MS140131KT/D [NXP]

SPECIALTY TELECOM CIRCUIT, PQFP44, TQFP-44;
MS140131KT/D
型号: MS140131KT/D
厂家: NXP    NXP
描述:

SPECIALTY TELECOM CIRCUIT, PQFP44, TQFP-44

电信 电信集成电路
文件: 总66页 (文件大小:561K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order Number: MS140131KT/D  
Rev. 5.0, 5/2001  
Semiconductor Products Sector  
6KRUWꢀ+DXOꢀ/RRSꢀ'XDOꢀ3&0ꢀ  
&RGHFꢁ)LOWHUꢂ6/,&ꢀ&KLSVHWꢀZLWKꢀ  
*&,ꢀ,QWHUIDFH  
© Motorola, Inc., 2001. All rights reserved.  
&217(176  
Section 1  
Overview  
1.1  
1.2  
Introduction: MC1420232 CODSP and MC1430132 SHLIC. . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Section 2  
Applications  
2.1  
2.2  
Recommended External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Section 3  
Pin Descriptions  
3.1  
3.2  
3.3  
3.4  
Device Pinouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
MC1420232 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
MC1430132 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Unused Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
3.4.1 CODSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
3.4.2 SHLIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Note on Decoupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6  
3.5.1 CODSP Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6  
3.5.2 SHLIC Decoupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6  
3.5  
Section 4  
Functional Characteristics of the SH-POTS System  
4.1  
4.2  
On-Hook Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
Ringing Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
4.2.1 Balanced Ringing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
4.2.2 Semi-Unbalanced Ringing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
DC Feed Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
4.3.1 Battery Voltage and Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
4.3  
MS140131KT  
iii  
Contents  
4.4  
AC Transmission Characteristics (MS140131KT System). . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
4.4.1 Transmit and Receive Filter Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
4.4.2 Transmit and Receive Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  
4.4.3 Source Impedance (Z ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  
CO  
4.4.4 Balance Impedance (Echo Canceller) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8  
Metering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8  
4.5.1 Metering Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8  
4.5.2 Metering Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10  
Tone Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10  
CODSP Clock Recovery PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14  
4.7.1 User-Defined I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14  
4.7.2 Test Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14  
4.5  
4.6  
4.7  
Section 5  
Electrical Characteristics  
5.1  
5.2  
5.3  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
Thermal Shutdown SHLIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
5.3.1 Transient Energy Capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
DC Characteristics (MC1430132 SHLIC, Unless Otherwise Noted) . . . . . . . . . . . . . . . . . . . . 5-2  
5.4.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3  
5.4  
5.4.2  
V
Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4  
DD3  
5.4.3 DCO DC Levels, Impedances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6  
5.4.4 VAG Analog Ground Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6  
5.4.5 DC Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7  
5.4.6 DCC Input Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7  
5.4.7 Characteristics for the Digital I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8  
5.4.8 Test Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9  
5.4.9 Battery Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9  
AC Characteristics (SHLIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10  
5.5.1 Receive Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11  
5.5.2 Transmit Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11  
5.5.3 Overpower and Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11  
Off-Hook Characteristics (MS140131KT System) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13  
5.5  
5.6  
Section 6  
Detailed Programming Description  
6.1  
6.2  
6.3  
6.4  
6.5  
GCI Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1  
Timeslot Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2  
SH-POTS GCI Interface: Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3  
C/I Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4  
Monitor Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4  
iv  
MS140131KT  
Contents  
6.6  
ID Request. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4  
Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5  
Write Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5  
Memory Map of the CODSP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5  
Data RAM — MemID = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6  
LBO Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7  
Alarm Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8  
Meaning and Default Values of the Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8  
Coprocessor Coefficient RAM — MemID = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11  
Meaning and Default Values of the Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12  
Shared Memory — MemID = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14  
Meaning and Default Values of the Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14  
6.7  
6.8  
6.9  
6.10  
6.11  
6.12  
6.13  
6.14  
6.15  
6.16  
6.17  
Section 7  
Mechanical Specifications  
7.1  
7.2  
7.3  
MC1420232 Package Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1  
MC1430132 Package Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2  
Recommended Pad Layout for 44-Lead TQFP MC1420232 . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3  
MS140131KT  
v
),*85(6  
1-1. Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
2-1. Typical SH-POTS Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2-2. Application Schematic for Two Analog Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
2-3. Recommended Overvoltage Protection Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
3-1. Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
3-2. MC1420232 CODSP Recommended Power-Supply Decoupling Arrangements . . . . . . . . . . . . 3-7  
4-1. SH-POTS Line Voltages — Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
4-2. Nominal Hookswitch Detection Thresholds (Default Values) . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  
4-3. Application Suggestion for Semi-Unbalanced Ringing Injection . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
4-4. DC Feed Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
4-5. Transmit and Receive Frequency Response (Default). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
4-6. Relative Group Delay, Transmit and Receive Paths (Digital-to-Digital) Referred to 1 kHz . . . 4-7  
4-7. Three-Element Z  
CO  
Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8  
4-8. Metering Pulse Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9  
5-1. Block Diagram Showing Gains in Various Signal Paths in SHLIC . . . . . . . . . . . . . . . . . . . . . . 5-10  
5-2. Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12  
6-1. GCI Data Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1  
6-2. GCI Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3  
7-1. Recommended Pad Layout for 44-Lead TQFP MC1420232 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3  
MS140131KT  
vii  
7$%/(6  
2-1. Recommended External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
3-1. Pin Descriptions for MC1420232 CODSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
3-2. Pin Descriptions for MC1430132 SHLIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
3-3. MC1420232 CODSP Unused Pin Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
3-4. MC1430132 SHLIC Unused Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6  
4-1. On-Hook Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2  
4-2. Ringing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
4-3. DC Feed Characteristics [R  
4-4. Examples of Z  
CO  
= 60 Total (50 +10 Protection) x 2] . . . . . . . . . . . 4-5  
Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8  
feed  
4-5. Metering Characteristics (Determined by MC1420232 CODSP) . . . . . . . . . . . . . . . . . . . . 4-10  
4-6. Tone Signal Levels (Common Values) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11  
4-7. Tone Generator Division Values for Common Frequencies from ETS-300-001  
and DTMF Tones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12  
4-8. Required Frequency Setting Values (N) for a Melody Generator  
(Western Equal-Tempered Scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13  
5-1. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
5-2. Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
5-3. Power Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3  
5-4. SHLIC Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3  
5-5. Power-On Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4  
5-6.  
V
Regulator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4  
DD3  
5-7. Voltage Characteristics A Wire (AW), B Wire (BW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5  
5-8. Impedance Characteristics A Wire (AW), B Wire (BW). . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5  
5-9. Rx, Tx Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6  
5-10. DCO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6  
5-11. VAG Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6  
5-12. DC Loop Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7  
5-13. DCC Input Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7  
5-14. Digital I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8  
5-15. Sense Bridge Inputs Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8  
5-16. Test Switch Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9  
5-17. Ringing Battery Switch Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9  
5-18. Typical Gains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10  
5-19. Short Circuit Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12  
5-20. Off-Hook Characteristics (MS140131KT System) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13  
6-1. GCI Mode and Timeslot Address Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2  
6-2. GCI Interface: Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3  
6-3. C/I Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4  
6-4. Memory Map for CODSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6  
6-5. Data RAM: Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6  
MS140131KT  
viii  
Tables  
6-6. LBO Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7  
6-7. Data RAM: Description and Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8  
6-8. Coprocessor Coefficient RAM: Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11  
6-9. Coprocessor Coefficient RAM: Description and Default Values . . . . . . . . . . . . . . . . . . . . 6-12  
6-10. Shared Memory: Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14  
6-11. Shared Memory: Description and Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14  
MS140131KT  
ix  
6(&7,21ꢀꢃ  
29(59,(:  
ꢃꢄꢃ ,1752'8&7,21ꢅꢀ0&ꢃꢆꢇꢈꢇꢉꢇꢀ&2'63ꢀ$1'ꢀ  
0&ꢃꢆꢉꢈꢃꢉꢇꢀ6+/,&  
The MS140131KT chipset provides all the functions necessary to connect analog telephone sets or other  
analog terminals (telefax, answering machines, modems, etc.) into digital communication systems. It  
provides an economical solution for the traditional “BORS(C)HT” [Battery, Overvoltage, Ringing,  
Supervision, (Codec), Hybrid, Test] functions found in central-office exchanges, but is optimized for  
short-range communication [e.g., up to 500 m with 5 RENs (Ringer Equivalence Number) attached].  
Virtually all system-dependent parameters can be set under software control, giving an unprecedented  
flexibility to the system integrator, as well as optimizing the system cost. The digital interface to the  
1
SH-POTS (Short Haul, Plain Old Telephone System) chipset uses the industry-standard GCI interface .  
The system architecture has been designed to offer the most cost-effective solution for short haul systems,  
yet offers the full flexibility required to meet worldwide analog telephony standards. The MS140131KT  
chipset is also suitable for Q.552 applications.  
The MS140131KT chipset comprises three devices (see Figure 1-1): a pair of high-voltage devices, the  
Short Haul Line Interface Circuit (SHLIC) which provides the signal and power interface to the analog  
lines (one per line), and a low-voltage CMOS, DSP-based dual codec/control device (CODSP) which  
provides all signal processing and control functions for up to two lines.  
ꢃꢄꢇ .(<ꢀ)($785(6  
Digitally Programmable Transmission and Signalling Characteristics Meet Worldwide  
Specification Requirements  
Integrated Ringing: Sine or Trapezoid with Auto Cadence  
Metering Injection (12 or 16 kHz)  
Support On-Hook Transmission: ADSI, CLIP  
Battery Reversal  
Codec and AC Parameters (Z  
CO  
and Hybrid) are Fully Programmable (A-Law or µ-Law)  
Tone Generators for Signalling and Testing  
Loop Current Control and Monitoring are Programmable  
1.The General Circuit Interface (GCI) is an interface specification developed jointly by Alcatel, Italtel, GPT, and Siemens, March 1989,  
Issue 1.0.  
MS140131KT  
1-1  
: Key Features  
Minimal External Components  
Codec and SLIC Functions for Two Lines  
Low-Cost POTS Interface for Short Range  
Standard GCI Interface with Timeslot Assigner  
Test Support (Test Load Switch, Loopback, Tone Generators)  
Supports up to –72 V on V  
Ring and –35 V on V  
Speech  
BAT  
BAT  
CODSP (Dual Codec) is 3.3 V with 5 V Tolerant Input for Low Power Consumption  
APPLICATION  
DEPENDENT  
PROTECTION  
V
(+3.3 V)  
DD  
(OPTIONAL)  
SH POTS  
V
(+5 V)  
DD  
POTS  
PORT  
V
(0 V)  
SS  
MC1430132  
SHLIC  
V
(–68 V)  
(–32 V)  
BATR  
V
CODSP  
BATS  
MC1420232  
POTS  
PORT  
GCI  
MC1430132  
SHLIC  
SERIAL BUS  
Figure 1-1. Block Diagram  
1-2  
MS140131KT  
6(&7,21ꢀꢇ  
$33/,&$7,216  
Figure 2-1 shows a typical SH-POTS application using Motorola semiconductor chip solutions. The short  
haul dual PCM chipset provides all necessary functions to connect analog telephone sets or fax terminals to  
digital communications systems.  
Advanced ISDN NT (NTplus), Smart NT1 Personal Router  
Analog/Digital PABX  
Cable Telephone Systems (Set-Top Box)  
Remote Telephone Access Systems  
— Fiber to the Curb  
— Radio in the Loop  
Internet Telephones  
"U" OR "S/T"  
INTERFACE  
68030  
CPU  
CORE  
TRANSCEIVER  
SCP  
ETHERNET  
10BASE-T  
DC  
SCP  
METALLIC  
TERMINATOR  
MC145572  
IDL2  
OR GCI  
“U”  
ETHERNET  
TRANSCEIVER  
ETHERNET  
MAC  
SCC1  
SCC2  
SCC3  
MC145574  
S/T”  
TIMER  
BUS INTERFACE  
FLASH  
GPIO  
DRAM  
ANALOG  
POTS/FAX  
POTS  
CIRCUITRY  
MS140131KT  
Figure 2-1. Typical SH-POTS Application  
MS140131KT  
2-1  
 
Applications:  
V
DD3D  
USER  
OUTPUTS  
(OPTIONAL)  
V
SA  
AW  
SPIDI  
DD3D  
a
CV3D  
SPIDO  
SPICS  
SPICK  
RB1  
C
B1  
TST[0]  
BR[0]  
TST  
BR  
SSB  
Z
test  
RNG[0]  
PU[0]  
D
RNG  
PU  
SB  
BW  
out  
b
D
in  
FSC  
GCI PORT  
RB2  
C
B2  
SHLIC  
R
PROT  
Rx[0]  
Tx[0]  
Rx  
Tx  
DCL  
BAT  
0, 1  
GCIM  
AD0  
AD1  
V
BATS  
DCC[0]  
DCO[0]  
DCC  
DCO  
BATS  
GCI MODE  
AND TIMESLOT  
ADDRESS  
0, 1  
0, 1  
0, 1  
D
C
S
C
P
D
P
P
C
DCI  
AD2  
DCI  
V
BATR  
BATR  
JTDI  
V
DD5A  
1
V
DD5A  
C
D
JTDO  
JTCK  
JTMS  
JTRS  
VAG  
VAG  
V
JTAG TEST  
ACCESS  
SSB  
1
1
0
C
V
SSA  
DCLF2  
DCLF1  
VAG  
R
F1  
C
F1  
PLLCK  
0
R
F2  
C
F2  
0
0
TEST  
DEVICE  
TEST  
Z
VAG  
out  
V
V
DD3  
DD3A  
SA  
0
SCLK  
CV3A  
a
AW  
RB1  
C
B1  
V
DD3D  
TST[1]  
BR[1]  
TST  
BR  
SSB  
R
PWRS  
D1  
Z
test  
RNG[1]  
PU[1]  
RNG  
PU  
SB  
BW  
b
PWRS  
RB2  
C
B2  
C
SHLIC  
PWRS  
R
PROT  
Rx  
Tx  
Rx[1]  
Tx[1]  
BAT  
V
DCC[1]  
DCC  
DCO  
BATS  
BATS  
C
S
C
P
D
P
DCO[1]  
C
DCI  
BATR  
V
DCI  
BATR  
CODSP  
V
V
DD5A  
DD5A  
C
D
V
SSB  
V
SSA  
V
SSD  
CPLL  
V
SSA  
DCLF2 DCLF1  
C
PLL  
R
F1  
C
F1  
R
F2  
C
F2  
Figure 2-2. Application Schematic for Two Analog Lines  
2-2  
MS140131KT  
Applications: Recommended External Components  
ꢇꢄꢃ 5(&200(1'('ꢀ(;7(51$/ꢀ  
&20321(176  
Table 2-1. Recommended External Components  
Component  
Function  
x
50 Ω  
Comment  
R
, R  
B1 B2  
Feed resistor  
1/4 W ±1% (see Note 1)  
R
Protection resistance  
Test resistor  
2 x 10 Ω  
510 Ω  
PROT  
Z
1/4 W, optional  
test  
, R  
R
DC bias filter  
10 kΩ  
F1 F2  
, C  
C
No-load stabilization  
DC feed separation  
DC bias filter  
1 nF  
100 V (see Note 2)  
5%  
B1 B2  
C
330 nF  
470 nF  
100 nF  
10 µF + 100 nF  
10 µF + 100 nF  
100 nF  
4.7 nF  
DCI  
, C  
C
100 V, 10%  
F1 F2  
C
Analog ground decoupling  
Analog 3.3 V regulator decoupling  
Digital 3.3 V decoupling  
Battery supply decoupling  
PLL loop filter  
VAG  
CV3A  
CV3D  
C
S
100 V  
C
PLL  
C
Power-on reset delay  
Power-on reset delay  
Power loss reset  
100 nF  
100 kΩ  
PWRS  
R
PWS  
D
Any small signal diode  
1
D
Battery input protection  
BAT46 required depending  
on the power supplies  
P
C
5 V power supply decoupling  
100 nF  
D
NOTES: 1. A ±1% results in a maximum longitudinal balance of 40 dB. For higher values, more precise  
matching is required (e.g., ±0.1% for 46 dB).  
2. Capacitors are generally not required. They are foreseen to stabilize the line driver outputs when  
active but driving no load (test condition only).  
ꢇꢄꢇ 29(592/7$*(ꢀ3527(&7,21  
There are several recommended overvoltage protection options. The application will determine the most  
appropriate one to chose (e.g., in-house only systems with minimal protection requirements, or systems  
with loops outside a protected environment requiring more extended protection).  
The first external protection network to protect the line circuit against foreign voltages consist of resistors  
R
R
and R  
and an overvoltage protection component (see Figure 2-3). Series resistors R and  
PR1  
PR2  
PR2  
can be PTC, poly-switch, or fusible components.  
PR1  
For further protection, the simplest and cheapest solution is a diode bridge between SA, SB and V  
BATR, respectively. The diodes must be able to allow current peaks more than 20 A.  
,
SSB  
In case the battery BATR can not accept these high current peaks, add a voltage clamping component to  
, or a transient suppressor between each line and V . The clamp voltage or protection voltage  
V
SS  
SS  
minimum must always be larger than the maximum used ringing battery BATR.  
MS140131KT  
2-3  
 
Applications: Overvoltage Protection  
The protection components must be dimensioned in such a way that the transient energy on the chip pins  
AW, BW does not exceed 1 mJoule (or, the energy on-chip because of one lightning pulse).  
SA  
SA  
R
R
PR1  
PR1  
RB1  
RB2  
RB1  
AW  
AW  
BATR  
MC1430132  
SHLIC  
MC1430132  
SHLIC  
V
V
SSB  
SSB  
R
R
PR2  
RB2  
PR2  
BW  
SB  
BW  
SB  
SA  
SA  
R
R
PR1  
RB1  
RB2  
PR1  
RB1  
RB2  
AW  
AW  
TRANSIENT  
SUPPRESSOR  
MC1430132  
SHLIC  
MC1430132  
SHLIC  
V
V
SSB  
SSB  
R
PR2  
R
PR2  
BW  
SB  
BW  
SB  
Figure 2-3. Recommended Overvoltage Protection Options  
2-4  
MS140131KT  
6(&7,21ꢀꢉ  
3,1ꢀ'(6&5,37,216  
ꢉꢄꢃ '(9,&(ꢀ3,12876  
MC1430132  
MC1420232  
28-LEAD SOIC  
44-LEAD TQFP  
PIN 1  
V
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AW  
SSB  
INDICATOR  
BW  
BAT  
BATS  
BATR  
PU  
2
SA  
3
SB  
4
SSB  
DCO  
DCI  
NC  
44 43 42 41 40 39 38 37 36 35 34  
5
6
JTDO  
JTCK  
JTMS  
JTDI  
33  
Rx[0]  
1
NC  
7
Tx[0]  
2
3
32  
31  
30  
29  
NC  
8
NC  
DCC[0]  
DCO[0]  
DCC[1]  
DCO[1]  
RNG  
BR  
9
DCC  
Tx  
10  
11  
12  
13  
14  
4
5
TST  
VAG  
Rx  
JTRS  
DCLF1  
DCLF2  
V
6
7
DD3D  
28  
27  
V
DD5A  
D
V
out  
SSA  
V
V
DD3  
SSA  
D
in  
VAG  
8
9
26  
25  
DCL  
FSC  
V
DD3A  
Tx[1]  
Rx[1]  
10  
11  
24  
23  
V
SSD  
12 13 14 15 16 17 18 19 20 21 22  
Figure 3-1. Pin Assignments  
MS140131KT  
3-1  
Pin Descriptions: MC1420232 Pin Descriptions  
ꢉꢄꢇ 0&ꢃꢆꢇꢈꢇꢉꢇꢀ3,1ꢀ'(6&5,37,216  
Table 3-1. Pin Descriptions for MC1420232 CODSP  
Type  
Pin Name Pin No.  
Pin Description  
(See Note)  
JTDO  
JTCK  
JTMS  
JTDI  
1
JTAG test port data out  
JTAG test port clock  
DO  
DIu  
DIu  
DIu  
DIu  
P
2
3
JTAG test port mode select  
JTAG test port data in  
4
JTRS  
5
JTAG test port reset  
V
6
Digital section supply voltage  
GCI port upstream data  
GCI port downstream data  
GCI port data clock  
DD3D  
D
out  
7
DO5  
DI5  
DI5  
DI5  
P
D
in  
8
DCL  
FSC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
GCI port frame clock  
V
SSD  
Digital ground (0 V)  
AD2  
GCI port timeslot select, MSB  
GCI port timeslot select  
GCI port timeslot select, LSB  
GCI port operating mode (0 = 1 timeslot, 1 = 8 timeslots)  
SHLIC 1 test select  
DI  
AD1  
AD0  
DI  
DI  
GCIM  
TST[1]  
BR[1]  
RNG[1]  
PU[1]  
SCLK  
PLLCK  
CPLL  
Rx[1]  
DIs  
DO  
DO  
DO  
DB  
DI  
SHLIC 1 bat reverse control  
SHLIC 1 ring control  
SHLIC 1 power-up control  
System clock (test only)  
PLL clock (test only)  
DIs  
AO  
AO  
AI  
PLL loop filter capacitor  
SHLIC 1 Rx analog signal  
SHLIC 1 Tx analog signal  
Analog supply voltage  
Tx[1]  
V
DD3A  
P
VAG  
Analog ground reference voltage output  
Analog ground (0 V)  
AO  
P
V
SSA  
DCO[1]  
DCC[1]  
DCO[0]  
DCC[0]  
Tx[0]  
SHLIC 1 DC loop output  
SHLIC 1 DC loop control  
SHLIC 0 DC loop output  
SHLIC 0 DC loop control  
SHLIC 0 Tx analog signal  
AI  
AO  
AI  
AO  
AI  
3-2  
MS140131KT  
Pin Descriptions: MC1420232 Pin Descriptions  
Table 3-1. Pin Descriptions for MC1420232 CODSP (continued)  
Type  
Pin Name Pin No.  
Rx[0]  
Pin Description  
SHLIC 0 Rx analog signal  
(See Note)  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
AO  
Z
Digital I/O drive control (test only)  
Test mode select (test only)  
SHLIC 0 test select  
DB  
out  
TEST  
TST[0]  
BR[0]  
DId  
DO  
SHLIC 0 bat reverse control  
SHLIC 0 ring control  
DO  
RNG[0]  
PU[0]  
DO  
SHLIC 0 power-up control  
SPI port data in (user I/O)  
SPI port chip-select (user I/O)  
SPI port clock (user I/O)  
SPI port data out (user I/O)  
Reset input  
DB  
SPIDI  
DB  
SPICS  
SPICK  
SPIDO  
PWRS  
DB  
DB  
DB  
DIs  
NOTE: The first letter differentiates between:  
D: Digital  
A: Analog  
P: Power  
The second letter differentiates between:  
I: Input  
O: Output  
B: Bidirectional  
The third letter differentiates between:  
d: Pin with internal pull-down  
u: Pin with internal pull-up  
s: Pin with Schmitt-trigger input  
5: 5 V compatible input  
NC: No connect  
MS140131KT  
3-3  
Pin Descriptions: MC1430132 Pin Descriptions  
ꢉꢄꢉ 0&ꢃꢆꢉꢈꢃꢉꢇꢀ3,1ꢀ'(6&5,37,216  
Table 3-2. Pin Descriptions for MC1430132 SHLIC  
Pin Name Pin No.  
Pin Description  
Type  
P
V
1
Battery ground (0 V)  
B wire output  
SSB  
BW  
BAT  
BATS  
BATR  
PU  
2
AB  
P
3
Battery voltage (output, do not connect)  
Battery voltage input, SPEECH mode  
Battery voltage input, RING mode  
Power-up control  
4
P
5
P
6
DI  
NC  
NC  
DI  
DI  
DI  
P
NC  
7
Do not connect; thermal conduction pin  
Do not connect; thermal conduction pin  
Ring mode control  
NC  
8
RNG  
BR  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Battery reverse control  
TST  
VAG  
Test mode control  
Analog ground reference input  
Analog supply voltage  
V
P
DD5A  
V
Analog ground, 0 V  
P
SSA  
V
3 V regulator output  
P
DD3  
DCLF2  
DCLF1  
Rx  
DC bias filter capacitor 2  
DC bias filter capacitor 1  
Analog receive signal  
AO  
AO  
AO  
AI  
Tx  
Analog transmit signal  
DCC  
NC  
DC loop control input  
DI  
NC  
NC  
AI  
Do not connect; thermal conduction pin  
Do not connect; thermal conduction pin  
DC loop control separation filter input  
DC loop control output  
NC  
DCI  
DCO  
SSB  
SB  
AO  
AI  
Loop test resistor switch  
B wire sense input  
AI  
SA  
A wire sense input  
AI  
AW  
A wire output  
AB  
NOTES: 1. A ±1% results in a maximum longitudinal balance of 40 dB. For higher values, more precise  
matching is required (e.g., ±0.1% for 46 dB).  
2. Capacitors are generally not required. They are foreseen to stabilize the line driver outputs when  
active but driving no load (test condition only).  
3-4  
MS140131KT  
Pin Descriptions: Unused Pins  
ꢉꢄꢆ 8186('ꢀ3,16  
ꢉꢄꢆꢄꢃ &2'63  
Table 3-3 lists the pins on the CODSP that are not connected. Pins that are not used in the application  
should be connected as described here. Failure to do so could result in excessive sensitivity to RFI or other  
erratic behavior. A 0 or 1 indicates that the pin should be connected to ground or to the device’s digital  
supply. A “—” indicates that the pin is an output and must be left unconnected.  
Table 3-3. MC1420232 CODSP  
Unused Pin Connections  
Pin Name  
SPDO  
GCIM  
AD0  
Pin No.  
43  
15  
14  
13  
12  
4
Connect To  
0, 1 (GCI mode select)  
0, 1 (GCI timeslot select)  
0, 1 (GCI timeslot select)  
0, 1 (GCI timeslot select)  
AD1  
AD2  
JTDI  
1 (V  
)
DD3D  
JTDO  
JTCK  
JTMS  
JTRS  
SCLK  
PLLCK  
1
2
1 (V  
1 (V  
)
)
DD3D  
3
DD3D  
5
0 (V  
)
SS  
20  
21  
34  
35  
V
V
V
V
SS  
SS  
SS  
SS  
Z
out  
TEST  
ꢉꢄꢆꢄꢇ 6+/,&  
Table 3-4 lists the pins on the SHLIC that are not connected. The NC pins (7, 8, 21, and 22) are connected  
to the device substrate, which is at a voltage equal to the V  
electrically connected to this pin.  
supply pin, and may optionally be  
BATR  
The BAT pin is the internal supply to the line drivers, and adopts the voltage of V  
BATR  
or V  
, plus  
BATS  
the voltage drop across the internal switch, depending on the operating mode. In low-voltage only systems  
(very short connections), the BAT pins, V and V , may all be connected together and a single  
BATR  
BATS  
supply (e.g., –27 V) may be used for both ringing and speech modes. (In this mode, the voltage drop of the  
internal switches is avoided.)  
MS140131KT  
3-5  
 
Pin Descriptions: Note on Decoupling  
Table 3-4. MC1430132 SHLIC  
Unused Pin Connections  
Pin Name  
BAT  
NC  
Pin No.  
Connect To  
3
7
No connect or see text above  
No connect or see text above  
No connect or see text above  
No connect or see text above  
No connect or see text above  
NC  
8
NC  
21  
22  
NC  
ꢉꢄꢊ 127(ꢀ21ꢀ'(&283/,1*  
As in any system, the PCB layout and supply decoupling can influence the system performance,  
particularly with respect to noise.  
ꢉꢄꢊꢄꢃ &2'63ꢀ'HFRXSOLQJ  
It is recommended to connect V  
configuration from the supply (either from the SHLIC or from an external supply), and each pin be  
independently decoupled using 10 µF in parallel with 100 nF.  
and V  
(digital and analog supply pins) in a star  
DD3A  
DD3D  
In two-line systems, using the SHLIC regulator to supply only the CODSP (i.e., no other use is  
made of the regulator), one SHLIC may be used to provide V  
power and the other V  
,
DD3D  
thus giving improved decoupling between analog and digital supplies. See Figure 3-2.  
DD3A  
The VAG line (analog signal reference) must always be properly decoupled using 100 nF, placed  
as close as possible to the CODSP device.  
ꢉꢄꢊꢄꢇ 6+/,&ꢀ'HFRXSOLQJ  
The SHLIC should use separate 100 nF decoupling capacitors between V  
DD5A  
and V  
, and  
SSB  
. When the on-board regulator of the SHLIC is not used, no capacitor is  
V
and V  
DD5A  
SSA  
DD3  
required at the V  
pin.  
3-6  
MS140131KT  
Pin Descriptions: Note on Decoupling  
MC1430132  
SHLIC  
V
V
DD3A  
DD3  
MC1420132  
V
100 nF  
CERAMIC  
10 µF T  
SSB  
A
CODSP  
V
SSA  
V
SSA  
100 nF  
CERAMIC  
GROUND  
STAR-POINT  
VAG  
V
V
SSD  
SSA  
V
SSB  
100 nF  
CERAMIC  
MC1430132  
SHLIC  
10 µF T  
A
V
V
DD3D  
DD3  
(a) Arrangement A  
+3.3 V STAR POINT  
MC1430132  
SHLIC  
V
DD3A  
MC1420132  
CODSP  
V
100 nF  
CERAMIC  
SSB  
10 µF T  
A
V
SSA  
V
SSA  
100 nF  
CERAMIC  
GROUND  
STAR-POINT  
VAG  
V
V
SSD  
SSA  
V
100 nF  
CERAMIC  
SSB  
10 µF T  
A
MC1430132  
SHLIC  
V
DD3D  
(b) Arrangement B  
Figure 3-2. MC1420232 CODSP Recommended Power-Supply  
Decoupling Arrangements  
MS140131KT  
3-7  
6(&7,21ꢀꢆ  
)81&7,21$/ꢀ&+$5$&7(5,67,&6ꢀ2)ꢀ7+(ꢀ  
6+ꢁ3276ꢀ6<67(0  
For reference, Figure 4-1 shows the typical voltages on tip and ring during various stages of operation. For  
detailed electrical parameters, refer to Section 5.  
(SATURATION, <0.5 V)  
(BIAS, 3 V)  
(BIAS, 3 V)  
0 V  
V
BATS  
(e.g., –24 V)  
(BIAS, 3 V + DROP  
OF BAT SWITCH)  
(AVG. DC = V  
BATR  
/2)  
(BIAS, 3 V + DROP OF BAT SWITCH)  
V
BATR  
(e.g., –64 V)  
ON-HOOK  
ON-HOOK ADSI  
RING BURST  
OFF-HOOK  
Figure 4-1. SH-POTS Line Voltages — Example  
ꢆꢄꢃ 21ꢁ+22.ꢀ&21',7,216  
When a line is not in use (on-hook), the designer may select either the speech battery or the ringing battery  
as the supply to the line drivers. In the on-hook mode, most of the internal circuits are put into a low-power  
operating mode to minimize supply currents. The A and B wire outputs are effectively connected to the  
supply voltage, thus applying this voltage (minus a small saturation voltage) to the line. The output is  
current-limited in this mode, thus protecting against short circuits and limiting any inrush current when a  
set goes off-hook. If the SHLIC detects a current in excess of a (programmable) limit, the off-hook  
MS140131KT  
4-1  
 
Functional Characteristics of the SH-POTS System: On-Hook Conditions  
condition will be detected (an on-chip debouncer with selectable delay avoids accidental hookswitch  
detection), and the circuit will be put into active speech mode. The nominal off-hook detection currents  
and hysteresis are shown in Figure 4-2. When a line is in the on-hook condition, the system designer may  
select, under program control via the GCI bus, an “on-hook active mode,” whereby, on-hook signalling  
(ADSI, CLIP, etc.) can be performed in either direction (though battery reversal is not available in this  
mode).  
The hookswitch detector has a programmable debounce timer. Times of 8, 16, 24, or 64 ms can be selected.  
(The timer is common for both channels.)  
OFF-HOOK  
ON-HOOK  
LINE CURRENT  
(mA)  
6.3  
10.0  
Figure 4-2. Nominal Hookswitch  
Detection Thresholds (Default Values)  
Table 4-1. On-Hook Characteristics  
Parameter  
Condition  
Min  
Max  
Unit Note  
V
Open-line feed voltage  
V
V
V
1
2
2
2
3
feedO  
BATS-1  
BATR-1  
I
Line current guaranteeing on-hook state  
Line current guaranteeing off-hook state  
Hookswitch detect hysteresis  
4.67  
7.93  
mA  
mA  
mA  
mA  
V
on  
off  
I
7.86  
2
12.14  
I
OHYST  
I
Peak over-current limit, on-hook mode  
2
145  
4
OC  
V
V
Bias voltage during ADSI mode on A (H) and B (L) wires,  
ref. BAT pin  
biasH  
biasL  
NOTES: 1. I  
= 0 mA, independent of battery reversal mode. This voltage is selected by the user. The output  
line  
impedance when in the on-hook condition is set by the sense resistors R  
. The hook-switch detector  
feed  
has a programmable debounce timer. Times of 8, 16, 24, or 64 ms can be selected (common for both  
channels).  
2. These are the default values after reset. The on-hook and off-hook thresholds can be individually  
programmed in the range 0 to 63 mA nominal.  
3. This is the intrinsic current limit of the output driver. This current can only be seen during on-hook to  
off-hook transients, or during ringing into a short-circuit load during the ring-trip delay period. The actual  
value measured will depend on the load resistance used.  
4-2  
MS140131KT  
 
Functional Characteristics of the SH-POTS System: Ringing Injection  
ꢆꢄꢇ 5,1*,1*ꢀ,1-(&7,21  
ꢆꢄꢇꢄꢃ %DODQFHGꢀ5LQJLQJ  
The SH-POTS chipset is capable of directly injecting a ringing signal of up to 50 Vrms (sine wave) without  
the need for additional external components. The technique of “balanced ringing” is used, which allows  
this large voltage swing to remain within the technology limits of the SHLIC device. (Balanced ringing  
requires a specific algorithm for ring-trip detection, which is also implemented by the chipset.) The  
SH-POTS chipset allows the user to program a dc offset during ringing as well as a reduced amplitude  
ringing signal, should the application require this. Ringing waveform, frequency, amplitude, and cadence,  
as well as ring-trip thresholds, are controlled by the CODSP device, and are all programmable. Ringing  
cadence can be automatic, with independently programmable ring and pause times, or ringing can be  
controlled directly via the GCI bus. In the automatic cadence mode, ringing bursts on both channels can be  
optionally interleaved, if simultaneously active, to avoid peaks in current from the ringing battery supply.  
Table 4-2. Ringing Characteristics  
Parameter  
Condition  
Min  
Max  
Unit Note  
F
Ringing frequency  
16.66, 20, 25 Hz  
50 Hz  
Hz  
R
–1  
–2  
1
2
SF  
V
Single-frequency noise, 10 Hz to 4 kHz  
Ringing voltage (max), V = –72 V  
50  
0
–63  
dBm  
NR  
Vrms  
%
1
R
BATR  
D
Ringing distortion, sine mode 30 Hz to 132 kHz  
Ring-trip delay, load = 500 + 4 µF  
Ring-trip debounce time  
5
R
t
150  
30  
ms  
RTD  
t
ms  
2
4
3
3
3
RTDEB  
t
Ring-cadence times (active and silent)  
Ring-trip current, high threshold  
Ring-trip current, low threshold  
Ring-trip hysteresis  
1
255  
12.0  
9.5  
n/n  
mA  
mA  
mA  
C
I
6.0  
3.5  
2
RTH  
I
RTL  
H
RT  
NOTES: 1. Ringing voltage is user-programmable from 0 to 70 Vp(diff) between the A and B wires (NB, the ringing  
battery voltage must be large enough to encompass this voltage) in 256 steps. The default is the  
maximum value. Condition: Load = 0 mA.  
2. User-selectable 0 or 30 ms. Default is 30 ms.  
3. These are the default values after reset. The max and min ring-trip thresholds can be individually  
programmed in the range 0 to 63 mA nominal. The ring-trip detect mask time is used to bridge the  
zero-crossings of the ringing signal, and is programmable between 0 and 32 ms in 125 µs steps.  
4. Units are periods of the selected ringing frequency. The default values are 1 s on, 3 s off, with a ringing  
frequency of 50 Hz.  
ꢆꢄꢇꢄꢇ 6HPLꢁ8QEDODQFHGꢀ5LQJLQJ  
In order to support “semi-unbalanced ringing” (dc bias equal to V  
BATR  
superimposed on the differential  
ringing signal), two of these outputs will be active high during the active ringing period on each channel  
(SPICK for channel 0 and SPICS for channel 1). This can be used to drive a relay via an external NPN  
transistor, as shown in Figure 4-3.  
MS140131KT  
4-3  
Functional Characteristics of the SH-POTS System: DC Feed Characteristics  
PROTECTION  
R
feed  
AW  
BW  
LINE  
NC  
NC  
R
feed  
RLY  
RLY  
47 µF  
+5 V  
V
BATR  
RLY  
SPICK  
(LINE 0)  
OR  
SPICS  
(LINE 1)  
Figure 4-3. Application Suggestion for Semi-Unbalanced Ringing Injection  
ꢆꢄꢉ '&ꢀ)(('ꢀ&+$5$&7(5,67,&6  
As shown in Figure 4-4, the SH-POTS chipset implements a constant-current feed. The limit current and  
the residual resistance (slope of the characteristic) are both programmable by the user. The dc  
characteristic falls into three regions. When the combination of line and subset result in a current less than  
the programmed limit current, the system behaves like a battery with a fixed feed resistance of 120 , and  
a voltage equivalent to the speech supply voltage (V  
) minus the bias voltage on both lines (6 V  
BATS  
nominal in total). Should line conditions permit a current that exceeds the programmed limit current, the  
system enters the constant-current feed mode described above. In order to protect the output stage in the  
transition region at higher line currents (in excess of 50 mA), a third region is defined, where the system  
synthesizes a fixed feed resistance of 200 . The slope of the voltage/current characteristic in the  
constant-current mode can be user-programmed to select the effective feed-resistance.  
127(  
The SHLIC device includes over-temperature protection, that  
activates at 165°C in case of overheating of the device.  
4-4  
MS140131KT  
Functional Characteristics of the SH-POTS System: DC Feed Characteristics  
I
line  
(mA)  
80  
R
feed  
= 200 Ω  
(PROGRAMMABLE)  
R
feed  
R
= 120 Ω  
feed  
60  
40  
20  
V
(V)  
line  
V
V
FN BATS  
Figure 4-4. DC Feed Characteristics  
Table 4-3. DC Feed Characteristics  
[R  
= 60 Total (50 +10 Protection) x 2]  
feed  
Parameter  
Condition  
Min  
2.5  
2.5  
–15  
–15  
20  
Max  
3.5  
3.5  
15  
Unit  
V
V
Bias voltage, A wire (I  
Bias voltage, B wire (I  
= 0)  
= 0)  
biasH  
line  
line  
V
V
biasL  
TOL  
Current limit tolerance  
%
ICL  
RfeedCL  
T
Tolerance on programmed R  
when in current-limit  
15  
%
feed  
I
Current-limit, useful programmed range  
70  
mA  
CL  
ꢆꢄꢉꢄꢃ %DWWHU\ꢀ9ROWDJHꢀDQGꢀ5HYHUVDO  
The open-line voltage (i.e., the voltage seen on the line when on-hook) is user-selectable for each channel  
via an internal register. It can be either the ringing battery supply (most common use) or the speech battery  
supply. The speech battery supply is automatically selected when an off-hook condition is detected,  
independently of these control bits. The selected supply voltage is maintained when the on-hook signalling  
function (ADSI) is enabled.  
The polarity of the line feed can be dynamically controlled by the user. In the “normal” condition, the  
A wire is the most positive. Thus, reversal makes the B wire the most positive. Battery reversal is fast  
(audible), is controlled by programming an internal register, and is independent for both channels. The  
selected polarity is used in all states (on-hook, off-hook, ringing, etc.) except for on-hook signalling, which  
is in normal battery mode.  
MS140131KT  
4-5  
Functional Characteristics of the SH-POTS System: AC Transmission Characteristics  
(MS140131KT System)  
ꢆꢄꢆ $&ꢀ75$160,66,21ꢀ&+$5$&7(5,67,&6ꢀ  
ꢋ06ꢃꢆꢈꢃꢉꢃ.7ꢀ6<67(0ꢌ  
ꢆꢄꢆꢄꢃ 7UDQVPLWꢀDQGꢀ5HFHLYHꢀ)LOWHUꢀ&KDUDFWHULVWLFV  
The SH-POTS chipset implements transmit and receive filters according to ITU-T (G.712). These filters  
can be reprogrammed by the user for specific requirements. Please contact a Motorola sales office for more  
information. The implemented default filter characteristics are shown in Figures 4-5 and 4-6.  
(dB)  
–0.3  
RECEIVE  
π (4000–ƒ)  
dB  
12.5 1 – SIN  
[
]
0.0  
1200  
TRANSMIT  
RECEIVE / TRANSMIT  
0.35  
0.55  
0.75  
12.5  
25.0  
1.0  
1.5  
FREQUENCY  
16,000  
3,600  
3,400  
600  
2,400 3,000  
4,000  
4,600  
200 300 400  
(Hz)  
Figure 4-5. Transmit and Receive Frequency Response (Default)  
4-6  
MS140131KT  
 
Functional Characteristics of the SH-POTS System: AC Transmission Characteristics  
(MS140131KT System)  
DELAY  
(µs)  
1800  
1500  
1200  
900  
600  
300  
FREQUENCY  
0
(Hz)  
500 600  
1000  
2000  
2600  
2800  
Figure 4-6. Relative Group Delay, Transmit and Receive Paths  
(Digital-to-Digital) Referred to 1 kHz  
ꢆꢄꢆꢄꢇ 7UDQVPLWꢀDQGꢀ5HFHLYHꢀ*DLQ  
Transmit (from analog subset towards the switching system) and receive gains are user-programmable,  
independently for both lines. The default values are 0 dBr in the transmit direction, and –7 dBr in the  
receive direction.  
ꢆꢄꢆꢄꢉ 6RXUFHꢀ,PSHGDQFHꢀꢋ=  
&2  
The central-office impedance, Z , is synthesized using digital signal processing techniques. This renders  
CO  
it very stable, and moreover, programmable by the user by means of coefficients which are loaded via the  
GCI. Real or complex Z  
Rp, Cp; see Figure 4-7). The Z  
impedances can be programmed to address the local requirements of specifications worldwide, and cover  
the following range.  
impedances can be synthesized using the common three-element model (Rs,  
setting is common for both lines. Both real and complex Z  
CO  
CO  
CO  
Using the default coefficient values, the return loss when measured against 600 (using 0 dBm input  
signal level) is better than 20 dB in the 300 to 3400 Hz band, and better than 10 dB at 10 kHz.  
Real impedances: 600 to 900 .  
Complex impedances: Rs from 160 to 500 Ω  
Rp from 300 to 1000 Ω  
Rp//Cp pole from 725 Hz to 5 kHz.  
MS140131KT  
4-7  
Functional Characteristics of the SH-POTS System: Metering  
C
P
R
S
R
P
Figure 4-7. Three-Element Z  
CO  
Model  
ꢆꢄꢆꢄꢆ %DODQFHꢀ,PSHGDQFHꢀꢋ(FKRꢀ&DQFHOOHUꢌ  
The balance impedance (model of the line plus set impedance used to separate the receive and transmit  
signals in the “hybrid”) is independently programmable (though is the same for both channels). Default  
values offer echo return loss of better than 20 dB, though optimization to specific line and set  
characteristics may yield further improvement.  
Table 4-4. Examples of Z  
Coefficients  
CO  
Z
Sh  
Z
-
Z
-
CO  
CO  
CO  
Rs  
Rp  
0
Cp  
Alfa3  
Z
A2 RZ  
Gamma Alfa3  
Ftx  
237  
52  
Ap  
0
Nan ACG  
CO  
CO  
Belgium  
Germany  
Europe  
600  
220  
270  
850  
900  
0
115 nF  
150 nF  
0
0
0
0
0
0
0
3
0
9
0
5
4
0
0
0
512  
–179  
0
103  
125  
125  
123  
126  
820  
750  
0
40  
19  
0
9
7
0
0
346  
388  
0
15  
0
122  
282  
290  
Z
Z
850  
900  
CO  
CO  
0
0
0
0
0
0
h0  
4
h1  
–22  
48  
h2  
105  
1
h3  
95  
a0  
0
c5  
0
b0  
0
Dzd0 Dzd1  
Belgium  
Germany  
Europe  
1
0
0
1
1
1
0
0
1
1
–31  
3
156  
88  
0
0
0
–23  
–22  
–22  
118  
105  
105  
0
0
0
Z
Z
850  
900  
4
95  
0
0
0
CO  
CO  
4
95  
0
0
0
ꢆꢄꢊ 0(7(5,1*  
ꢆꢄꢊꢄꢃ 0HWHULQJꢀ,QMHFWLRQ  
Metering pulses of selectable frequency (12 kHz or 16 kHz) and programmable amplitude can be injected  
into either analog channel independently. The width of the injected pulse is determined by the user (on/off  
mode), or by an internal timer (burst mode) which can be set by the user from 2 ms to 510 ms in steps of  
2 ms. The metering signal is always a multiple of half metering periods. See Figure 4-8.  
Metering is initiated on a channel by an active low state on the corresponding MPI bit in the GCI C/I byte.  
4-8  
MS140131KT  
 
Functional Characteristics of the SH-POTS System: Metering  
ON/OFF MODE  
MPI  
METERING  
BURST MODE  
MPI  
t
Mburst  
METERING  
Figure 4-8. Metering Pulse Timing Diagrams  
The metering level on the line is set by: V  
LM  
= (V  
Z )/(Z + Z  
GEN M  
) where:  
COM  
M
V
= metering pulse level on the line  
LM  
V
= set level of the metering generator  
GEN  
Z
Z
= impedance of the metering load  
M
= CO impedance at the metering frequency.  
COM  
The metering level V  
GEN  
is selectable from 0 to a maximum level of 230 mVrms (500 m line with Z  
900 ) in 15 linear steps. The internal tolerance on the metering signal level is ±10%.  
=
CO  
MS140131KT  
4-9  
Functional Characteristics of the SH-POTS System: Tone Generation  
ꢆꢄꢊꢄꢇ 0HWHULQJꢀ&KDUDFWHULVWLFV  
Table 4-5. Metering Characteristics (Determined by MC1420232 CODSP)  
(Conditions: Refer to Section 5.2)  
Parameter  
Condition  
Metering frequency, 12 kHz  
Min  
Max  
Unit  
Hz  
Note  
F
11,940  
25,920  
12,060  
16,080  
1
1
ML  
F
Metering frequency, 16 kHz  
Hz  
MH  
SFN1  
Single-frequency noise, subharmonics  
for 12 kHz, 30 Hz to 12 kHz  
for 16 kHz, 30 Hz to 12 kHz  
dBm0  
–69  
–69  
SFN2  
Single-frequency noise, mixed products  
12 kHz, 12 kHz to 20 kHz  
12 kHz, 20 kHz to 132 kHz  
16 kHz  
dBm0  
–51  
–69  
–69  
N
In-band noise due to metering signal  
Transient noise due to metering pulse  
–60  
–35  
0.5  
dBmp  
dBm0  
%
2
2
MC  
N
MT  
THD  
Metering total harmonic distortion, 30 Hz to 132 kHz, out  
of CODSP  
M
D
Metering signal distortion at load  
5
%
3
4
M
V
Metering pulse amplitude, maximum level with  
207  
253  
mVrms  
LM  
Z
= 900 , R = 130 Ω  
CO  
line  
SYM  
Metering symmetry, A and B wires  
24  
dB  
5
M
SFN  
Single frequency noise, mixed products, 10 Hz to 4 kHz,  
Tx path  
–63  
dBm  
TX  
NOTES: 1. Tolerance = ±0.5%.  
2. Measured in accordance to ITU-T Specification 071 (Blue Book).  
3. On 200 Ω.  
4. Tolerance = ±10%.  
5. Tolerance = max 6%.  
ꢆꢄꢍ 721(ꢀ*(1(5$7,21  
The SH-POTS system allows the injection of user programmable tones, independently per channel, for  
signalling or user test purposes. Per channel, a tone comprising two programmable (sine wave) frequencies  
and programmable amplitudes can be generated (in this way, the most common call-progress and  
information tones, melody notes, or DTMF tones can be synthesized). The tone signal is added to the  
speech signal (the user must be aware of possible clipping which may occur if high signal levels are  
programmed), or the speech signal can also be muted during a tone burst. The tone burst duration is under  
user control only (the control bits for mute and tone insertion occupy the same register, which simplifies  
the generation of tone bursts).  
The amplitude of each frequency within the tone can be independently set from 0 to the maximum level in  
256 linear amplitude steps (8-bit value), with n = 63 corresponding to 0 dBm on the line. From this, the  
line signal level, V , for a given gain factor n is given by:  
TL  
V
= 20 log(n/63) in dBm  
TL  
4-10  
MS140131KT  
Functional Characteristics of the SH-POTS System: Tone Generation  
or  
n = int(63 x 10^(Vtl/20) + 0.5)  
Table 4-6 lists values for n, for a range of tone signal levels.  
The tone frequency is given by:  
Fout = 250 x N / 256 Hz,  
where N is a 16-bit value (thus, N = 1024 yields a tone of 1 kHz) or  
N = int(Fout x 256/250 + 0.5)  
The tone generated has continuous phase if the programmed frequency is changed during the course of a  
tone (this is not so if the generator is stopped and restarted). Tables 4-7 and 4-8 list the values of N required  
to generate commonly occurring frequencies, and the resulting error.  
Table 4-6. Tone Signal Levels (Common Values) (See Note)  
dBm  
3
n
Actual  
3.00  
Error (dB)  
0.00  
89  
75  
63  
53  
45  
32  
25  
20  
11  
6
1.5  
0
1.51  
0.01  
0.00  
0.00  
–1.5  
–3  
–1.50  
–2.92  
–5.88  
–8.03  
–9.97  
–15.16  
–20.42  
–29.97  
–35.99  
0.00  
0.08  
–6  
0.12  
–8  
–0.03  
0.03  
–10  
–15  
–20  
–30  
–36  
–0.16  
–0.42  
0.03  
2
1
0.01  
NOTE: It is possible to generate tones of very high amplitude. The user must  
ensure that the amplitude parameter is programmed before the tone is  
enabled.  
MS140131KT  
4-11  
 
Functional Characteristics of the SH-POTS System: Tone Generation  
Table 4-7. Tone Generator Division Values for Common Frequencies  
from ETS-300-001 and DTMF Tones  
Common Signalling Frequencies  
Frequency (Hz)  
300.00  
320.00  
325.00  
340.00  
350.00  
375.00  
380.00  
382.50  
400.00  
410.00  
420.00  
440.00  
450.00  
455.00  
475.00  
490.00  
500.00  
525.00  
550.00  
N
Actual Frequency  
299.805  
320.313  
325.195  
339.844  
349.609  
375.000  
379.883  
382.813  
400.391  
410.156  
419.922  
440.430  
450.195  
455.078  
474.609  
490.234  
500.000  
525.391  
549.805  
Error (%)  
–0.07  
0.10  
307  
328  
333  
348  
358  
384  
389  
392  
410  
420  
430  
451  
461  
466  
486  
502  
512  
538  
563  
0.06  
–0.05  
–0.11  
0.00  
–0.03  
0.08  
0.10  
0.04  
–0.02  
0.10  
0.04  
0.02  
–0.08  
0.05  
0.00  
0.07  
–0.04  
DTMF Tones  
Frequency (Hz)  
697.00  
N
Actual Frequency  
697.266  
Error (%)  
0.04  
714  
770.00  
788  
769.531  
–0.06  
–0.05  
0.04  
852.00  
872  
851.563  
941.00  
964  
941.406  
1209.00  
1336.00  
1477.00  
1633.00  
1238  
1368  
1512  
1672  
1208.984  
1335.938  
1476.563  
1632.813  
0.00  
0.00  
–0.03  
–0.01  
4-12  
MS140131KT  
Functional Characteristics of the SH-POTS System: Tone Generation  
Table 4-8. Required Frequency Setting Values (N) for a Melody Generator  
(Western Equal-Tempered Scale)  
Frequency  
(Hz)  
Error  
(%)  
Octave  
Note  
C
N
Actual  
261.719  
277.344  
293.945  
311.523  
330.078  
349.609  
370.117  
391.602  
415.039  
440.430  
465.820  
494.141  
523.438  
554.688  
586.914  
622.070  
659.180  
698.242  
740.234  
784.180  
831.055  
879.883  
932.617  
987.305  
1046.875  
1108.398  
1174.805  
1244.141  
1318.359  
1396.484  
1479.492  
1568.359  
1661.133  
1759.766  
1864.258  
1975.586  
2092.773  
2217.773  
2349.609  
2489.258  
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
261.626  
277.183  
293.665  
311.127  
329.628  
349.228  
369.994  
391.995  
415.305  
440.000  
466.164  
493.883  
523.251  
554.365  
587.330  
622.254  
659.255  
698.456  
739.989  
783.991  
830.609  
880.000  
932.328  
987.767  
1046.502  
1108.731  
1174.659  
1244.508  
1318.510  
1396.913  
1479.978  
1567.982  
1661.219  
1760.000  
1864.655  
1975.533  
2093.005  
2217.461  
2349.318  
2489.016  
268  
0.04  
0.06  
(Middle-C)  
C#  
D
284  
301  
0.10  
Eb  
E
319  
0.13  
338  
0.14  
F
358  
0.11  
F#  
G
379  
0.03  
401  
–0.10  
–0.06  
0.10  
Ab  
A
425  
451  
Bb  
B
477  
–0.07  
0.05  
506  
C
536  
0.04  
C#  
D
568  
0.06  
601  
–0.07  
–0.03  
–0.01  
–0.03  
0.03  
Eb  
E
637  
675  
F
715  
F#  
G
758  
803  
0.02  
Ab  
A
851  
0.05  
901  
–0.01  
0.03  
Bb  
B
955  
1011  
1072  
1135  
1203  
1274  
1350  
1430  
1515  
1606  
1701  
1802  
1909  
2023  
2143  
2271  
2406  
2549  
–0.05  
0.04  
C
C#  
D
–0.03  
0.01  
Eb  
E
–0.03  
–0.01  
–0.03  
–0.03  
0.02  
F
F#  
G
Ab  
A
–0.01  
–0.01  
–0.02  
0.00  
Bb  
B
C
–0.01  
0.01  
C#  
D
0.01  
Eb  
0.01  
MS140131KT  
4-13  
Functional Characteristics of the SH-POTS System: CODSP Clock Recovery PLL  
Table 4-8. Required Frequency Setting Values (N) for a Melody Generator  
(Western Equal-Tempered Scale) (continued)  
Frequency  
(Hz)  
Error  
(%)  
Octave  
Note  
E
N
Actual  
5
5
5
5
5
5
5
5
2637.020  
2793.826  
2959.955  
3135.963  
3322.438  
3520.000  
3729.310  
3951.066  
2700  
2861  
3031  
3211  
3402  
3604  
3819  
4046  
2636.719  
2793.945  
2959.961  
3135.742  
3322.266  
3519.531  
3729.492  
3951.172  
–0.01  
0.00  
F
F#  
G
0.00  
–0.01  
–0.01  
–0.01  
0.00  
Ab  
A
Bb  
B
0.00  
ꢆꢄꢎ &2'63ꢀ&/2&.ꢀ5(&29(5<ꢀ3//  
The CODSP device derives its internal clocks from the GCI DCL input by means of a PLL. The PLL  
automatically detects the clock mode in use, and sets the multiplication factor accordingly. The PLL loop  
filter requires an external capacitor as shown in the application schematic.  
ꢆꢄꢎꢄꢃ 8VHUꢁ'HILQHGꢀ,ꢂ2ꢀ3LQV  
The SPIDI, SPICS, and SPICK pins are part of an SPI port which is used by the manufacturer during  
product evaluation and testing. They are available to the user, via the GCI, as output bits (e.g., for driving  
small indicator LEDs). The SPIDO pin is used as part of the power-up and testing routines, and the  
behavior during power-up can not be guaranteed. It is, therefore, advised not to make use of this pin for  
any other purpose. The outputs can source or sink a maximum of 4 mA each.  
ꢆꢄꢎꢄꢇ 7HVWꢀ)XQFWLRQV  
Please contact a Motorola sales office.  
4-14  
MS140131KT  
6(&7,21ꢀꢊ  
(/(&75,&$/ꢀ&+$5$&7(5,67,&6  
ꢊꢄꢃ $%62/87(ꢀ0$;,080ꢀ5$7,1*6  
Operation of the device at or near these conditions is not guaranteed. Sustained exposure to these limits  
will adversely affect device reliability.  
Table 5-1. Absolute Maximum Ratings  
Parameter  
Symbol  
BATR  
BATS  
Min  
–75  
–35  
–40  
Max  
0.5  
Unit  
V
Battery voltage BATR (ref. to V  
) of SHLIC  
SSB  
Battery voltage BATS (ref. to V  
) of SHLIC  
0.5  
V
SSB  
Difference between the batteries BATR and BATS,  
BATR-BATS of SHLIC  
DBAT  
0.5  
V
V
V
(ref. to V  
) of SHLIC  
V
–0.5  
–0.5  
–40  
7
V
V
DD5A  
SSA  
DD5A  
(ref. to V  
) of SHLIC  
SSA  
V
0.5  
85  
1.3  
4
SSB  
SSB  
Ambient temperature under bias of SHLIC  
Maximum absolute power dissipation, T = 85°C  
T
°C  
W
V
A
A
V
,V  
to CODSP  
V
V
V
– 0.3  
DD3A DD3D  
DD3  
SS  
Voltage on any device pin (see Note) of CODSP  
Function temperature under bias of CODSP  
Storage temperature  
V
– 0.3  
V
+ 0.3  
V
in  
SS  
DD3  
–55  
150  
150  
300  
°C  
°C  
°C  
T
stg  
–65  
Lead temperature (soldering 10 s)  
NOTE: Except special 5 V tolerant I/Os of CODSP.  
ꢊꢄꢇ 23(5$7,1*ꢀ&21',7,216  
Operating ranges define the limits for functional operation and parametric characteristics of the device as  
described in this document, and for the reliability specifications. Correct functioning outside of these limits  
is not implied. Total cumulative exposure outside the normal power supply voltage range or ambient  
temperature under bias, must be less than 0.1% of the normal useful life as defined in the Reliability  
section.  
MS140131KT  
5-1  
 
Electrical Characteristics: Thermal Shutdown SHLIC  
Table 5-2. Operating Conditions  
(All Voltages Referenced to V  
= V  
or V = V  
, as Appropriate)  
SSA  
SSB  
SS SSA  
Limits  
Typ  
Symbol  
BATR  
Parameter  
Ringing battery voltage  
Min  
–72  
–35  
–40  
Max  
–18  
–18  
0
Unit  
V
–65  
BATS  
Speech battery voltage  
–32  
V
D
BAT  
Difference between the batteries BATR and BATS,  
BATR-BATS  
–35  
V
V
Supply voltage SHLIC (ref. to V  
Operating temperature range  
)
SSA  
4.75  
–40  
5
5.5  
85  
V
DD5A  
T
°C  
(Note)  
range  
V
V
V
of CODSP (3.3 V ±8%)  
3.036  
3.3  
3.564  
V
DD3D  
DD3A  
DD  
NOTE: See Section 5.4; maximum power dissipation is dependent on maximum ambient temperature.  
ꢊꢄꢉ 7+(50$/ꢀ6+87'2:1ꢀ6+/,&  
Thermal limiting circuitry on chip of the SHLIC will shut down the circuit at a junction temperature of  
about 165°C. The device should never be run at this temperature. Operation above 145°C junction  
temperature might degrade device reliability.  
Thermal resistance = 55°C/w typ.  
ꢊꢄꢉꢄꢃ 7UDQVLHQWꢀ(QHUJ\ꢀ&DSDELOLW\  
During testing, each device termination withstands being shorted to the supply voltages or ground as  
specified below. The shorting must be limited to 1 s.  
Shorted to V  
to Rx  
, V  
SSA DD5A  
or V  
: VAG, PU, RNG, BR, TST, T , DCC, DCO, DCI, Tx  
SSB A  
Shorted to V  
, V or BATS: AW, BW, SA to SB  
SSA SSB  
ꢊꢄꢆ '&ꢀ&+$5$&7(5,67,&6ꢀꢋ0&ꢃꢆꢉꢈꢃꢉꢇꢀ  
6+/,&ꢏꢀ81/(66ꢀ27+(5:,6(ꢀ127('ꢌ  
Unless otherwise stated, these characteristics apply for the operating conditions specified in Section 5.2.  
All parameters are explicitly or implicitly tested during production at the operating conditions unless they  
are marked with an asterisk (*), where they are guaranteed by design. Parameters marked with a double  
asterisk (**) are meant as user information only. Tests are performed using an equivalent of the application  
schematic.  
5-2  
MS140131KT  
 
Electrical Characteristics: DC Characteristics (MC1430132 SHLIC, Unless Otherwise Noted)  
Table 5-3. Power Supply Currents  
Limits  
Symbol  
Parameter  
Test Condition  
Power RNG = 0  
Min  
Typ  
0.35  
3.5  
0.35  
2.5  
3.5  
3.5  
1.5  
Max  
0.5  
5.0  
0.5  
3.5  
5
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
mW  
mW  
I
BATR current (IL = 0)  
BATR  
Up RNG = 1  
Power RNG = 0  
Down RNG = 1  
Power RNG = 0  
Up RNG = 1  
I
BATS current (IL = 0)  
BATS  
5
Power RNG = 0  
Down RNG = 1  
Power-up  
2.5  
0.5  
5.5  
4
I
V
current (I = 0)  
V3  
3
VDD  
DD  
Power-down  
2.5  
P
Power dissipation of CODSP  
(@ 3.45 V V and  
Power-down  
30  
CC  
DD3A  
Power-up 1 line active*  
Power-up 2 lines active  
140  
180  
V
)
DD3D  
NOTES: 1. IL is the line current; i.e., these parameters are measured without line current.  
2. I is the load current in pin V3.  
V3  
3. The maximum values in the table are valid for the full battery voltage ranges:  
–18 V to –72 V for ringing battery BATR.  
–18 V to –35 V for battery BATS. (BATR must always be the most negative one.)  
4. In case of sleep mode activation. See Tables 6-5 and 6-7 for programming values.  
Table 5-4. SHLIC Dissipation  
Parameter  
Maximum operating power dissipation, T = 70°C  
Symbol  
Value  
1.2  
Unit  
Pmax_op  
W
A
The specifications for power dissipation imply that in ring mode, the active ring phase must at least be four  
times shorter than the non-active ring phase. The maximum duration of the active ring phase must be  
below 2 s.  
ꢊꢄꢆꢄꢃ 3RZHUꢁ2Qꢀ5HVHW  
Table 5-5 shows the power reset threshold for V  
DD5A  
of the SHLIC. As long as V  
reset threshold, SHLIC is held in power-down, and the output pins AW and BW are high impedance.  
is below the  
DD5A  
The CODSP uses a separate input pin, PWRS, for system reset at power-up.  
MS140131KT  
5-3  
Electrical Characteristics: DC Characteristics (MC1430132 SHLIC, Unless Otherwise Noted)  
Table 5-5. Power-On Reset Characteristics  
Limits  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
V
Threshold voltage for power  
3.0  
3.5  
4.0  
V
DDPWR  
reset on V  
of SHLIC  
DD  
t
Active low pulse width on  
PWRS of CODSP  
10  
ms  
V
PWRS  
V
Threshold voltage for reset  
on PWRS of CODSP  
1.6  
1.7  
PWRS  
ꢊꢄꢆꢄꢇ 9  
ꢀ5HJXODWRU  
''ꢉ  
This series regulator of the SHLIC can be used to provide the supply voltage for the CODSP or other 3.3 V  
devices.  
Table 5-6. V  
DD3  
Regulator Characteristics  
Limits  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
output voltage  
Load current I  
0 and 50 mA  
between  
V3V  
3.05  
3.3  
3.55  
V
DD3  
DD3  
I
Load current range  
0
50  
mA  
dB  
load  
PSRR  
Signal rejection V  
to V  
DD3  
Frequency range 0 to  
10 kHz  
20  
DD  
L
Load regulation  
Load current range from  
5 to 50 mA  
–1  
70  
100  
1
REG  
C
(**) Maximum load capacitance  
Load current range from  
0 to 50 mA  
nF  
mA  
load  
I
(*)  
CC  
Current limitation shorted  
output  
V
shorted to V  
200  
DD3  
SSA  
5-4  
MS140131KT  
Electrical Characteristics: DC Characteristics (MC1430132 SHLIC, Unless Otherwise Noted)  
Table 5-7. Voltage Characteristics A Wire (AW), B Wire (BW)  
Test Condition  
Limits  
Typ  
Symbol  
Parameter  
PU  
BR  
RNG  
Min  
Max  
Unit  
V
Normal DC-bias on AW  
1
0
0
0
0
0
1
1
0
0
1
–3.5  
–3.1  
–2.7  
V
AWN  
(ref. V  
)
SSB  
V
Normal DC-bias on BW  
(ref. BAT)  
1
1
1
1
1
0
0
1
0
1
1
x
x
x
x
0
2.5  
2.5  
–3.5  
–4  
3
3
3.5  
3.5  
–2.7  
–2  
V
V
V
V
V
V
V
V
BWN  
V
AWR  
Reverse polarity DC-bias on  
AW (ref. BAT)  
V
Reverse polarity DC-bias on  
–3.1  
–3  
BWR  
BW (ref. V  
)
SSB  
DC bias on AW in Act_H  
mode (TST = 1, ref. V  
V
AW_H  
BW_H  
HWPD  
)
SSB  
V
DC bias on BW in Act_H  
mode (TST = 1, ref. BAT)  
2
3
4
V
Voltage level high wire  
(IL < 5 mA)  
–0.8  
–0.5  
0.5  
BAT/2  
V
Voltage level low wire  
(IL < 5 mA), ref. BAT  
0.8  
LWPD  
V
V
DC-level both wires in ringing  
mode (TST = 0)  
BAT/2  
–2%  
BAT/2  
2%  
AWring  
BWring  
NOTE: These bias values are only valid if both DCC and Rx are biased at VAG voltage level.  
Table 5-8. Impedance Characteristics A Wire (AW), B Wire (BW)  
Limits  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
Z
Output impedance at AW  
(BW) (power-up)  
0 mA < IL < 70 mA  
0 < f < 16 kHz  
1.5  
A(B)WO  
(*)  
Z
Tracking of the output  
impedance on AW and BW  
0 mA < IL < 70 mA  
0 < f < 16 kHz  
5
0.3  
130  
130  
70  
A-BWO  
(*)  
Z
Output impedance on high  
wire (power-down)  
PU = 0  
HWOD  
Z
Output impedance on low wire PU = 0  
(power-down)  
5
LWOD  
Z
Matching output impedance  
low versus high wire  
(power-down)  
PU = 0  
–70  
OMD  
I
Output current in and out  
AW (BW) with OT (over-  
temperature) detected  
A(B)W_V  
and A(B)W_BATS  
–700  
700  
µA  
A(B)OC  
SSB  
I
A(B)HIMP  
MS140131KT  
5-5  
Electrical Characteristics: DC Characteristics (MC1430132 SHLIC, Unless Otherwise Noted)  
Table 5-9. Rx, Tx Characteristics  
Limits  
Symbol  
(*)  
Parameter  
Test Condition  
f = 1 kHz  
SA shorted to AW and SB to  
Min  
Typ  
0
Max  
10  
Unit  
Z
Output impedance at Tx  
Tx  
V
OTx  
Offset voltage on Tx (PU=1)  
(ref. VAG)  
–20  
20  
mV  
BW, DCI to V  
VAG  
, DCO to  
DD3  
I
Tx output current capability  
–1  
–1  
0.05  
1
mA  
V
OUTTx  
(*)  
V
Rx input voltage range (ref.  
VAG)  
Rx  
Z
Rx input impedance  
f = 1 kHz  
20  
kΩ  
Rx  
ꢊꢄꢆꢄꢉ '&2ꢀ'&ꢀ/HYHOVꢏꢀ,PSHGDQFHV  
These limits are generally transparent to the user, but are given here for information.  
Table 5-10. DCO Characteristics  
Limits  
Symbol  
(*)  
Parameter  
Test Condition  
Min  
Typ  
0
Max  
10  
Unit  
Z
Output impedance at DCO  
DCO  
V
Offset voltage on DCO  
(ref. VAG)  
SA shorted to AW and SB  
to BW  
–20  
20  
mV  
ODCO  
I
DCO output current capability  
–1  
0.05  
mA  
OUTDCO  
(*)  
Z
Input impedance at DCI  
f = 1kHz  
210  
kΩ  
DCI  
ꢊꢄꢆꢄꢆ 9$*ꢀ$QDORJꢀ*URXQGꢀ,QSXW  
The analog ground is typically half the voltage of the V  
analog interfacing between SHLIC and the CODSP. VAG is provided by the CODSP.  
output voltage. It is the reference for all  
DD3  
Table 5-11. VAG Characteristics  
Limits  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
V
(**) Voltage level at VAG pin  
CODSP  
1.53  
1.65  
1.77  
V
VAG  
I
VAG input current SHLIC  
VAG = 1.65 V  
0.5  
mA  
VAG  
5-6  
MS140131KT  
Electrical Characteristics: DC Characteristics (MC1430132 SHLIC, Unless Otherwise Noted)  
ꢊꢄꢆꢄꢊ '&ꢀ/RRSꢀ)LOWHU  
These limits are generally transparent to the user, but are given here for information.  
Table 5-12. DC Loop Filter Characteristics  
Limits  
Symbol  
Parameter  
Test Condition  
RNG = 0, PU = 1  
Min  
Typ  
Max  
Unit  
V
DCLF1 output voltage  
–3.5  
–3.1  
–2.7  
V
DCLF1  
(ref. V  
)
SSB  
V
DCLF2 output voltage  
(ref. BAT)  
RNG = 0, PU = 1  
RNG = 0, PU = 1  
RNG = 0, PU = 1  
2.5  
0.6  
0.6  
3.0  
1
3.5  
1.4  
1.4  
V
DCLF2  
Z
Z
Output impedance at DCLF,  
MΩ  
MΩ  
DCLF1S  
DCLF2S  
V
– V  
< 0.5 V  
DCLF  
Output impedance at DCLF,  
– V < 0.5 V  
DCLF1  
1
V
DCLF2  
DCLF  
ꢊꢄꢆꢄꢍ '&&ꢀ,QSXWꢀ3LQ  
These limits are generally transparent to the user, but are given here for information.  
Table 5-13. DCC Input Characteristics  
Limits  
Symbol  
Parameter  
Test Condition  
RNG = 0, PU = 1  
Min  
Typ  
Max  
Unit  
V
DCC input voltage range  
(ref. VAG)  
–1  
1
V
DCC  
I
DCC input current,  
RNG = 0, PU = 1  
4
10  
µA  
INDCC  
V
DCC  
= VAG + 1 V  
NOTE: Forcing DCC positive (ref. VAG) will result in a smaller voltage between the A and B wire. If too large of a  
signal is applied at DCC, both wires are clamped at the same voltage (only a small residual voltage remains  
on the line).  
MS140131KT  
5-7  
Electrical Characteristics: DC Characteristics (MC1430132 SHLIC, Unless Otherwise Noted)  
ꢊꢄꢆꢄꢎ &KDUDFWHULVWLFVꢀIRUꢀWKHꢀ'LJLWDOꢀ,ꢂ2ꢀ3LQV  
These include CODSP, plus TST, PU, BR, RNG of SHLIC.  
Table 5-14. Digital I/O Characteristics  
Limits  
Symbol  
Parameter  
Low-level input voltage  
High-level input voltage  
Test Condition  
Min  
Typ  
Max  
0.8  
Unit  
V
V
IL  
IH  
IL  
V
2.0  
–1  
V
I
Low-level input current  
(except PU, see RPD below)  
V
V
= 5.25 V  
= 5.25 V  
1
µA  
DD  
I
High-level input current  
(except PU, see RPD below)  
–1  
1
µA  
IH  
DD  
C
(*) Input capacitance  
7
pF  
INP  
R
Pull-down resistance at  
pin PU  
18  
30  
40  
kΩ  
PD  
V
OL  
Output level PU pin, driven  
low  
Over-temperature OT  
activated, I = 0.2 mA,  
tested at high temperature  
only  
0.5  
V
PU  
V
Low-level input voltage,  
CODSP  
2.3  
0.5  
V
V
IL  
V
High-level input voltage,  
CODSP  
IH  
V
Low-level output voltage,  
CODSP  
0.4  
V
OL  
V
OH  
High-level output voltage,  
CODSP  
2.3  
V
C
Input pin capacitance,  
CODSP  
1
pF  
pF  
in  
C
Load capacitance, CODSP  
100  
out  
Table 5-15. Sense Bridge Inputs Characteristics  
Limits  
Typ  
Symbol  
Parameter  
Test Condition  
Min  
Max  
Unit  
R
Bridge resistance from  
AW to SB  
V
V
, VAG = 0 V, 25°C  
205  
257  
309  
kΩ  
AW-SB  
SA-BW  
DD  
R
Bridge resistance from  
BW to SA  
, VAG = 0 V, 25°C  
205  
257  
309  
kΩ  
DD  
5-8  
MS140131KT  
Electrical Characteristics: DC Characteristics (MC1430132 SHLIC, Unless Otherwise Noted)  
ꢊꢄꢆꢄꢐ 7HVWꢀ6ZLWFK  
The internal test switch is between pins SB and SSB. Connecting an external load between SSB and SA  
allows test of the transmission characteristics in (simulated) off- and on-hook conditions. The typical  
on-resistance of the test switch is around 75 , and has to be taken into account when defining the external  
load. The test switch is on when RNG = 0, PU = 1, TST = 1, BR = 0.  
Table 5-16. Test Switch Characteristics  
Limits  
Symbol  
Parameter  
Test Condition  
– VSB| < 72 V  
Min  
4
Typ  
Max  
Unit  
µA  
V
I
Switch leakage current  
Voltage drop over test switch  
|V  
SSB  
5
9
3
SWoff  
V
I
= 80 mA  
SWon  
SW  
SW  
I
= 20 mA  
– VSB > 0 V)  
1
V
(V  
SSB  
NOTE: The test switch is normally off when V  
is below the reset level. If the battery voltages are sufficient, the  
DD  
switch remains on, if it was on before V  
went below the reset level.  
DD  
ꢊꢄꢆꢄꢑ %DWWHU\ꢀ6ZLWFK  
This switch is activated during ringing or when the higher on-hook voltage is selected (RNG = 1). When  
active, BATR is connected to the internal battery supply line V . In other cases (RNG = 0), the switch is  
BAT  
open; V  
is now connected to BATS via an internal diode.  
BAT  
Table 5-17. Ringing Battery Switch Characteristics  
Limits  
Symbol  
Parameter  
Test Condition  
BATR = –72 V,  
Min  
Typ  
Max  
Unit  
I
Leakage current battery  
switch  
5
µA  
BSWoff  
(*)  
BATS = –32 V  
(RNG = 0)  
I
Reverse current BATS diode  
(RNG = 1)  
BATR = –72 V,  
BATS = –32 V  
5
µA  
REVBATS  
(*)  
V
Forward drop BATS diode  
Load current < 80 mA  
0
0.85  
1.2  
80  
V
DRBATS  
I
Current capability battery  
switch  
mA  
BSon  
V
Voltage drop over battery  
switch (RNG = 1)  
Load current < 80 mA  
1
2
V
BSWon  
MS140131KT  
5-9  
Electrical Characteristics: DC Characteristics (MC1430132 SHLIC, Unless Otherwise Noted)  
ꢊꢄꢊ $&ꢀ&+$5$&7(5,67,&6ꢀꢋ6+/,&ꢌ  
Unless otherwise stated, the characteristic limits apply over the operating conditions specified in  
Section 5.2 and each combination of the drive bits.  
All parameters are specified in the presence of a longitudinal current of max 5 mA and a dc current of  
between 0 mA and the current limit. The behavior of the chip in the presence of longitudinal voltages is not  
tested in production.  
The different gains in the signal paths are shown in Figure 5-1. The values of the gains are given in  
Table 5-18.  
AW  
bias  
AW  
R
RB  
RB  
PROT  
+
Rx  
G2  
G3  
GR  
V
VL  
ZL  
AB  
DCC  
G4  
+
I/O TO ADSP  
(REF. VAG)  
BW  
R
PROT  
BW  
bias  
G1  
G5  
Tx  
SENSE  
BRIDGE  
DCO  
Figure 5-1. Block Diagram Showing Gains in  
Various Signal Paths in SHLIC  
Table 5-18. Typical Gains  
Gain  
G1  
Factor  
1.66  
0.079  
2
G1′  
G2  
G3  
–2  
G4  
15  
G5  
–1/8  
1
GR  
GR′  
35/2  
5-10  
MS140131KT  
 
 
Electrical Characteristics: DC Characteristics (MC1430132 SHLIC, Unless Otherwise Noted)  
The gains in Table 5-18 are not tested. They are mentioned for information only. The pin-to-pin gains in  
Table 5-20 (G , G , etc.) are tested and guaranteed. In case of ringing, the receive gain is changed  
RX TX  
from GR to GR, the transmit gain factor G1 is changed to G1.  
The default test condition of the input bits is: PU = 1, RNG = 0, BR = 0/1. DCC is shorted to VAG.  
NOTE  
0 dBm: 1 mW in 600 ohms.  
ꢊꢄꢊꢄꢃ 5HFHLYHꢀ3DWK  
The following equation is valid for an open loop configuration. This does not incorporate the Z  
synthesis, which is defined by the feedback from Tx to Rx. This function is performed in the CODSP.  
CO  
VAB  
VRX  
=
= GR(G3 – G2)  
GRX  
ꢊꢄꢊꢄꢇ 7UDQVPLWꢀ3DWK  
The following equation is valid under open loop conditions.  
Vx 2RB  
VL ZL  
=
=
G1  
GRX  
ꢊꢄꢊꢄꢉ 2YHUSRZHUꢀDQGꢀ6KRUWꢀ&LUFXLWꢀ3URWHFWLRQ  
In power-down, the DC-loop current limitation is not active. The line current is limited directly through the  
line drivers.  
The AW and BW outputs are fully protected against short circuits to a voltage between V  
BATR (see Figure 5-2).  
/V and  
SSA SSB  
The current flowing from (or into) AW and/or BW is limited to a value I /I  
as long as the junction  
for different conditions  
LW HW  
temperature T < 165°C (electronic current limitation). The values for I /I  
J
LW HW  
are given in the table below. If T rises above 165°C (±15%) the output drivers’ outputs are made high  
J
impedance. Current can only flow in or out of the internal protection diodes, in case V  
and/or V  
SA  
SB  
exceeds the range between V and BATR. The currents should, however, be limited externally (internal  
SS  
clamping diodes protection) (see Section 2.2).  
MS140131KT  
5-11  
Electrical Characteristics: DC Characteristics (MC1430132 SHLIC, Unless Otherwise Noted)  
RS1 = RS2 0.3 Ω  
V
SSB  
RS1  
AW  
BATR  
V
AW  
V
SSB  
RS2  
BW  
+
+
V
BW  
V
BATR  
V
SB  
SA  
V
SSB  
Figure 5-2. Short Circuit Protection  
Table 5-19. Short Circuit Protection Characteristics  
Limits  
Symbol  
Parameter  
Test Condition  
PU = 1  
Min  
Typ  
Max  
Unit  
I
Short circuit peak current,  
power-up, sink current  
–145  
–120  
–95  
mA  
LW  
Short circuit peak current,  
power-down, sink current  
PU = 0  
PU = 1  
PU = 0  
–65  
95  
–45  
120  
45  
–20  
145  
65  
mA  
mA  
mA  
I
Short circuit peak current,  
power-up, source current  
HW  
Short circuit peak current,  
power-down, source current  
20  
5-12  
MS140131KT  
Electrical Characteristics: DC Characteristics (MC1430132 SHLIC, Unless Otherwise Noted)  
ꢊꢄꢍ 2))ꢁ+22.ꢀ&+$5$&7(5,67,&6ꢀ  
ꢋ06ꢃꢆꢈꢃꢉꢃ.7ꢀ6<67(0ꢌ  
Table 5-20. Off-Hook Characteristics (MS140131KT System)  
(Conditions: Refer to Section 5.2)  
Parameter  
Condition  
Min  
Max  
Unit Note  
G
Relative gain, transmit direction  
Gain programming step  
Step accuracy  
–6  
1
dB  
1
TX  
0.25  
0.1  
0.5  
Gain tolerance (ref. programmed value)  
–0.5  
G
RX  
Relative gain, receive direction  
Gain programming step  
Step accuracy  
–12  
1
dB  
1
0.25  
0.05  
0.5  
Gain tolerance (ref. programmed value)  
–0.5  
d
Long-term gain stability  
–0.5  
0.5  
dB  
dB  
2
3
GLT  
G
Gain tracking, Tx path  
3 to –40 dBm0  
–40 to –50 dBm0  
–50 to –55 dBm0  
TTX  
–0.3  
–0.6  
–1.6  
0.3  
0.6  
1.6  
G
TRX  
Gain tracking, Rx path  
3 to –40 dBm0  
–40 to –50 dBm0  
–50 to –55 dBm0  
dB  
3
–0.3  
–0.6  
–1.6  
0.3  
0.6  
1.6  
IMD  
IMD  
Intermodulation distortion, Tx path  
Intermodulation distortion, Rx path  
–45  
–50  
dBm0  
dBm0  
dB  
4
4
5
TX  
RX  
S
DTX  
Signal to total distortion ratio, Tx (gain = 0 dB)  
0 to –10 dBm0  
–20 dBm0  
–30 dBm0  
–40 dBm0  
–45 dBm0  
35  
34.7  
32.9  
24.9  
19.9  
S
Signal to total distortion ratio, Rx (gain = –7 dB)  
dB  
5
DRX  
0 to –10 dBm0  
–20 dBm0  
–30 dBm0  
–40 dBm0  
–45 dBm0  
35  
33.8  
28.8  
19.5  
14.5  
SFN  
RX  
Single frequency noise  
300 to 3400 Hz, all out-of-band frequencies  
700 to 1100 Hz in-band 300 to 3400 Hz  
dB  
–40  
–49  
Longitudinal balance  
Resistor matching  
1%  
40  
46  
dB  
dB  
0.1%  
NOTES: 1. User programmable.  
2. Covers variations within the permitted ranges of supply voltage and temperature during any one year.  
3. Referred to the gain at 1020 Hz applied to the input at a level –10 dBm0.  
4. Intermodulation distortion measured for all intermodulation products of any non-harmonically related  
frequencies in the range 300 to 3400 Hz for levels between –4 and –21 dBm0.  
5. Intermodulation distortion measured for all intermodulation products of a frequency in the range 300 to  
3400 Hz at –9 dBm0 and 50 Hz at –23 dBm0.  
MS140131KT  
5-13  
6(&7,21ꢀꢍ  
'(7$,/('ꢀ352*5$00,1*ꢀ'(6&5,37,21  
ꢍꢄꢃ *&,ꢀ,17(5)$&(  
The SH-POTS system uses the GCI standard interface to exchange B channel data (PCM-coded voice) and  
control information with the controlling system. GCI data is exchanged in both directions (downstream,  
towards the analog line; and upstream, from the analog line) in 4-byte frames at a rate of 8000 frames per  
second (the standard PCM sampling rate). See Figure 6-1.  
Voice information or data is transmitted via “bearer” channels B1 and B2. Real-time signalling information  
for the two channels are communicated via the six C/I bits (the two least significant bits of the C/I byte are  
used to manage communication via the monitor channel). Programming and status information is  
communicated by means of commands over the monitor channel.  
SH-POTS GCI INTERFACE: MODES  
1 TIMESLOT  
C/I  
B1  
3
MONITOR  
B2  
D
D
/
out  
7
6
5
4
2
1
0
7
6
5
4
3
2
A
E
in  
FSC  
DCL  
8 kHz GCI FRAME CLOCK  
SINGLE TIMESLOT MODE : FSC = 8 kHz  
DCL = 512 kHz ; DATA RATE = 256 kbps  
D
/
out  
TIMESLOT 1  
TIMESLOT 2  
TIMESLOT 8  
D
in  
FSC  
DCL  
8 kHz GCI FRAME CLOCK  
MULTIPLEXED TIMESLOT MODE : FSC = 8 kHz  
DCL = 4096 kHz ; DATA RATE = 2048 kbps  
SH-POTS GCI INTERFACE: TIMING  
Figure 6-1. GCI Data Exchange  
MS140131KT  
6-1  
 
Detailed Programming Description: Timeslot Address  
ꢍꢄꢇ 7,0(6/27ꢀ$''5(66  
Frames can be formatted singly (four bytes per frame), or in a multiplexed mode whereby up to eight  
GCI-compatible devices can be connected to the same bus. In the multiplexed mode, the frames of four  
bytes are transmitted in one of eight timeslots — the mode and the timeslot address of a particular GCI  
terminal is set by means of strapping a code on three device pins GCIM and AD0 to AD2 on the CODSP  
(see Table 6-1). The CODSP uses the GCI standard format for analog terminals (see Figure 6-2).  
Table 6-1. GCI Mode and Timeslot Address Programming  
DCL  
Timeslot  
Mode  
Frequency  
(kHz)  
Timeslot  
Address  
GCIM  
AD2  
0
AD1  
0
AD0  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
3
3
3
4
4
4
4
8
8
8
8
8
8
8
8
512  
0
0
1
2
0
1
2
3
0
1
2
3
4
5
6
7
0
0
1
1536  
1536  
1536  
2048  
2048  
2048  
2048  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
6-2  
MS140131KT  
 
Detailed Programming Description: Timeslot Address  
ꢍꢄꢉ 6+ꢁ3276ꢀ*&,ꢀ,17(5)$&(ꢅꢀ7,0,1*  
t
F
t
WH  
t
t
t
WL  
R
DCL  
DCL  
FSC  
t
t
HF  
SF  
t
t
WFL  
WFH  
t
DDF  
D
out  
t
DDC  
D
in  
t
t
HD  
SD  
Figure 6-2. GCI Timing Diagram  
Table 6-2. GCI Interface: Timing Characteristics  
Signal  
Inputs  
Inputs  
Parameter  
Description  
Input level low  
Min  
Max  
0.8  
Unit  
V
V
IL  
V
Input level high  
Output level low  
Output level high  
Clock period  
Clock rise/fall  
Pulse width  
2.0  
V
IH  
D
D
V
0.4  
V
out  
OL  
OH  
V
2.4  
1952  
V
out  
DCL(2)  
DCL(2)  
DCL(2)  
DCL(3)  
DCL(3)  
FSC  
t
1955  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DCL  
t , t  
R F  
t
, t  
800  
243.9  
90  
WH WH  
t
Clock period  
Pulse width  
244.3  
DCL  
,t  
t
WL WH  
t
Frame setup  
Frame rise/fall  
Frame width H  
Frame width L  
Frame hold  
70  
DCL-60  
60  
SF  
t , t  
FSC  
R F  
FSC  
t
130  
WFH  
FSC  
t
t
WFL  
DCL  
60  
FSC  
t
HF  
DDC  
D
D
t
Data delay/clock  
Data delay/frame  
Data setup  
100  
150  
out(1)  
t
out(1)  
DDF  
D
D
t
t
+ 20  
in  
SD  
HD  
wH  
60  
t
Data hold  
in  
(1)  
(2)  
(3)  
Condition C = 150 pF  
L
256 kbps transmission  
2048 kbps transmission  
MS140131KT  
6-3  
Detailed Programming Description: C/I Bits  
ꢍꢄꢆ &ꢂ,ꢀ%,76  
The C/I bits are used to transfer signalling information for both channels simultaneously. The C/I bits must  
be stable for at least two consecutive GCI frames before they will be recognized.  
The bit allocations for both downstream and upstream directions are shown in Table 6-3. Note that the  
signals are active low, meaning that the idle condition is a logic 1.  
Table 6-3. C/I Bit Allocation  
Direction  
Downstream  
C/I 7  
RNG0  
LS0  
C/I 6  
MPI0  
AL0  
C/I 5  
ADSI0  
RPH0  
C/I 4  
RNG1  
LS1  
C/I 3  
MPI1  
AL1  
C/I 2  
ADSI1  
RPH1  
Upstream  
RNG Activate ringing.  
MPI  
Activate metering pulse.  
ADSI Activate on-hook signalling.  
LS  
AL  
Off-hook condition detected (loop stable).  
Alarm (indicates any of the possible alarm conditions: initrequest, overpower detected).  
RPH Ring phase. Indicates that ADSI data can not be sent.  
ꢍꢄꢊ 021,725ꢀ&+$11(/  
The CODSP acts as a slave device on the GCI — commands received in the downstream direction are  
responded to in the upstream direction.  
The E and A bits in the C/I byte are used to synchronize and acknowledge the correct transfer of a monitor  
channel byte.  
Valid commands are:  
ID Request  
1 0 0 0 0 0 0 0  
1 0 0 0 1 B B B  
1 0 0 1 1 B B B  
Write Request  
Read Request  
(BBB is the memory block identifier or “MemID” — see below.) Other commands should not be used.  
ꢍꢄꢍ ,'ꢀ5(48(67  
The ID request command returns two bytes:  
Byte 1  
Byte 2  
1 0 0 0 0 0 0 0  
Command Confirmation  
Revision Code  
1 0 R R R R R R  
This command returns a unique code for each device revision.  
6-4  
MS140131KT  
 
Detailed Programming Description: Read Command  
ꢍꢄꢎ 5($'ꢀ&200$1'  
A read request command comprises 3 bytes:  
Read Request  
Address High  
Address Low  
1 0 0 1 1 B B B  
n n n n n n n n  
n n n n n n n n  
The response is a 5-byte stream:  
Command Conf.  
Address High  
Address Low  
Data High  
Data Low  
1 0 0 1 1 B B B  
n n n n n n n n  
n n n n n n n n  
d d d d d d d d  
d d d d d d d d  
ꢍꢄꢐ :5,7(ꢀ&200$1'  
The write command comprises 5 bytes:  
Command Conf.  
Address High  
Address Low  
Data High  
Data Low  
1 0 0 0 1 B B B  
n n n n n n n n  
n n n n n n n n  
d d d d d d d d  
d d d d d d d  
No bytes are returned.  
ꢍꢄꢑ 0(025<ꢀ0$3ꢀ2)ꢀ7+(ꢀ&2'63  
Global memory map and MemID definitions:  
All addresses can be read and written, though writing to locations or individual bits which are not  
described here may result in unpredictable behavior.  
The default parameter and coefficient values that are used at startup and after reset are listed in the  
following tables.  
The memory block to be accessed is given as part of the READ or WRITE command (see above)  
as the “B” bits in the command byte.  
The control registers of the SH-POTS system, accessed via the GCI, are organized in a number of  
memory blocks. Within each block, a number of addresses are used directly to control the  
operation of specific functions of the SH-POTS system.  
MS140131KT  
6-5  
Detailed Programming Description: Data RAM — MemID = 2  
Table 6-4. Memory Map for CODSP  
MemID  
Memory  
Start Address  
Memory Contents  
2
Data RAM  
0x 02 0000  
C-code read/write data  
C-code stack region  
C-code IRQ stack region  
4
5
Coprocessor Coef RAM  
Shared RAM  
0x 04 0000  
0x 05 0000  
Filter coefficients  
Data packet buffers  
Label vectors, FIFO control  
ꢍꢄꢃꢈ '$7$ꢀ5$0ꢀ³ꢀ0(0,'ꢀ ꢀꢇ  
Table 6-5. Data RAM: Memory Map  
Address  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
00 (0x0000)  
01 (0x0001)  
02 (0x0002)  
03 (0x0003)  
04 (0x0004)  
05 (0x0005)  
06 (0x0006)  
07 (0x0007)  
08 (0x0008)  
09 (0x0009)  
10 (0x000A)  
11 (0x000B)  
12 (0x000C)  
13 (0x000D)  
14 (0x000E)  
15 (0x000F)  
16 (0x0010)  
17 (0x0011)  
18 (0x0012)  
19 (0x0013)  
20 (0x0014)  
21 (0x0015)  
22 (0x0016)  
23 (0x0017)  
24 (0x0018)  
25 (0x0019)  
Bbs0  
Bbs1  
Bsa0 Bs0 Br0 Tst0 Sh0  
Bsa1 Bs1 Br1 Tst1 Sh1  
Tx Gain 0  
Tx Gain 1  
Rx Gain 0  
Rx Gain 1  
Dzd1 Dzd0  
Td1 Td0  
CurLim_Rlarge  
CurLim_Threshold  
RW  
RIL RM  
Ringing_Amplitude  
Ringing_On_Period  
LBO  
RF  
Ringing_DC_Offset  
Ringing_Off_Period  
RTDAC_ThresholdLow  
RTDAC_Debouncetime  
RTDAC_ThresholdHigh  
RTDAC_GapTime  
AlarmReg  
IDC0  
IDC1  
IAC0  
IAC1  
TG1 TG0 MS1 MS0  
TestTone_Ampl1_L0  
TestTone_Ampl1_L1  
TestTone_Ampl2_L0  
TestTone_Ampl2_L1  
TestTone_Freq1_L0  
6-6  
MS140131KT  
Detailed Programming Description: LBO Register  
Table 6-5. Data RAM: Memory Map (continued)  
Address  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
26 (0x001A)  
27 (0x001B)  
28 (0x001C)  
29 (0x001D)  
30 (0x001E)  
31 (0x001F)  
32 (0x0020)  
TestTone_Freq1_L1  
TestTone_Freq2_L0  
TestTone_Freq2_L1  
ACG  
Rzd0  
Sleep2  
Pd1 Pd0  
Rzd1  
Sleep1  
DialP_SatTxLevel  
DialP_DebTime  
NOTE: Bit positions and memory locations not documented must not be changed.  
ꢍꢄꢃꢃ /%2ꢀ5(*,67(5  
This register controls various loopback modes, as well as the routing of the GCI B channels to or from the  
physical line analog channels. The bits are codes as shown in Table 6-6.  
Table 6-6. LBO Register Description  
Mode  
Normal  
D2  
D1  
D0  
GCI Side  
Analog Side  
0
0
0
Tx(0) -> B1Up  
Tx(1) -> B2Up  
B1Down -> Rx(0)  
B2Down -> Rx(1)  
Simplex loop B2  
Simplex loop B1  
0
0
0
1
0
1
1
0
1
0
1
0
Tx(0) -> B1Up  
B2Down -> B2Up  
B1Down -> Rx(0)  
Tx(1) -> Rx(1)  
B1Down -> B1Up  
Tx(1) -> B2Up  
Tx(0) -> Rx(0)  
B2Down -> Rx(1)  
Simplex loop B1  
and B2  
B1Down -> B1Up  
B2Down -> B2Up  
Tx(0) -> Rx(0)  
Tx(1) -> Rx(1)  
Duplex loopback  
B2Down -> B1Up  
B1Down -> B2Up  
Tx(0) -> Rx(1)  
Tx(1) -> Rx(0)  
Reserved  
Reserved  
Swap mode  
1
1
1
0
1
1
1
0
1
Tx(0) -> B2Up  
Tx(1) -> B1Up  
B1Down -> Rx(1)  
B2Down -> Rx(0)  
BnDown: GCI B channel 1 or 2, downstream direction.  
BnUp:  
Tx(m):  
Rx(m):  
GCI B channel 1 or 2, upstream direction.  
Analog “transmit” signal (upstream direction), line 1 or 2.  
Analog “receive” signal (downstream direction), line 1 or 2.  
MS140131KT  
6-7  
 
Detailed Programming Description: Alarm Bits  
ꢍꢄꢃꢇ $/$50ꢀ%,76  
After initialization (e.g., due to a hardware reset), the CODSP itself will make the upstream  
CI/Alarm bit active, and set the AlarmReg with an InitRequest value (i.e., “1xx”). The CI/Alarm  
bit will remain active until the InitRequest is cleared by the GCI supervisor (indicating that the  
supervisor has done the necessary reinitialization of system parameters).  
In order to check the contents of the AlarmReg, execute the following GCI command:  
ReadRequest ( MemId=2, Add=0x0010 );  
This results in a four-nibble value; e.g., “0xabgd,” read by the supervisor.  
In order to clear the InitRequest alarm, in principle, one must only clear one bit. Therefore, the  
supervisor should execute the following commands:  
NewValue = ”0xabgd” AND ”0xFFFB”;  
WriteRequest ( MemId=2, Add=0x0010, NewValue );  
Note that the other bits in the alarm register are updated by the DSP at a 8 kHz rate, and that they  
are only used by the GCI supervisor; therefore, the other bits might also be overwritten for one  
cycle, clearing all bits (inclusive the InitRequest bit) in one command:  
WriteRequest ( MemId=2, Add=0x0010, 0x0000 );  
ꢍꢄꢃꢉ 0($1,1*ꢀ$1'ꢀ'()$8/7ꢀ9$/8(6ꢀ2)ꢀ7+(ꢀ  
3$5$0(7(56  
Table 6-7. Data RAM: Description and Default Values  
Name (Note 1)  
Sh0, Sh1  
Address Position  
Description  
Mapping  
Default  
00, 01  
00, 01  
00, 01  
00, 01  
0
1
2
3
SHLIC test mode control 0: normal mode  
0
bit  
1: test mode  
(normal)  
Tst0, Tst1  
Br0, Br1  
Bs0, Bs1  
SHLIC test switch  
control bit  
0: open switch  
1: closed switch  
0
(open)  
SHLIC battery reversal 0: non-reversed  
control bit 1: reversed  
0
(non rev.)  
SHLIC battery selection 0: BATS selection L  
control bit for NonAct_X 1: BATR selection H  
variant  
0
(NonAct_L)  
Bsa0, Bsa1  
Bbs0, Bbs1  
00, 01  
00, 01  
4
SHLIC battery selection 0: BATS selection L  
control bit for ActAdsi_X 1: BATR selection H  
variant  
0
(ActAdsi_L)  
6:5  
SHLIC battery selection 0 = “00”:BATS L  
0
control bit for  
1 = “01”:BATR H  
(ActRng_Sph_L)  
ActRng_Sph_X variant 2 = “10”:BATS + bias  
LA  
3 = “11”:BATR + bias  
HA  
6-8  
MS140131KT  
Detailed Programming Description: Meaning and Default Values of the Parameters  
Table 6-7. Data RAM: Description and Default Values (continued)  
Name (Note 1)  
Address Position  
Description  
Mapping  
Default  
Tx_Gain_0  
Tx_Gain_1  
03  
04  
15:0  
Gain factor in Tx  
direction for Line0 and  
Line1  
320  
(0 dB)  
Tx-Gain_*  
20 log  
320  
Rx_Gain_0  
Rx_Gain_1  
05  
06  
15:0  
Gain factor in Rx  
direction for Line0 and  
Line1  
384  
( –7dB)  
Rx-Gain_*  
384  
– 7 + 20 log  
Dzd1, Dzd0  
07  
08  
09  
1:0  
1:0  
7:0  
Disable digital Z  
path 0: enable  
1: disable  
1
CO  
(disabled)  
Td1, Td0  
Disable Tx path at pdm 0: enable  
level  
0
1: disable  
(enabled)  
CurLim_Threshold  
Current limitation  
val = 0 ... 127  
51  
threshold parameter  
unit = 0.63 mA  
(eq = 0 ... 80 mA)  
(32 mA)  
CurLim_RLarge  
RF  
09  
10  
15:8  
1:0  
Current limitation  
RLarge resistance  
parameter (internal  
resistance)  
val = 0 ... 210  
unit = 47  
(eq = 0 ... 10 k)  
64  
(3 k)  
Ringing frequency  
0 = “00”: 16 Hz  
1 = “01”: 20 Hz  
2 = “10”: 25 Hz  
3 = “11”: 50 Hz  
3
(50 Hz)  
RM  
10  
10  
10  
11  
11  
2
3
Ringing mode  
0: on/off mode  
1: burst mode  
0
(on/off)  
RIL  
Enable interleaved  
ringing  
0: non-interleaved  
1: interleaved  
1
(interleaved)  
RW  
5
Ringing waveform  
0: sine wave  
1: trapezoidal wave  
0
(sine)  
Ringing_Amplitude  
Ringing_DC_Offset  
7:0  
15:8  
Amplitude of ringing  
signal  
val = 0 ... 255  
unit = 194 mV rms  
255  
(max ampl)  
DC offset of ringing  
signal  
val = 0 ... 255  
unit = 250 mV  
0
(no offset)  
(Between A and B wire)  
Ringing_On_Period  
Ringing_Off_Period  
12  
12  
7:0  
Length of active ringing val = 0 ... 255  
32  
(1 s)  
phase to be used in  
burst mode  
unit = 32 ms  
15:8  
Length of silent ringing val = 0 ... 255  
96  
phase to be used in  
burst mode  
unit = 32 ms  
(3 s)  
LBO  
13  
14  
14  
15  
15  
3:0  
7:0  
GCI loopback register  
(encoding see below)  
val = 0 ... 15  
0
(no loop)  
RTDAC_ThresholdHigh  
RTDAC_ThresholdLow  
RTDAC_GapTime  
RTDAC_Debouncetime  
Threshold level high  
during ringing  
val = 0 ... 255  
unit = 1.6 mA  
27  
(43.2 mA)  
15:8  
7:0  
Threshold level low  
during ringing  
val = 0 ... 255  
unit = 1.6 mA  
7
(11.2 mA)  
Gaptime during RTDAC val = 0 ... 255  
peak detection  
10  
(1.25 ms)  
unit = 125 µs  
15:8  
Deb. time during  
RTDAC  
val = 0 ... 255  
unit = 125 µs  
240 (30 ms)  
MS140131KT  
6-9  
Detailed Programming Description: Meaning and Default Values of the Parameters  
Table 6-7. Data RAM: Description and Default Values (continued)  
Name (Note 1)  
AlarmReg  
Address Position  
Description  
Mapping  
val = 0 ... 7  
Default  
16  
17  
17  
18  
19  
20  
20  
2:0  
Alarm status register  
(encoding)  
4 (InitReq’st)  
IDC1  
7:0  
DC line current of Line1, val = 0 ... 127  
sampled at 2 kHz unit = 0.63 mA  
0
0
0
0
IDC0  
15:8  
15:0  
15:0  
3, 2  
1, 0  
7:0  
DC line current of Line0, val = 0 ... 127  
sampled at 2 kHz unit = 0.63 mA  
IAC0  
AC line current of Line0, unit = 215/1.6 V @ Tx  
sampled at 8 kHz  
IAC1  
AC line current of Line1, unit = 215/1.6 V @ Tx  
sampled at 8 kHz  
TG1, TG0  
MS1, MS0  
Tone generator control 0 : do not add tone  
bit for Line1 and Line0 1 : add tone  
0
(no tone)  
Mute speech control bit 0 : pass speech  
for Line1 and Line0  
0
1 : mute speech  
(no mute)  
TestTone_Ampl1_L0  
TestTone_Ampl1_L1  
21  
22  
Amplitude of first sine for val = 0 ... 255  
Line0 and Line1  
63  
(0 dBm)  
TestTone_Ampl2_L0  
TestTone_Ampl2_L1  
23  
24  
7:0  
Amplitude of second  
sine for Line0 and Line1  
val = 0 ... 255  
63  
(0 dBm)  
TestTone_Freq1_L0  
TestTone_Freq1_L1  
25  
26  
15:0  
15:0  
7:0  
Frequency of first sine  
for Line0 and Line1  
unit = 250 Hz/256  
unit = 250 Hz/256  
1024/256  
(1 kHz)  
TestTone_Freq2_L0  
TestTone_Freq2_L1  
27  
28  
Frequency of second  
sine for Line0 and Line1  
512/256  
(500 Hz)  
ACG  
29  
30  
30  
30  
30  
31  
Rx amplitude correction val = 0 ... 255/128  
for Z synthesis  
103/128  
(600 )  
CO  
Pd1, Pd0  
11:10  
13:12  
2:0  
Power denial mode  
Line1  
1 = enable  
0 = disable  
0
(disable)  
Sleep2 (Note 2)  
Sleep1 (Note 2)  
Rzd1, Rzd0  
DialP_SatTxLevel  
Low power activation  
00 = inactive  
11 = active  
00  
active  
Sleep factor to be used val = 0 ... 7  
when one line inactive  
0
eq = 0 ... 70% sleepy (0% sleep)  
4:3  
Disable analog Z  
path  
0: enable  
1: disable  
0
CO  
(enabled)  
15:0  
Tx saturation level to be unit = 48.83 µV @ Tx 8192  
used for dial pulse  
detection  
(400 mV)  
DialP_DebTime  
32  
15:0  
Debounce time to be  
used for dial pulse  
detection  
unit = 125 µs  
40  
(5 ms)  
NOTES: 1. Parameter names with 0 or 1 at the end refer to the analog Line0 or Line1.  
2. In low power applications: recommended program value is sleep 1 = 5 combined with sleep 2 = 3 will save  
power consumption when only one line off-hook.  
6-10  
MS140131KT  
Detailed Programming Description: Coprocessor Coefficient RAM — MemID = 4  
ꢍꢄꢃꢆ &2352&(6625ꢀ&2()),&,(17ꢀ5$0ꢀ³ꢀꢀ  
0(0,'ꢀ ꢀꢆ  
Access is similar to that of the data RAM parameters. Note, however, that the GCI commands work with  
2-byte values whereas the memory contains only 3-nibble values. Because all values are <12, 0>, the most  
significant nibble of the 2-byte GCI value will be a sign-extension of the 12-bit value. In the case of a  
ReadRequest; the most significant nibble of a WriteRequest will be neglected.  
Table 6-8. Coprocessor Coefficient RAM: Memory Map  
Address  
11  
10  
9
8
7
6
5
4
3
2
1
0
00 (0x0000)  
01 (0x0001)  
02 (0x0002)  
03 (0x0003)  
04 (0x0004)  
05 (0x0005)  
06 (0x0006)  
07 (0x0007)  
08 (0x0008)  
09 (0x0009)  
10 (0x000A)  
11 (0x000B)  
12 (0x000C)  
13 (0x000D)  
14 (0x000E)  
15 (0x000F)  
16 (0x0010)  
17 (0x0011)  
18 (0x0012)  
19 (0x0013)  
20 (0x0014)  
21 (0x0015)  
22 (0x0016)  
23 (0x0017)  
24 (0x0018)  
25 (0x0019)  
26 (0x001A)  
27 (0x001B)  
28 (0x001C)  
29 (0x001D)  
30 (0x001E)  
31 (0x001F)  
32 (0x0020)  
Rx32KFilter coefficient : r0  
r1  
r4  
s1  
s2  
r2  
r3  
r5  
s3  
s4  
m0  
m1  
u0  
u1  
Hyb16KFilter coefficient : h0  
h1  
h2  
h3  
a0  
c5  
b0  
Tx32KFilter coefficient : t0  
t1  
t8  
q1  
q2  
t2  
t3  
t9  
q3  
q4  
t4  
t5  
MS140131KT  
6-11  
Detailed Programming Description: Meaning and Default Values of the Parameters  
Table 6-8. Coprocessor Coefficient RAM: Memory Map (continued)  
Address  
11  
10  
9
8
7
6
5
4
3
2
1
0
33 (0x0021)  
34 (0x0022)  
35 (0x0023)  
36 (0x0024)  
37 (0x0025)  
38 (0x0026)  
39 (0x0027)  
40 (0x0028)  
41 (0x0029)  
42 (0x002A)  
43 (0x002B)  
44 (0x002C)  
45 (0x002D)  
46 (0x002E)  
t10  
q5  
t6  
t7  
t11  
q6  
q7  
c2  
c3  
ZcoTxFilter coefficient : Ftx  
Ap  
NAn  
Constants : HLF  
ONE_EIGHT  
ꢍꢄꢃꢊ 0($1,1*ꢀ$1'ꢀ'()$8/7ꢀ9$/8(6ꢀ2)ꢀ7+(ꢀ  
3$5$0(7(56  
Table 6-9. Coprocessor Coefficient RAM: Description and  
Default Values  
Name  
r0  
Address  
00  
Position  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
Description  
Rx filter coefficient  
Mapping  
Default  
96  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
r1  
01  
Rx filter coefficient  
–78*  
96  
r4  
02  
Rx filter coefficient  
s1  
s2  
r2  
03  
Rx filter coefficient  
642  
–263*  
256  
–303*  
256  
746  
–450*  
512  
512  
0
04  
Rx filter coefficient  
05  
Rx filter coefficient  
r3  
06  
Rx filter coefficient  
r5  
07  
Rx filter coefficient  
s3  
s4  
m0  
m1  
u0  
u1  
h0  
h1  
h2  
h3  
08  
Rx filter coefficient  
09  
Rx filter coefficient  
10  
Rx filter coefficient  
11  
Rx filter coefficient  
12  
Rx filter coefficient  
13  
Rx filter coefficient  
0
14  
Echo cancelling coefficient  
Echo cancelling coefficient  
Echo cancelling coefficient  
Echo cancelling coefficient  
4
15  
–22*  
105  
95  
16  
17  
6-12  
MS140131KT  
Detailed Programming Description: Meaning and Default Values of the Parameters  
Table 6-9. Coprocessor Coefficient RAM: Description and  
Default Values (continued)  
Name  
Address  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
Position  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
11:0  
Description  
Echo cancelling coefficient  
Echo cancelling coefficient  
Echo cancelling coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
Mapping  
Default  
0
a0  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
unit = intval / 512  
c5  
0
b0  
0
t0  
48  
t1  
–37*  
48  
t8  
q1  
728  
–439*  
390  
–492*  
390  
573  
–227*  
64  
q2  
t2  
t3  
t9  
q3  
q4  
t4  
t5  
128  
64  
t10  
q5  
442  
384  
768  
384  
962  
–458*  
512  
–512*  
237  
0
t6  
t7  
t11  
q6  
q7  
c2  
c3  
Ftx  
Z
Z
Z
Tx filter coefficient  
Tx filter coefficient  
Tx filter coefficient  
CO  
CO  
CO  
Ap  
NAn  
0
HLF  
Constant definition  
Constant definition  
256  
64  
ONE_EIGHT  
*For negative values, 2’s complement is used.  
MS140131KT  
6-13  
Detailed Programming Description: Shared Memory — MemID = 5  
ꢍꢄꢃꢍ 6+$5('ꢀ0(025<ꢀ³ꢀ0(0,'ꢀ ꢀꢊ  
Table 6-10. Shared Memory: Memory Map  
Address  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
85  
VLM  
HT  
Deb  
MF MM  
(0x0055)  
86  
SpiDo SpiDi SpiSk SpiCs SpiSe RBD  
SR* SR*  
SR* SR*  
(0x0056)  
87  
(0x0057)  
HSD_ThresholdHigh  
RTD_ThresholdHigh  
HSD_ThresholdLow  
RTD_ThresholdLow  
88  
(0x0058)  
89  
(0x0059)  
MeteringDutyCycle  
ZcoA2  
RZco  
90  
(0x005A)  
ZcoShAlfa3  
Rxd*  
Alo*  
Sleep*  
ZcoAlfa3  
91  
ZcoGamma  
(0x005B)  
94  
TL  
(0x005E)  
NOTE: Bit positions and memory locations not described here must not be changed.  
ꢍꢄꢃꢎ 0($1,1*ꢀ$1'ꢀ'()$8/7ꢀ9$/8(6ꢀ2)ꢀ7+(ꢀ  
3$5$0(7(56  
Table 6-11. Shared Memory: Description and Default Values  
Name  
Address Position  
Description  
Mapping  
val = 0 ... 15  
Default  
VLM  
HT  
85  
14:11  
Metering amplitude  
3
(unit value = depending on  
Z
)
CO  
85  
10:9  
HSD debounce time  
0 = “00”: 8 ms  
1 = “01” : 24 ms  
2 = “10” : 16 ms  
3 = “11”: 64 ms  
2
(16 ms)  
DEB  
MF  
85  
85  
85  
8
4
3
RTD debounce time  
Metering frequency  
Metering mode  
0 : 0 ms  
1 : 30 ms  
1
(30 ms)  
0 : 12 kHz  
1 : 16 kHz  
1
(16 kHz)  
MM  
0 : burst mode  
1 : on/off mode  
1
(on/off)  
SPIDO  
SPIDI  
86  
86  
86  
86  
15  
14  
13  
12  
SPI D  
out  
port  
0
0
0
0
SPI D port  
in  
SPISK  
SPICS  
SPI SK port  
SPI CS port  
6-14  
MS140131KT  
Detailed Programming Description: Meaning and Default Values of the Parameters  
Table 6-11. Shared Memory: Description and Default Values (continued)  
Name  
Address Position  
Description  
SPI port selection  
Mapping  
Default  
SPISE  
RBD  
86  
86  
11  
10  
0
Disable automatic ring  
activation of SPICK and  
SPICK  
1 = disabled  
0 = enabled  
0
(enabled)  
SR (Note 1)  
86  
86  
5:4  
1:0  
Software resets of SID1, SID0, 1 = reset block  
0
CP, GCI  
0 = no reset  
Soft Resets (Note 2)  
5:0  
13:7  
6:0  
Reset ability of HW blocks  
(SID0, SID1, MRT, LS, CP,  
GCI)  
0: no reset  
1: reset block  
0
(no reset)  
HSD_ThresholdHigh  
HSD_ThresholdLow  
RTD_ThresholdHigh  
RTD_ThresholdLow  
MeteringDutyCycle  
87  
87  
88  
88  
89  
HSD high threshold  
HSD low threshold  
RTD high threshold  
RTD low threshold  
val = 0 ... 127  
unit = 0.63 mA  
= 0 ... 80 mA  
16  
(10 mA)  
val = 0 ... 127  
unit = 0.63 mA  
= 0 ... 80 mA  
10  
(6.3 mA)  
13:7  
6:0  
val = 0 ... 127  
unit = 0.63 mA  
= 0 ... 80 mA  
16  
(10 mA)  
val = 0 ... 127  
unit = 0.63 mA  
= 0 ... 80 mA  
10  
(6.3 mA)  
15:8  
Length of the metering burst to val = 0 ... 255  
150  
be used in “burst” metering  
mode  
unit = 2 ms  
= 0 ... 510 ms  
(300 ms)  
ZcoShAlfa3  
ZcoA2  
90  
90  
90  
90  
90  
91  
91  
91  
94  
15:1  
13:7  
6
Central office impedance  
parameter  
(Note 1)  
(Note 1)  
0
(600 )  
Central office impedance  
parameter  
0
(600 )  
RxD (Note 1)  
ALO (Note 2)  
Sleep (Note 2)  
RZco  
RxDisable at input of analog  
part  
0: enabled Rx path  
1: disable Rx path  
0
(enabled)  
4
Analog loopback at pdm  
0: disabled loop  
1: enable loop  
0
(disabled)  
2:0  
11:8  
7:4  
3:0  
1:0  
Sleep factor actually used by val = 0 ... 7  
the processor  
0
= 0 ... 70% sleepy  
(0% sleep)  
Central office impedance  
parameter  
(Note 1)  
(Note 1)  
(Note 1)  
3
(600 )  
ZcoGamma  
ZcoAlfa3  
TL  
Central office impedance  
parameter  
0
(600 )  
Central office impedance  
parameter  
0
(600 )  
Transcode law selection  
0 = “00”: A Law  
1 = “01”: µ Law  
2 = “10”: Linear  
0
(A-Law)  
NOTES: 1. Examples of other Z  
parameters are listed in Table 4-4. Otherwise, contact a Motorola sales office.  
2. Do not change these values.  
CO  
MS140131KT  
6-15  
6(&7,21ꢀꢎ  
0(&+$1,&$/ꢀ63(&,),&$7,216  
ꢎꢄꢃ 0&ꢃꢆꢇꢈꢇꢉꢇꢀ3$&.$*(ꢀ',0(16,216  
FU SUFFIX  
TQFP PACKAGE  
CASE 824D-02  
PLATING  
BASE METAL  
–X–  
X=L, M, N  
4X 11 TIPS  
0.2 (0.008)  
T
L–M N  
4X  
0.2 (0.008)  
H
L–M N  
F
44  
34  
33  
J
U
C
L
1
AB  
AB  
40X  
G
D
M
S
0.20 (0.008)  
T
L–M  
N
3X VIEW Y  
–L–  
–M–  
SECTION AB–AB  
ROTATED 90 CLOCKWISE  
VIEW Y  
B
V
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
B1  
V1  
11  
23  
22  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS –L–, –M– AND –N– TO BE DETERMINED  
AT DATUM PLANE –H–.  
12  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE –T–.  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE  
–N–  
A1  
S1  
A
S
DETERMINED AT DATUM PLANE –H–.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED 0.53  
(0.021). MINIMUM SPACE BETWEEN  
PROTRUSION AND ADJACENT LEAD OR  
PROTRUSION 0.07 (0.003).  
4X ( 2)  
VIEW AA  
C
–H–  
0.1 (0.004)  
T
MILLIMETERS  
MIN MAX  
10.00 BSC  
5.00 BSC  
10.00 BSC  
5.00 BSC  
INCHES  
MIN MAX  
0.394 BSC  
0.197 BSC  
0.394 BSC  
0.197 BSC  
DIM  
A
A1  
B
B2  
C
C1  
C2  
D
–T–  
SEATING  
PLANE  
4X ( 3)  
C2  
–––  
0.05  
1.35  
0.30  
0.45  
0.30  
1.60  
–––  
0.002  
0.053  
0.012  
0.018  
0.012  
0.063  
0.15  
1.45  
0.45  
0.75  
0.40  
0.006  
0.057  
0.018  
0.030  
0.016  
S
0.05 (0.002)  
E
F
G
(W)  
0.80 BSC  
0.031 BSC  
J
K
R1  
S
S1  
U
0.09  
0.50 REF  
0.09  
12.00 BSC  
6.00 BSC  
0.09 0.16  
0.20  
0.004  
0.020 REF  
0.004  
0.472 BSC  
0.236 BSC  
0.004 0.006  
0.008  
1
2X R R1  
0.20  
0.008  
0.25 (0.010)  
GAGE PLANE  
V
12.00 BSC  
6.00 BSC  
0.20 REF  
1.00 REF  
0.472 BSC  
0.236 BSC  
0.008 REF  
0.039 REF  
V1  
W
Z
(K)  
E
(Z)  
C1  
0
0
7
–––  
0
0
7
–––  
1
2
3
12 REF  
12 REF  
12 REF  
12 REF  
VIEW AA  
MS140131KT  
7-1  
Mechanical Specifications: MC1420232 Package Dimensions  
ꢎꢄꢇ 0&ꢃꢆꢉꢈꢃꢉꢇꢀ3$&.$*(ꢀ',0(16,216  
DW SUFFIX  
SOIC PACKAGE  
CASE 751F-05  
NOTES:  
D
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND  
TOLERANCES PER ASME Y14.5M, 1994.  
3. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD PROTRUSIONS.  
A
28  
15  
4. MAXIMUM MOLD PROTRUSION 0.015 PER  
SIDE.  
5. DIMENSION B DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
TOTAL IN EXCESS OF B DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
1
14  
MILLIMETERS  
B
PIN 1 IDENT  
DIM MIN  
2.35  
A1 0.13  
MAX  
2.65  
0.29  
0.49  
0.32  
A
B
C
D
E
e
H
L
q
0.35  
0.23  
17.80 18.05  
7.40 7.60  
1.27 BSC  
10.05 10.55  
L
0.10  
e
0.41  
0
0.90  
8
C
×
×
SEATING  
PLANE  
B
C
q
M
S
S
0.025  
C A  
B
7-2  
MS140131KT  
Mechanical Specifications: MC1420232 Package Dimensions  
ꢎꢄꢉ 5(&200(1'('ꢀ3$'ꢀ/$<287ꢀ)25ꢀ  
ꢆꢆꢁ/($'ꢀ74)3ꢀ0&ꢃꢆꢇꢈꢇꢉꢇ  
A
B
Solder Pad Size: W = 0.55 mm x L = 2.0 mm  
Solder Pad Pitch: 0.8 mm (center to center)  
Toe to Toe Dimension: A = 14.2 mm x B = 14.2 mm  
Figure 7-1. Recommended Pad Layout for 44-Lead TQFP MC1420232  
MS140131KT  
7-3  
Digital DNA is a trademark of Motorola, Inc.  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,  
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application  
by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola  
products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could  
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly  
or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges  
that Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
are registered trademarks of  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution: P.O. Box 5405, Denver, Colorado 80217.  
1-303-675-2140 or 1-800-441-2447  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1 Minami-Azabu. Minato-ku, Tokyo 106-8573  
Japan. 81-3-3440-3569  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,  
Tao Po, N.T., Hong Kong. 852-26668334  
TECHNICAL INFORMATION CENTER: 1-800-521-6274  
HOME PAGE: http://motorola.com/semiconductors/  
© Motorola, Inc., 2001  
MS140131KT/D  

相关型号:

MS140131KTR2

Telecom Circuit, 1-Func
MOTOROLA

MS140132KT

SPECIALTY TELECOM CIRCUIT
MOTOROLA

MS1402

RF & MICROWAVE TRANSISTORS
MICROSEMI

MS1402

RF AND MICROWAVE TRANSISTORS UHF MOBILE APPLICATIONS
ADPOW

MS1403

RF & MICROWAVE TRANSISTORS
MICROSEMI

MS1403

RF AND MICROWAVE TRANSISTORS VHF PORTABLE/MOBILE APPLICATIONS
ADPOW

MS1404

RF & MICROWAVE TRANSISTORS UHF MOBILE APPLICATIONS
ADPOW

MS14046

Inductors Military, MIL-PRF-15305 Qualified, Type LT, Molded
VISHAY

MS14046-07RU

General Purpose Inductor,
VISHAY

MS14046-09RU

General Purpose Inductor,
VISHAY

MS14046-1

General Purpose Inductor, 5.6uH, 10%, 1 Element, AXIAL LEADED
RCD

MS14046-10

General Fixed Inductor, 1 ELEMENT, 33 uH, IRON-CORE, GENERAL PURPOSE INDUCTOR, RADIAL LEADED
VISHAY