8页 (文件大小:145K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
DESCRIPTION  
PIN CONFIGURATIONS  
The NE592 is a monolithic, two-stage, differential output, wideband  
video amplifier. It offers fixed gains of 100 and 400 without external  
components and adjustable gains from 400 to 0 with one external  
resistor. The input stage has been designed so that with the addition  
of a few external reactive elements between the gain select  
terminals, the circuit can function as a high-pass, low-pass, or  
band-pass filter. This feature makes the circuit ideal for use as a  
video or pulse amplifier in communications, magnetic memories,  
display, video recorder systems, and floppy disk head amplifiers.  
Now available in an 8-pin version with fixed gain of 400 without  
external components and adjustable gain from 400 to 0 with one  
external resistor.  
D, N Packages  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
INPUT 2  
NC  
INPUT 1  
NC  
G
G
GAIN SELECT  
G
G
GAIN SELECT  
GAIN SELECT  
2B  
2A  
GAIN SELECT  
V-  
1B  
1A  
V+  
NC  
NC  
8
OUTPUT 2  
OUTPUT 1  
TOP VIEW  
FEATURES  
120MHz unity gain bandwidth  
D, N Packages  
Adjustable gains from 0 to 400  
Adjustable pass band  
1
2
3
4
8
7
6
5
INPUT 2  
INPUT 1  
G GAIN SELECT  
1A  
G
GAIN SELECT  
V-  
1B  
No frequency compensation required  
Wave shaping with minimal external components  
MIL-STD processing available  
V+  
OUTPUT 2  
OUTPUT 1  
TOP VIEW  
APPLICATIONS  
Floppy disk head amplifier  
Video amplifier  
Pulse amplifier in communications  
Magnetic memory  
Video recorder systems  
BLOCK DIAGRAM  
+V  
R1  
R2  
R8  
R10  
R9  
Q6  
Q5  
Q4  
Q3  
R11  
R12  
OUTPUT 1  
OUTPUT 2  
INPUT 2  
INPUT 1  
G1A  
Q1  
Q2  
G1B  
G2B  
Q8  
R3  
R5  
G2A  
Q7B  
Q9  
Q10  
Q11  
Q7A  
R7A  
R7B  
R15  
R16  
R13  
R14  
-V  
250  
April 15, 1992  
853-0911 06456  
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
ORDERING INFORMATION  
DESCRIPTION  
14-Pin Plastic Dual In-Line Package (DIP)  
14-Pin Small Outline (SO) package  
8-Pin Plastic Dual In-Line Package (DIP)  
8-Pin Small Outline (SO) package  
NOTES:  
TEMPERATURE RANGE  
0 to +70°C  
ORDER CODE  
DWG #  
0405B  
0175D  
0404B  
0174C  
NE592N14  
NE592D14  
NE592N8  
NE592D8  
0 to +70°C  
0 to +70°C  
0 to +70°C  
N8, N14, D8 and D14 package parts also available in “High” gain version by adding “H” before  
package designation, i.e., NE592HDB  
ABSOLUTE MAXIMUM RATINGS  
T =+25°C, unless otherwise specified.  
A
SYMBOL  
PARAMETER  
RATING  
UNIT  
V
V
V
Supply voltage  
±8  
±5  
V
V
CC  
IN  
Differential input voltage  
Common-mode input voltage  
Output current  
±6  
V
CM  
OUT  
I
10  
mA  
°C  
°C  
T
A
Operating ambient temperature range  
Storage temperature range  
Maximum power dissipation,  
0 to +70  
-65 to +150  
T
STG  
P
D MAX  
T =25°C (still air)1  
A
D-14 package  
D-8 package  
N-14 package  
N-8 package  
0.98  
0.79  
1.44  
1.17  
W
W
W
W
NOTES:  
1. Derate above 25°C at the following rates:  
D-14 package at 7.8mW/°C  
D-8 package at 6.3mW/°C  
N-14 package at 11.5mW/°C  
N-8 package at 9.3mW/°C  
251  
April 15, 1992  
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
DC ELECTRICAL CHARACTERISTICS  
T =+25°C V =±6V, V =0, unless otherwise specified. Recommended operating supply voltages V =±6.0V. All specifications apply to both  
A
SS  
CM  
S
standard and high gain parts unless noted differently.  
NE592  
Typ  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
Min  
Max  
A
VOL  
Differential voltage gain,  
standard part  
1
Gain 1  
R =2k, V  
=3V  
OUT P-P  
250  
80  
400  
100  
600  
120  
V/V  
V/V  
L
2, 4  
Gain 2  
R
C
Input resistance  
IN  
1
Gain 1  
4.0  
30  
kΩ  
kΩ  
pF  
µA  
µA  
2, 4  
Gain 2  
10  
2
4
Input capacitance  
Gain 2  
2.0  
0.4  
9.0  
12  
IN  
I
Input offset current  
5.0  
30  
OS  
I
Input bias current  
BIAS  
V
V
Input noise voltage  
Input voltage range  
Common-mode rejection ratio  
BW 1kHz to 10MHz  
µV  
RMS  
NOISE  
±1.0  
V
IN  
CMRR  
4
Gain 2  
V
±1V, f<100kHz  
60  
86  
60  
dB  
dB  
CM  
4
Gain 2  
V
±1V, f=5MHz  
CM  
PSRR  
Supply voltage rejection ratio  
4
Gain 2  
V =±0.5V  
50  
70  
dB  
S
V
OS  
Output offset voltage  
Gain 1  
R =∞  
1.5  
1.5  
V
V
V
V
V
L
4
Gain 2  
R =∞  
L
3
Gain 3  
R =∞  
L
0.35  
2.9  
0.75  
3.4  
V
V
Output common-mode voltage  
Output voltage swing  
differential  
R =∞  
L
2.4  
3.0  
CM  
R =2kΩ  
L
4.0  
OUT  
R
Output resistance  
20  
18  
OUT  
I
Power supply current  
R =∞  
L
24  
mA  
CC  
NOTES:  
1. Gain select Pins G and G connected together.  
1A  
1B  
2. Gain select Pins G and G connected together.  
2A  
2B  
3. All gain select pins open.  
4. Applies to 14-pin version only.  
252  
April 15, 1992  
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
DC ELECTRICAL CHARACTERISTICS  
DC Electrical CharacteristicsV =±6V, V =0, 0°C T 70°C, unless otherwise specified. Recommended operating supply voltages V =±6.0V.  
SS  
CM  
A
S
All specifications apply to both standard and high gain parts unless noted differently.  
NE592  
Typ  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
Min  
Max  
A
VOL  
Differential voltage gain,  
standard part  
1
Gain 1  
R =2k, V  
=3V  
OUT P-P  
250  
80  
600  
120  
V/V  
V/V  
L
2, 4  
Gain 2  
R
Input resistance  
IN  
2, 4  
Gain 2  
8.0  
kΩ  
µA  
µA  
V
I
I
Input offset current  
6.0  
40  
OS  
Input bias current  
BIAS  
V
IN  
Input voltage range  
±1.0  
50  
CMRR  
Common-mode rejection ratio  
4
Gain 2  
V
CM  
±1V, f<100kHz  
dB  
dB  
PSRR  
Supply voltage rejection ratio  
4
Gain 2  
V =±0.5V  
50  
S
Output offset voltage  
Gain 1  
1.5  
1.5  
1.0  
V
V
R =∞  
V
OS  
L
4
Gain 2  
Gain 3  
3
Output voltage swing differential  
Power supply current  
R =2kΩ  
L
2.8  
V
OUT  
I
R =∞  
L
27  
mA  
CC  
NOTES:  
1. Gain select Pins G and G connected together.  
1A  
1B  
2. Gain select Pins G and G connected together.  
2A  
2B  
3. All gain select pins open.  
4. Applies to 14-pin versions only.  
AC ELECTRICAL CHARACTERISTICS  
T =+25°C V =±6V, V =0, unless otherwise specified. Recommended operating supply voltages V =±6.0V. All specifications apply to both  
A
SS  
CM  
S
standard and high gain parts unless noted differently.  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
NE/SA592  
Typ  
UNIT  
Min  
Max  
Bandwidth  
1
BW  
Gain 1  
40  
90  
MHz  
MHz  
2, 4  
Gain 2  
Rise time  
1
t
t
Gain 1  
Gain 2  
V
V
=1V  
=1V  
10.5  
4.5  
12  
10  
ns  
ns  
R
OUT  
P-P  
2, 4  
Propagation delay  
1
Gain 1  
Gain 2  
7.5  
6.0  
ns  
ns  
PD  
OUT  
P-P  
2, 4  
NOTES:  
1. Gain select Pins G and G connected together.  
1A  
1B  
2. Gain select Pins G and G connected together.  
2A  
2B  
3. All gain select pins open.  
4. Applies to 14-pin versions only.  
253  
April 15, 1992  
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
TYPICAL PERFORMANCE CHARACTERISTICS  
Common-Mode Rejection Ratio  
as a Function of Frequency  
Output Voltage Swing as  
a Function of Frequency  
Pulse Response  
100  
90  
7.0  
6.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= +6V  
GAIN 2  
S
V
T
= +6V  
S
A
L
o
V
T
= +6V  
T
= 25 C  
o
S
A
= 25 C  
o
80  
70  
60  
50  
40  
30  
= 25 C  
R
= 1k  
A
L
R
= 1k  
5.0  
4.0  
3.0  
2.0  
1.0  
0
GAIN 2  
GAIN 1  
20  
10  
0
-0.2  
-0.4  
10k  
100k  
1M  
10M  
100M  
1
5
10  
50 100  
5001000  
-15 -10 -5  
0
5
10 15 20 25 30 35  
FREQUENCY – Hz  
FREQUENCY – MHz  
TIME – ns  
Supply Current as a  
Function of Temperature  
Pulse Response as a  
Function of Supply Voltage  
Pulse Response as a  
Function of Temperature  
1.6  
1.4  
1.2  
1.6  
28  
24  
GAIN 2  
o
GAIN 2  
o
T
= 25 C  
A
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25 C  
A
V
= +  
S
L
6V  
V
= +8V  
R
= 1kΩ  
S
L
R
= 1kΩ  
1.0  
0.8  
0.6  
V
V
= +6V  
= +3V  
S
S
o
= 0 C  
T
amb  
20  
16  
12  
8
o
= 25 C  
T
A
0.4  
0.2  
o
= 70 C  
T
A
0
-0.2  
-0.4  
-0.2  
-0.4  
-15 -10 -5  
0
5
10 15 20 25 30 35  
-15 -10 -5  
0
5
10 15 20 25 30 35  
3
4
5
6
7
8
SUPPLY VOLTAGE – +V  
TIME – ns  
TIME – ns  
Voltage Gain as a  
Function of Temperature  
Gain vs. Frequency as a  
Function of Temperature  
Voltage Gain as a  
Function of Supply Voltage  
1.4  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
60  
50  
40  
GAIN 2  
o
T
= 25 C  
V
= +  
6V  
amb  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
S
V
= +  
S
L
6V  
R
= 1kΩ  
GAIN 2  
30  
o
T
= –55 C  
A
GAIN 2  
20  
10  
0
o
T
= 25 C  
GAIN 1  
A
0.7  
o
T
= 125 C  
0.6  
0.5  
0.4  
A
GAIN 1  
0.92  
0.90  
-10  
0
10  
20 30  
40 50  
60  
70  
1
5
10  
50 100  
500 1000  
3
4
5
6
7
8
o
TEMPERATURE –  
C
FREQUENCY – MHz  
SUPPLY VOLTAGE – +V  
254  
April 15, 1992  
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Gain vs. Frequency as a  
Function of Supply Voltage  
Voltage Gain  
Adjust Circuit  
Voltage Gain as a  
Function of RADJ (Figure 3)  
60  
50  
40  
1000  
V
T
= +6V  
f = 100kHz  
GAIN 2  
o
0.2µF  
S
12  
T
= 25 C  
A
14  
1
11  
8
o
= 25 C  
100  
10  
1
R
= 1kΩ  
A
L
FIGURE 3  
592  
0.2µF  
7
4
3
30  
20  
V
S
= +8V  
51  
51  
V
R
1k  
1k  
ADJ  
V
= +6V  
S
10  
0
.1  
V
S
= +3V  
o
T = 25 C  
A
= +6V  
S
.01  
-10  
1
5
10  
50 100  
500 1000  
1
10  
100  
1K  
10K 100K  
Ω  
1M  
FREQUENCY – MHz  
R
ADJ  
Output Voltage and Current  
Swing as a Function of  
Supply Voltage  
Supply Current as a  
Function of Temperature  
Differential Overdrive  
Recovery Time  
70  
60  
50  
40  
21  
20  
7.0  
o
V
= +6V  
T
= 25 C  
S
A
V
= +6V  
S
6.0  
5.0  
o
T
= 25 C  
A
GAIN 2  
19  
18  
17  
VOLTAGE  
4.0  
3.0  
2.0  
30  
20  
10  
CURRENT  
16  
15  
14  
1.0  
0
0
-20  
20  
60  
100  
140  
-60  
0
20 40 60 80 100 120 140 160 180 200  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
o
TEMPERATURE –  
C
SUPPLY VOLTAGE – +V  
DIFFERENTIAL INPUT VOLTAGE – mV  
Input Noise Voltage  
as a Function of  
Source Resistance  
Output Voltage Swing as a  
Function of Load Resistance  
Input Resistance as a  
Function of Temperature  
7.0  
6.0  
100  
90  
70  
GAIN 2  
GAIN 2  
V
T
= +6V  
S
V
= +6V  
V
= +6V  
S
60  
50  
40  
S
o
= 25 C  
A
o
80  
70  
60  
50  
40  
30  
T
= 25 C  
A
BW = 10MHz  
5.0  
4.0  
3.0  
2.0  
1.0  
0
30  
20  
20  
10  
0
10  
0
1
10  
100  
1K  
10K  
-60  
-20  
0
20  
60  
100  
140  
10  
50 100  
500 1K  
5K 10K  
o
LOAD RESISTANCE – Ω  
TEMPERATURE –  
C
SOURCE RESISTANCE – Ω  
255  
April 15, 1992  
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
Phase Shift as a  
Function of Frequency  
Phase Shift as a  
Function of Frequency  
0
0
-50  
GAIN 2  
V
T
= +6V  
S
A
V
T
= +6V  
o
S
= 25 C  
-5  
o
= 25 C  
A
-100  
-10  
-15  
-150  
-200  
-250  
GAIN 2  
GAIN 1  
-20  
-25  
-300  
-350  
1
10  
100  
1000  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY – MHz  
FREQUENCY – MHz  
Voltage Gain as a  
Function of Frequency  
Voltage Gain as a  
Function of Frequency  
60  
50  
V
T
= +6V  
S
V
T
= +6V  
S
A
40  
30  
20  
10  
GAIN 1  
GAIN 2  
o
= 25 C  
o
amb  
= 25 C  
R
= 1KΩ  
GAIN 3  
L
40  
30  
0
-10  
-20  
20  
10  
0
-30  
-40  
-50  
1
10  
100  
1000  
.01  
.1  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
TEST CIRCUITS T = 25°C, unless otherwise specified.  
A
V
V
592  
IN  
R
OUT  
L
51Ω  
51Ω  
0.2µF  
0.2µF  
e
in  
592  
e
e
out  
out  
51Ω  
51Ω  
1k 1k  
256  
April 15, 1992  
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
TYPICAL APPLICATIONS  
+6  
2r  
e
11  
14  
10  
5
V
V
0
592  
4
1
NOTE:  
1
7
V
v
(s)  
4
1.4 @ 10  
Z(S) ) 2r  
0
[
(s)  
e
1
Z
4
1.4 @ 10  
[
Z(S) ) 32  
-6  
+6  
Basic Configuration  
+5  
0.2µF  
+6  
11  
14  
1
10  
2KΩ  
10  
1
9
4
8
8
7
V
529  
592  
V
0
1
7
5
Q
Q
11  
14  
1
0.2µF  
10  
8
7
5
4
592  
C
5
2
3
4
2KΩ  
-6  
AMPLITUDE: 1-10 mV p-p  
FREQUENCY: 1-4 MHz  
NOTE:  
6
For frequency F << 1/2 π (32) C  
1
-6  
dVi  
4
V
] 1.4 x 10 C  
O
dT  
READ HEAD  
DIFFERENTIATOR/AMPLIFIER  
ZERO CROSSING DETECTOR  
Differentiation with High  
Common-Mode Noise Rejection  
Disc/Tape Phase-Modulated Readback Systems  
FILTER NETWORKS  
V
(s) TRANSFER  
(s) FUNCTION  
FILTER  
TYPE  
0
1
Z NETWORK  
V
R
L
4
1.4   10  
1
ƪ
ƫ
LOW PASS  
L
s ) RńL  
R
R
C
L
4
1.4   10  
s
ƪ
ƫ
R
HIGH PASS  
BAND PASS  
s ) 1ńRC  
C
4
1.4   10  
s
ƪ
ƪ
ƫ
ƫ
L
2
s
) RńLs ) 1ńLC  
L
2
4
s
) 1ńLC  
2
) 1ńLC ) sńRC  
R
1.4   10  
BAND REJECT  
R
s
C
NOTES:  
In the networks above, the R value used is assumed to include 2r , or approximately 32.  
e
S = jω  
ω = 2πf  
257  
April 15, 1992  

相关型号:

NE592N8-B

Single Video Amplifier
ETC

NE592N8G

Video Amplifier
ONSEMI

NE592ND

Video Amplifier, Bipolar, PDIP14
MOTOROLA

NE592NS

Video Amplifier, Bipolar, PDIP14
MOTOROLA

NE592NSIIA

Video Amplifier, Bipolar, PDIP14
PHILIPS

NE592NSIIB

Video Amplifier, Bipolar, PDIP14
PHILIPS

NE59300

TRANSISTOR | BJT | PNP | 12V V(BR)CEO | 30MA I(C) | CHIP
ETC

NE59312

TRANSISTOR | BJT | PNP | 30MA I(C) | TO-72
ETC

NE59333

TRANSISTOR | BJT | PNP | 30MA I(C) | TO-236
ETC

NE59335

TRANSISTOR | BJT | PNP | 12V V(BR)CEO | 30MA I(C) | SOT-173
ETC

NE594

Vacuum fluorescent display driver
NXP

NE594D

Vacuum fluorescent display driver
NXP