MPC8377EVRALG [NXP]

Microprocessor;
MPC8377EVRALG
型号: MPC8377EVRALG
厂家: NXP    NXP
描述:

Microprocessor

文件: 总127页 (文件大小:2897K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC8377EEC  
Rev. 10, 07/2014  
Freescale Semiconductor  
Technical Data  
MPC8377E  
PowerQUICC II Pro Processor  
Hardware Specifications  
Contents  
This document provides an overview of the MPC8377E  
PowerQUICC II Pro processor features, including a block  
diagram showing the major functional components. This  
chip is a cost-effective, low-power, highly integrated host  
processor that addresses the requirements of several  
printing and imaging, consumer, and industrial  
applications, including main CPUs and I/O processors in  
printing systems, networking switches and line cards,  
wireless LANs (WLANs), network access servers (NAS),  
VPN routers, intelligent NIC, and industrial controllers.  
This chip extends the PowerQUICC family, adding higher  
CPU performance, additional functionality, and faster  
interfaces while addressing the requirements related to  
time-to-market, price, power consumption, and package  
size.  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 7  
3. Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 11  
4. Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5. RESET Initialization . . . . . . . . . . . . . . . . . . . . . . . . 15  
6. DDR1 and DDR2 SDRAM . . . . . . . . . . . . . . . . . . . 16  
7. DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
8. Ethernet: Enhanced Three-Speed Ethernet (eTSEC) 23  
9. USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
10. Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
11. Enhanced Secure Digital Host Controller (eSDHC) 43  
12. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
13. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
14. PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
15. PCI Express . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
16. Serial ATA (SATA) . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
17. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
18. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
19. IPIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
20. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
21. High-Speed Serial Interfaces (HSSI) . . . . . . . . . . . . 77  
22. Package and Pin Listings . . . . . . . . . . . . . . . . . . . . . 87  
23. Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
24. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
25. System Design Information . . . . . . . . . . . . . . . . . . 119  
26. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 121  
27. Document Revision History . . . . . . . . . . . . . . . . . . 123  
1 Overview  
This chip incorporates the e300c4s core, which includes  
32 KB of L1 instruction and data caches and on-chip  
memory management units (MMUs). The device offers  
two enhanced three-speed 10, 100, 1000 Mbps Ethernet  
interfaces, a DDR1/DDR2 SDRAM memory controller, a  
flexible, a 32-bit local bus controller, a 32-bit PCI  
controller, an optional dedicated security engine, a USB  
2.0 dual-role controller, a programmable interrupt  
© 2008-2012, 2014 Freescale Semiconductor, Inc. All rights reserved.  
2
controller, dual I C controllers, a 4-channel DMA controller, an enhanced secured digital host controller,  
and a general-purpose I/O port. This figure shows the block diagram of the chip.  
MPC8377E  
DUART  
Dual I2C  
e300 Core  
Timers  
GPIO  
SPI  
Interrupt  
Controller  
32 KB  
32 KB  
I-Cache  
DDR1/DDR2  
SDRAM  
Controller  
Enhanced  
Local Bus  
D-Cache  
Security  
USB 2.0  
Hi-Speed  
SD/MMC  
Controller  
PCI  
Express  
SATA  
eTSEC  
eTSEC  
x1  
x2  
PHY PHY  
RGMII, RMII, RGMII, RMII,  
RTBI, MII RTBI, MII  
DMA  
PCI  
Host Device  
Figure 1. MPC8377E Block Diagram and Features  
The following features are supported in the chip:  
e300c4s core built on Power Architecture® technology with 32 KB instruction cache and 32 KB  
data cache, a floating point unit, and two integer units  
DDR1/DDR2 memory controller supporting a 32/64-bit interface  
Peripheral interfaces, such as a 32-bit PCI interface with up to 66-MT/s operation  
32-bit local bus interface running up to 133-MT/s  
USB 2.0 (full/high speed) support  
Power management controller for low-power consumption  
High degree of software compatibility with previous-generation PowerQUICC processor-based  
designs for backward compatibility and easier software migration  
Optional security engine provides acceleration for control and data plane security protocols  
The optional security engine (SEC 3.0) is noted with the extension “E” at the end. It allows CPU-intensive  
cryptographic operations to be offloaded from the main CPU core. The security-processing accelerator  
provides hardware acceleration for the DES, 3DES, AES, SHA-1, and MD-5 algorithms.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
2
Freescale Semiconductor  
In addition to the security engine, new high-speed interfaces, such as PCI Express and SATA are included.  
This table compares the differences between MPC837xE derivatives and provides the number of ports  
available for each interface.  
Table 1. High-Speed Interfaces on the MPC8377E, MPC8378E, and MPC8379E  
Descriptions  
MPC8377E  
MPC8378E  
MPC8379E  
SGMII  
PCI Express®  
SATA  
0
2
2
2
2
0
0
0
4
1.1  
DDR Memory Controller  
The DDR1/DDR2 memory controller includes the following features:  
Single 32- or 64-bit interface supporting both DDR1 and DDR2 SDRAM  
Support for up to 400-MT/s data rate  
Support up to 4 chip selects  
64-Mbit to 2-Gbit (for DDR1) and to 4-Gbit (for DDR2) devices with ×8/×16/×32 data ports (no  
direct ×4 support)  
Support for up to 32 simultaneous open pages  
Supports auto refresh  
On-the-fly power management using CKE  
1.8-/2.5-V SSTL2 compatible I/O  
1.2  
USB Dual-Role Controller  
The USB controller includes the following features:  
Supports USB on-the-go mode, including both device and host functionality, when using an  
external ULPI (UTMI + low-pin interface) PHY  
Complies with USB Specification, Rev. 2.0  
Supports operation as a stand-alone USB device  
— Supports one upstream facing port  
— Supports three programmable USB endpoints  
Supports operation as a stand-alone USB host controller  
— Supports USB root hub with one downstream-facing port  
— Enhanced host controller interface (EHCI) compatible  
Supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operation;  
low-speed operation is supported only in host mode  
Supports UTMI + low pin interface (ULPI)  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
3
1.3  
Dual Enhanced Three-Speed Ethernet Controllers (eTSECs)  
The eTSECs include the following features:  
Two enhanced Ethernet interfaces can be used for RGMII/MII/RMII/RTBI  
Two controllers conform to IEEE Std 802.3®, IEEE 802.3u, IEEE 802.3x, IEEE 802.3z,  
IEEE 802.3au, IEEE 802.3ab, and IEEE Std 1588™ standards  
Support for Wake-on-Magic Packet™, a method to bring the device from standby to full operating  
mode  
MII management interface for external PHY control and status  
1.4  
Integrated Programmable Interrupt Controller (IPIC)  
The integrated programmable interrupt controller (IPIC) implements the necessary functions to provide a  
flexible solution for general-purpose interrupt control. The IPIC programming model is compatible with  
the MPC8260 interrupt controller, and it supports 8 external and 34 internal discrete interrupt sources.  
Interrupts can also be redirected to an external interrupt controller.  
1.5  
Power Management Controller (PMC)  
The power management controller includes the following features:  
Provides power management when the device is used in both host and agent modes  
Supports PCI Power Management 1.2 D0, D1, D2, and D3hot states  
Support for PME generation in PCI agent mode, PME detection in PCI host mode  
Supports Wake-on-LAN (Magic Packet), USB, GPIO, and PCI (PME input as host)  
Supports MPC8349E backward-compatibility mode  
1.6  
Serial Peripheral Interface (SPI)  
The serial peripheral interface (SPI) allows the device to exchange data between other PowerQUICC  
family chips, Ethernet PHYs for configuration, and peripheral devices such as EEPROMs, real-time  
clocks, A/D converters, and ISDN devices.  
The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface  
(receive, transmit, clock, and slave select). The SPI block consists of transmitter and receiver sections, an  
independent baud-rate generator, and a control unit.  
2
1.7  
DMA Controller, Dual I C, DUART, Enhanced Local Bus Controller  
(eLBC), and Timers  
The device provides an integrated four-channel DMA controller with the following features:  
Allows chaining (both extended and direct) through local memory-mapped chain descriptors  
(accessible by local masters)  
Supports misaligned transfers  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
4
Freescale Semiconductor  
2
There are two I C controllers. These synchronous, multi-master buses can be connected to additional  
devices for expansion and system development.  
The DUART supports full-duplex operation and is compatible with the PC16450 and PC16550  
programming models. 16-byte FIFOs are supported for both the transmitter and the receiver.  
The main component of the enhanced local bus controller (eLBC) is its memory controller, which provides  
a seamless interface to many types of memory devices and peripherals. The memory controller is  
responsible for controlling eight memory banks shared by a NAND Flash control machine (FCM), a  
general-purpose chip-select machine (GPCM), and up to three user-programmable machines (UPMs). As  
such, it supports a minimal glue logic interface to SRAM, EPROM, NOR Flash EPROM, NAND Flash,  
EPROM, burstable RAM, regular DRAM devices, extended data output DRAM devices, and other  
peripherals. The eLBC external address latch enable (LALE) signal allows multiplexing of addresses with  
data signals to reduce the device pin count.  
The enhanced local bus controller also includes a number of data checking and protection features, such  
as data parity generation and checking, write protection, and a bus monitor to ensure that each bus cycle  
is terminated within a user-specified period. The local bus can operate at up to 133 MT/s.  
The system timers include the following features: periodic interrupt timer, real time clock, software  
watchdog timer, and two general-purpose timer blocks.  
1.8  
Security Engine  
The optional security engine is optimized to handle all the algorithms associated with IPSec,  
IEEE 802.11i, and iSCSI. The security engine contains one crypto-channel, a controller, and a set of crypto  
execution units (EUs). The execution units are as follows:  
Data encryption standard execution unit (DEU), supporting DES and 3DES  
Advanced encryption standard unit (AESU), supporting AES  
Message digest execution unit (MDEU), supporting MD5, SHA1, SHA-256, and HMAC with any  
algorithm  
One crypto-channel supporting multi-command descriptor chains  
1.9  
PCI Controller  
The PCI controller includes the following features:  
PCI Specification Revision 2.3 compatible  
Single 32-bit data PCI interface operates at up to 66 MT/s  
PCI 3.3-V compatible (not 5-V compatible)  
Support for host and agent modes  
On-chip arbitration, supporting 5 external masters on PCI  
Selectable hardware-enforced coherency  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
5
1.10 PCI Express Controller  
The PCI Express controller includes the following features:  
PCI Express 1.0a compatible  
Two ×1 links or one ×2 link width  
Auto-detection of number of connected lanes  
Selectable operation as root complex or endpoint  
Both 32- and 64-bit addressing  
128-byte maximum payload size  
Support for MSI and INTx interrupt messages  
Virtual channel 0 only  
Selectable Traffic Class  
Full 64-bit decode with 32-bit wide windows  
Dedicated four channel descriptor-based DMA engine per interface  
1.11 Serial ATA (SATA) Controllers  
The serial ATA (SATA) controllers have the following features:  
Supports Serial ATA Rev 2.5 Specification  
Spread spectrum clocking on receive  
Asynchronous notification  
Hot Plug including asynchronous signal recovery  
Link power management  
Native command queuing  
Staggered spin-up and port multiplier support  
Port multiplier support  
SATA 1.5 and 3.0 Gb/s operation  
Interrupt driven  
Power management support  
Error handling and diagnostic features  
— Far end/near end loopback  
— Failed CRC error reporting  
— Increased ALIGN insertion rates  
Scrambling and CONT override  
1.12 Enhanced Secured Digital Host Controller (eSDHC)  
The enhanced SD host controller (eSDHC) has the following features:  
Conforms to SD Host Controller Standard Specification, Rev 2.0 with Test Event register support.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
6
Freescale Semiconductor  
Compatible with the MMC System Specification, Rev 4.0  
Compatible with the SD Memory Card Specification, Rev 2.0, and supports High Capacity SD  
memory cards  
Compatible with the SDIO Card Specification Rev, 1.2  
Designed to work with SD Memory, miniSD Memory, SDIO, miniSDIO, SD Combo, MMC,  
MMCplus, MMC 4x, and RS-MMC cards  
SD bus clock frequency up to 50 MT/s  
Supports 1-/4-bit SD and SDIO modes, 1-/4-bit MMC modes  
Supports internal DMA capabilities  
2 Electrical Characteristics  
This section provides the AC and DC electrical specifications and thermal characteristics for the chip. The  
device is currently targeted to these specifications. Some of these specifications are independent of the I/O  
cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.  
2.1  
Overall DC Electrical Characteristics  
This section covers the ratings, conditions, and other characteristics.  
2.1.1  
Absolute Maximum Ratings  
This table provides the absolute maximum ratings.  
1
Table 2. Absolute Maximum Ratings  
Characteristic  
Symbol  
Max Value  
Unit  
Note  
Core supply voltage  
VDD  
AVDD  
GVDD  
–0.3 to 1.1  
–0.3 to 1.1  
V
V
V
PLL supply voltage (e300 core, eLBC, and system)  
DDR1 and DDR2 DRAM I/O voltage  
–0.3 to 2.75  
–0.3 to 1.98  
Three-speed Ethernet I/O, MII management voltage  
LVDD[1,2]  
OVDD  
–0.3 to 3.63  
–0.3 to 3.63  
V
V
PCI, DUART, system control and power management, I2C, and  
JTAG I/O voltage  
Local bus  
SerDes  
LBVDD  
L[1,2]_nVDD  
MVIN  
–0.3 to 3.63  
V
V
V
V
V
V
6
–0.3 to 1.1  
Input voltage  
DDR DRAM signals  
–0.3 to (GVDD + 0.3)  
–0.3 to (GVDD + 0.3)  
–0.3 to (LVDD + 0.3)  
–0.3 to (OVDD + 0.3)  
2, 4  
2, 4  
DDR DRAM reference  
Three-speed Ethernet signals  
MVREF  
LVIN  
PCI, DUART, CLKIN, system control and power  
management, I2C, and JTAG signals  
OVIN  
3, 4, 5  
Local Bus  
LBIN  
–0.3 to (LBVDD + 0.3)  
V
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
7
1
Table 2. Absolute Maximum Ratings (continued)  
Characteristic  
Symbol  
Max Value  
–55 to 150  
Unit  
Note  
Storage temperature range  
TSTG  
°C  
Notes:  
1. Functional and tested operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only, and  
functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause  
permanent damage to the device.  
2. Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
3. Caution: OVIN must not exceed OVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
4. (M,O)VIN and MVREF may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.  
5. Overshoot/undershoot by OVIN on the PCI interface does not comply to the PCI Electrical Specification for 3.3-V operation,  
as shown in Figure 2.  
6. L[1,2]_nVDD includes SDAVDD_0, XCOREVDD, and XPADVDD power inputs.  
2.1.2  
Power Supply Voltage Specification  
This table provides recommended operating conditions for the device. Note that the values in this table are  
the recommended and tested operating conditions. Proper device operation outside of these conditions is  
not guaranteed.  
Table 3. Recommended Operating Conditions  
Recommended  
Characteristic  
Symbol  
Unit  
Note  
Value  
Core supply voltage  
up to 667 MT/s  
800 MT/s  
VDD  
1.0 50 mV  
1.05 50 mV  
1.0 50 mV  
1.05 50 mV  
V
V
V
V
V
1
1
PLL supply voltage (e300 core, eLBC and  
system)  
up to 667 MT/s  
800 MT/s  
AVDD  
1, 2  
1, 2  
1
DDR1 and DDR2 DRAM I/O voltage  
GVDD  
LVDD[1,2]  
OVDD  
2.5 V 125 mV  
1.8 V 90 mV  
Three-speed Ethernet I/O, MII management voltage  
3.3 V 165 mV  
2.5 V 125 mV  
V
V
V
1
PCI, local bus, DUART, system control and power management, I2C, and  
JTAG I/O voltage  
3.3 V 165 mV  
Local Bus  
LBVDD  
1.8 V 90 mV  
2.5 V 125 mV  
3.3 V 165 mV  
SerDes  
up to 667 MT/s  
800 MT/s  
L[1,2]_nVDD  
1.0 50 mV  
V
V
1, 3  
1, 3  
1.05 V 50 mV  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
8
Table 3. Recommended Operating Conditions (continued)  
Recommended  
Value  
Characteristic  
Symbol  
Unit  
Note  
Operating temperature range  
commerical  
Ta  
Tj  
Ta=0 (min)—  
Tj=125 (max)  
°C  
extended temperature  
Ta  
Tj  
Ta=–40 (min)—  
Tj=125 (max)  
°C  
Notes:  
1. GVDD, OVDD, AVDD, and VDD must track each other and must vary in the same direction—either in the positive or negative  
direction.  
2. AVDD is the input to the filter discussed in Section 25.1, “PLL Power Supply Filtering,and is not necessarily the voltage at  
the AVDD pin.  
3. L[1,2]_nVDD, SDAVDD_0, XCOREVDD, and XPADVDD power inputs.  
This figure shows the undershoot and overshoot voltages at the interfaces of the device.  
G/L/O/LBVDD + 20%  
G/L/O/LBVDD + 5%  
G/L/O/LBVDD  
VIH  
GND  
GND – 0.3 V  
VIL  
GND – 0.7 V  
Not to Exceed 10%  
of tinterface1  
Note:  
1. Note that tinterface refers to the clock period associated with the bus clock interface.  
2. Note that with the PCI overshoot allowed (as specified above), the device does  
not fully comply with the maximum AC ratings and device protection guideline outlined in  
the PCI Rev. 2.3 Specification (Section 4.2.2.3).  
Figure 2. Overshoot/Undershoot Voltage for GV /LV /OV /LBV  
DD  
DD  
DD  
DD  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
9
2.1.3  
Output Driver Characteristics  
This table provides information on the characteristics of the output driver strengths. The values are  
preliminary estimates.  
Table 4. Output Drive Capability  
Driver Type1  
Local bus interface utilities signals  
Output Impedance (Ω)  
Supply Voltage  
Notes  
45  
40  
25  
LBVDD = 2.5 V, 3.3 V  
LBVDD = 1.8 V  
OVDD = 3.3 V  
2
PCI signals  
DDR1 signal  
18 full-strength mode  
36 half-strength mode  
GVDD = 2.5 V  
DDR2 signal  
18 full-strength mode  
36 half-strength mode  
GVDD = 1.8 V  
2
eTSEC 10/100/1000 signals  
45  
45  
45  
LVDD = 2.5 V, 3.3 V  
OVDD = 3.3 V  
DUART, system control, I2C, JTAG, SPI, and USB  
GPIO signals  
Note:  
OVDD = 3.3 V  
1. Specialized SerDes output capabilities are described in the relevant sections of these specifications (such as  
PCI Express and SATA)  
2. 18 ohms output impedance corresponds to full drive strength setting. 36 ohms output impedance corresponds to half  
drive strength. DDR automatic hardware calibration is only available for full drive strength.  
2.2  
Power Sequencing  
The device requires its power rails to be applied in a specific sequence in order to ensure proper device  
operation. During the power ramp up, before the power supplies are stable and if the I/O voltages are  
supplied before the core voltage, there may be a period of time that all input and output pins will actively  
be driven and cause contention and excessive current. To avoid actively driving the I/O pins and to  
eliminate excessive current draw, apply the core voltages (V and AV ) before the I/O voltages and  
DD  
DD  
assert PORESET before the power supplies fully ramp up. V and AV must reach 90% of their  
DD  
DD  
nominal value before GV , LV , and OV reach 10% of their value, see the following figure. I/O  
DD  
DD  
DD  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
10  
voltage supplies—GV , LV , and OV —do not have any ordering requirements with respect to one  
DD  
DD  
DD  
another.  
I/O Voltage (GVDD, LVDD, and OVDD)  
Core Voltage (VDD, AVDD)  
V
0.7 V  
90%  
t
0
Figure 3. Power-Up Sequencing Example  
Note that the SerDes power supply (L[1,2]_nV ) should follow the same timing as the core supply  
DD  
(V ).  
DD  
The device does not require the core supply voltage and I/O supply voltages to be powered down in any  
particular order.  
3 Power Characteristics  
The estimated typical power dissipation for the chip device is shown in this table.  
1
Table 5. Power Dissipation  
Core Frequency CSB/DDR Frequency  
Sleep Power  
Typical Application Typical Application Max Application  
at Tj = 125°C (W) 3 at Tj = 125°C (W) 4  
(MT/s)  
(MT/s)  
at Tj = 65°C (W) 2 at Tj = 65°C (W) 2  
333  
167  
400  
266  
300  
225  
333  
250  
355  
266  
1.45  
1.45  
1.45  
1.45  
1.45  
1.45  
1.45  
1.45  
1.45  
1.45  
1.9  
1.8  
2.0  
1.9  
2.0  
1.9  
2.0  
1.9  
2.0  
2.0  
3.2  
3.0  
3.3  
3.1  
3.2  
3.1  
3.3  
3.2  
3.3  
3.2  
3.8  
3.6  
4.0  
3.8  
3.8  
3.7  
3.9  
3.8  
4.0  
3.9  
333  
400  
450  
500  
533  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
11  
1
Table 5. Power Dissipation (continued)  
Core Frequency CSB/DDR Frequency  
Sleep Power  
Typical Application Typical Application Max Application  
(MT/s)  
(MT/s)  
at Tj = 65°C (W) 2 at Tj = 65°C (W) 2  
at Tj = 125°C (W) 3 at Tj = 125°C (W) 4  
400  
300  
333  
266  
400  
1.45  
1.45  
1.45  
1.45  
1.45  
2.1  
2.0  
2.1  
2.0  
2.5  
3.4  
3.3  
3.3  
3.3  
3.8  
4.1  
4.0  
4.1  
3.9  
4.3  
600  
667  
800  
Notes:  
1. The values do not include I/O supply power (OVDD, LVDD, GVDD) or AVDD. For I/O power values, see Table 6.  
2. Typical power is based on a voltage of VDD = 1.0 V for core frequencies 667 MT/s or VDD = 1.05 V for core frequencies of  
800 MT/s, and running a Dhrystone benchmark application.  
3. Typical power is based on a voltage of VDD = 1.0 V for core frequencies 667 MT/s or VDD = 1.05 V for core frequencies of  
800 MT/s, and running a Dhrystone benchmark application.  
4. Maximum power is based on a voltage of VDD = 1.0 V for core frequencies 667 MT/s or VDD = 1.05 V for core frequencies  
of 800 MT/s, worst case process, and running an artificial smoke test.  
This table shows the estimated typical I/O power dissipation for the device.  
Table 6. Typical I/O Power Dissipation  
GVDD  
(1.8 V)  
GVDD/LBVDD OVDD LVDD LVDD L[1,2]_nVDD  
Interface  
Parameter  
Unit  
Comments  
(2.5 V)  
(3.3 V) (3.3 V) (2.5 V)  
(1.0 V)  
200 MT/s data  
rate, 32-bit  
0.28  
0.41  
0.31  
0.46  
0.33  
0.48  
0.35  
0.51  
0.38  
0.35  
W
200 MT/s data  
rate, 64-bit  
0.49  
0.4  
W
W
W
W
W
W
W
W
266 MT/s data  
rate, 32-bit  
266 MT/s data  
rate, 64-bit  
0.56  
0.43  
0.6  
300 MT/s data  
rate, 32-bit  
DDR I/O  
65%  
utilization  
2 pair of  
clocks  
300 MT/s data  
rate, 64-bit  
333 MT/s data  
rate, 32-bit  
0.45  
0.64  
333 MT/s data  
rate, 64-bit  
400 MT/s  
data rate,  
32-bit  
400 MT/s  
data rate,  
64-bit  
0.56  
W
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
12  
Table 6. Typical I/O Power Dissipation (continued)  
GVDD  
(1.8 V)  
GVDD/LBVDD OVDD LVDD LVDD L[1,2]_nVDD  
Interface  
Parameter  
Unit  
Comments  
(2.5 V)  
(3.3 V) (3.3 V) (2.5 V)  
(1.0 V)  
PCI I/O  
Load =  
30 pf  
33 MT/s, 32-bit  
66 MT/s, 32-bit  
0.04  
0.07  
W
W
167 MT/s, 32-bit  
133 MT/s, 32-bit  
83 MT/s, 32-bit  
66 MT/s, 32-bit  
50 MT/s, 32-bit  
MII or RMII  
0.09  
0.07  
0.05  
0.04  
0.03  
0.17  
0.14  
0.09  
0.07  
0.06  
0.29  
0.24  
0.15  
0.13  
0.1  
W
W
W
W
W
W
Local Bus  
I/O  
Load =  
25 pf  
0.02  
Multiply by  
number of  
interfaces used.  
eTSEC I/O  
Load =  
25 pf  
USB  
(60 MT/s  
Clock)  
RGMII or RTBI  
12 Mbps  
0.01  
0.2  
0.05  
W
W
W
480 Mbps  
SerDes  
per lane  
0.029  
W
W
Other I/O  
0.01  
Note: The values given are for typical, and not worst case, switching.  
4 Clock Input Timing  
This section provides the clock input DC and AC electrical characteristics for the chip. Note that the  
PCI_CLK/PCI_SYNC_IN signal or CLKIN signal is used as the PCI input clock depending on whether  
the device is configured as a host or agent device. CLKIN is used when the device is in host mode.  
4.1  
DC Electrical Characteristics  
This table provides the clock input (CLKIN/PCI_CLK) DC timing specifications for the device.  
Table 7. CLKIN DC Electrical Characteristics  
Parameter  
Condition  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage  
Input low voltage  
VIH  
VIL  
IIN  
2.7  
–0.3  
OVDD + 0.3  
V
V
1
1
0.4  
10  
30  
CLKIN Input current  
PCI_CLK Input current  
0 V VIN OVDD  
μA  
μA  
0 V VIN 0.5 V or  
IIN  
OVDD – 0.5 V VIN OVDD  
Note:  
1. In PCI agent mode, this specification does not comply with PCI 2.3 Specification.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
13  
4.2  
AC Electrical Characteristics  
The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on  
whether the device is configured in PCI host or PCI agent mode. This table provides the clock input  
(CLKIN/PCI_CLK) AC timing specifications for the device.  
Table 8. CLKIN AC Timing Specifications  
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
Note  
CLKIN/PCI_CLK frequency  
CLKIN/PCI_CLK cycle time  
CLKIN/PCI_CLK rise and fall time  
CLKIN/PCI_CLK duty cycle  
CLKIN/PCI_CLK jitter  
fCLKIN  
tCLKIN  
25  
15  
0.6  
40  
66.666  
40  
MT/s  
ns  
1, 6  
2
tKH, tKL  
tKHK/tCLKIN  
1.0  
2.3  
ns  
60  
%
3
150  
ps  
4, 5  
Notes:  
1. Caution: The system, core and security block must not exceed their respective maximum or minimum operating  
frequencies.  
2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 V and 2.7 V.  
3. Timing is guaranteed by design and characterization.  
4. This represents the total input jitter-short term and long term-and is guaranteed by design.  
5. The CLKIN/PCI_CLK driver’s closed loop jitter bandwidth should be < 500 kHz at –20 dB. The bandwidth must be set low  
to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.  
6. Spread spectrum is allowed up to 1% down-spread on CLKIN/PCI_CLK up to 60 KHz.  
4.3  
eTSEC Gigabit Reference Clock Timing  
This table provides the eTSEC gigabit reference clocks (EC_GTX_CLK125) AC timing specifications.  
Table 9. EC_GTX_CLK125 AC Timing Specifications  
At recommended operating conditions with LVDD = 2.5 0.125 mV/ 3.3 V 165 mV  
Parameter/Condition  
Symbol  
Min  
Typical  
Max  
Unit  
Note  
EC_GTX_CLK125 frequency  
EC_GTX_CLK125 cycle time  
EC_GTX_CLK rise and fall time  
tG125  
tG125  
125  
8
MT/s  
ns  
1
t
G125R/tG125F  
ns  
LVDD = 2.5 V  
LVDD = 3.3 V  
0.75  
1.0  
EC_GTX_CLK125 duty cycle  
1000Base-T for RGMII, RTBI  
tG125H/tG125  
%
2
2
47  
53  
EC_GTX_CLK125 jitter  
150  
ps  
Notes:  
1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5 and 2.0 V for LVDD = 2.5 V and from 0.6 and 2.7 V for  
LVDD = 3.3 V.  
2. EC_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. The  
EC_GTX_CLK125 duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle  
generated by the eTSEC GTX_CLK. See Section 8.2.2, “RGMII and RTBI AC Timing Specifications,for the duty cycle for  
10Base-T and 100Base-T reference clock.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
14  
Freescale Semiconductor  
5 RESET Initialization  
This section describes the DC and AC electrical specifications for the reset initialization timing and  
electrical requirements of the chip.  
5.1  
RESET DC Electrical Characteristics  
This table provides the DC electrical characteristics for the RESET pins of the device.  
Table 10. RESET Pins DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
2.0  
–0.3  
OVDD + 0.3  
V
V
Input low voltage  
Input current  
0.8  
30  
IIN  
μA  
V
Output high voltage  
Output low voltage  
Output low voltage  
Notes:  
VOH  
VOL  
VOL  
IOH = 8.0 mA  
IOL = 8.0 mA  
IOL = 3.2 mA  
2.4  
0.5  
0.4  
V
V
• This table applies for pins PORESET and HRESET. The PORESET is input pin, thus stated output voltages are not relevant.  
• HRESET and SRESET are open drain pin, thus VOH is not relevant for these pins.  
5.2  
RESET AC Electrical Characteristics  
This table provides the reset initialization AC timing specifications of the device.  
Table 11. RESET Initialization Timing Specifications  
Parameter/Condition  
Min  
Max  
Unit  
Note  
Required assertion time of HRESET to activate reset flow  
32  
32  
tPCI_SYNC_IN  
tCLKIN  
1
2
Required assertion time of PORESET with stable clock applied to CLKIN when  
the device is in PCI host mode  
Required assertion time of PORESET with stable clock applied to PCI_CLK when  
the device is in PCI agent mode  
32  
tPCI_SYNC_IN  
1
HRESET assertion (output)  
512  
16  
4
tPCI_SYNC_IN  
tPCI_SYNC_IN  
tCLKIN  
1
1
2
HRESET negation to negation (output)  
Input setup time for POR config signals (CFG_RESET_SOURCE[0:3],  
CFG_CLKIN_DIV, and CFG_LBMUX) with respect to negation of PORESET  
when the device is in PCI host mode  
Input setup time for POR config signals (CFG_RESET_SOURCE[0:3],  
CFG_CLKIN_DIV, and CFG_LBMUX) with respect to negation of PORESET  
when the device is in PCI agent mode  
4
0
tPCI_SYNC_IN  
1
Input hold time for POR config signals with respect to negation of HRESET  
ns  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
15  
Table 11. RESET Initialization Timing Specifications (continued)  
Parameter/Condition  
Min  
Max  
Unit  
Note  
Time for the device to turn off POR config signals with respect to the assertion of  
HRESET  
4
ns  
3
Time for the device to start driving functional output signals multiplexed with the  
POR configuration signals with respect to the negation of HRESET  
1
tPCI_SYNC_IN  
1, 3  
Notes:  
1. tPCI_SYNC_IN is the clock period of the input clock applied to PCI_SYNC_IN. When the device is In PCI host mode the primary  
clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. See the  
MPC8379E Integrated Host Processor Reference Manual for more details.  
2. tCLKIN is the clock period of the input clock applied to CLKIN. It is only valid when the device is in PCI host mode. See the  
MPC8379E Integrated Host Processor Reference Manual for more details.  
3. POR config signals consists of CFG_RESET_SOURCE[0:3], CFG_LBMUX, and CFG_CLKIN_DIV.  
Table 12 provides the PLL lock times.  
Table 12. PLL Lock Times  
Parameter  
Min  
Max  
Unit  
Note  
PLL lock times  
100  
μs  
Note:  
• The device guarantees the PLL lock if the clock settings are within spec range. The core clock also depends on the core PLL  
ratio. See Section 23, “Clocking,for more information.  
6 DDR1 and DDR2 SDRAM  
This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the chip.  
Note that DDR1 SDRAM is GV (typ) = 2.5 V and DDR2 SDRAM is GV (typ) = 1.8 V.  
DD  
DD  
6.1  
DDR1 and DDR2 SDRAM DC Electrical Characteristics  
This table provides the recommended operating conditions for the DDR2 SDRAM component(s) of the  
device when GV (typ) = 1.8 V.  
DD  
Table 13. DDR2 SDRAM DC Electrical Characteristics for GV (typ) = 1.8 V  
DD  
Parameter  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Note  
GVDD  
MVREF  
VTT  
1.71  
0.49 × GVDD  
MVREF – 0.04  
MVREF + 0.140  
–0.3  
1.89  
0.51 × GVDD  
MVREF + 0.04  
GVDD + 0.3  
MVREF – 0.140  
50  
V
V
1
2, 5  
3
I/O reference voltage  
I/O termination voltage  
Input high voltage  
V
VIH  
V
4
Input low voltage  
VIL  
V
Output leakage current  
Output high current (VOUT = 1.40 V)  
IOZ  
–50  
μA  
mA  
IOH  
–13.4  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
16  
Table 13. DDR2 SDRAM DC Electrical Characteristics for GV (typ) = 1.8 V (continued)  
DD  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Output low current (VOUT = 0.3 V)  
IOL  
13.4  
mA  
Notes:  
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.  
2. MVREF is expected to be equal to 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak  
noise on MVREF may not exceed 2% of the DC value.  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
equal to MVREF. This rail should track variations in the DC level of MVREF  
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD  
5. See AN3665, “MPC837xE Design Checklist,” for proper DDR termination.  
.
.
Table 14 provides the DDR2 capacitance when GV (typ) = 1.8 V.  
DD  
Table 14. DDR2 SDRAM Capacitance for GV (typ) = 1.8 V  
DD  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input/output capacitance: DQ, DQS, DQS  
Delta input/output capacitance: DQ, DQS, DQS  
Note:  
CIO  
6
8
pF  
pF  
1
1
CDIO  
0.5  
1. This parameter is sampled. GVDD = 1.8 V 0.090 V, f = 1 MT/s, TA = 25°C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.  
This table provides the recommended operating conditions for the DDR SDRAM component(s) when  
GV (typ) = 2.5 V.  
DD  
Table 15. DDR SDRAM DC Electrical Characteristics for GV (typ) = 2.5 V  
DD  
Parameter  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Note  
GVDD  
MVREF  
VTT  
2.375  
0.49 × GVDD  
MVREF – 0.04  
MVREF + 0.18  
–0.3  
2.625  
0.51 × GVDD  
MVREF + 0.04  
GVDD + 0.3  
MVREF – 0.18  
50  
V
V
1
2, 5  
3
I/O reference voltage  
I/O termination voltage  
Input high voltage  
V
VIH  
V
4
Input low voltage  
VIL  
V
Output leakage current  
Output high current (VOUT = 1.9 V)  
Output low current (VOUT = 0.38 V)  
Notes:  
IOZ  
–50  
μA  
mA  
mA  
IOH  
–15.2  
IOL  
15.2  
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.  
2. MVREF is expected to be equal to 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak  
noise on MVREF may not exceed 2% of the DC value.  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
equal to MVREF. This rail should track variations in the DC level of MVREF  
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD  
5. See AN3665, “MPC837xE Design Checklist,” for proper DDR termination.  
.
.
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
17  
Table 16 provides the DDR capacitance when GV (typ) = 2.5 V.  
DD  
Table 16. DDR SDRAM Capacitance for GV (typ) = 2.5 V  
DD  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input/output capacitance: DQ, DQS  
Delta input/output capacitance: DQ, DQS  
Note:  
CIO  
6
8
pF  
pF  
1
1
CDIO  
0.5  
1. This parameter is sampled. GVDD = 2.5 V 0.125 V, f = 1 MT/s, TA = 25°C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.  
This table provides the current draw characteristics for MV  
.
REF  
Table 17. Current Draw Characteristics for MV  
REF  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
Current draw for MVREF  
IMVREF  
μA  
1, 2  
DDR1  
DDR2  
250  
150  
600  
400  
Note:  
1. The voltage regulator for MVREF must be able to supply up to the stated maximum current.  
2. This current is divided equally between MVREF1 and MVREF2, where half the current flows through each pin.  
6.2  
DDR1 and DDR2 SDRAM AC Electrical Characteristics  
This section provides the AC electrical characteristics for the DDR SDRAM interface.  
6.2.1  
DDR1 and DDR2 SDRAM Input AC Timing Specifications  
This table provides the input AC timing specifications for the DDR2 SDRAM when GVDD(typ) = 1.8 V.  
Table 18. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface  
Parameter  
Symbol  
Min  
Max  
Unit  
AC input low voltage  
AC input high voltage  
VIL  
MVREF – 0.25  
V
V
VIH  
MVREF + 0.25  
This table provides the input AC timing specifications for the DDR1 SDRAM when GV (typ) = 2.5 V.  
DD  
Table 19. DDR1 SDRAM Input AC Timing Specifications for 2.5-V Interface  
Parameter  
Symbol  
Min  
Max  
Unit  
AC input low voltage  
AC input high voltage  
VIL  
MVREF – 0.31  
V
V
VIH  
MVREF + 0.31  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
18  
This table provides the input AC timing specifications for the DDR1 and DDR2 SDRAM interface.  
Table 20. DDR1 and DDR2 SDRAM Input AC Timing Specifications  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Controller skew for MDQS-MDQ/MECC/MDM  
400 MT/s data rate  
tCISKEW  
ps  
1, 2  
3
–500  
–750  
–750  
500  
750  
750  
333 MT/s data rate  
266 MT/s data rate  
Note:  
1. tCISKEW represents the total amount of skew consumed by the controller between MDQSn and any corresponding bit that  
will be captured with MDQSn. This should be subtracted from the total timing budget.  
2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW. This can be  
determined by the following equation: tDISKEW = [T/4 – ꢀtCISKEWꢀ] where T is the MCK clock period and ꢀtCISKEWꢀ is the  
absolute value of tCISKEW  
.
3. This specification applies only to DDR2 interface.  
6.2.2  
DDR1 and DDR2 SDRAM Output AC Timing Specifications  
This table shows the DDR1 and DDR2 SDRAM output AC timing specifications.  
Table 21. DDR1 and DDR2 SDRAM Output AC Timing Specifications  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
MCKn cycle time, MCKn/MCKn crossing  
tMCK  
5
12  
ns  
ns  
2
ADDR/CMD output setup with respect to MCK  
400 MT/s data rate  
tDDKHAS  
3, 7  
1.95  
2.40  
3.15  
4.20  
333 MT/s data rate  
266 MT/s data rate  
200 MT/s data rate  
ADDR/CMD output hold with respect to MCK  
400 MT/s data rate  
tDDKHAX  
tDDKHCS  
tDDKHCX  
tDDKHMH  
ns  
ns  
ns  
ns  
3, 7  
3, 7  
3, 7  
4, 8  
1.95  
2.40  
3.15  
4.20  
333 MT/s data rate  
266 MT/s data rate  
200 MT/s data rate  
MCSn output setup with respect to MCK  
400 MT/s data rate  
1.95  
2.40  
3.15  
4.20  
333 MT/s data rate  
266 MT/s data rate  
200 MT/s data rate  
MCSn output hold with respect to MCK  
400 MT/s data rate  
1.95  
2.40  
3.15  
4.20  
333 MT/s data rate  
266 MT/s data rate  
200 MT/s data rate  
MCK to MDQS skew  
0.6  
0.6  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
19  
Table 21. DDR1 and DDR2 SDRAM Output AC Timing Specifications (continued)  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
MDQ//MDM output setup with respect to MDQS  
400 MT/s data rate  
tDDKHDS,  
tDDKLDS  
ps  
5, 8  
550  
800  
1100  
1200  
333 MT/s data rate  
266 MT/s data rate  
200 MT/s data rate  
MDQ//MDM output hold with respect to MDQS  
400 MT/s data rate  
tDDKHDX,  
tDDKLDX  
ps  
5, 8  
700  
800  
1100  
1200  
333 MT/s data rate  
266 MT/s data rate  
200 MT/s data rate  
MDQS preamble start  
MDQS epilogue end  
Notes:  
tDDKHMP  
tDDKHME  
0.5 × tMCK –0.6  
0.6  
0.5 × tMCK + 0.6  
ns  
ns  
6, 8  
6, 8  
0.6  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing  
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example,  
tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until  
outputs (A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock  
reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.  
2. All MCK/MCK referenced measurements are made from the crossing of the two signals 0.1 V.  
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, MODT, and MDQ/MDM/MDQS.  
4. Note that tDDKHMH follows the symbol conventions described in Note 1. For example, tDDKHMH describes the DDR timing  
(DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through  
control of the DQSS override bits in the TIMING_CFG_2 register. This will typically be set to the same delay as the clock  
adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set  
to the same adjustment value. See the MPC8379E PowerQUICC II Pro Host Processor Reference Manual for a description  
and understanding of the timing modifications enabled by use of these bits.  
5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data MDQ, ECC, or  
data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.  
6. All outputs are referenced to the rising edge of MCKn at the pins of the microprocessor. Note that tDDKHMP follows the  
symbol conventions described in Note 1.  
7. Clock Control register is set to adjust the memory clocks by 1/2 the applied cycle.  
8. See AN3665, “MPC837xE Design Checklist,” for proper DDR termination.  
The minimum frequency for DDR2 is 250 MT/s data rate (125 MT/s clock), 167 MT/s data rate (83 MT/s  
clock) for DDR1. This figure shows the DDR1 and DDR2 SDRAM output timing for the MCK to MDQS  
skew measurement (t  
).  
DDKHMH  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
20  
MCK[n]  
MCK[n]  
tMCK  
tDDKHMHmax) = 0.6 ns  
MDQS  
MDQS  
tDDKHMH(min) = –0.6 ns  
Figure 4. DDR Timing Diagram for t  
DDKHMH  
This figure shows the DDR1 and DDR2 SDRAM output timing diagram.  
MCK[n]  
MCK[n]  
tMCK  
tDDKHAS ,tDDKHCS  
tDDKHAX ,tDDKHCX  
ADDR/CMD  
Write A0  
tDDKHMP  
NOOP  
tDDKHMH  
MDQS[n]  
MDQ[x]  
tDDKHDS  
tDDKHME  
tDDKLDS  
D0  
D1  
tDDKLDX  
tDDKHDX  
Figure 5. DDR1 and DDR2 SDRAM Output Timing Diagram  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
21  
This figure provides AC test load for the DDR bus.  
GVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 6. DDR AC Test Load  
7 DUART  
This section describes the DC and AC electrical specifications for the DUART interface of the chip.  
7.1  
DUART DC Electrical Characteristics  
This table provides the DC electrical characteristics for the DUART interface of the device.  
Table 22. DUART DC Electrical Characteristics  
Parameter  
High-level input voltage  
Symbol  
Min  
Max  
Unit  
VIH  
VIL  
2
OVDD + 0.3  
V
V
V
Low-level input voltage OVDD  
–0.3  
0.8  
High-level output voltage,  
VOH  
OVDD – 0.2  
IOH = –100 μA  
Low-level output voltage,  
IOL = 100 μA  
VOL  
0.2  
30  
V
Input current,  
IIN  
μA  
(0 V VIN OVDD  
)
Note: The symbol VIN, in this case, represents the OVIN symbol referenced in Table 2.  
7.2  
DUART AC Electrical Specifications  
this table provides the AC timing parameters for the DUART interface of the device.  
Table 23. DUART AC Timing Specifications  
Parameter  
Value  
Unit  
Note  
Minimum baud rate  
Maximum baud rate  
Oversample rate  
Notes:  
256  
> 1,000,000  
16  
baud  
baud  
1
2
1. Actual attainable baud rate will be limited by the latency of interrupt processing.  
2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are  
sampled each 16th sample.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
22  
Freescale Semiconductor  
8 Ethernet: Enhanced Three-Speed Ethernet (eTSEC)  
This section provides the AC and DC electrical characteristics for the enhanced three-speed Ethernet  
controller.  
8.1  
Enhanced Three-Speed Ethernet Controller (eTSEC)  
(10/100/1000 Mbps)—MII/RGMII/RTBI/RMII DC Electrical  
Characteristics  
The electrical characteristics specified here apply to media independent interface (MII), reduced gigabit  
media independent interface (RGMII), reduced ten-bit interface (RTBI), reduced media independent  
interface (RMII) signals, management data input/output (MDIO) and management data clock (MDC).  
The MII and RMII interfaces are defined for 3.3 V, while the RGMII and RTBI interfaces can be operated  
at 2.5 V. The RGMII and RTBI interfaces follow the Reduced Gigabit Media-Independent Interface  
(RGMII) Specification Version 1.3. The RMII interface follows the RMII Consortium RMII Specification  
Version 1.2.  
8.1.1  
MII, RMII, RGMII, and RTBI DC Electrical Characteristics  
MII and RMII drivers and receivers comply with the DC parametric attributes specified in Table 24 and  
Table 25. The RGMII and RTBI signals in Table 25 are based on a 2.5 V CMOS interface voltage as  
defined by JEDEC EIA/JESD8-5.  
Table 24. MII and RMII DC Electrical Characteristics  
Parameter  
Supply voltage 3.3 V  
Symbol  
Min  
Max  
Unit  
Note  
LVDD1  
LVDD2  
3.13  
3.47  
V
1
Output high voltage  
(LVDD1/LVDD2 = Min, IOH = –4.0 mA)  
VOH  
2.40  
LVDD1/LVDD2 + 0.3  
0.50  
V
V
Output low voltage  
VOL  
GND  
(LVDD1/LVDD2 = Min, IOL = 4.0 mA)  
Input high voltage  
Input low voltage  
Input high current  
VIH  
VIL  
IIH  
2.0  
–0.3  
LVDD1/LVDD2 + 0.3  
V
V
1
0.90  
30  
μA  
(VIN = LVDD1, VIN = LVDD2  
)
Input low current  
(VIN = GND)  
IIL  
–600  
μA  
Notes:  
1. LVDD1 supports eTSEC 1. LVDD2 supports eTSEC 2.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
23  
Table 25. RGMII and RTBI DC Electrical Characteristics  
Parameter  
Supply voltage 2.5 V  
Symbol  
Min  
Max  
Unit  
Note  
LVDD1  
LVDD2  
2.37  
2.63  
V
1
Output high voltage  
(LVDD1/LVDD2 = Min, IOH = –1.0 mA)  
VOH  
2.00  
LVDD1/LVDD2 + 0.3  
0.40  
V
V
Output low voltage  
VOL  
GND – 0.3  
(LVDD1/LVDD2 = Min, IOL = 1.0 mA)  
Input high voltage  
Input low voltage  
Input high current  
VIH  
VIL  
IIH  
1.7  
–0.3  
LVDD1/LVDD2 + 0.3  
V
V
1
0.70  
–20  
μA  
(VIN = LVDD1, VIN = LVDD2  
)
Input low current  
(VIN = GND)  
IIL  
–20  
μA  
Notes:  
1. LVDD1 supports eTSEC 1. LVDD2 supports eTSEC 2.  
8.2  
MII, RGMII, RMII, and RTBI AC Timing Specifications  
The AC timing specifications for MII, RGMII, RMII, and RTBI are presented in this section.  
8.2.1  
MII AC Timing Specifications  
This section describes the MII transmit and receive AC timing specifications.  
8.2.1.1  
MII Transmit AC Timing Specifications  
This table provides the MII transmit AC timing specifications.  
Table 26. MII Transmit AC Timing Specifications  
At recommended operating conditions with LVDD of 3.3 V 5%.  
Parameter  
Symbol1  
Min  
Typical  
Max  
Unit  
TX_CLK clock period 10 Mbps  
TX_CLK clock period 100 Mbps  
TX_CLK duty cycle  
tMTX  
tMTX  
MTXH/tMTX  
tMTKHDX  
35  
1
400  
40  
5
65  
15  
ns  
ns  
%
t
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay  
ns  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
24  
Table 26. MII Transmit AC Timing Specifications (continued)  
At recommended operating conditions with LVDD of 3.3 V 5%.  
Parameter  
Symbol1  
Min  
Typical  
Max  
Unit  
TX_CLK data clock rise (20%–80%)  
TX_CLK data clock fall (80%–20%)  
Note:  
tMTXR  
tMTXF  
1.0  
1.0  
4.0  
4.0  
ns  
ns  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state)  
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX symbolizes MII  
transmit timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in  
general, the clock reference symbol representation is based on two to three letters representing the clock of a particular  
functional. For example, the subscript of tMTX represents the MII(M) transmit (TX) clock. For rise and fall times, the latter  
convention is used with the appropriate letter: R (rise) or F (fall).  
This figure shows the MII transmit AC timing diagram.  
tMTXR  
tMTX  
TX_CLK  
tMTXF  
tMTXH  
TXD[3:0]  
TX_EN  
TX_ER  
tMTKHDX  
Figure 7. MII Transmit AC Timing Diagram  
8.2.1.2  
MII Receive AC Timing Specifications  
This table provides the MII receive AC timing specifications.  
Table 27. MII Receive AC Timing Specifications  
At recommended operating conditions with LVDD of 3.3 V 5%.  
Parameter  
Symbol1  
Min  
Typical  
Max  
Unit  
Input low voltage  
VIL  
VIH  
1.9  
0.7  
65  
V
Input high voltage  
V
RX_CLK clock period 10 Mbps  
RX_CLK clock period 100 Mbps  
RX_CLK duty cycle  
tMRX  
400  
40  
ns  
ns  
%
ns  
ns  
tMRX  
tMRXH/tMRX  
tMRDVKH  
tMRDXKH  
35  
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK  
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK  
10.0  
10.0  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
25  
Table 27. MII Receive AC Timing Specifications (continued)  
At recommended operating conditions with LVDD of 3.3 V 5%.  
Parameter  
Symbol1  
Min  
Typical  
Max  
Unit  
RX_CLK clock rise time (20%–80%)  
RX_CLK clock fall time (80%–20%)  
Note:  
tMRXR  
tMRXF  
1.0  
1.0  
4.0  
4.0  
ns  
ns  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMRDVKH  
symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the  
t
MRX clock reference (K) going to the high (H) state or setup time. Also, tMRDXKL symbolizes MII receive timing (GR) with  
respect to the time data input signals (D) went invalid (X) relative to the tMRX clock reference (K) going to the low (L) state  
or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock  
of a particular functional. For example, the subscript of tMRX represents the MII (M) receive (RX) clock. For rise and fall times,  
the latter convention is used with the appropriate letter: R (rise) or F (fall).  
This figure provides the AC test load for eTSEC.  
Output  
LVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 8. eTSEC AC Test Load  
This figure shows the MII receive AC timing diagram.  
tMRX  
tMRXR  
RX_CLK  
tMRXF  
Valid Data  
tMRXH  
RXD[3:0]  
RX_DV  
RX_ER  
tMRDVKH  
tMRDXKL  
Figure 9. MII Receive AC Timing Diagram  
8.2.2  
RGMII and RTBI AC Timing Specifications  
This table presents the RGMII and RTBI AC timing specifications.  
Table 28. RGMII and RTBI AC Timing Specifications  
At recommended operating conditions with LVDD of 2.5 V 5%.  
Parameter  
Symbol1  
Min  
Typical  
Max  
Unit  
Note  
Data to clock output skew (at transmitter)  
Data to clock input skew (at receiver)  
Clock period  
tSKRGT  
tSKRGT  
tRGT  
–600  
1.0  
0
600  
2.8  
8.8  
ps  
ns  
ns  
2
7.2  
8.0  
3
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
26  
Table 28. RGMII and RTBI AC Timing Specifications (continued)  
At recommended operating conditions with LVDD of 2.5 V 5%.  
Parameter  
Symbol1  
Min  
Typical  
Max  
Unit  
Note  
Duty cycle for 1000Base-T  
tRGTH/tRGT  
tRGTH/tRGT  
tRGTR  
45  
40  
47  
50  
50  
55  
60  
%
%
4
3, 4  
5
Duty cycle for 10BASE-T and 100BASE-TX  
Rise time (20%–80%)  
0.75  
0.75  
ns  
ns  
ns  
%
Fall time (20%–80%)  
tRGTF  
EC_GTX_CLK125 reference clock period  
tG12  
8.0  
EC_GTX_CLK125 reference clock duty cycle  
tG125H/tG125  
53  
measured at 0.5 × LVDD1  
Notes:  
1. Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent  
RGMII and RTBI timing. Note also that the notation for rise (R) and fall (F) times follows the clock symbol that is being  
represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).  
2. This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns  
will be added to the associated clock signal.  
3. For 10 and 100 Mbps, tRGT scales to 400 ns 40 ns and 40 ns 4 ns, respectively.  
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as  
long as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed  
transitioned between  
5. This symbol represents the external EC_GTX_CLK125 and does not follow the original signal naming convention.  
This figure provides the AC test load for eTSEC.  
Output  
LVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 10. eTSEC AC Test Load  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
27  
This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.  
tRGT  
tRGTH  
GTX_CLK  
(At Transmitter)  
tSKRGT_TX  
TXD[8:5][3:0]  
TXD[7:4][3:0]  
TXD[8:5]  
TXD[7:4]  
TXD[3:0]  
TXD[9]  
TXERR  
TXD[4]  
TXEN  
TX_CTL  
tSKRGT_RX  
TX_CLK  
(At PHY)  
RXD[8:5][3:0]  
RXD[7:4][3:0]  
RXD[8:5]  
RXD[7:4]  
RXD[3:0]  
tSKRGT_TX  
RXD[9]  
RXERR  
RXD[4]  
RXDV  
RX_CTL  
tSKRGT_RX  
RX_CLK  
(At PHY)  
Figure 11. RGMII and RTBI AC Timing and Multiplexing Diagrams  
8.2.3  
RMII AC Timing Specifications  
This section describes the RMII transmit and receive AC timing specifications.  
8.2.3.1  
RMII Transmit AC Timing Specifications  
This table shows the RMII transmit AC timing specifications.  
Table 29. RMII Transmit AC Timing Specifications  
At recommended operating conditions with LVDD of 3.3 V 5%.  
Parameter  
Symbol1  
Min  
Typical  
Max  
Unit  
REF_CLK clock period  
tRMT  
tRMTH  
tRMTJ  
tRMTR  
15.0  
35  
20.0  
50  
25.0  
65  
ns  
%
REF_CLK duty cycle  
REF_CLK peak-to-peak jitter  
Rise time REF_CLK (20%–80%)  
250  
2.0  
ps  
ns  
1.0  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
28  
Table 29. RMII Transmit AC Timing Specifications (continued)  
At recommended operating conditions with LVDD of 3.3 V 5%.  
Parameter  
Symbol1  
Min  
Typical  
Max  
Unit  
Fall time REF_CLK (80%–20%)  
REF_CLK to RMII data TXD[1:0], TX_EN delay  
Note:  
tRMTF  
1.0  
2.0  
2.0  
ns  
ns  
tRMTDX  
10.0  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state)  
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX symbolizes MII  
transmit timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in  
general, the clock reference symbol representation is based on two to three letters representing the clock of a particular  
functional. For example, the subscript of tMTX represents the MII(M) transmit (TX) clock. For rise and fall times, the latter  
convention is used with the appropriate letter: R (rise) or F (fall).  
This figure shows the RMII transmit AC timing diagram.  
tRMTR  
tRMT  
REF_CLK  
tRMTF  
tRMTH  
TXD[1:0]  
TX_EN  
TX_ER  
tRMTDX  
Figure 12. RMII Transmit AC Timing Diagram  
8.2.3.2  
RMII Receive AC Timing Specifications  
This table shows the RMII receive AC timing specifications.  
Table 30. RMII Receive AC Timing Specifications  
At recommended operating conditions with LVDD of 3.3 V 5%.  
Parameter/Condition  
Symbol1  
Min  
Typical  
Max  
Unit  
Input low voltage at 3.3 LVDD  
Input high voltage at 3.3 LVDD  
REF_CLK clock period  
VIL  
2.0  
15.0  
35  
0.8  
V
VIH  
V
tRMR  
tRMRH  
tRMRJ  
tRMRR  
tRMRF  
20.0  
50  
25.0  
65  
ns  
%
ps  
ns  
ns  
REF_CLK duty cycle  
REF_CLK peak-to-peak jitter  
Rise time REF_CLK (20%–80%)  
Fall time REF_CLK (80%–20%)  
250  
2.0  
2.0  
1.0  
1.0  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
29  
Table 30. RMII Receive AC Timing Specifications (continued)  
At recommended operating conditions with LVDD of 3.3 V 5%.  
Parameter/Condition  
Symbol1  
Min  
Typical  
Max  
Unit  
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK rising edge  
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK rising edge  
Note:  
tRMRDV  
tRMRDX  
4.0  
2.0  
ns  
ns  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMRDVKH  
symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the  
tMRX clock reference (K) going to the high (H) state or setup time. Also, tMRDXKL symbolizes MII receive timing (GR) with  
respect to the time data input signals (D) went invalid (X) relative to the tMRX clock reference (K) going to the low (L) state  
or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock  
of a particular functional. For example, the subscript of tMRX represents the MII (M) receive (RX) clock. For rise and fall times,  
the latter convention is used with the appropriate letter: R (rise) or F (fall).  
This figure provides the AC test load for eTSEC.  
Output  
LVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 13. eTSEC AC Test Load  
This figure shows the RMII receive AC timing diagram.  
tRMR  
tRMRR  
REF_CLK  
tRMRF  
Valid Data  
tRMRH  
RXD[1:0]  
CRS_DV  
RX_ER  
tRMRDV  
tRMRDX  
Figure 14. RMII Receive AC Timing Diagram  
8.3  
Management Interface Electrical Characteristics  
The electrical characteristics specified here apply to MII management interface signals MDIO  
(management data input/output) and MDC (management data clock).  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
30  
Freescale Semiconductor  
This figure provides the AC test load for eTSEC.  
LVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 15. eTSEC AC Test Load  
8.3.1  
MII Management DC Electrical Characteristics  
The MDC and MDIO are defined to operate at a supply voltage of 2.5 V or 3.3 V. The DC electrical  
characteristics for MDIO and MDC are provided in Table 31 and Table 32.  
Table 31. MII Management DC Electrical Characteristics When Powered at 2.5 V  
Parameter  
Conditions  
Symbol  
Min  
Max  
Unit  
Supply voltage (2.5 V)  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
LVDD1  
VOH  
VOL  
VIH  
VIL  
2.37  
2.00  
2.63  
V
V
IOH = –1.0 mA  
LVDD1 = Min  
LVDD1 + 0.3  
IOL = 1.0 mA  
LVDD1 = Min  
LVDD1 = Min  
LVDD1 = Min  
GND – 0.3  
1.7  
0.40  
V
V
–0.3  
0.70  
20  
V
VIN = LVDD1  
VIN = LVDD1  
IIH  
μA  
μA  
IIL  
–15  
Table 32. MII Management DC Electrical Characteristics When Powered at 3.3 V  
Parameter  
Conditions  
Symbol  
Min  
Max  
Unit  
Supply voltage (3.3 V)  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
LVDD1  
VOH  
VOL  
VIH  
VIL  
3.135  
2.10  
GND  
2.00  
3.465  
V
V
IOH = –1.0 mA  
IOL = 1.0 mA  
LVDD1 = Min  
LVDD1 = Min  
LVDD1 + 0.3  
0.50  
V
V
0.80  
30  
V
LVDD1 = Max  
LVDD1 = Max  
VIN 1 = 2.1 V  
VIN = 0.5 V  
IIH  
μA  
μA  
IIL  
–600  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
31  
8.3.2  
MII Management AC Electrical Specifications  
This table provides the MII management AC timing specifications.  
Table 33. MII Management AC Timing Specifications  
Parameter  
MDC frequency  
Symbol1  
Min  
Typical  
Max  
Unit  
Note  
fMDC  
tMDC  
2.5  
MT/s  
ns  
2
4
MDC period  
80  
400  
MDC clock pulse width high  
MDC to MDIO valid  
MDC to MDIO delay  
MDIO to MDC setup time  
MDIO to MDC hold time  
MDC rise time (20%–80%)  
MDC fall time (80%–20%)  
Notes:  
tMDCH  
32  
ns  
tMDKHDV  
tMDKHDX  
tMDDVKH  
tMDDXKH  
tMDCR  
2 × (tplb_clk × 8)  
ns  
10  
5
2 × (tplb_clk × 8)  
ns  
2, 4  
3
10  
10  
ns  
0
ns  
ns  
tMDCF  
ns  
3
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX  
symbolizes management data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are  
invalid (X) or data hold time. Also, tMDDVKH symbolizes management data timing (MD) with respect to the time data input  
signals (D) reach the valid state (V) relative to the tMDC clock reference (K) going to the high (H) state or setup time. For  
rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
2. This parameter is dependent on the system clock speed.  
3. Guaranteed by design.  
4. tplb_clk is the platform (CSB) clock divided according to the SCCR[TSEC1CM].  
This figure shows the MII management AC timing diagram.  
tMDCR  
tMDC  
MDC  
tMDCF  
tMDCH  
MDIO  
(Input)  
tMDDVKH  
tMDDXKH  
MDIO  
(Output)  
tMDKHDX  
Figure 16. MII Management Interface Timing Diagram  
9 USB  
This section provides the AC and DC electrical characteristics for the USB dual-role controllers.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
32  
Freescale Semiconductor  
9.1  
USB DC Electrical Characteristics  
This table provides the DC electrical characteristics for the ULPI interface at recommended  
OV = 3.3 V ± 165 mV.  
DD  
Table 34. USB DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
High-level input voltage  
Low-level input voltage  
Input current  
VIH  
VIL  
2
–0.3  
OVDD + 0.3  
V
V
1
1
0.8  
30  
IIN  
μA  
V
2
High-level output voltage, IOH = –100 μA  
Low-level output voltage, IOL = 100 μA  
Notes:  
VOH  
VOL  
OVDD – 0.2  
0.2  
V
1. The minimum VIL and maximum VIH values are based on the respective minimum and maximum OVIN values found in  
Table 3.  
2. The symbol OVIN represents the input voltage of the supply and is referenced in Table 3.  
9.2  
USB AC Electrical Specifications  
This table describes the general timing parameters of the USB interface of the device.  
Table 35. USB General Timing Parameters (ULPI Mode Only)  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Note  
USB clock cycle time  
tUSCK  
tUSIVKH  
tUSIXKH  
tUSKHOV  
tUSKHOX  
15  
4
7
ns  
ns  
ns  
ns  
ns  
2, 3, 4, 5  
2, 3, 4, 5  
2, 3, 4, 5  
2, 3, 4, 5  
2, 3, 4, 5  
Input setup to USB clock—all inputs  
Input hold to USB clock—all inputs  
USB clock to output valid—all outputs  
Output hold from USB clock—all outputs  
Notes:  
1
2
1. The symbols for timing specifications follow the pattern of t(First two letters of functional block)(signal)(state) (reference)(state) for inputs  
and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tUSIXKH symbolizes USB timing (US)  
for the input (I) to go invalid (X) with respect to the time the USB clock reference (K) goes high (H). Also, tUSKHOX symbolizes  
USB timing (US) for the USB clock reference (K) to go high (H) with respect to the output (O) going invalid (X) or output hold  
time.  
2. All timings are in reference to the USB clock, USBDR_CLK.  
3. All signals are measured from OVDD/2 of the rising edge of the USB clock to 0.5 × OVDD of the signal in question for 3.3-V  
signaling levels.  
4. Input timings are measured at the pin.  
5. For active/float timing measurements, the high impedance or off state is defined to be when the total current delivered  
through the component pin is less than or equal to that of the leakage current specification.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
33  
These two figures provide the AC test load and signals for the USB, respectively.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 17. USB AC Test Load  
USBDR_CLK  
tUSIXKH  
tUSIVKH  
Input Signals  
tUSKHOX  
tUSKHOV  
Output Signals  
Figure 18. USB Interface Timing Diagram  
10 Local Bus  
This section describes the DC and AC electrical specifications for the local bus interface of the chip.  
10.1 Local Bus DC Electrical Characteristics  
This tables provide the DC electrical characteristics for the local bus interface.  
Table 36. Local Bus DC Electrical Characteristics (LBV = 3.3 V)  
DD  
At recommended operating conditions with LBVDD = 3.3 V.  
Parameter  
Conditions  
Symbol  
Min  
Max  
Unit  
Supply voltage 3.3 V  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
LBVDD  
VOH  
VOL  
VIH  
3.135  
2.40  
3.465  
V
V
IOH = –4.0 mA  
LBVDD = Min  
0.50  
IOL = 4.0 mA  
LBVDD = Min  
V
2.0  
LBVDD + 0.3  
0.90  
V
VIL  
–0.3  
V
VIN 1 = LBVDD  
VIN 1 = GND  
IIH  
30  
μA  
μA  
IIL  
–30  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
34  
Table 37. Local Bus DC Electrical Characteristics (LBV = 2.5 V)  
DD  
At recommended operating conditions with LBVDD = 2.5 V.  
Parameter  
Conditions  
Symbol  
Min  
Max  
Unit  
Supply voltage 2.5 V  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
LBVDD  
VOH  
VOL  
VIH  
2.37  
2.00  
2.73  
V
V
IOH = –1.0 mA  
LBVDD = Min  
LBVDD = Min  
LBVDD = Min  
LBVDD = Min  
0.40  
IOL = 1.0 mA  
V
1.7  
LBVDD + 0.3  
0.70  
V
VIL  
–0.3  
V
VIN 1 = LBVDD  
VIN 1 = GND  
IIH  
20  
μA  
μA  
IIL  
–20  
Table 38. Local Bus DC Electrical Characteristics (LBV = 1.8 V)  
DD  
At recommended operating conditions with LBVDD = 1.8 V.  
Parameter  
Conditions  
Symbol  
Min  
Max  
Unit  
Supply voltage 1.8 V  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
LBVDD  
VOH  
VOL  
VIH  
1.71  
1.89  
V
V
IOH = –1.0 mA  
LBVDD = Min  
LBVDD = Min  
LBVDD = Min  
LBVDD = Min  
LBVDD – 0.45  
0.45  
IOL = 1.0 mA  
0.65 × LBVDD  
–0.3  
V
LBVDD + 0.3  
0.35 × LBVDD  
10  
V
VIL  
V
VIN 1 = LBVDD  
VIN 1 = GND  
IIH  
μA  
μA  
IIL  
–10  
10.2 Local Bus AC Electrical Specifications  
This table describes the general timing parameters of the local bus interface of the device when in PLL  
enable mode.  
Table 39. Local Bus General Timing Parameters—PLL Enable Mode  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
Local bus cycle time  
tLBK  
7.5  
1.5  
1.0  
1.5  
1.5  
3
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
3, 4  
3, 4  
3, 4  
5
Input setup to local bus clock (except LUPWAIT/LGTA)  
Input hold from local bus clock  
tLBIVKH  
tLBIXKH  
LUPWAIT/LGTA input setup to local bus clock  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
Local bus clock to LALE rise  
tLBIVKH1  
tLBOTOT1  
tLBOTOT2  
tLBOTOT3  
tLBKHLR  
tLBKHOV  
6
2.5  
7
4.5  
4.5  
3
Local bus clock to output valid (except LALE)  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
35  
Table 39. Local Bus General Timing Parameters—PLL Enable Mode (continued)  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
Local bus clock to output high impedance for LAD/LDP  
Output hold from local bus clock for LAD/LDP  
Notes:  
tLBKHOZ  
tLBKHOX  
1
3.8  
ns  
ns  
3, 8  
3
1. The symbols used for timing specifications herein follow the pattern of t(First two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1  
symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes  
high (H), in this case for clock one(1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go  
high (H), with respect to the output (O) going invalid (X) or output hold time.  
2. All timings are in reference to rising edge of LSYNC_IN at LBVDD/2 and the 0.5 × LBVDD of the signal in question.  
3. All signals are measured from LBVDD/2 of the rising/falling edge of LSYNC_IN to 0.5 × LBVDD of the signal in question.  
4. Input timings are measured at the pin.  
5. tLBOTOT1 should be used when LBCR[AHD] is set and the load on LALE output pin is at least 10pF less than the load on  
LAD output pins.  
6. tLBOTOT2 should be used when LBCR[AHD] is not set and the load on LALE output pin is at least 10pF less than the load  
on LAD output pins.  
7. tLBOTOT3 should be used when LBCR[AHD] is not set and the load on LALE output pin equals to the load on LAD output pins.  
8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
36  
Freescale Semiconductor  
This table describes the general timing parameters of the local bus interface of the device when in PLL  
bypass mode.  
Table 40. Local Bus General Timing Parameters—PLL Bypass Mode  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
Local bus cycle time  
tLBK  
15  
7.0  
1.0  
1.5  
3.0  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
3, 4  
3, 4  
5
Input setup to local bus clock  
tLBIVKH  
Input hold from local bus clock  
tLBIXKH  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
Local bus clock to LALE rise  
tLBOTOT1  
tLBOTOT2  
tLBOTOT3  
tLBKHLR  
tLBKHOV  
tLBKHOZ  
6
7
4.5  
3.0  
4.0  
3
Local bus clock to output valid  
Local bus clock to output high impedance for LAD/LDP  
Notes:  
3, 8  
1. The symbols used for timing specifications herein follow the pattern of t(First two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1  
symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes  
high (H), in this case for clock one(1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go  
high (H), with respect to the output (O) going invalid (X) or output hold time.  
2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of  
LCLK0 (for all other inputs).  
3. All signals are measured from LBVDD/2 of the rising/falling edge of LCLK0 to 0.5 × LBVDD of the signal in question for 3.3-V  
signaling levels.  
4. Input timings are measured at the pin.  
5. tLBOTOT1 should be used when LBCR[AHD] is set and the load on LALE output pin is at least 10pF less than the load on  
LAD output pins.  
6. tLBOTOT2 should be used when LBCR[AHD] is not set and the load on LALE output pin is at least 10pF less than the load  
on LAD output pins.  
7. tLBOTOT3 should be used when LBCR[AHD] is not set and the load on LALE output pin equals to the load on LAD output pins.  
8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
This figure provides the AC test load for the local bus.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 19. Local Bus AC Test Load  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
37  
This figures show the local bus signals.  
LSYNC_IN  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBIXKH  
tLBIVKH  
Input Signal:  
LGTA  
Output Signals:  
LSDA10/LSDWE/LSDRAS/  
LSDCAS/LSDDQM[0:3]  
tLBKHOX  
tLBKHOV  
LA[27:31]/LBCTL/LBCKE/LOE  
tLBKHOZ  
tLBKHOX  
tLBKHOV  
Output (Data) Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ  
tLBKHOX  
tLBKHOV  
Output (Address) Signal:  
LAD[0:31]  
tLBOTOT  
tLBKHLR  
LALE  
Figure 20. Local Bus Signals, Non-special Signals Only (PLL Enable Mode)  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
38  
LCLK[n]  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]  
tLBIXKH  
tLBIVKH  
Input Signal:  
LGTA  
Output Signals:  
LSDA10/LSDWE/LSDRAS/  
LSDCAS/LSDDQM[0:3]  
tLBKHOV  
LA[27:31]/LBCTL/LBCKE/LOE  
tLBKHOZ  
tLBKHOV  
Output (Data) Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ  
tLBKHOV  
Output (Address) Signal:  
LAD[0:31]  
tLBOTOT  
tLBKHLR  
LALE  
Figure 21. Local Bus Signals, Non-special Signals Only (PLL Bypass Mode)  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
39  
LSYNC_IN  
T1  
T3  
tLBKHOV  
tLBKHOX  
GPCM Mode Output Signals:  
LCS[0:7]/LWE[0:3]  
tLBIXKH  
tLBIVKH  
tLBIVKH  
tLBKHOX  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:7]/LBS[0:1]/LGPL[0:5]  
tLBKHOZ  
tLBKHOX  
tLBKHOV  
Output (Data) Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ  
tLBKHOX  
tLBKHOV  
Output (Address) Signal:  
LAD[0:31]  
Figure 22. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2 (PLL Enable Mode)  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
40  
LCLK  
T1  
T3  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:7]/LWE[0:3]  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:7]/LBS[0:1]/LGPL[0:5]  
tLBKHOZ  
tLBKHOV  
Output (Data) Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ  
tLBKHOV  
Output (Address) Signal:  
LAD[0:31]  
Figure 23. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2 (PLL Bypass Mode)  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
41  
LSYNC_IN  
T1  
T2  
T3  
T4  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:7]/LWE[0:3]  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]  
tLBKHOX  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:7]/LBS[0:1]/LGPL[0:5]  
tLBKHOZ  
tLBKHOX  
tLBKHOV  
Output (Data) Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ  
tLBKHOX  
tLBKHOV  
Output (Address) Signal:  
LAD[0:31]  
Figure 24. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (PLL Enable Mode)  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
42  
LCLK  
T1  
T2  
T3  
T4  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:7]/LWE[0:3]  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:7]/LBS[0:1]/LGPL[0:5]  
tLBKHOZ  
tLBKHOV  
Output (Data) Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ  
tLBKHOV  
Output (Address) Signal:  
LAD[0:31]  
Figure 25. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (PLL Bypass Mode)  
11 Enhanced Secure Digital Host Controller (eSDHC)  
This section describes the DC and AC electrical specifications for the eSDHC (SD/MMC) interface of the  
chip.  
The eSDHC controller always uses the falling edge of the SD_CLK in order to drive the  
SD_DAT[0:3]/CMD as outputs and sample the SD_DAT[0:3] as inputs. This behavior is true for both full-  
and high-speed modes.  
Note that this is a non-standard implementation, as the SD card specification assumes that in high-speed  
mode, data is driven at the rising edge of the clock.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
43  
Due to the special implementation of the eSDHC, there are constraints regarding the clock and data signals  
propagation delay on the user board. The constraints are for minimum and maximum delays, as well as  
skew between the CLK and DAT/CMD signals.  
In full speed mode, there is no need to add special delay on the data or clock signals. The user should make  
sure to meet the timing requirements as described further within this document.  
If the system is designed to support both high-speed and full-speed cards, the high-speed constraints  
should be fulfilled. If the systems is designed to operate up to 25 MT/s only, full-speed mode is  
recommended.  
11.1 eSDHC DC Electrical Characteristics  
This table provides the DC electrical characteristics for the eSDHC (SD/MMC) interface of the device.  
Table 41. eSDHC interface DC Electrical Characteristics  
Parameter  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
0.625 × OVDD  
–0.3  
OVDD + 0.3  
V
V
Input low voltage  
Input current  
0.25 × OVDD  
IIN  
30  
μA  
V
Output high voltage  
VOH  
IOH = –100 uA,  
at OVDD(min)  
0.75 × OVDD  
Output low voltage  
VOL  
IOL = +100 uA,  
at OVDD(min)  
0.125 × OVDD  
V
11.2 eSDHC AC Timing Specifications (Full-Speed Mode)  
This section describes the AC electrical specifications for the eSDHC (SD/MMC) interface of the device.  
This table provides the eSDHC AC timing specifications for full-speed mode as defined in Figure 27 and  
Figure 28.  
Table 42. eSDHC AC Timing Specifications for Full-Speed Mode  
At recommended operating conditions OVDD = 3.3 V 165 mV.  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
SD_CLK clock frequency—full speed mode  
SD_CLK clock cycle  
fSFSCK  
tSFSCK  
fSIDCK  
0
25  
MT/s  
ns  
2
40  
0
SD_CLK clock frequency—identification mode  
SD_CLK clock low time  
400  
KHz  
ns  
tSFSCKL  
tSFSCKH  
tSFSCKR  
15  
15  
SD_CLK clock high time  
ns  
2
SD_CLK clock rise and fall times  
/
5
ns  
2
tSFSCKF  
Input setup times: SD_CMD, SD_DATx, SD_CD to  
SD_CLK  
tSFSIVKH  
5
ns  
2
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
44  
Table 42. eSDHC AC Timing Specifications for Full-Speed Mode (continued)  
At recommended operating conditions OVDD = 3.3 V 165 mV.  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
Input hold times: SD_CMD, SD_DATx, SD_CD to  
tSFSIXKH  
0
ns  
2
SD_CLK  
SD_CLK delay within device  
Output valid: SD_CLK to SD_CMD, SD_DATx valid  
Output hold: SD_CLK to SD_CMD, SD_DATx valid  
SD card input setup  
tINT_CLK_DLY  
tSFSKHOV  
tSFSKHOX  
tISU  
1.5  
0
4
ns  
ns  
ns  
ns  
ns  
ns  
4
2
14  
3
5
SD card input hold  
tIH  
5
3
SD card output valid  
tODLY  
0
3
SD card output hold  
tOH  
3
Notes:  
1. The symbols used for timing specifications herein follow the pattern of t(first three letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first three letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tSFSIXKH  
symbolizes eSDHC full mode speed device timing (SFS) input (I) to go invalid (X) with respect to the clock reference (K)  
going to high (H). Also tSFSKHOV symbolizes eSDHC full speed timing (SFS) for the clock reference (K) to go high (H), with  
respect to the output (O) going valid (V) or data output valid time. Note that, in general, the clock reference symbol  
representation is based on five letters representing the clock of a particular functional. For rise and fall times, the latter  
convention is used with the appropriate letter: R (rise) or F (fall).  
2. Measured at capacitive load of 40 pF.  
3. For reference only, according to the SD card specifications.  
4. Average, for reference only.  
This figure provides the eSDHC clock input timing diagram.  
eSDHC  
External Clock  
VM  
VM  
VM  
operational mode  
tSFSCKL  
tSFSCKH  
tSFSCK  
tSFSCKF  
tSFSCKR  
VM = Midpoint Voltage (OVDD/2)  
Figure 26. eSDHC Clock Input Timing Diagram  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
45  
11.2.1 Full-Speed Output Path (Write)  
This figure provides the data and command output timing diagram.  
tSFSCK (clock cycle)  
SD CLK at the  
Driving  
MPC8377E pin  
Edge  
tCLK_DELAY  
SD CLK at  
the card pin  
Sampling  
edge  
Output valid time: tSFSKHOV  
Output hold time: tSFSKHOX  
Output from the  
tSFSCKL  
MPC8377E Pins  
Input at the  
MPC8377E pins  
tDATA_DELAY  
tIH (5 ns)  
tISU (5 ns)  
Figure 27. Full Speed Output Path  
11.2.1.1 Full-Speed Write Meeting Setup (Maximum Delay)  
The following equations show how to calculate the allowed skew range between the SD_CLK and  
SD_DAT/CMD signals on the PCB.  
No clock delay:  
t
+ t  
+ t  
< t  
SFSCKL  
Eqn. 1  
SFSKHOV  
DATA_DELAY  
ISU  
With clock delay:  
t
+ t  
+ t  
< t  
+ t  
CLK_DELAY  
Eqn. 2  
Eqn. 3  
SFSKHOV  
DATA_DELAY  
ISU  
SFSCKL  
t
+ t  
< t  
+ t  
t  
t  
ISU SFSKHOV  
DATA_DELAY  
SFSCKL  
SFSCK  
CLK_DELAY  
This means that data can be delayed versus clock up to 11 ns in ideal case of t  
= 20 ns:  
SFSCKL  
t
t
+ 20 < 40 + t  
5 4  
DATA_DELAY  
CLK_DELAY  
< 11 + t  
DATA_DELAY  
CLK_DELAY  
11.2.1.2 Full-Speed Write Meeting Hold (Minimum Delay)  
The following equations show how to calculate the allowed skew range between the SD_CLK and  
SD_DAT/CMD signals on the PCB.  
t
< t  
+ t  
+ t  
t  
IH  
Eqn. 4  
CLK_DELAY  
SFSCKL  
SFSKHOX  
DATA_DELAY  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
46  
t
+ t t  
< t + t  
SFSCKL DATA_DELAY  
Eqn. 5  
CLK_DELAY  
IH  
SFSKHOX  
This means that clock can be delayed versus data up to 15 ns (external delay line) in ideal case of  
t
= 20 ns:  
SFSCLKL  
t
t
+ 5 0 < 20 + t  
CLK_DELAY  
DATA_DELAY  
< 15 + t  
CLK_DELAY  
DATA_DELAY  
11.2.1.3 Full-Speed Write Combined Formula  
The following equation is the combined formula to calculate the allowed skew range between the  
SD_CLK and SD_DAT/CMD signals on the PCB.  
t
+ t t  
< t  
+ t  
< t  
+ t  
t  
t  
SFSKHOV  
Eqn. 6  
CLK_DELAY  
IH  
SFSKHOX  
SFSCKL  
DATA_DELAY  
SFSCK CLK_DELAY  
ISU  
11.2.2 Full-Speed Input Path (Read)  
This figure provides the data and command input timing diagram.  
tSFSCK (clock cycle)  
SD CLK at the  
MPC8377E pin  
Sampling  
edge  
tCLK_DELAY  
SD CLK at  
the card pin  
Driving  
edge  
tDATA_DELAY  
tODLY  
tOH  
Output from the  
SD card pins  
Input at the  
MPC8377E pins  
(MPC8377E input hold)  
tSFSIXKH  
tSFSIVKH  
Figure 28. Full Speed Input Path  
11.2.2.1 Full-Speed Read Meeting Setup (Maximum Delay)  
The following equations show how to calculate the allowed combined propagation delay range of the  
SD_CLK and SD_DAT/CMD signals on the PCB.  
t
+ t  
+ t  
+ t  
< t  
SFSCK  
Eqn. 7  
Eqn. 8  
CLK_DELAY  
DATA_DELAY  
ODLY  
SFSIVKH  
t
+ t  
< t  
t  
t  
t  
CLK_DELAY  
DATA_DELAY  
SFSCK  
ODLY  
SFSIVKH INT_CLK_DLY  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
47  
11.2.2.2 Full-Speed Read Meeting Hold (Minimum Delay)  
There is no minimum delay constraint due to the full clock cycle between the driving and sampling of data.  
t
+ t + t  
> t  
SFSIXKH  
Eqn. 9  
CLK_DELAY  
OH  
DATA_DELAY  
This means that Data + Clock delay must be greater than –2 ns. This is always fulfilled.  
11.3 eSDHC AC Timing Specifications (High-Speed Mode)  
This table provides the eSDHC AC timing specifications for high-speed mode as defined in Figure 30 and  
Figure 31.  
Table 43. eSDHC AC Timing Specifications for High-Speed Mode  
At recommended operating conditions OVDD = 3.3 V 165 mV.  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
SD_CLK clock frequency—high speed mode  
SD_CLK clock cycle  
fSHSCK  
tSHSCK  
fSIDCK  
0
20  
0
50  
MT/s  
ns  
2
SD_CLK clock frequency—identification mode  
SD_CLK clock low time  
400  
KHz  
ns  
tSHSCKL  
tSHSCKH  
tSHSCKR/  
7
SD_CLK clock high time  
7
ns  
2
SD_CLK clock rise and fall times  
3
ns  
2
tSHSCKF  
Input setup times: SD_CMD, SD_DATx, SD_CD to  
SD_CLK  
tSHSIVKH  
5
ns  
2
Input hold times: SD_CMD, SD_DATx, SD_CD to SD_CLK  
Output delay time: SD_CLK to SD_CMD, SD_DATx valid  
Output Hold time: SD_CLK to SD_CMD, SD_DATx invalid  
SD_CLK delay within device  
tSHSIXKH  
tSHSKHOV  
tSHSKHOX  
tINT_CLK_DLY  
tISU  
0
0
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
2
2
4
3
3
3
3
14  
1.5  
6
SD Card Input Setup  
SD Card Input Hold  
tIH  
2
SD Card Output Valid  
tODLY  
2.5  
SD Card Output Hold  
tOH  
Notes:  
1. The symbols used for timing specifications herein follow the pattern of t(first three letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first three letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tSFSIXKH  
symbolizes eSDHC full mode speed device timing (SFS) input (I) to go invalid (X) with respect to the clock reference (K)  
going to high (H). Also tSFSKHOV symbolizes eSDHC full speed timing (SFS) for the clock reference (K) to go high (H), with  
respect to the output (O) going valid (V) or data output valid time. Note that, in general, the clock reference symbol  
representation is based on five letters representing the clock of a particular functional. For rise and fall times, the latter  
convention is used with the appropriate letter: R (rise) or F (fall).  
2. Measured at capacitive load of 40 pF.  
3. For reference only, according to the SD card specifications.  
4. Average, for reference only.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
48  
Freescale Semiconductor  
This figure provides the eSDHC clock input timing diagram.  
eSDHC  
External Clock  
VM  
VM  
VM  
operational mode  
tSHSCKL  
tSHSCKH  
tSHSCK  
tSHSCKF  
tSHSCKR  
VM = Midpoint Voltage (OVDD/2)  
Figure 29. eSDHC Clock Input Timing Diagram  
11.3.1 High-Speed Output Path (Write)  
This figure provides the data and command output timing diagram.  
tSHSCK (clock cycle)  
SD CLK at the  
Driving  
MPC8377E pin  
Edge  
tCLK_DELAY  
SD CLK at  
the card Pin  
Sampling  
edge  
Output valid time: tSHSKHOV  
Output hold time: tSHSKHOX  
tSHSCKL  
Output from the  
MPC8377E pins  
Input at the  
SD card pins  
tDATA_DELAY  
tIH (2 ns)  
tISU (6 ns)  
Figure 30. High Speed Output Path  
11.3.1.1 High-Speed Write Meeting Setup (Maximum Delay)  
The following equations show how to calculate the allowed skew range between the SD_CLK and  
SD_DAT/CMD signals on the PCB.  
Zero clock delay:  
t
+ t  
+ t  
< t  
SHSCKL  
Eqn. 10  
SHSKHOV  
DATA_DELAY  
ISU  
With clock delay:  
t
+ t  
+ t  
< t  
+ t  
CLK_DELAY  
Eqn. 11  
Eqn. 12  
SHSKHOV  
DATA_DELAY  
ISU  
SHSCKL  
t
t  
< t  
t  
t  
DATA_DELAY  
CLK_DELAY  
SHSCKL  
ISU SHSKHOV  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
49  
This means that data delay should be equal or less than the clock delay in the ideal case where  
= 10 ns:  
t
SHSCLKL  
t t  
DATA_DELAY CLK_DELAY  
< 10 6 4  
t t  
DATA_DELAY CLK_DELAY  
< 0  
11.3.1.2 High-Speed Write Meeting Hold (Minimum Delay)  
The following equations show how to calculate the allowed skew range between the SD_CLK and  
SD_DAT/CMD signals on the PCB.  
t
< t  
+ t  
+ t  
t  
Eqn. 13  
Eqn. 14  
CLK_DELAY  
SHSCKL  
SHSKHOX  
DATA_DELAY  
IH  
t
t  
< t  
+ t  
t  
CLK_DELAY  
DATA_DELAY  
SHSCKL  
SHSKHOX  
IH  
This means that clock can be delayed versus data up to 8 ns (external delay line) in ideal case of  
= 10 ns:  
t
SHSCLKL  
t t  
CLK_DELAY DATA_DELAY  
< 10 + 0 2  
t t  
CLK_DELAY DATA_DELAY  
< 8  
11.3.2 High-Speed Input Path (Read)  
This figure provides the data and command input timing diagram.  
tSHSCK (Clock Cycle)  
1/2 Cycle  
Wrong Edge  
Right Edge  
SD CLK at the  
MPC8377E Pin  
Sampling  
Edge  
tCLK_DELAY  
Driving  
Edge  
SD CLK at  
the Card Pin  
tODLY  
tOH  
tDATA_DELAY  
Output from the  
SD Card Pins  
Input at the  
MPC8377E Pins  
tSHSIVKH  
(MPC8377E Input Setup)  
(MPC8377E Input Hold)  
tSHSIXKH  
Figure 31. High-Speed Input Path  
For the input path, the device eSDHC expects to sample the data 1.5 internal clock cycles after it was  
driven by the SD card. Since in this mode the SD card drives the data at the rising edge of the clock, a  
sufficient delay to the clock and the data must exist to ensure it will not be sampled at the wrong internal  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
50  
Freescale Semiconductor  
clock falling edge. Note that the internal clock which is guaranteed to be 50% duty cycle is used to sample  
the data, and therefore used in the equations.  
11.3.2.1 High-Speed Read Meeting Setup (Maximum Delay)  
The following equations show how to calculate the allowed combined propagation delay range of the  
SD_CLK and SD_DAT/CMD signals on the PCB.  
t
+ t  
+ t  
+ t  
< 1.5 × t  
Eqn. 15  
Eqn. 16  
CLK_DELAY  
DATA_DELAY  
ODLY  
SHSIVKH  
SHSCK  
t
+ t  
< 1.5 × t  
t  
t  
ODLY SHSIVKH  
CLK_DELAY  
DATA_DELAY  
SHSCK  
This means that Data + Clock delay can be up to 11 ns for a 20 ns clock cycle:  
t
t
+ t  
+ t  
< 30 14 5  
CLK_DELAY  
DATA_DELAY  
DATA_DELAY  
< 11  
CLK_DELAY  
11.3.2.2 High-Speed Read Meeting Hold (Minimum Delay)  
The following equations show how to calculate the allowed combined propagation delay range of the  
SD_CLK and SD_DAT/CMD signals on the PCB.  
0.5 × t  
0.5 × t  
< t  
+ t  
+ t t  
+ t  
INT_CLK_DLY  
Eqn. 17  
Eqn. 18  
SHSCK  
CLK_DELAY  
DATA_DELAY  
OH  
SHSIXKH  
t  
+ t  
t  
< t  
+ t  
CLK_DELAY DATA_DELAY  
SHSCK  
OH  
SHSIXKH  
INT_CLK_DLY  
This means that Data + Clock delay must be greater than ~6 ns for a 20 ns clock cycle:  
10 2.5 + (–1.5) < t + t  
CLK_DELAY  
DATA_DELAY  
6 < t  
+ t  
DATA_DELAY  
CLK_DELAY  
11.3.2.3 High-Speed Read Combined Formula  
The following equation is the combined formula to calculate the propagation delay range of the SD_CLK  
and SD_DAT/CMD signals on the PCB.  
0.5 × t  
t  
+ t  
< t  
+ t  
< 1.5 × t  
t  
t  
SHSIVKH  
Eqn. 19  
SHSCK  
OH  
SHSIXKH  
CLK_DELAY  
DATA_DELAY  
SHSCK  
ODLY  
12 JTAG  
This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of  
the chip.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
51  
12.1 JTAG DC Electrical Characteristics  
This table provides the DC electrical characteristics for the IEEE 1149.1 (JTAG) interface of the chip.  
Table 44. JTAG interface DC Electrical Characteristics  
Parameter  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
2.5  
–0.3  
OVDD + 0.3  
V
V
Input low voltage  
Input current  
0.8  
30  
IIN  
μA  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
12.2 JTAG AC Timing Specifications  
This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the device.  
This table provides the JTAG AC timing specifications as defined in Figure 33 through Figure 36.  
1
Table 45. JTAG AC Timing Specifications (Independent of CLKIN)  
Parameter  
Symbol2  
Min  
Max  
Unit  
Note  
JTAG external clock frequency of operation  
JTAG external clock cycle time  
JTAG external clock pulse width measured at 1.4 V  
JTAG external clock rise and fall times  
TRST assert time  
fJTG  
t JTG  
0
33.3  
2
MT/s  
ns  
3
30  
15  
0
tJTKHKL  
tJTGR & tJTGF  
tTRST  
ns  
ns  
25  
ns  
Input setup times:  
ns  
Boundary-scan data  
tJTDVKH  
tJTIVKH  
4
4
4
4
TMS, TDI  
Input hold times:  
Valid times:  
ns  
ns  
ns  
Boundary-scan data  
TMS, TDI  
tJTDXKH  
tJTIXKH  
10  
10  
Boundary-scan data  
TDO  
tJTKLDV  
tJTKLOV  
2
2
11  
11  
Output hold times:  
Boundary-scan data  
TDO  
tJTKLDX  
tJTKLOX  
2
2
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
52  
1
Table 45. JTAG AC Timing Specifications (Independent of CLKIN) (continued)  
Parameter  
Symbol2  
Min  
Max  
Unit  
Note  
JTAG external clock to output high impedance:  
ns  
Boundary-scan data  
TDO  
tJTKLDZ  
tJTKLOZ  
2
2
19  
9
5
Notes:  
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in  
question. The output timings are measured at the pins. All output timings assume a purely resistive 50 Ω load (see  
Figure 17). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.  
2. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH  
symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to  
the tJTG clock reference (K) going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect  
to the time data input signals (D) went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. Note  
that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular  
functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.  
4. Non-JTAG signal input timing with respect to tTCLK  
.
5. Non-JTAG signal output timing with respect to tTCLK  
.
This figure provides the AC test load for TDO and the boundary-scan outputs of the device.  
Z0 = 50 Ω  
OVDD/2  
Output  
RL = 50 Ω  
Figure 32. AC Test Load for the JTAG Interface  
This figure provides the JTAG clock input timing diagram.  
JTAG  
External Clock  
VM  
tJTKHKL  
VM  
VM  
tJTGR  
tJTGF  
tJTG  
VM = Midpoint Voltage (OVDD/2)  
Figure 33. JTAG Clock Input Timing Diagram  
This figure provides the TRST timing diagram.  
TRST  
VM  
VM  
tTRST  
VM = Midpoint Voltage (OVDD/2)  
Figure 34. TRST Timing Diagram  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
53  
This figure provides the boundary-scan timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTDVKH  
tJTDXKH  
Boundary  
Data Inputs  
Input  
Data Valid  
tJTKLDV  
tJTKLDX  
Boundary  
Data Outputs  
Output Data Valid  
tJTKLDZ  
Output Data Valid  
Boundary  
Data Outputs  
VM = Midpoint Voltage (OVDD/2)  
Figure 35. Boundary-Scan Timing Diagram  
This figure provides the test access port timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTIVKH  
tJTIXKH  
Input  
TDI, TMS  
TDO  
Data Valid  
tJTKLOV  
tJTKLOX  
Output Data Valid  
tJTKLOZ  
Output Data Valid  
TDO  
VM = Midpoint Voltage (OVDD/2)  
Figure 36. Test Access Port Timing Diagram  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
54  
13 I2C  
2
This section describes the DC and AC electrical characteristics for the I C interface of the chip.  
2
13.1 I C DC Electrical Characteristics  
2
This table provides the DC electrical characteristics for the I C interface of the chip.  
2
Table 46. I C DC Electrical Characteristics  
At recommended operating conditions with OVDD of 3.3 V 165 mV.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage level  
Input low voltage level  
Low level output voltage  
VIH  
VIL  
0.7 × OVDD  
OVDD + 0.3  
0.3 × OVDD  
0.2 × OVDD  
250  
V
V
1
–0.3  
0
VOL  
V
Output fall time from VIH(min) to VIL(max) with a bus capacitance  
from 10 to 400 pF  
t
20 + 0.1 × CB  
ns  
2
I2KLKV  
Pulse width of spikes which must be suppressed by the input filter tI2KHKL  
0
50  
10  
30  
ns  
pF  
μA  
3
4
Capacitance for each I/O pin  
CI  
Input current  
IIN  
(0 V VIN OVDD  
)
Notes:  
1. Output voltage (open drain or open collector) condition = 3 mA sink current.  
2. CB = capacitance of one bus line in pF.  
3. Refer to the MPC8379E PowerQUICC II Pro Integrated Host Processor Reference Manual for information on the digital filter  
used.  
4. I/O pins will obstruct the SDA and SCL lines if OVDD is switched off.  
2
13.2 I C AC Electrical Specifications  
2
This table provides the AC timing parameters for the I C interface of the device.  
2
Table 47. I C AC Electrical Specifications  
All values refer to VIH (min) and VIL (max) levels (see Table 46).  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
SCL clock frequency  
fI2C  
tI2CL  
0
400  
kHz  
μs  
Low period of the SCL clock  
High period of the SCL clock  
1.3  
0.6  
0.6  
0.6  
tI2CH  
μs  
Setup time for a repeated START condition  
tI2SVKH  
tI2SXKL  
μs  
Hold time (repeated) START condition (after this period, the first  
clock pulse is generated)  
μs  
Data setup time  
tI2DVKH  
100  
ns  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
55  
2
Table 47. I C AC Electrical Specifications (continued)  
All values refer to VIH (min) and VIL (max) levels (see Table 46).  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
Data hold time  
tI2DXKL  
μs  
2, 3  
CBUS compatible masters  
I2C bus devices  
0
0.9  
Setup time for STOP condition  
t
0.6  
1.3  
μs  
μs  
V
I2PVKH  
Bus free time between a STOP and START condition  
tI2KHDX  
VNL  
Noise margin at the LOW level for each connected device (including  
hysteresis)  
0.1 × OVDD  
Noise margin at the HIGH level for each connected device (including  
hysteresis)  
VNH  
0.2 × OVDD  
V
Notes:  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tI2DVKH  
symbolizes I2C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the tI2C clock  
reference (K) going to the high (H) state or setup time. Also, tI2SXKL symbolizes I2C timing (I2) for the time that the data with  
respect to the start condition (S) went invalid (X) relative to the tI2C clock reference (K) going to the low (L) state or hold time.  
Also, tI2PVKH symbolizes I2C timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid  
state (V) relative to the tI2C clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter  
convention is used with the appropriate letter: R (rise) or F (fall).  
2. This chip provides a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the  
undefined region of the falling edge of SCL.  
3. The maximum tI2DVKH has only to be met if the device does not stretch the LOW period (tI2CL) of the SCL signal.  
2
This figure provides the AC test load for the I C.  
Output  
OVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
2
Figure 37. I C AC Test Load  
2
This figure shows the AC timing diagram for the I C bus.  
SDA  
tI2CF  
tI2CL  
tI2DVKH  
tI2KHKL  
tI2CF  
tI2SXKL  
tI2CR  
SCL  
tI2SXKL  
tI2CH  
tI2SVKH  
tI2PVKH  
tI2DXKL  
S
Sr  
P
S
2
Figure 38. I C Bus AC Timing Diagram  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
56  
14 PCI  
This section describes the DC and AC electrical specifications for the PCI bus of the chip.  
14.1 PCI DC Electrical Characteristics  
This table provides the DC electrical characteristics for the PCI interface of the device. The DC  
characteristics of the PORESET signal, which can be used as PCI RST in applications where the device is  
a PCI agent, deviates from the standard PCI levels.  
Table 48. PCI DC Electrical Characteristics  
Parameter  
Condition  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Input current  
VOUT VOH (min) or  
VOUT VOL (max)  
IOH = –500 μA  
VIH  
VIL  
2.0  
–0.5  
OVDD + 0.5  
0.3 × OVDD  
V
V
VOH  
VOL  
IIN  
0.9 × OVDD  
V
I
OL = 1500 μA  
0.1 × OVDD  
30  
V
0 V VIN OVDD  
μA  
Note:  
• The symbol VIN, in this case, represents the OVIN symbol referenced in Table 2.  
14.2 PCI AC Electrical Specifications  
This section describes the general AC timing parameters of the PCI bus of the device. Note that the  
PCI_CLK/PCI_SYNC_IN or CLKIN signal is used as the PCI input clock depending on whether the chip  
is configured as a host or agent device. CLKIN is used when the device is in host mode.  
This table shows the PCI AC timing specifications at 66 MT/s.  
.
Table 49. PCI AC Timing Specifications at 66 MT/s  
PCI_SYNC_IN clock input levels are with next levels: VIL = 0.1 × OVDD, VIH = 0.7 × OVDD  
.
Parameter  
Clock to output valid  
Symbol1  
Min  
Max  
Unit  
Note  
tPCKHOV  
tPCKHOX  
tPCKHOZ  
tPCIVKH  
1
6.0  
ns  
ns  
ns  
ns  
2
Output hold from clock  
Clock to output high impedance  
Input setup to clock  
2
3.0  
14  
2, 3  
2, 4  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
57  
Table 49. PCI AC Timing Specifications at 66 MT/s (continued)  
PCI_SYNC_IN clock input levels are with next levels: VIL = 0.1 × OVDD, VIH = 0.7 × OVDD  
.
Parameter  
Input hold from cock  
Symbol1  
Min  
Max  
Unit  
Note  
tPCIXKH  
tPCKOSK  
0.25  
ns  
ns  
2, 4, 6  
5
Output clock skew  
0.5  
Notes:  
1. Note that the symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH  
symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the  
PCI_SYNC_IN clock, tSYS, reference (K) going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC)  
with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
5. PCI specifications allows 1 ns skew for 66 MT/s but includes the total allowed skew, board, connectors, etc.  
6. Value does not comply with the PCI 2.3 Local Bus Specifications.  
This table shows the PCI AC timing specifications at 33 MT/s.  
Table 50. PCI AC Timing Specifications at 33 MT/s  
PCI_SYNC_IN clock input levels are with next levels: VIL = 0.1 × OVDD, VIH = 0.7 × OVDD  
.
Parameter  
Clock to output valid  
Symbol1  
Min  
Max  
Unit  
Note  
t
2
11  
ns  
ns  
ns  
ns  
ns  
ns  
2
2
PCKHOV  
Output hold from clock  
Clock to output high impedance  
Input setup to clock  
Input hold from clock  
Output clock skew  
Notes:  
t
PCKHOX  
tPCKHOZ  
tPCIVKH  
tPCIXKH  
tPCKOSK  
14  
2, 3  
2, 4  
2, 4, 6  
5
3.0  
0.25  
0.5  
1. Note that the symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH  
symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the  
PCI_SYNC_IN clock, tSYS, reference (K) going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC)  
with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
5. PCI specifications allows 2 ns skew for 33 MT/s but includes the total allowed skew, board, connectors, etc.  
6. Value does not comply with the PCI 2.3 Local Bus Specifications.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
58  
Freescale Semiconductor  
This figure provides the AC test load for PCI.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 39. PCI AC Test Load  
This figure shows the PCI input AC timing conditions.  
CLK  
tPCIVKH  
tPCIXKH  
Input  
Figure 40. PCI Input AC Timing Measurement Conditions  
This figure shows the PCI output AC timing conditions.  
CLK  
tPCKHOV  
tPCKHOX  
Output Delay  
tPCKHOZ  
High-Impedance  
Output  
Figure 41. PCI Output AC Timing Measurement Condition  
15 PCI Express  
This section describes the DC and AC electrical specifications for the PCI Express bus.  
15.1 DC Requirements for PCI Express SD_REF_CLK and  
SD_REF_CLK  
For more information see Section 21, “High-Speed Serial Interfaces (HSSI).”  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
59  
15.2 AC Requirements for PCI Express SerDes Clocks  
This table lists the PCI Express SerDes clock AC requirements.  
Table 51. SD_REF_CLK and SD_REF_CLK AC Requirements  
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
Note  
REFCLK cycle time  
tREF  
10  
ns  
ps  
REFCLK cycle-to-cycle jitter. Difference in the period of any  
two adjacent REFCLK cycles.  
tREFCJ  
100  
REFCLK phase jitter peak-to-peak. Deviation in edge  
location with respect to mean edge location.  
tREFPJ  
–50  
+50  
ps  
SD_REF_CLK/_B cycle to cycle clock jitter (period jitter)  
tCKCJ  
tCKPJ  
100  
+50  
ps  
ps  
SD_REF_CLK/_B phase jitter peak-to-peak. Deviation in  
edge location with respect to mean edge location.  
–50  
2, 3  
Notes:  
1. All options provide serial interface bit rate of 1.5 and 3.0 Gbps.  
2. In a frequency band from 150 kHz to 15 MT/s, at BER of 10-12  
.
3. Total peak-to-peak Deterministic Jitter “JD” should be less than or equal to 50 ps.  
15.3 Clocking Dependencies  
The ports on the two ends of a link must transmit data at a rate that is within 600 parts per million (ppm)  
of each other at all times. This is specified to allow bit rate clock sources with a ±300 ppm tolerance.  
15.4 Physical Layer Specifications  
Following is a summary of the specifications for the physical layer of PCI Express on this device. For  
further details as well as the specifications of the transport and data link layer, use the PCI Express Base  
Specification, Rev. 1.0a.  
NOTE  
The voltage levels of the transmitter and the receiver depend on the SerDes  
control registers which should be programmed at the recommended values  
for PCI Express protocol (that is, L1_nV = 1.0 V).  
DD  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
60  
Freescale Semiconductor  
15.4.1 Differential Transmitter (Tx) Output  
This table defines the specifications for the differential output at all transmitters. The parameters are  
specified at the component pins.  
Table 52. Differential Transmitter (Tx) Output Specifications  
Parameter  
Unit interval  
Conditions  
Symbol  
Min  
Typical  
Max  
Units  
Note  
Each UPETX is 400 ps 300  
ppm. UPETX does not account  
for Spread Spectrum Clock  
dictated variations.  
UI  
399.88  
400  
400.12  
ps  
1
Differential  
peak-to-peak output  
voltage  
V
PEDPPTX = 2 × ꢀVTX-D+  
VTX-DIFFp-p  
0.8  
1.2  
V
2
2
VTX-D-  
De-emphasized  
differential output  
voltage (ratio)  
Ratio of the VPEDPPTX of the  
second and following bits after  
a transition divided by the  
VPEDPPTX of the first bit after a  
transition.  
VTX-DE-RATIO  
–3.0  
–3.5  
–4.0  
dB  
Minimum Tx eye width The maximum transmitter  
jitter can be derived as  
TTX-EYE  
0.70  
UI  
UI  
2, 3  
2, 3  
TTX-MAX-JITTER = 1 –  
UPEEWTX= 0.3 UI.  
Maximumtimebetween Jitter is defined as the  
TTX-EYE-MEDIAN-to-  
0.15  
the jitter median and  
maximum deviation  
from the median  
measurement variation of the  
crossing points (VPEDPPTX = 0  
V) in relation to a recovered Tx  
UI. A recovered Tx UI is  
calculated over 3500  
MAX-JITTER  
consecutive unit intervals of  
sample data. Jitter is  
measured using all edges of  
the 250 consecutive UI in the  
center of the 3500 UI used for  
calculating the Tx UI.  
D+/D– Tx output  
rise/fall time  
TTX-RISE, TTX-FALL  
0.125  
UI  
2, 5  
2
RMS AC peak common VPEACPCMTX = RMS(ꢀVTXD+  
VTX-CM-ACp  
20  
mV  
mode output voltage  
VTXD-ꢀ/2 – VTX-CM-DC)  
VTX-CM-DC = DC(avg) of  
ꢀVTX-D+ – VTX-D-ꢀ/2  
Absolute delta of DC  
ꢀVTX-CM-DC (during LO)  
VTX-CM-DC- ACTIVE-  
0
100  
mV  
2
common mode voltage VTX-CM-Idle-DC (During Electrical  
during LO and electrical Idle)ꢀ<=100 mV  
IDLE-DELTA  
idle  
VTX-CM-DC = DC(avg) of  
ꢀVTX-D+ – VTX-D-ꢀ/2 [LO]  
VTX-CM-Idle-DC = DC(avg) of  
ꢀVTX-D+ – VTX-D-ꢀ/2 [Electrical  
Idle]  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
61  
Table 52. Differential Transmitter (Tx) Output Specifications (continued)  
Parameter  
Conditions  
Symbol  
Min  
Typical  
Max  
Units  
Note  
Absolute delta of DC  
common mode  
ꢀVTX-CM-DC-D+ – VTX-CM-DC-D-  
25 mV  
VTX-CM-DC-LINE-  
0
25  
mV  
2
DELTA  
between D+ and D–  
VTX-CM-DC-D+ = DC(avg) of  
ꢀVTX-D+ꢀ  
VTX-CM-DC-D- = DC(avg) of  
ꢀVTX-D-  
Electrical idle  
differential peak output -VTX-IDLE-D-20 mV  
voltage  
V
PEEIDPTX = ꢀVTX-IDLE-D+  
VTX-IDLE-DIFFp  
0
20  
mV  
mV  
2
6
Amount of voltage  
The total amount of voltage  
VTX-RCV-DETECT  
XPADVDD/2  
600  
change allowed during change that a transmitter can  
receiver detection  
apply to sense whether a low  
impedance receiver is  
present.  
Tx DC common mode The allowed DC common  
VTX-DC-CM  
0
XPADVDD/2  
90  
V
6
voltage  
mode voltage under any  
conditions.  
Tx short circuit current The total current the  
limit transmitter can provide when  
shorted to its ground  
ITX-SHORT  
50  
mA  
UI  
Minimum time spent in Minimum time a transmitter  
TTX-IDLE-MIN  
electrical idle  
must be in electrical idle.  
Utilized by the receiver to start  
looking for an electrical idle  
exit after successfully  
receiving an electrical idle  
ordered set.  
Maximum time to  
transition to a valid  
electrical idle after  
sending an electrical  
idle ordered set  
After sending an electrical idle TTX-IDLE-SET-TO-IDLE  
ordered set, the transmitter  
must meet all electrical idle  
specifications within this time.  
This is considered a  
20  
UI  
debounce time for the  
transmitter to meet electrical  
idle after transitioning from  
LO.  
Maximum time to  
transition to valid Tx  
specifications after  
Maximum time to meet all Tx TTX-IDLE-TO-DIFF-DATA  
specifications when  
transitioning from electrical  
20  
UI  
leaving anelectrical idle idle to sending differential  
condition  
data. This is considered a  
debounce time for the Tx to  
meet all Tx specifications after  
leaving electrical idle  
Differential return loss Measured over 50 MT/s to  
1.25 GHz.  
RLTX-DIFF  
12  
dB  
4
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
62  
Table 52. Differential Transmitter (Tx) Output Specifications (continued)  
Parameter  
Conditions  
Symbol  
Min  
Typical  
Max  
Units  
Note  
Common mode return Measured over 50 MT/s to  
RLTX-CM  
6
dB  
4
loss  
1.25 GHz.  
DC differential Tx  
impedance  
Tx DC differential mode low  
impedance  
ZTX-DIFF-DC  
80  
40  
100  
120  
Ω
Ω
Transmitter DC  
impedance  
Required Tx D+ as well as D–  
DC impedance during all  
states  
ZTX-DC  
Lane-to-Lane output  
skew  
Static skew between any two  
transmitter lanes within a  
single link  
LTX-SKEW  
500 +  
2 UI  
ps  
AC coupling capacitor All transmitters should be AC  
coupled. The AC coupling is  
CTX  
75  
200  
nF  
required either within the  
media or within the  
transmitting component itself.  
Crosslink random  
timeout  
This random timeout helps  
resolve conflicts in crosslink  
configuration by eventually  
resulting in only one  
Tcrosslink  
0
1
ms  
7
downstream and one  
upstream port.  
Notes:  
1. No test load is necessarily associated with this value.  
2. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 44 and measured  
over any 250 consecutive Tx UIs. (Also refer to the transmitter compliance eye diagram shown in Figure 42.)  
3. A TTX-EYE = 0.70 UI provides for a total sum of deterministic and random jitter budget of TTX-JITTER-MAX = 0.30 UI for the  
transmitter collected over any 250 consecutive Tx UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total  
Tx jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean.  
The jitter median describes the point in time where the number of jitter points on either side is approximately equal as  
opposed to the averaged time value.  
4. The transmitter input impedance will result in a differential return loss greater than or equal to 12 dB and a common mode  
return loss greater than or equal to 6 dB over a frequency range of 50 MT/s to 1.25 GHz. This input impedance requirement  
applies to all valid input levels. The reference impedance for return loss measurements is 50 Ω to ground for both the D+  
and D– line (that is, as measured by a vector network analyzer with 50-Ω probes, see Figure 44). Note that the series  
capacitors, CTX, is optional for the return loss measurement.  
5. Measured between 20%–80% at transmitter package pins into a test load as shown in Figure 44 for both VTX-D+ and VTX-D-  
6. See Section 4.3.1.8 of the PCI Express Base Specifications, Rev 1.0a.  
.
7. See Section 4.2.6.3 of the PCI Express Base Specifications, Rev 1.0a.  
15.4.2 Transmitter Compliance Eye Diagrams  
The Tx eye diagram in Figure 42 is specified using the passive compliance/test measurement load (see  
Figure 44) in place of any real PCI Express interconnect + Rx component. There are two eye diagrams that  
must be met for the transmitter. Both diagrams must be aligned in time using the jitter median to locate the  
center of the eye diagram. The different eye diagrams differ in voltage depending on whether it is a  
transition bit or a de-emphasized bit. The exact reduced voltage level of the de-emphasized bit is always  
relative to the transition bit.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
63  
The eye diagram must be valid for any 250 consecutive UIs.  
A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is  
created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx  
UI.  
NOTE  
It is recommended that the recovered Tx UI be calculated using all edges in  
the 3500 consecutive UI interval with a fit algorithm using a minimization  
merit function (that is, least squares and median deviation fits).  
VTX-DIFF = 0 mV  
VTX-DIFF = 0 mV  
(D+ D– Crossing Point)  
(D+ D– Crossing Point)  
[Transition Bit]  
TX-DIFFp-p-MIN = 800 mV  
V
[De-emphasized Bit]  
566 mV (3 dB) >= VTX-DIFFp-p-MIN >= 505 mV (4 dB)  
0.7 UI = UI – 0.3 UI(JTX-TOTAL-MAX  
[Transition Bit]  
)
VTX-DIFFp-p-MIN = 800 mV  
Figure 42. Minimum Transmitter Timing and Voltage Output Compliance Specifications  
15.4.3 Differential Receiver (Rx) Input Specifications  
This table defines the specifications for the differential input at all receivers. The parameters are specified  
at the component pins.  
Table 53. Differential Receiver (Rx) Input Specifications  
Parameter  
Unit interval  
Comments  
Symbol  
Min  
Typical  
Max  
Units  
Note  
Each UPERX is 400 ps 300  
ppm. UPERX does not account  
for Spread Spectrum Clock  
dictated variations.  
UI  
399.88  
400  
400.12  
ps  
1
Differential peak-to-peak VPEDPPRX = 2 × ꢀVRX-D+  
output voltage VRX-D-  
VRX-DIFFp-p  
0.175  
1.200  
V
2
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
64  
Table 53. Differential Receiver (Rx) Input Specifications (continued)  
Parameter  
Comments  
Symbol  
Min  
Typical  
Max  
Units  
Note  
Minimum receiver eye  
width  
The maximum interconnect  
media and transmitter jitter that  
can be tolerated by the receiver  
can be derived as  
TRX-EYE  
0.4  
UI  
2, 3  
TRX-MAX-JITTER = 1 –  
UPEEWRX = 0.6 UI.  
Maximum time between Jitter is defined as the  
the jitter median and measurement variation of the  
maximum deviation from crossing points (VPEDPPRX = 0  
TRX-EYE-MEDIAN-to  
0.3  
UI  
2, 3, 7  
-MAX-JITTER  
the median.  
V) in relation to a recovered Tx  
UI. A recovered Tx UI is  
calculated over 3500  
consecutive unit intervals of  
sample data. Jitter is measured  
using all edges of the 250  
consecutive UI in the center of  
the 3500 UI used for calculating  
the Tx UI.  
AC peak common mode VPEACPCMRX = ꢀVRXD+  
VRX-CM-ACp  
RLRX-DIFF  
RLRX-CM  
10  
6
150  
mV  
dB  
dB  
2
4
4
input voltage  
VRXD-ꢀ/2 – VRX-CM-DC  
VRX-CM-DC = DC(avg) of ꢀVRX-D+  
– VRX-D-ꢀ/2  
Differential return loss  
Measured over 50 MT/s to 1.25  
GHz with the D+ and D– lines  
biased at +300 mV and –300  
mV, respectively.  
Common mode return  
loss  
Measured over 50 MT/s to 1.25  
GHz with the D+ and D– lines  
biased at 0 V.  
DC differential input  
impedance  
RX DC differential mode  
impedance.  
ZRX-DIFF-DC  
80  
40  
100  
50  
120  
60  
Ω
Ω
5
DC Input Impedance  
Required RX D+ as well as D-  
DC impedance (50 20%  
tolerance).  
ZRX-DC  
2, 5  
Powered down DC input Required RX D+ as well as D– ZRX-HIGH-IMP-DC  
200 k  
65  
Ω
6
impedance  
DC impedance when the  
receiver terminations do not  
have power.  
Electrical idle detect  
threshold  
VPEEIDT = 2 × ꢀVRX-D+ -VRX-D-  
Measured at the package pins  
VRX-IDLE-DET-DIFF  
175  
mV  
p-p  
of the receiver  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
65  
Table 53. Differential Receiver (Rx) Input Specifications (continued)  
Parameter  
Comments  
Symbol  
Min  
Typical  
Max  
Units  
Note  
Unexpected Electrical Idle An unexpected electrical idle  
TRX-IDLE-DET-DIFF-  
10  
ms  
Enter Detect Threshold  
Integration Time  
(Vrx-diffp-p <  
ENTERTIME  
Vrx-idle-det-diffp-p) must be  
recognized no longer than  
Trx-idle-det-diff-entertime to  
signal an unexpected idle  
condition.  
Total Skew  
Skew across all lanes on a link.  
This includes variation in the  
length of SKP ordered set (e.g.  
COM and one to five SKP  
LRX-SKEW  
20  
ns  
Symbols) at the Rx as well as  
any delay differences arising  
from the interconnect itself.  
Notes:  
1. No test load is necessarily associated with this value.  
2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 44 should be used  
as the Rx device when taking measurements (also refer to the receiver compliance eye diagram shown in Figure 43). If the  
clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must  
be used as a reference for the eye diagram.  
3. A TRx-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and  
interconnect collected any 250 consecutive UIs. The TRx-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter  
distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget  
collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median  
describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged  
time value. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500  
consecutive UI must be used as the reference for the eye diagram.  
4. The receiver input impedance will result in a differential return loss greater than or equal to 10 dB with the D+ line biased to  
300 mV and the D– line biased to –300 mV and a common mode return loss greater than or equal to 6 dB (no bias required)  
over a frequency range of 50 MT/s to 1.25 GHz. This input impedance requirement applies to all valid input levels. The  
reference impedance for return loss measurements for is 50 Ω to ground for both the D+ and D– line (that is, as measured  
by a vector network analyzer with 50-Ω probes, see Figure 44). Note that the series capacitors, CTx, is optional for the return  
loss measurement.  
5. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM)  
there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.  
6. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps  
ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be  
measured at 300 mV above the Rx ground.  
7. It is recommended that the recovered Tx UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm  
using a minimization merit function. Least squares and median deviation fits have worked well with experimental and  
simulated data.  
15.5 Receiver Compliance Eye Diagrams  
The Rx eye diagram in Figure 43 is specified using the passive compliance/test measurement load (see  
Figure 44) in place of any real PCI Express Rx component. In general, the minimum receiver eye diagram  
measured with the compliance/test measurement load (see Figure 44) is larger than the minimum receiver  
eye diagram measured over a range of systems at the input receiver of any real PCI Express component.  
The degraded eye diagram at the input receiver is due to traces internal to the package as well as silicon  
parasitic characteristics that cause the real PCI Express component to vary in impedance from the  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
66  
Freescale Semiconductor  
compliance/test measurement load. The input receiver eye diagram is implementation specific and is not  
specified. Rx component designer should provide additional margin to adequately compensate for the  
degraded minimum receiver eye diagram (shown in Figure 43) expected at the input receiver based on an  
adequate combination of system simulations and the return loss measured looking into the Rx package and  
silicon. The Rx eye diagram must be aligned in time using the jitter median to locate the center of the eye  
diagram.  
The eye diagram must be valid for any 250 consecutive UIs.  
A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is  
created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx  
UI.  
NOTE  
The reference impedance for return loss measurements is 50 Ω to ground for  
both the D+ and D– line (that is, as measured by a Vector Network Analyzer  
with 50 Ω probes—see Figure 44). Note that the series capacitors,  
C
, are optional for the return loss measurement.  
PEACCTX  
VRX-DIFF = 0 mV  
VRX-DIFF = 0 mV  
(D+ D– Crossing Point)  
(D+ D– Crossing Point)  
VRX-DIFFp-p-MIN > 175 mV  
0.4 UI = TRX-EYE-MIN  
Figure 43. Minimum Receiver Eye Timing and Voltage Compliance Specification  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
67  
15.5.1 Compliance Test and Measurement Load  
The AC timing and voltage parameters must be verified at the measurement point, as specified within  
0.2 inches of the package pins, into a test/measurement load shown in Figure 44.  
NOTE  
The allowance of the measurement point to be within 0.2 inches of the  
package pins is meant to acknowledge that package/board routing may  
benefit from D+ and D– not being exactly matched in length at the package  
pin boundary. If the vendor does not explicitly state where the measurement  
point is located, the measurement point is assumed to be the D+ and D–  
package pins.  
D+ Package Pin  
C = CTX  
TX Silicon +  
Package  
C = CTX  
R = 50 Ω  
R = 50 Ω  
D– Package Pin  
Figure 44. Compliance Test/Measurement Load  
16 Serial ATA (SATA)  
This section describes the DC and AC electrical specifications for the serial ATA (SATA) of the  
MPC8377E. Note that the external cabled applications or long backplane applications (Gen1x and Gen2x)  
are not supported.  
16.1 Requirements for SATA REF_CLK  
The reference clock is a single ended input clock required for the SATA interface operation. The AC  
requirements for the SATA reference clock are listed in the Table 54.  
Table 54. SATA Reference Clock Input Requirements  
Parameter  
Condition  
Symbol  
Min  
Typical  
Max  
Unit  
Note  
SD_REF_CLK/ SD_REF_CLK  
frequency range  
tCLK_REF  
100/125/150  
MT/s  
1
SD_REF_CLK/ SD_REF_CLK  
clock frequency tolerance  
tCLK_TOL  
–350  
40  
0
+350  
60  
ppm  
%
SD_REF_CLK/ SD_REF_CLK  
reference clock duty cycle  
Measured at 1.6V  
tCLK_DUTY  
50  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
68  
Table 54. SATA Reference Clock Input Requirements (continued)  
Parameter  
Condition  
Symbol  
Min  
Typical  
Max  
Unit  
Note  
SD_REF_CLK/ SD_REF_CLK  
cycle to cycle Clock jitter (period  
jitter)  
Cycle-to-cycle at  
ref clock input  
tCLK_CJ  
100  
ps  
SD_REF_CLK/ SD_REF_CLK total Peak-to-peak jitter  
tCLK_PJ  
–50  
+50  
ps  
2, 3  
reference clock jitter, phase jitter  
(peak-peak)  
at ref clock input  
Notes:  
1. Only 100/125/150 MT/s have been tested, other in between values will not work correctly with the rest of the system.  
2. In a frequency band from 150 kHz to 15 MT/s at BER of 10-12  
.
3. Total peak to peak Deterministic Jitter "DJ" should be less than or equal to 50 ps.  
This figure shows the SATA reference clock timing waveform.  
TH  
Ref_CLK  
TL  
Figure 45. SATA Reference Clock Timing Waveform  
16.2 Transmitter (Tx) Output Characteristics  
This section discusses the Gen1i/1.5G and Gen2i/3G transmitter output characteristics for the SATA  
interface.  
16.2.1 Gen1i/1.5G Transmitter Specifications  
This table provides the DC differential transmitter output DC characteristics for the SATA interface at  
Gen1i or 1.5 Gbits/s transmission.  
Table 55. Gen1i/1.5G Transmitter (Tx) DC Specifications  
Parameter  
Symbol  
Min  
Typical  
Max  
Units  
Note  
Tx differential output voltage  
Tx differential pair impedance  
VSATA_TXDIFF  
400  
85  
500  
100  
600  
115  
mVp-p  
1
ZSATA_TXDIFFIM  
Ω
Note:  
1. Terminated by 50 Ω load.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
69  
This table provides the differential transmitter output AC characteristics for the SATA interface at Gen1i  
or 1.5 Gbits/s transmission.  
Table 56. Gen1i/1.5G Transmitter AC Specifications  
Parameter  
Channel speed  
Symbol  
Min  
Typical  
Max  
Units  
Note  
tCH_SPEED  
TUI  
666.4333  
1.5  
666.667  
Gbps  
ps  
1
Unit interval  
670.2333  
0.355  
Total jitter, data-data  
5 UI  
USATA_TXTJ5UI  
UIp-p  
Total jitter, data-data  
250 UI  
USATA_TXTJ250UI  
USATA_TXDJ5UI  
USATA_TXDJ250UI  
0.47  
0.175  
0.22  
UIp-p  
UIp-p  
UIp-p  
1
1
1
Deterministic jitter, data-data  
5 UI  
Deterministic jitter, data-data  
250 UI  
Note:  
1. Measured at Tx output pins peak to peak phase variation, random data pattern.  
16.2.2 Gen2i/3G Transmitter Specifications  
This table provides the differential transmitter output DC characteristics for the SATA interface at Gen2i  
or 3.0 Gbits/s transmission.  
Table 57. Gen 2i/3G Transmitter DC Specifications  
Parameter  
Symbol  
Min  
Typical  
Max  
Units  
Note  
Tx differential output voltage  
Tx differential pair impedance  
VSATA_TXDIFF  
400  
85  
550  
100  
700  
115  
mVp-p  
1
ZSATA_TXDIFFIM  
Ω
Note:  
1. Terminated by 50 Ω load.  
This table provides the differential transmitter output AC characteristics for the SATA interface at Gen2i  
or 3.0 Gbits/s transmission.  
Table 58. Gen 2i/3G Transmitter AC Specifications  
Parameter  
Channel speed  
Symbol  
Min  
Typical  
Max  
Units  
Note  
tCH_SPEED  
TUI  
333.2  
3.0  
333.33  
335.11  
0.3  
Gbps  
ps  
1
Unit interval  
Total jitter  
USATA_TXTJfB/10  
UIp-p  
fC3dB=fBAUD/10  
Total jitter  
USATA_TXTJfB/500  
0.37  
UIp-p  
1
fC3dB = fBAUD/500  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
70  
Table 58. Gen 2i/3G Transmitter AC Specifications (continued)  
Parameter  
Symbol  
Min  
Typical  
Max  
Units  
Note  
Total jitter  
USATA_TXTJfB/1667  
0.55  
UIp-p  
1
fC3dB = fBAUD/1667  
Deterministic jitter  
fC3dB = fBAUD/10  
USATA_TXDJfB/10  
USATA_TXDJfB/500  
USATA_TXDJfB/1667  
0.17  
0.19  
0.35  
UIp-p  
UIp-p  
UIp-p  
1
1
1
Deterministic jitter  
fC3dB = fBAUD/500  
Deterministic jitter  
fC3dB = fBAUD/1667  
Note:  
1. Measured at Tx output pins peak to peak phase variation, random data pattern.  
16.3 Differential Receiver (Rx) Input Characteristics  
This section discusses the Gen1i/1.5G and Gen2i/3G differential receiver input AC characteristics.  
16.3.1 Gen1i/1.5G Receiver Specifications  
This table provides the Gen1i or 1.5 Gbits/s differential receiver input DC characteristics for the SATA  
interface.  
Table 59. Gen1i/1.5G Receiver Input DC Specifications  
Parameter  
Symbol  
Min  
Typical  
Max  
Units  
Note  
Differential input voltage  
Differential Rx input impedance  
Note:  
VSATA_RXDIFF  
ZSATA_RXSEIM  
240  
85  
500  
100  
600  
115  
mVp-p  
1
Ω
1. Voltage relative to common of either signal comprising a differential pair.  
This table provides the Gen1i or 1.5 Gbits/s differential receiver input AC characteristics for the SATA  
interface.  
Table 60. Gen 1i/1.5G Receiver AC Specifications  
Parameter  
Symbol  
Min  
Typical  
Max  
Units  
Note  
Unit interval  
TUI  
666.4333  
666.667  
670.2333  
0.43  
ps  
1
Total jitter, data-data  
5 UI  
USATA_TXTJ5UI  
UIp-p  
Total jitter, data-data  
250 UI  
USATA_TXTJ250UI  
0.60  
0.25  
UIp-p  
UIp-p  
1
1
Deterministic jitter, data-data  
5 UI  
USATA_TXDJ5UI  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
71  
Table 60. Gen 1i/1.5G Receiver AC Specifications (continued)  
Parameter  
Symbol  
Min  
Typical  
Max  
Units  
Note  
Deterministic jitter, data-data  
250 UI  
USATA_TXDJ250UI  
0.35  
UIp-p  
1
Note:  
1. Measured at Tx output pins peak to peak phase variation, random data pattern.  
16.3.2 Gen2i/3G Receiver (Rx) Specifications  
This table provides the Gen2i or 3 Gbits/s differential receiver input DC characteristics for the SATA  
interface.  
Table 61. Gen2i/3G Receiver Input DC Specifications  
Parameter  
Symbol  
Min  
Typical  
Max  
Units  
Note  
Differential input voltage  
Differential RX input impedance  
Note:  
VSATA_RXDIFF  
ZSATA_RXSEIM  
275  
85  
500  
100  
750  
115  
mVp-p  
1
Ω
1. Voltage relative to common of either signal comprising a differential pair.  
This table provides the differential receiver output AC characteristics for the SATA interface at Gen2i or  
3.0 Gbits/s transmission.  
Table 62. Gen 2i/3G Receiver AC Specifications  
Parameter  
Channel Speed  
Symbol  
Min  
Typical  
Max  
Units  
Note  
tCH_SPEED  
TUI  
333.2  
3.0  
333.33  
Gbps  
ps  
1
Unit Interval  
335.11  
0.46  
Total jitter  
USATA_TXTJfB/10  
UIp-p  
fC3dB = fBAUD/10  
Total jitter  
fC3dB = fBAUD/500  
USATA_TXTJfB/500  
USATA_TXTJfB/1667  
USATA_TXDJfB/10  
USATA_TXDJfB/500  
USATA_TXDJfB/1667  
0.60  
0.65  
0.35  
0.42  
0.35  
UIp-p  
UIp-p  
UIp-p  
UIp-p  
UIp-p  
1
1
1
1
1
Total jitter  
fC3dB = fBAUD/1667  
Deterministic jitter  
fC3dB = fBAUD/10  
Deterministic jitter  
fC3dB = fBAUD/500  
Deterministic jitter  
fC3dB = fBAUD/1667  
Note:  
1. Measured at Tx output pins peak to peak phase variation, random data pattern.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
72  
17 Timers  
This section describes the DC and AC electrical specifications for the timers of the chip.  
17.1 Timers DC Electrical Characteristics  
This table provides the DC electrical characteristics for the device timers pins, including TIN, TOUT,  
TGATE, and RTC_CLK.  
Table 63. Timers DC Electrical Characteristics  
Parameter  
Output high voltage  
Condition  
Symbol  
Min  
Max  
Unit  
IOH = –6.0 mA  
IOL = 6.0 mA  
VOH  
VOL  
2.4  
0.5  
V
V
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
I
= 3.2 mA  
V
0.4  
V
OL  
OL  
VIH  
VIL  
IIN  
2.0  
–0.3  
OVDD + 0.3  
0.8  
V
V
0 V VIN OVDD  
30  
μA  
17.2 Timers AC Timing Specifications  
This table provides the timers input and output AC timing specifications.  
1
Table 64. Timers Input AC Timing Specifications  
Parameter  
Symbol 2  
tTIWID  
Min  
Unit  
Timers inputs—minimum pulse width  
Notes:  
20  
ns  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are  
measured at the pin.  
2. Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use by any  
external synchronous logic. Timers inputs are required to be valid for at least tTIWID ns to ensure proper operation  
This figure provides the AC test load for the timers.  
Output  
OVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 46. Timers AC Test Load  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
73  
18 GPIO  
This section describes the DC and AC electrical specifications for the GPIO of the chip.  
18.1 GPIO DC Electrical Characteristics  
This table provides the DC electrical characteristics for the device GPIO.  
Table 65. GPIO DC Electrical Characteristics  
This specification applies when operating at 3.3 V 165 mV supply.  
Parameter  
Output high voltage  
Condition  
Symbol  
Min  
Max  
Unit  
IOH = –6.0 mA  
IOL = 6.0 mA  
VOH  
VOL  
2.4  
0.5  
V
V
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
I
= 3.2 mA  
V
0.4  
V
OL  
OL  
VIH  
VIL  
IIN  
2.0  
–0.3  
OVDD + 0.3  
0.8  
V
V
0 V VIN OVDD  
30  
μA  
18.2 GPIO AC Timing Specifications  
This table provides the GPIO input and output AC timing specifications.  
Table 66. GPIO Input AC Timing Specifications  
Parameter  
Symbol  
Min  
20  
Unit  
ns  
GPIO inputs—minimum pulse width  
Notes:  
tPIWID  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLKIN. Timings  
are measured at the pin.  
2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any  
external synchronous logic. GPIO inputs are required to be valid for at least tPIWID ns to ensure proper operation.  
This figure provides the AC test load for the GPIO.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 47. GPIO AC Test Load  
19 IPIC  
This section describes the DC and AC electrical specifications for the external interrupt pins of the chip.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
74  
Freescale Semiconductor  
19.1 IPIC DC Electrical Characteristics  
This table provides the DC electrical characteristics for the external interrupt pins of the chip.  
Table 67. IPIC DC Electrical Characteristics  
Parameter  
Input high voltage  
Condition  
Symbol  
Min  
Max  
Unit  
VIH  
VIL  
IIN  
2.0  
–0.3  
OVDD + 0.3  
V
V
Input low voltage  
Input current  
0.8  
30  
μA  
V
Output low voltage  
Output low voltage  
Note:  
IOL = 6.0 mA  
VOL  
0.5  
0.4  
I
= 3.2 mA  
V
V
OL  
OL  
1. This table applies for pins IRQ[0:7], IRQ_OUT, MCP_OUT.  
2. IRQ_OUT and MCP_OUT are open drain pins, thus VOH is not relevant for those pins.  
19.2 IPIC AC Timing Specifications  
This table provides the IPIC input and output AC timing specifications.  
Table 68. IPIC Input AC Timing Specifications  
Parameter  
Symbol  
Min  
Unit  
IPIC inputs—minimum pulse width  
tPIWID  
20  
ns  
Note:  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are  
measured at the pin.  
2. IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any  
external synchronous logic. IPIC inputs are required to be valid for at least tPIWID ns to ensure proper operation when working  
in edge triggered mode.  
20 SPI  
This section describes the DC and AC electrical specifications for the SPI of the chip.  
20.1 SPI DC Electrical Characteristics  
This table provides the DC electrical characteristics for the device SPI.  
Table 69. SPI DC Electrical Characteristics  
Parameter  
Input high voltage  
Condition  
Symbol  
Min  
Max  
Unit  
VIH  
VIL  
2.0  
–0.3  
OVDD + 0.3  
V
V
Input low voltage  
Input current  
0.8  
30  
IIN  
μA  
V
Output high voltage  
IOH = –8.0 mA  
VOH  
2.4  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
75  
Table 69. SPI DC Electrical Characteristics (continued)  
Parameter  
Condition  
Symbol  
Min  
Max  
Unit  
Output low voltage  
Output low voltage  
IOL = 8.0 mA  
VOL  
0.5  
0.4  
V
V
I
= 3.2 mA  
V
OL  
OL  
20.2 SPI AC Timing Specifications  
This table provides the SPI input and output AC timing specifications.  
Table 70. SPI AC Timing Specifications  
Parameter  
Symbol1  
Min  
Max  
Unit  
SPI outputs—Master mode (internal clock) delay  
SPI outputs—Slave mode (external clock) delay  
SPI inputs—Master mode (internal clock) input setup time  
SPI inputs—Master mode (internal clock) input hold time  
SPI inputs—Slave mode (external clock) input setup time  
SPI inputs—Slave mode (external clock) input hold time  
Notes:  
tNIKHOV  
tNEKHOV  
tNIIVKH  
0.5  
2
6
ns  
ns  
ns  
ns  
ns  
ns  
8
4
tNIIXKH  
0
tNEIVKH  
tNEIXKH  
4
2
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOV symbolizes the internal  
timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).  
2. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings  
are measured at the pin. The maximum SPICLK input frequency is 66.666 MT/s.  
This figure provides the AC test load for the SPI.  
Output  
OVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 48. SPI AC Test Load  
These figures represent the AC timing from Table 70. Note that although the specifications generally  
reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the  
active edge.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
76  
Freescale Semiconductor  
This figure shows the SPI timing in slave mode (external clock).  
SPICLK (input)  
tNEIXKH  
tNEIVKH  
Input Signals:  
SPIMOSI  
(See Note)  
tNEKHOV  
Output Signals:  
SPIMISO  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 49. SPI AC Timing in Slave Mode (External Clock) Diagram  
This figure shows the SPI timing in master mode (internal clock).  
SPICLK (output)  
tNIIXKH  
tNIIVKH  
Input Signals:  
SPIMISO  
(See Note)  
tNIKHOV  
Output Signals:  
SPIMOSI  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 50. SPI AC Timing in Master Mode (Internal Clock) Diagram  
21 High-Speed Serial Interfaces (HSSI)  
This chip features two serializer/deserializer (SerDes) interfaces to be used for high-speed serial  
interconnect applications. See Table 1 for the interfaces supported.  
This section describes the common portion of SerDes DC electrical specifications, which is the DC  
requirement for SerDes reference clocks. The SerDes data lane’s transmitter and receiver reference circuits  
are also shown.  
21.1 Signal Terms Definition  
The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms  
used in the description and specification of differential signals.  
Figure 51 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for  
description. The figure shows waveform for either a transmitter output (SDn_TX and SDn_TX) or a  
receiver input (SDn_RX and SDn_RX). Each signal swings between A volts and B volts where A > B.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
77  
Using this waveform, the definitions are as follows. To simplify illustration, the following definitions  
assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling  
environment.  
Single-Ended Swing  
The transmitter output signals and the receiver input signals SDn_TX, SDn_TX, SDn_RX and  
SDn_RX each have a peak-to-peak swing of A B volts. This is also referred as each signal wire’s  
single-ended swing.  
Differential Output Voltage, V (or Differential Output Swing):  
OD  
The differential output voltage (or swing) of the transmitter, V , is defined as the difference of  
the two complimentary output voltages: V  
or negative.  
OD  
V  
. The V value can be either positive  
SDn_TX  
SDn_TX OD  
Differential Input Voltage, V (or Differential Input Swing):  
ID  
The differential input voltage (or swing) of the receiver, V , is defined as the difference of the two  
ID  
complimentary input voltages: V  
negative.  
V  
The V value can be either positive or  
SDn_RX  
SDn_RX. ID  
Differential Peak Voltage, V  
DIFFp  
The peak value of the differential transmitter output signal or the differential receiver input signal  
is defined as differential peak voltage, V = |A B| volts.  
DIFFp  
Differential Peak-to-Peak, V  
DIFFp-p  
Since the differential output signal of the transmitter and the differential input signal of the receiver  
each range from A – B to –(A – B) volts, the peak-to-peak value of the differential transmitter  
output signal or the differential receiver input signal is defined as differential peak-to-peak voltage,  
V
= 2 × V  
= 2 × |(A – B)| volts, which is twice of differential swing in amplitude, or  
DIFFp-p  
DIFFp  
twice of the differential peak. For example, the output differential peak-peak voltage can also be  
calculated as V = 2 × |V |.  
TX-DIFFp-p  
OD  
Differential Waveform  
The differential waveform is constructed by subtracting the inverting signal (SDn_TX, for  
example) from the non-inverting signal (SDn_TX, for example) within a differential pair. There is  
only one signal trace curve in a differential waveform. The voltage represented in the differential  
waveform is not referenced to ground. Refer to Figure 60 as an example for differential waveform.  
Common Mode Voltage, V  
cm  
The common mode voltage is equal to one half of the sum of the voltages between each conductor  
of a balanced interchange circuit and ground. In this example, for SerDes output,  
V
= (V  
+ V  
) ÷ 2 = (A + B) ÷ 2, which is the arithmetic mean of the two  
cm_out  
SDn_TX  
SDn_TX  
complimentary output voltages within a differential pair. In a system, the common mode voltage  
may often differ from one component’s output to the other’s input. Sometimes it may be even  
different between the receiver input and driver output circuits within the same component. It is also  
referred as the DC offset in some occasion.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
78  
Freescale Semiconductor  
SDn_TX or  
SDn_RX  
A Volts  
B Volts  
Vcm = (A + B)/2  
SDn_TXor  
SDn_RX  
Differential Swing, VID or VOD = A – B  
Differential Peak Voltage, VDIFFp = ꢀA – Bꢀ  
Differential Peak-Peak Voltage, VDIFFpp = 2 × VDIFFp (not shown)  
Figure 51. Differential Voltage Definitions for Transmitter or Receiver  
To illustrate these definitions using real values, consider the case of a CML (Current Mode Logic)  
transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing  
that goes between 2.5 V and 2.0 V. Using these values, the peak-to-peak voltage swing of each signal (TD  
or TD) is 500 mV , which is referred as the single-ended swing for each signal. In this example, since  
p-p  
the differential signaling environment is fully symmetrical, the transmitter output’s differential swing  
(V ) has the same amplitude as each signal’s single-ended swing. The differential output signal ranges  
OD  
between 500 mV and –500 mV, in other words, V is 500 mV in one phase and –500 mV in the other  
OD  
phase. The peak differential voltage (V  
) is 500 mV. The peak-to-peak differential voltage (V  
)
DIFFp  
DIFFp-p  
is 1000 mV  
.
p-p  
21.2 SerDes Reference Clocks  
The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by  
the corresponding SerDes lanes. The SerDes reference clocks inputs are SD1_REF_CLK and  
SD1_REF_CLK for both lanes of SerDes1, and SD2_REF_CLK and SD2_REF_CLK for both lanes of  
SerDes2.  
The following sections describe the SerDes reference clock requirements and some application  
information.  
21.2.1 SerDes Reference Clock Receiver Characteristics  
Figure 52 shows a receiver reference diagram of the SerDes reference clocks.  
SerDes Reference Clock Receiver Reference Circuit Structure  
— The SDn_REF_CLK and SDn_REF_CLK are internally AC-coupled differential inputs as  
shown in Figure 52. Each differential clock input (SDn_REF_CLK or SDn_REF_CLK) has a  
50 Ω termination to SGND_SRDSn (xcorevss) followed by on-chip AC-coupling.  
— The external reference clock driver must be able to drive this termination.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
79  
— The SerDes reference clock input can be either differential or single-ended. Refer to the  
Differential Mode and Single-ended Mode description below for further detailed requirements.  
The maximum average current requirement that also determines the common mode voltage range  
— When the SerDes reference clock differential inputs are DC coupled externally with the clock  
driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the  
exact common mode input voltage is not critical as long as it is within the range allowed by the  
maximum average current of 8 mA (refer to the following bullet for more detail), since the  
input is AC-coupled on-chip.  
— This current limitation sets the maximum common mode input voltage to be less than 0.4 V  
(0.4 V ÷ 50 = 8 mA) while the minimum common mode input level is 0.1 V above  
SGND_SRDSn (xcorevss). For example, a clock with a 50/50 duty cycle can be produced by  
a clock driver with output driven by its current source from 0 mA to 16 mA (0–0.8 V), such  
that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the  
common mode voltage at 400 mV.  
— If the device driving the SDn_REF_CLK and SDn_REF_CLK inputs cannot drive 50 Ω to  
SGND_SRDSn (xcorevss) DC, or it exceeds the maximum input current limitations, then it  
must be AC-coupled off-chip.  
The input amplitude requirement  
— This requirement is described in detail in the following sections.  
50 Ω  
SDn_REF_CLK  
Input  
Amp  
SDn_REF_CLK  
50 Ω  
Figure 52. Receiver of SerDes Reference Clocks  
21.2.2 DC Level Requirement for SerDes Reference Clocks  
The DC level requirement for the device SerDes reference clock inputs is different depending on the  
signaling mode used to connect the clock driver chip and SerDes reference clock inputs as described  
below.  
Differential Mode  
— The input amplitude of the differential clock must be between 400 mV and 1600 mV  
differential peak-peak (or between 200 mV and 800 mV differential peak). In other words,  
each signal wire of the differential pair must have a single-ended swing less than 800 mV and  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
80  
Freescale Semiconductor  
greater than 200 mV. This requirement is the same for both external DC-coupled or  
AC-coupled connection.  
— For external DC-coupled connection, as described in Section 21.2.1, “SerDes Reference  
Clock Receiver Characteristics,” the maximum average current requirements sets the  
requirement for average voltage (common mode voltage) to be between 100 mV and 400 mV.  
Figure 53 shows the SerDes reference clock input requirement for DC-coupled connection  
scheme.  
— For external AC-coupled connection, there is no common mode voltage requirement for the  
clock driver. Since the external AC-coupling capacitor blocks the DC level, the clock driver  
and the SerDes reference clock receiver operate in different command mode voltages. The  
SerDes reference clock receiver in this connection scheme has its common mode voltage set to  
SGND_SRDSn. Each signal wire of the differential inputs is allowed to swing below and above  
the command mode voltage (SGND_SRDSn). Figure 54 shows the SerDes reference clock  
input requirement for AC-coupled connection scheme.  
Single-ended Mode  
— The reference clock can also be single-ended. The SD _REF_CLK input amplitude  
(single-ended swing) must be between 400 mV and 800 mV (from V to V ) with  
p-p  
min  
max  
SDn_REF_CLK either left unconnected or tied to ground.  
— The SDn_REF_CLK input average voltage must be between 200 mV and 400 mV. Figure 55  
shows the SerDes reference clock input requirement for single-ended signaling mode.  
— To meet the input amplitude requirement, the reference clock inputs might need to be DC or  
AC-coupled externally. For the best noise performance, the reference of the clock could be DC  
or AC-coupled into the unused phase (SDn_REF_CLK) through the same source impedance as  
the clock input (SDn_REF_CLK) in use.  
200 mV < Input Amplitude or Differential Peak < 800 mV  
SDn_REF_CLK  
Vmax < 800 mV  
100 mV < Vcm < 400 mV  
Vmin > 0 V  
SDn_REF_CLK  
Figure 53. Differential Reference Clock Input DC Requirements (External DC-Coupled)  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
81  
200 mV < Input Amplitude or Differential Peak < 800 mV  
SDn_REF_CLK  
SDn_REF_CLK  
150  
fdafdVmax < Vcm + 400 mV  
Vmax < Vcm + 400 mV  
Vcm  
Vmin > Vcm – 400m V  
Figure 54. Differential Reference Clock Input DC Requirements (External AC-Coupled)  
400 mV < SDn_REF_CLK Input Amplitude < 800 mV  
SDn_REF_CLK  
0 V  
SDn_REF_CLK  
Figure 55. Single-Ended Reference Clock Input DC Requirements  
21.2.3 Interfacing With Other Differential Signaling Levels  
The following list provides information about interfacing with other differential signaling levels.  
With on-chip termination to SGND_SRDSn (xcorevss), the differential reference clocks inputs are  
HCSL (high-speed current steering logic) compatible DC-coupled.  
Many other low voltage differential type outputs like LVDS (low voltage differential signaling) can  
be used but may need to be AC-coupled due to the limited common mode input range allowed  
(100 mV to 400 mV) for DC-coupled connection.  
LVPECL outputs can produce signal with too large amplitude and may need to be DC-biased at  
clock driver output first, then followed with series attenuation resistor to reduce the amplitude, in  
addition to AC-coupling.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
82  
Freescale Semiconductor  
NOTE  
Figure 56 to Figure 59 below are for conceptual reference only. Due to the  
fact that clock driver chip's internal structure, output impedance, and  
termination requirements are different between various clock driver chip  
manufacturers, it is very possible that the clock circuit reference designs  
provided by the clock driver chip vendor are different from what is shown  
below. They might also vary from one vendor to the other. Therefore,  
Freescale Semiconductor can neither provide the optimal clock driver  
reference circuits, nor guarantee the correctness of the following clock  
driver connection reference circuits. The system designer is recommended  
to contact the selected clock driver chip vendor for the optimal reference  
circuits with the device SerDes reference clock receiver requirement  
provided in this document.  
This figure shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It  
assumes that the DC levels of the clock driver chip is compatible with device SerDes reference clock  
input’s DC requirement.  
Chip  
HCSL CLK Driver Chip  
50 Ω  
SDn_REF_CLK  
CLK_Out  
33 Ω  
33 Ω  
SerDes Refer.  
CLK Receiver  
100 Ω differential PWB trace  
Clock Driver  
CLK_Out  
SDn_REF_CLK  
50 Ω  
Clock driver vendor dependent  
source termination resistor  
Total 50 Ω. Assume clock driver’s  
output impedance is about 16 Ω.  
Figure 56. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)  
This figure shows the SerDes reference clock connection reference circuits for LVDS type clock driver.  
Since LVDS clock driver’s common-mode voltage is higher than the device SerDes reference clock input’s  
allowed range (100 to 400 mV), AC-coupled connection scheme must be used. It assumes the LVDS  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
83  
output driver features a 50-Ω termination resistor. It also assumes that the LVDS transmitter establishes its  
own common mode level without relying on the receiver or other external component.  
Chip  
LVDS CLK Driver Chip  
50  
Ω
SDn_REF_CLK  
SDn_REF_CLK  
10 nF  
CLK_Out  
SerDes Refer.  
CLK Receiver  
100 Ω differential PWB trace  
Clock Driver  
CLK_Out  
10 nF  
50 Ω  
Figure 57. AC-Coupled Differential Connection with LVDS Clock Driver (Reference Only)  
Figure 58 shows the SerDes reference clock connection reference circuits for LVPECL type clock driver.  
Since LVPECL driver’s DC levels (both common mode voltages and output swing) are incompatible with  
device SerDes reference clock input’s DC requirement, AC-coupling has to be used. Figure 58 assumes  
that the LVPECL clock driver’s output impedance is 50 Ω. R1 is used to DC-bias the LVPECL outputs  
prior to AC-coupling. Its value could be ranged from 140 Ω to 240 Ω depending on clock driver vendor’s  
requirement. R2 is used together with the SerDes reference clock receiver’s 50 Ω termination resistor to  
attenuate the LVPECL output’s differential peak level such that it meets the device SerDes reference  
clock’s differential input amplitude requirement (between 200 mV and 800 mV differential peak). For  
example, if the LVPECL output’s differential peak is 900 mV and the desired SerDes reference clock input  
amplitude is selected as 600 mV, the attenuation factor is 0.67, which requires R2 = 25 Ω. Consult clock  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
84  
Freescale Semiconductor  
driver chip manufacturer to verify whether this connection scheme is compatible with a particular clock  
driver chip.  
Chip  
LVPECL CLK Driver Chip  
50 Ω  
SDn_REF_CLK  
CLK_Out  
10 nF  
R2  
SerDes Refer.  
CLK Receiver  
R1  
R1  
100 Ω differential PWB trace  
10 nF  
Clock Driver  
R2  
SDn_REF_CLK  
CLK_Out  
50 Ω  
Figure 58. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)  
This figure shows the SerDes reference clock connection reference circuits for a single-ended clock driver.  
It assumes the DC levels of the clock driver are compatible with device SerDes reference clock input’s DC  
requirement.  
Single-Ended CLK  
Driver Chip  
Chip  
Total 50 Ω. Assume clock driver’s  
output impedance is about 16 Ω.  
50 Ω  
SDn_REF_CLK  
33 Ω  
Clock Driver  
CLK_Out  
SerDes Refer.  
CLK Receiver  
100 Ω differential PWB trace  
SDn_REF_CLK  
50 Ω  
50 Ω  
Figure 59. Single-Ended Connection (Reference Only)  
21.2.4 AC Requirements for SerDes Reference Clocks  
The clock driver selected should provide a high quality reference clock with low phase noise and  
cycle-to-cycle jitter. Phase noise less than 100 KHz can be tracked by the PLL and data recovery loops and  
is less of a problem. Phase noise above 15 MT/s is filtered by the PLL. The most problematic phase noise  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
85  
occurs in the 1–15 MT/s range. The source impedance of the clock driver should be 50 Ω to match the  
transmission line and reduce reflections which are a source of noise to the system.  
This table describes some AC parameters for PCI Express .  
Table 71. SerDes Reference Clock Common AC Parameters  
At recommended operating conditions with XVDD_SRDS or XVDD_SRDS = 1.0 V 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Rising Edge Rate  
Falling Edge Rate  
Rise Edge Rate  
Fall Edge Rate  
VIH  
1.0  
1.0  
200  
4.0  
4.0  
V/ns  
V/ns  
mV  
mV  
%
2, 3  
2, 3  
2
Differential Input High Voltage  
Differential Input Low Voltage  
VIL  
–200  
20  
2
Rising edge rate (SDn_REF_CLK) to falling edge rate  
(SDn_REF_CLK) matching  
Rise-Fall Matching  
1, 4  
Notes:  
1. Measurement taken from single ended waveform.  
2. Measurement taken from differential waveform.  
3. Measured from –200 mV to +200 mV on the differential waveform (derived from SDn_REF_CLK minus SDn_REF_CLK).  
The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is  
centered on the differential zero crossing. See Figure 60.  
4. Matching applies to rising edge rate for SDn_REF_CLK and falling edge rate for SDn_REF_CLK. It is measured using a  
200 mV window centered on the median cross point where SDn_REF_CLK rising meets SDn_REF_CLK falling. The  
median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The  
Rise Edge Rate of SDn_REF_CLK should be compared to the Fall Edge Rate of SDn_REF_CLK, the maximum allowed  
difference should not exceed 20% of the slowest edge rate. See Figure 61.  
Rise Edge Rate  
Fall Edge Rate  
VIH = +200 mV  
0.0 V  
VIL = –200 mV  
SDn_REF_CLK  
Minus  
SDn_REF_CLK  
Figure 60. Differential Measurement Points for Rise and Fall Time  
TFALL TRISE  
SDn_REF_CLK  
SDn_REF_CLK  
VCROSS MEDIAN +100 mV  
VCROSS MEDIAN  
VCROSS MEDIAN  
VCROSS MEDIAN –100 mV  
SDn_REF_CLK  
SDn_REF_CLK  
Figure 61. Single-Ended Measurement Points for Rise and Fall Time Matching  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
86  
Freescale Semiconductor  
21.3 SerDes Transmitter and Receiver Reference Circuits  
This figure shows the reference circuits for SerDes data lane’s transmitter and receiver.  
SD1_RXn or  
SD2_RXn  
SD1_TXn or  
SD2_TXn  
50  
50  
Ω
Ω
50 Ω  
50 Ω  
Receiver  
Transmitter  
SD1_TXn or  
SD2_TXn  
SD1_RXn or  
SD2_RXn  
Figure 62. SerDes Transmitter and Receiver Reference Circuits  
The DC and AC specification of SerDes data lanes are defined in each interface protocol section below in  
this document based on the application usage:  
Section 8, “Ethernet: Enhanced Three-Speed Ethernet (eTSEC)”  
Section 15, “PCI Express”  
Section 16, “Serial ATA (SATA)”  
Note that an external AC coupling capacitor is required for the above three serial transmission protocols  
with the capacitor value defined in specification of each protocol section.  
22 Package and Pin Listings  
This section details package parameters, pin assignments, and dimensions.  
22.1 Package Parameters for the MPC8377E TePBGA II  
The package parameters are provided in the following list. The package type is 31 mm × 31 mm,  
689 plastic ball grid array (TePBGA II).  
Package outline  
Interconnects  
31 mm × 31 mm  
689  
Pitch  
1.00 mm  
Module height (typical)  
Solder Balls  
2.0 mm to 2.46 mm (maximum)  
3.5% Ag, 96.5% Sn  
0.60 mm  
Ball diameter (typical)  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
87  
This figure shows the mechanical dimensions and bottom surface nomenclature of the TEPBGA II  
package.  
Figure 63. Mechanical Dimensions and Bottom Surface Nomenclature of the TEPBGA II  
Note:  
1
All dimensions are in millimeters.  
2
Dimensioning and tolerancing per ASME Y14. 5M-1994.  
3
Maximum solder ball diameter measured parallel to Datum A.  
4
Datum A, the seating plane, is determined by the spherical crowns of the solder balls.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
88  
Freescale Semiconductor  
5
Parallelism measurement should exclude any effect of mark on top surface of package.  
22.2 Pinout Listings  
This table provides the pinout listing for the TePBGA II package.  
Table 72. TePBGA II Pinout Listing  
Signal  
Package Pin Number  
Clock Signals  
Pin Type  
Power Supply  
Note  
CLKIN  
PCI_CLK/PCI_SYNC_IN  
PCI_SYNC_OUT  
PCI_CLK0  
K24  
C10  
N24  
L24  
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
3
I
O
O
O
O
O
O
I
PCI_CLK1  
M24  
M25  
M26  
L26  
PCI_CLK2  
PCI_CLK3  
PCI_CLK4  
RTC/PIT_CLOCK  
AF11  
DDR SDRAM Memory Interface  
MA0  
MA1  
U3  
U1  
T5  
T3  
T2  
T1  
R1  
P2  
P1  
N4  
V3  
M5  
N1  
M2  
M1  
U5  
U4  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
MA2  
MA3  
MA4  
MA5  
MA6  
MA7  
MA8  
MA9  
MA10  
MA11  
MA12  
MA13  
MA14  
MBA0  
MBA1  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
89  
Table 72. TePBGA II Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Note  
MBA2  
MCAS_B  
MCK_B0  
MCK_B1  
MCK_B2  
MCK_B3  
MCK_B4  
MCK_B5  
MCK0  
M3  
W5  
H1  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I/O  
I/O  
O
O
O
O
O
O
O
O
O
I/O  
I/O  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
3
K1  
V1  
W2  
AA1  
AB2  
J1  
MCK1  
L1  
MCK2  
V2  
MCK3  
W1  
Y1  
MCK4  
MCK5  
AB1  
M4  
R5  
MCKE0  
MCKE1  
MCS_B0  
MCS_B1  
MCS_B2  
MCS_B3  
MDIC0  
MDIC1  
MDM0  
3
W3  
P3  
9
T4  
R4  
AH8  
AJ8  
B6  
9
11  
11  
MDM1  
B2  
MDM2  
E2  
MDM3  
E1  
MDM4  
Y6  
MDM5  
AC6  
AE6  
AJ4  
L6  
MDM6  
MDM7  
MDM8  
MDQ0  
A8  
MDQ1  
A6  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
90  
Table 72. TePBGA II Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Note  
MDQ2  
MDQ3  
C7  
D8  
A7  
A5  
A3  
C6  
D7  
E8  
B1  
D5  
B3  
D6  
C3  
C2  
D4  
E6  
F6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
MDQ4  
MDQ5  
MDQ6  
MDQ7  
MDQ8  
MDQ9  
MDQ10  
MDQ11  
MDQ12  
MDQ13  
MDQ14  
MDQ15  
MDQ16  
MDQ17  
MDQ18  
MDQ19  
MDQ20  
MDQ21  
MDQ22  
MDQ23  
MDQ24  
MDQ25  
MDQ26  
MDQ27  
MDQ28  
MDQ29  
MDQ30  
MDQ31  
MDQ32  
MDQ33  
MDQ34  
G4  
F8  
E4  
C1  
G6  
F2  
G5  
H6  
H4  
D1  
G3  
H5  
F1  
W6  
AC1  
AC3  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
91  
Table 72. TePBGA II Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Note  
MDQ35  
MDQ36  
MDQ37  
MDQ38  
MDQ39  
MDQ40  
MDQ41  
MDQ42  
MDQ43  
MDQ44  
MDQ45  
MDQ46  
MDQ47  
MDQ48  
MDQ49  
MDQ50  
MDQ51  
MDQ52  
MDQ53  
MDQ54  
MDQ55  
MDQ56  
MDQ57  
MDQ58  
MDQ59  
MDQ60  
MDQ61  
MDQ62  
MDQ63  
MDQS0  
MDQS1  
MDQS2  
MDQS3  
AE1  
V6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
Y5  
AA4  
AB6  
AD3  
AC4  
AD4  
AF1  
AE4  
AC5  
AE2  
AE3  
AG1  
AG2  
AG3  
AF5  
AE5  
AD7  
AH2  
AG4  
AH3  
AG5  
AF8  
AJ5  
AF6  
AF7  
AH6  
AH7  
C8  
C4  
E3  
G2  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
92  
Table 72. TePBGA II Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Note  
MDQS4  
MDQS5  
AB5  
AD1  
AH1  
AJ3  
G1  
J6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
11  
11  
11  
11  
11  
6
MDQS6  
MDQS7  
MDQS8  
MECC0/MSRCID0  
MECC1/MSRCID1  
MECC2/MSRCID2  
MECC3/MSRCID3  
MECC4/MSRCID4  
MECC5/MDVAL  
MECC6  
J3  
K2  
K3  
J5  
J2  
L5  
MECC7  
L2  
MODT0  
N5  
U6  
M6  
P6  
MODT1  
O
6
MODT2  
O
6
MODT3  
O
6
MRAS_B  
AA3  
K4  
O
11  
11  
MVREF1  
I
MVREF2  
W4  
Y2  
I
MWE_B  
O
DUART Interface  
UART_SIN1/  
MSRCID2/LSRCID2  
L28  
L27  
K26  
I/O  
O
OVDD  
OVDD  
OVDD  
UART_SOUT1/  
MSRCID0/LSRCID0  
UART_CTS_B[1]/  
I/O  
MSRCID4/LSRCID4  
UART_RTS_B1  
N27  
K27  
O
OVDD  
OVDD  
UART_SIN2/  
I/O  
MSRCID3/LSRCID3  
UART_SOUT2/  
MSRCID1/LSRCID1  
K28  
K29  
O
OVDD  
OVDD  
UART_CTS_B[2]/  
MDVAL/LDVAL  
I/O  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
93  
Table 72. TePBGA II Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Note  
UART_RTS_B[2]  
L29  
O
OVDD  
Enhanced Local Bus Controller (eLBC) Interface  
LAD0  
LAD1  
E24  
G28  
H25  
F26  
C26  
J28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LAD2  
LAD3  
LAD4  
LAD5  
LAD6  
F21  
F23  
E25  
E26  
A23  
F24  
G24  
F25  
H28  
G25  
F27  
B21  
A25  
C28  
H24  
E23  
B28  
D28  
A27  
C25  
B27  
H27  
E21  
F20  
LAD7  
LAD8  
LAD9  
LAD10  
LAD11  
LAD12  
LAD13  
LAD14  
LAD15  
LA11/LAD16  
LA12/LAD17  
LA13/LAD18  
LA14/LAD19  
LA15/LAD20  
LA16/LAD21  
LA17/LAD22  
LA18/LAD23  
LA19/LAD24  
LA20/LAD25  
LA21/LAD26  
LA22/LAD27  
LA23/LAD28  
LA24/LAD29  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
94  
Table 72. TePBGA II Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Note  
LA25/LAD30  
LA26/LAD31  
LA27  
D29  
E20  
H26  
C29  
E28  
B26  
J25  
I/O  
I/O  
O
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
16  
LA28  
O
LA29  
O
LA30  
O
LA31  
O
LA10/LALE  
LBCTL  
H29  
A22  
B22  
C23  
B23  
D25  
F19  
C27  
D24  
C24  
B29  
E29  
F29  
D21  
A26  
F22  
C21  
J29  
O
O
LCLK0  
O
LCLK1  
O
LCLK2  
O
LCS_B0  
O
LCS_B1  
O
LCS_B2  
O
LCS_B3  
O
LCS_B4/LDP0  
LCS_B5/LDP1  
LA7/LCS_B6/LDP2  
LA8/LCS_B7/LDP3  
LFCLE/LGPL0  
LFALE/LGPL1  
LFRE_B/LGPL2/LOE_B  
LFWP_B/LGPL3  
I/O  
I/O  
I/O  
I/O  
O
O
O
O
LGPL4/LFRB_B/LGTA_B/  
LUPWAIT/LPBSE  
I/O  
LA9/LGPL5  
G29  
A21  
D23  
E22  
B25  
E27  
F28  
O
I
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LBVDD  
LSYNC_IN  
LSYNC_OUT  
O
O
O
O
O
LWE_B0/LFWE0/LBS_B0  
LWE_B1/LFWE1/LBS_B1  
LWE_B2/LFWE2/LBS_B2  
LWE_B3/LFWE3/LBS_B3  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
95  
Table 72. TePBGA II Pinout Listing (continued)  
Package Pin Number Pin Type  
eTSEC1/GPIO1/GPIO2/CFG_RESET Interface  
I/O  
Signal  
Power Supply  
Note  
TSEC1_COL/GPIO2[20]  
TSEC1_CRS/GPIO2[21]  
TSEC1_GTX_CLK  
TSEC1_RX_CLK  
AF22  
AE20  
AJ25  
AG22  
AD19  
AD20  
AD22  
AE21  
AE22  
AD21  
AJ22  
AG23  
AH22  
AD23  
LVDD1  
LVDD1  
LVDD1  
LVDD1  
LVDD1  
LVDD1  
LVDD1  
LVDD1  
LVDD1  
LVDD1  
LVDD1  
LVDD1  
LVDD1  
LVDD1  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
I/O  
O
I
TSEC1_RX_DV  
I
TSEC1_RX_ER/GPIO2[25]  
TSEC1_RXD0  
I/O  
I
TSEC1_RXD1  
I
I
TSEC1_RXD2  
TSEC1_RXD3  
I
TSEC1_TX_CLK  
I
TSEC1_TX_EN  
O
I/O  
I/O  
TSEC1_TX_ER/CFG_LBMUX  
TSEC1_TXD0/  
CFG_RESET_SOURCE[0]  
TSEC1_TXD1/  
CFG_RESET_SOURCE[1]  
AE23  
AF23  
AJ24  
I/O  
I/O  
I/O  
LVDD1  
LVDD1  
LVDD1  
16  
16  
16  
TSEC1_TXD2/  
CFG_RESET_SOURCE[2]  
TSEC1_TXD3/  
CFG_RESET_SOURCE[3]  
EC_GTX_CLK125  
EC_MDC/CFG_CLKIN_DIV  
EC_MDIO  
AH24  
AJ21  
AH21  
I
LVDD1  
LVDD1  
LVDD1  
16  
16  
16  
I/O  
I/O  
eTSEC2/GPIO1 Interface  
TSEC2_COL/GPIO1[21]/  
TSEC1_TMR_TRIG1  
AJ27  
I/O  
I/O  
LVDD2  
LVDD2  
16  
16  
TSEC2_CRS/GPIO1[22]/  
TSEC1_TMR_TRIG2  
AG29  
TSEC2_GTX_CLK  
AF28  
AF25  
O
I
LVDD2  
LVDD2  
16  
16  
TSEC2_RX_CLK/  
TSEC1_TMR_CLK  
TSEC2_RX_DV/GPIO1[23]  
TSEC2_RX_ER/GPIO1[25]  
AF26  
AG25  
I/O  
I/O  
LVDD2  
LVDD2  
16  
16  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
96  
Table 72. TePBGA II Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Note  
TSEC2_RXD0/GPIO1[16]  
TSEC2_RXD1/GPIO1[15]  
TSEC2_RXD2/GPIO1[14]  
TSEC2_RXD3/GPIO1[13]  
AE28  
AE29  
AH26  
AH25  
AG28  
I/O  
I/O  
I/O  
I/O  
I/O  
LVDD2  
LVDD2  
LVDD2  
LVDD2  
LVDD2  
16  
16  
16  
16  
16  
TSEC2_TX_CLK/GPIO2[24]/  
TSEC1_TMR_GCLK  
TSEC2_TX_EN/GPIO1[12]/  
TSEC1_TMR_ALARM2  
AJ26  
I/O  
I/O  
LVDD2  
LVDD2  
16  
16  
TSEC2_TX_ER/GPIO1[24]/  
TSEC1_TMR_ALARM1  
AG26  
TSEC2_TXD0/GPIO1[20]  
AH28  
AF27  
I/O  
I/O  
LVDD2  
LVDD2  
16  
16  
TSEC2_TXD1/GPIO1[19]/  
TSEC1_TMR_PP1  
TSEC2_TXD2/GPIO1[18]/  
TSEC1_TMR_PP2  
AJ28  
AF29  
I/O  
I/O  
LVDD2  
LVDD2  
16  
16  
TSEC2_TXD3/GPIO1[17]/  
TSEC1_TMR_PP3  
GPIO1 Interface  
GPIO1[0]/GTM1_TIN1/  
GTM2_TIN2/DREQ0_B  
P25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
GPIO1[1]/GTM1_TGATE1_B/  
GTM2_TGATE2_B/DACK0_B  
N25  
N26  
B9  
GPIO1[2]/GTM1_TOUT1_B/  
DDONE0_B  
GPIO1[3]/GTM1_TIN2/  
GTM2_TIN1/DREQ1_B  
GPIO1[4]/GTM1_TGATE2_B/  
GTM2_TGATE1_B/DACK1_B  
N29  
M29  
A9  
GPIO1[5]/GTM1_TOUT2_B/  
GTM2_TOUT1_B/DDONE1_B  
GPIO1[6]/GTM1_TIN3/  
GTM2_TIN4/DREQ2_B  
GPIO1[7]/GTM1_TGATE3_B/  
GTM2_TGATE4_B/DACK2_B  
B10  
J26  
J24  
GPIO1[8]/GTM1_TOUT3_B/  
DDONE2_B  
GPIO1[9]/GTM1_TIN4/  
GTM2_TIN3/DREQ3_B  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
97  
Table 72. TePBGA II Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Note  
GPIO1[10]/GTM1_TGATE4_B/  
GTM2_TGATE3_B/DACK3_B  
J27  
I/O  
OVDD  
GPIO1[11]/GTM1_TOUT4_B/  
GTM2_TOUT3_B/DDONE3_B  
P24  
I/O  
OVDD  
USB/GPIO2 Interface  
USBDR_CLK/GPIO2[23]  
AJ11  
I/O  
I/O  
OVDD  
OVDD  
USBDR_DIR_DPPULLUP/  
GPIO2[9]  
AG12  
USBDR_NXT/GPIO2[8]  
AJ10  
AF10  
I/O  
I/O  
OVDD  
OVDD  
USBDR_PCTL0/GPIO2[11]/  
SD_DAT2  
USBDR_PCTL1/GPIO2[22]/  
SD_DAT3  
AE9  
I/O  
I/O  
OVDD  
OVDD  
USBDR_PWRFAULT/  
GPIO2[10]/SD_DAT1  
AG13  
USBDR_STP_SUSPEND  
AH12  
AG10  
O
OVDD  
OVDD  
12  
USBDR_D0_ENABLEN/  
GPIO2[0]  
I/O  
USBDR_D1_SER_TXD/  
GPIO2[1]  
AF13  
AG11  
I/O  
I/O  
OVDD  
OVDD  
USBDR_D2_VMO_SE0/  
GPIO2[2]  
USBDR_D3_SPEED/GPIO2[3]  
USBDR_D4_DP/GPIO2[4]  
USBDR_D5_DM/GPIO2[5]  
AH11  
AG9  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
AF9  
USBDR_D6_SER_RCV/  
GPIO2[6]  
AH13  
USBDR_D7_DRVVBUS/  
GPIO2[7]  
AH10  
I/O  
OVDD  
I2C Interface  
IIC1_SCL  
IIC1_SDA  
IIC2_SCL  
IIC2_SDA  
C12  
B12  
A10  
A12  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
2
2
2
2
JTAG Interface  
B13  
TCK  
I
OVDD  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
98  
Table 72. TePBGA II Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Note  
TDI  
TDO  
E14  
C13  
A13  
E11  
I
O
I
OVDD  
OVDD  
OVDD  
OVDD  
4
3
4
4
TMS  
TRST_B  
I
PCI Signals  
PCI_AD0  
PCI_AD1  
PCI_AD2  
PCI_AD3  
PCI_AD4  
PCI_AD5  
PCI_AD6  
PCI_AD7  
PCI_AD8  
PCI_AD9  
PCI_AD10  
PCI_AD11  
PCI_AD12  
PCI_AD13  
PCI_AD14  
PCI_AD15  
PCI_AD16  
PCI_AD17  
PCI_AD18  
PCI_AD19  
PCI_AD20  
PCI_AD21  
PCI_AD22  
PCI_AD23  
PCI_AD24  
PCI_AD25  
PCI_AD26  
P26  
N28  
P29  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
P27  
R26  
R29  
T24  
T25  
R27  
P28  
U25  
R28  
U26  
U24  
T29  
V24  
Y26  
V28  
AA25  
AA26  
W29  
AA24  
AA27  
AC26  
AB25  
AB24  
AA28  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
99  
Table 72. TePBGA II Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Note  
PCI_AD27  
PCI_AD28  
AA29  
AC24  
AC25  
AB28  
AE24  
T26  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
5
PCI_AD29  
PCI_AD30  
PCI_AD31  
PCI_C_BE_B0  
PCI_C_BE_B1  
PCI_C_BE_B2  
PCI_C_BE_B3  
PCI_DEVSEL_B  
PCI_FRAME_B  
PCI_GNT_B0  
T28  
V29  
Y29  
U28  
V27  
AE27  
AC28  
PCI_GNT_B[1]/  
CPCI_HS_LED  
PCI_GNT_B[2]/  
AD27  
O
OVDD  
CPCI_HS_ENUM  
PCI_GNT_B[3]/PCI_PME  
PCI_GNT_B[4]  
PCI_IDSEL  
AC27  
AE25  
W28  
AD29  
U29  
O
O
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
5
PCI_INTA_B/IRQ_OUT_B  
PCI_IRDY_B  
O
I/O  
I/O  
I/O  
I/O  
I
2
5
PCI_PAR  
V25  
5
PCI_PERR_B  
Y25  
PCI_REQ_B0  
AE26  
AC29  
AB29  
AD26  
W27  
AD28  
V26  
5
PCI_REQ_B[1]/CPCI_HS_ES  
PCI_REQ_B2  
I
PCI_REQ_B3  
I
PCI_REQ_B4  
I
PCI_RESET_OUT_B  
PCI_SERR_B  
O
I/O  
I/O  
I/O  
I
PCI_STOP_B  
W26  
Y24  
5
PCI_TRDY_B  
5
M66EN  
AD15  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
100  
Table 72. TePBGA II Pinout Listing (continued)  
Package Pin Number Pin Type  
Programmable Interrupt Controller (PIC) Interface  
Signal  
Power Supply  
Note  
MCP_OUT_B  
IRQ_B0/MCP_IN_B/GPIO2[12]  
IRQ_B1/GPIO2[13]  
AD14  
F9  
O
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
E9  
IRQ_B2/GPIO2[14]  
F10  
D9  
IRQ_B3/GPIO2[15]  
IRQ_B4/GPIO2[16]/SD_WP  
C9  
IRQ_B5/GPIO2[17]/  
USBDR_PWRFAULT  
AE10  
IRQ_B6/GPIO2[18]  
IRQ_B7/GPIO2[19]  
AD10  
AD9  
I/O  
I/O  
OVDD  
OVDD  
PMC Interface  
QUIESCE_B  
D13  
O
OVDD  
SerDes1 Interface  
L1_SD_IMP_CAL_RX  
L1_SD_IMP_CAL_TX  
L1_SD_REF_CLK  
L1_SD_REF_CLK_B  
L1_SD_RXA_N  
L1_SD_RXA_P  
AJ14  
AG19  
AJ17  
AH17  
AJ15  
AH15  
AJ19  
AH19  
AF15  
AE15  
AF18  
AE18  
AJ18  
I
I
L1_XPADVDD  
L1_XPADVDD  
L1_XPADVDD  
L1_XPADVDD  
L1_XPADVDD  
L1_XPADVDD  
L1_XPADVDD  
L1_XPADVDD  
L1_XPADVDD  
L1_XPADVDD  
L1_XPADVDD  
L1_XPADVDD  
I
I
I
I
L1_SD_RXE_N  
L1_SD_RXE_P  
I
I
L1_SD_TXA_N  
O
O
O
O
L1_SD_TXA_P  
L1_SD_TXE_N  
L1_SD_TXE_P  
L1_SDAVDD_0  
SerDes PLL  
Power  
(1.0 or 1.05 V)  
L1_SDAVSS_0  
L1_XCOREVDD  
AG17  
SerDes PLL  
GND  
AH14, AJ16, AF17, AH20, AJ20  
SerDes Core  
Power  
(1.0 or 1.05 V)  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
101  
Table 72. TePBGA II Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Note  
L1_XCOREVSS  
AG14, AG15, AG16, AH16, AG18, AG20  
SerDes Core  
GND  
L1_XPADVDD  
L1_XPADVSS  
AE16, AF16, AD18, AE19, AF19  
SerDes I/O  
Power (1.0 or  
1.05 V)  
AF14, AE17, AF20  
SerDes I/O  
GND  
SerDes2 Interface  
L2_SD_IMP_CAL_RX  
L2_SD_IMP_CAL_TX  
L2_SD_REF_CLK  
L2_SD_REF_CLK_B  
L2_SD_RXA_N  
L2_SD_RXA_P  
C19  
C15  
B17  
A17  
A19  
B19  
A15  
B15  
D18  
E18  
D15  
E15  
A16  
I
I
L2_XPADVDD  
L2_XPADVDD  
L2_XPADVDD  
L2_XPADVDD  
L2_XPADVDD  
L2_XPADVDD  
L2_XPADVDD  
L2_XPADVDD  
L2_XPADVDD  
L2_XPADVDD  
L2_XPADVDD  
L2_XPADVDD  
I
I
I
I
L2_SD_RXE_N  
L2_SD_RXE_P  
I
I
L2_SD_TXA_N  
O
O
O
O
L2_SD_TXA_P  
L2_SD_TXE_N  
L2_SD_TXE_P  
L2_SDAVDD_0  
SerDes PLL  
Power  
(1.0 or 1.05 V)  
L2_SDAVSS_0  
L2_XCOREVDD  
C17  
SerDes PLL  
GND  
A14, B14, D17, B18, B20  
SerDes Core  
Power  
(1.0 or 1.05 V)  
L2_XCOREVSS  
L2_XPADVDD  
C14, C16, A18, C18, A20, C20  
D14, E16, F18, D19, E19  
SerDes Core  
GND  
SerDes I/O  
Power (1.0 or  
1.05 V)  
L2_XPADVSS  
D16, E17, D20  
SerDes I/O  
GND  
SPI Interface  
SPICLK/SD_CLK  
AH9  
I/O  
OVDD  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
102  
Table 72. TePBGA II Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Note  
SPIMISO/SD_DAT0  
SPIMOSI/SD_CMD  
SPISEL_B/SD_CD  
AD11  
AJ9  
I/O  
I/O  
I
OVDD  
OVDD  
OVDD  
AE11  
System Control Interface  
SRESET_B  
HRESET_B  
PORESET_B  
AD12  
AE12  
AE14  
I/O  
I/O  
I
OVDD  
OVDD  
OVDD  
2
1
Test Interface  
TEST  
E10  
D10  
D12  
I
I
I
OVDD  
OVDD  
OVDD  
10  
13  
13  
TEST_SEL0  
TEST_SEL1  
Thermal Management  
F15  
Reserved  
LVDD1  
LVDD2  
LBVDD  
VDD  
I
14  
Power Supply Signals  
AC21, AG21, AH23  
Power for  
eTSEC 1 I/O  
(2.5 V, 3.3 V)  
LVDD1  
LVDD2  
LBVDD  
VDD  
AG24, AH27, AH29  
Power for  
eTSEC 2 I/O  
(2.5 V, 3.3 V)  
G20, D22, A24, G26, D27, A28  
Power for eLBC  
(3.3, 2.5, or  
1.8 V)  
K10, L10, M10, N10, P10, R10, T10, U10,  
Power for Core  
V10, W10, Y10, K11, R11, Y11, K12, Y12, (1.0 V or 1.5 V)  
K13, Y13, K14, Y14, K15, L15, W15, Y15,  
K16, Y16, K17, Y17, K18, Y18, K19, R19,  
Y19, K20, L20, M20, N20, P20, R20, T20,  
U20, V20, W20, Y20  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
103  
Table 72. TePBGA II Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Note  
GND  
(VSS)  
A1, AJ1, H2, N2, AA2, AD2, D3, R3, AF3, A4,  
F4, J4, L4, V4, Y4, AB4, B5, E5, P5, AH5, K6,  
T6, AA6, AD6, AG6, F7, J7, Y7, AJ7, B8,  
AE8, AG8, G9, AC9,B11, D11, F11, L11,  
M11, N11, P11, T11, U11, V11, W11,L12,  
M12, N12, P12, R12, T12, U12, V12, W12,  
E12, E13, L13, M13, N13, P13, R13, T13,  
U13, V13, W13, AE13, AJ13, F14, L14, M14,  
N14, P14, R14, T14, U14, V14, W14, M15,  
N15, P15, R15, T15, U15, V15, L16, M16,  
N16, P16, R16, T16, U16, V16, W16, L17,  
M17, N17, P17, R17, T17, U17, V17, W17,  
L18, M18, N18, P18, R18, T18, U18, V18,  
W18, L19, M19, N19, P19, T19, U19, V19,  
W19, AC20, G21, AF21, C22, J23, AA23,  
AJ23, B24, W24, AF24, K25, R25, AD25,  
D26, G27, M27, T27, Y27, AB27, AG27, A29,  
AJ29  
AVDD_C  
AVDD_L  
AVDD_P  
GVDD  
AD13  
Power for e300  
core PLL (1.0 V  
or 1.05 V)  
15  
15  
15  
F13  
Power for eLBC  
PLL (1.0 V or  
1.05 V)  
F12  
Power for  
system PLL  
(1.0 V or 1.05 V)  
A2, D2, R2, U2, AC2, AF2, AJ2, F3, H3, L3, Power for DDR  
N3, Y3, AB3, B4, P4, AF4, AH4, C5, F5, K5, SDRAM I/O  
V5, AA5, AD5, N6, R6, AJ6, B7, E7, K7, AA7, Voltage (2.5 or  
AE7, AG7, AD8 1.8 V)  
GVDD  
OVDD  
NC  
AC10, AF12, AJ12, K23, Y23, R24, AD24, PCI, USB, and  
L25, W25, AB26, U27, M28, Y28, G10, A11, other Standard  
OVDD  
8
C11  
(3.3 V)  
No Connect  
F16, F17, AD16, AD17  
Pull Down  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
104  
Table 72. TePBGA II Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Note  
Pull Down  
B16, AH18  
7
Notes:  
1. This pin is an open drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OVDD.  
2. This pin is an open drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OVDD.  
3. This output is actively driven during reset rather than being released to high impedance during reset.  
4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.  
5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI Specification recommendation and see  
AN3665, “MPC837xE Design Checklist,” for more details.  
6. These are On Die Termination pins, used to control DDR2 memories internal termination resistance.  
7. This pin must always be tied to GND using a 0 Ω resistor.  
8. This pin must always be left not connected.  
9. For DDR2 operation, it is recommended that MDIC0 be tied to GND using an 18.2 Ω resistor and MDIC1 be tied to DDR  
power using an 18.2 Ω resistor.  
10.This pin must always be tied low. If it is left floating it may cause the device to malfunction.  
11.See AN3665, “MPC837xE Design Checklist,” for proper DDR termination.  
12.This pin must not be pulled down during PORESET.  
13.This pin must always be tied to OVDD.  
14.Open or tie to GND.  
15.Voltage settings are dependent on the frequency used; see Table 3.  
16.See AN3665, “MPC837xE Design Checklist,” for proper termination.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
105  
23 Clocking  
This figure shows the internal distribution of clocks within this chip.  
e300 core  
core_clk  
Core PLL  
csb_clk  
to DDR  
memory  
controller  
6
6
DDR  
DDR  
Memory  
Device  
MCK[0:5]  
MCK[0:5]  
Clock  
Div  
/2  
ddr_clk  
lbiu_clk  
Clock  
Unit  
System PLL  
/n  
LCLK[0:2]  
to local bus  
memory  
Local Bus  
Memory  
Device  
LBIU  
DLL  
LSYNC_OUT  
LSYNC_IN  
controller  
csb_clk to rest  
of the device  
PCI_CLK/  
PCI_SYNC_IN  
CFG_CLKIN_DIV  
CLKIN  
PCI_SYNC_OUT  
PCI_CLK[0:4]  
PCI Clock  
Divider  
5
Figure 64. Clock Subsystem  
The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on  
whether the device is configured in PCI host or PCI agent mode. When the device is configured as a PCI  
host device, CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (÷2) and the  
multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input  
selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCICOEn]  
parameters select whether CFG_CLKIN_DIV is driven out on the PCI_CLK_OUTn signals.  
PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to  
synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN,  
with equal delay to all PCI agent devices in the system, to allow the device to function. When the device  
is configured as a PCI agent device, PCI_CLK is the primary input clock. When the device is configured  
as a PCI agent device the CLKIN signal should be tied to GND.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
106  
Freescale Semiconductor  
As shown in Figure 64, the primary clock input (frequency) is multiplied up by the system phase-locked  
loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the  
DDR controller (ddr_clk), and the internal clock for the local bus interface unit (lbiu_clk).  
The csb_clk frequency is derived from a complex set of factors that can be simplified into the following  
equation:  
csb_clk = {PCI_SYNC_IN × (1 + CFG_CLKIN_DIV)} × SPMF  
Eqn. 20  
In PCI host mode, PCI_SYNC_IN × (1 + CFG_CLKIN_DIV) is the CLKIN frequency.  
The csb_clk serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up  
the csb_clk frequency to create the internal clock for the e300 core (core_clk). The system and core PLL  
multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low register  
(RCWLR) which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4,  
“Reset, Clocking, and Initialization,” in the MPC8379E Reference Manual for more information on the  
clock subsystem.  
The internal ddr_clk frequency is determined by the following equation:  
ddr_clk = csb_clk × (1 + RCWLR[DDRCM])  
Eqn. 21  
Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider  
(÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate  
is the same frequency as ddr_clk.  
The internal lbiu_clk frequency is determined by the following equation:  
lbiu_clk = csb_clk × (1 + RCWLR[LBCM])  
Eqn. 22  
Note that lbiu_clk is not the external local bus frequency; lbiu_clk passes through the LBIU clock divider  
to create the external local bus clock outputs (LCLK[0:2]). The eLBC clock divider ratio is controlled by  
LCRR[CLKDIV].  
Some of the internal units may be required to be shut off or operate at lower frequency than the csb_clk  
frequency. Those units have a default clock ratio that can be configured by a memory mapped register after  
the device comes out of reset. Table 73 specifies which units have a configurable clock frequency.  
Table 73. Configurable Clock Units  
Unit  
eTSEC1, eTSEC2  
Default Frequency  
Options  
csb_clk/3  
csb_clk/3  
csb_clk/3  
csb_clk/3  
csb_clk  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk  
eSDHC and I2C11  
Security block  
USB DR  
PCI and DMA complex  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
107  
Table 73. Configurable Clock Units (continued)  
Default Frequency  
Unit  
Options  
PCI Express1, 2  
SATA1, 2  
csb_clk/3  
csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk  
1
This only applies to I2C1 (I2C2 clock is not configurable).  
This table provides the operating frequencies for the TePBGA II package under recommended operating  
conditions (see Table 3).  
Table 74. Operating Frequencies for TePBGA II  
Minimum Operating  
Frequency (MT/s)  
Maximum Operating  
Frequency (MT/s)  
Parameter1  
e300 core frequency (core_clk)  
333  
133  
125  
83  
800  
400  
200  
167  
133  
400  
66  
Coherent system bus frequency (csb_clk)  
DDR2 memory bus frequency (MCK)1  
DDR1 memory bus frequency (MCK) 2  
Local bus frequency (LCLKn)1  
Local bus controller frequency (lbc_clk)  
PCI input frequency (CLKIN or PCI_CLK)  
eTSEC frequency  
25  
133  
400  
200  
200  
200  
400  
200  
Security encryption controller frequency  
USB controller frequency  
eSDHC controller frequency  
PCI Express controller frequency  
SATA controller frequency  
Notes:  
1. The CLKIN frequency, RCWLR[SPMF], and RCWLR[COREPLL] settings must be chosen such that the resulting csb_clk,  
MCK, LCLK[0:2], and core_clk frequencies do not exceed their respective maximum or minimum operating frequencies.  
The value of SCCR[xCM] must be programmed such that the maximum internal operating frequency of the Security core,  
USB modules, SATA, and eSDHC will not exceed their respective value listed in this table.  
2. The DDR data rate is 2× the DDR memory bus frequency.  
3. The local bus frequency is ½, ¼, or 1/8 of the lbiu_clk frequency (depending on LCRR[CLKDIV]) which is in turn 1× or 2×  
the csb_clk frequency (depending on RCWLR[LBCM]).  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
108  
Freescale Semiconductor  
23.1 System PLL Configuration  
The system PLL is controlled by the RCWLR[SPMF] parameter. The system PLL VCO frequency  
depends on RCWLR[DDRCM] and RCWLR[LBCM]. Table 75 shows the multiplication factor encodings  
for the system PLL.  
NOTE  
If RCWLR[DDRCM] and RCWLR[LBCM] are both cleared, the system  
PLL VCO frequency = (CSB frequency) × (System PLL VCO Divider).  
If either RCWLR[DDRCM] or RCWLR[LBCM] are set, the system PLL  
VCO frequency = 2 × (CSB frequency) × (System PLL VCO Divider).  
The VCO divider needs to be set properly so that the System PLL VCO  
frequency is in the range of 400–800 MT/s.  
Table 75. System PLL Multiplication Factors  
RCWLR[SPMF]  
System PLL Multiplication Factor  
0000  
0001  
Reserved  
Reserved  
× 2  
0010  
0011  
× 3  
0100  
× 4  
0101  
× 5  
0110  
× 6  
0111–1111  
× 7 to × 15  
As described in Section 23, “Clocking,” The LBIUCM, DDRCM, and SPMF parameters in the reset  
configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the  
primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (csb_clk). Table 77  
and Table 78 show the expected frequency values for the CSB frequency for select csb_clk to  
CLKIN/PCI_SYNC_IN ratios.  
The RCWLR[SVCOD] denotes the system PLL VCO internal frequency as shown in Table 76.  
Table 76. System PLL VCO Divider  
RCWLR[SVCOD]  
VCO Division Factor  
00  
01  
10  
11  
4
8
2
1
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
109  
Table 77. CSB Frequency Options for Host Mode  
Input Clock Frequency (MT/s)2  
CFG_CLKIN_DIV  
at Reset1  
csb_clk :  
SPMF  
25  
33.33  
66.67  
Input Clock Ratio1  
csb_clk Frequency (MT/s)  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
2 : 1  
3 : 1  
133  
200  
267  
333  
400  
4 : 1  
133  
167  
200  
233  
267  
300  
333  
367  
400  
5 : 1  
6 : 1  
150  
175  
200  
225  
250  
275  
300  
325  
350  
375  
7 : 1  
8 : 1  
9 : 1  
10 : 1  
11 : 1  
12 : 1  
13 : 1  
14 : 1  
15 : 1  
Notes:  
1. CFG_CLKIN_DIV select the ratio between CLKIN and PCI_SYNC_OUT.  
2. CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.  
Table 78. CSB Frequency Options for Agent Mode  
Input Clock Frequency (MT/s)2  
CFG_CLKIN_DIV  
at reset1  
csb_clk :  
SPMF  
25  
33.33  
66.67  
Input Clock Ratio1  
csb_clk Frequency (MT/s)  
Low  
Low  
Low  
Low  
Low  
0010  
0011  
0100  
0101  
0110  
2 : 1  
3 : 1  
4 : 1  
5 : 1  
6 : 1  
133  
200  
267  
333  
400  
133  
167  
200  
150  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
110  
Table 78. CSB Frequency Options for Agent Mode (continued)  
Input Clock Frequency (MT/s)2  
CFG_CLKIN_DIV  
at reset1  
csb_clk :  
SPMF  
25  
33.33  
66.67  
Input Clock Ratio1  
csb_clk Frequency (MT/s)  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
7 : 1  
8 : 1  
175  
200  
225  
250  
275  
300  
325  
350  
375  
233  
267  
300  
333  
367  
400  
9 : 1  
10 : 1  
11 : 1  
12 : 1  
13 : 1  
14 : 1  
15 : 1  
Notes:  
1. CFG_CLKIN_DIV doubles csb_clk if set high.  
2. CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.  
23.2 Core PLL Configuration  
RCWLR[COREPLL] selects the ratio between the internal coherent system bus clock (csb_clk) and the  
e300 core clock (core_clk). Table 79 shows the encodings for RCWLR[COREPLL]. COREPLL values  
that are not listed in Table 79 should be considered as reserved.  
NOTE  
Core VCO frequency = core frequency × VCO divider  
VCO divider has to be set properly so that the core VCO frequency is in the  
range of 800–1600 MT/s.  
Table 79. e300 Core PLL Configuration  
RCWLR[COREPLL]  
core_clk : csb_clk Ratio  
VCO Divider 1  
0–1  
nn  
2–5  
6
0000  
0
PLL bypassed  
(PLL off, csb_clk clocks core directly)  
PLL bypassed  
(PLL off, csb_clk clocks core  
directly)  
11  
00  
01  
10  
00  
nnnn  
0001  
0001  
0001  
0001  
n
0
0
0
1
n/a  
1:1  
n/a  
2
1:1  
4
1:1  
8
1.5:1  
2
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
111  
Table 79. e300 Core PLL Configuration (continued)  
RCWLR[COREPLL]  
core_clk : csb_clk Ratio  
VCO Divider 1  
0–1  
2–5  
6
01  
10  
00  
01  
10  
00  
01  
10  
00  
01  
10  
00  
01  
10  
00  
01  
10  
0001  
0001  
0010  
0010  
0010  
0010  
0010  
0010  
0011  
0011  
0011  
0011  
0011  
0011  
0100  
0100  
0100  
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1.5:1  
1.5:1  
2:1  
4
8
2
4
8
2
4
8
2
4
8
2
4
8
2
4
8
2:1  
2:1  
2.5:1  
2.5:1  
2.5:1  
3:1  
3:1  
3:1  
3.5:1  
3.5:1  
3.5:1  
4:1  
4:1  
4:1  
Notes:  
1. Core VCO frequency = Core frequency × VCO divider. Note that VCO divider has to be set properly so that the core VCO  
frequency is in the range of 800–1600 MT/s.  
23.3 Suggested PLL Configurations  
This table shows suggested PLL configurations for different input clocks (LBCM = 0).  
Table 80. Example Clock Frequency Combinations  
1
1
eLBC  
/4  
e300 Core  
Sys  
VCO  
DDRdata  
rate  
1
1
,3  
Ref  
LBCM DDRCM SVCOD SPMF  
CSB  
/2  
/8  
× 1 × 1.5 × 2 × 2.5 × 3  
1,  
1,  
4
2
25.0  
25.0  
33.3  
33.3  
0
0
0
0
1
1
1
1
2
2
2
2
5
6
5
4
500  
600  
667  
533  
125  
150  
167  
133  
250  
62.5 31.3 15.6  
75 6 37.5 18.8  
83.3 6 41.6 20.8  
66.7 33.3 16.7  
375  
300  
333  
267  
375 450  
333 416 500  
333 400  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
112  
Table 80. Example Clock Frequency Combinations (continued)  
1
1
eLBC  
e300 Core  
Sys  
VCO  
DDRdata  
rate  
1
1
,3  
Ref  
LBCM DDRCM SVCOD SPMF  
CSB  
/2  
/4  
/8  
× 1 × 1.5 × 2 × 2.5 × 3  
1,  
1,  
4
2
48.0  
66.7  
25.0  
33.3  
50.0  
50.0  
66.7  
66.7  
66.7  
Notes:  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
2
2
4
2
4
2
2
2
2
3
2
8
8
4
8
4
5
6
576  
533  
800  
533  
800  
800  
533  
667  
800  
144  
133  
200  
288  
72 6  
36  
18  
360 432  
333 400  
266  
200  
267  
200  
66.7 33.3 16.7  
100 6  
50 25  
133 6 66.7 33.3  
400 500 600  
266.7  
200  
400 533 667 800  
400 500 600  
600 800  
400 533 667 800  
100 6  
50  
25  
400  
400 5  
267  
100 6 50  
266.7  
333  
133 6 66.7 33.3  
333  
83.3 6 41.6 333 500 667  
100 6 50  
400 600 800  
400  
400 5  
1. Values in MT/s.  
2. System PLL VCO range: 400–800 MT/s.  
3. CSB frequencies less than 133 MT/s will not support Gigabit Ethernet rates.  
4. Minimum data rate for DDR2 is 250 MT/s and for DDR1 is 167 MT/s.  
5. Applies to DDR2 only.  
6. Applies to eLBC PLL-enabled mode only.  
24 Thermal  
This section describes the thermal specifications of this chip.  
24.1 Thermal Characteristics  
This table provides the package thermal characteristics for the 689 31 × 31mm TePBGA II package.  
Table 81. Package Thermal Characteristics for TePBGA II  
Parameter  
Symbol  
Value  
Unit  
Note  
Junction-to-ambient natural convection on single layer board (1s)  
Junction-to-ambient natural convection on four layer board (2s2p)  
Junction-to-ambient (at 200 ft/min) on single layer board (1s)  
Junction-to-ambient (at 200 ft/min) on four layer board (2s2p)  
Junction-to-board thermal  
RθJA  
RθJA  
21  
15  
16  
12  
8
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 2, 3  
1, 3  
1, 3  
4
RθJMA  
RθJMA  
RθJB  
Junction-to-case thermal  
RθJC  
6
5
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
113  
Table 81. Package Thermal Characteristics for TePBGA II (continued)  
Parameter  
Symbol  
Value  
Unit  
Note  
Junction-to-package natural convection on top  
ψJT  
6
°C/W  
6
Notes:  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written  
as Psi-JT.  
24.2 Thermal Management Information  
For the following sections, P = (V  
× I ) + P where P is the power dissipation of the I/O drivers.  
DD I/O I/O  
D
DD  
24.2.1 Estimation of Junction Temperature with Junction-to-Ambient  
Thermal Resistance  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
TJ = TA + (RθJA × PD)  
where:  
TJ = junction temperature (°C)  
TA = ambient temperature for the package (°C)  
RθJA = junction to ambient thermal resistance (°C/W)  
PD = power dissipation in the package (W)  
The junction to ambient thermal resistance is an industry-standard value that provides a quick and easy  
estimation of thermal performance. Generally, the value obtained on a single layer board is appropriate for  
a tightly packed printed circuit board. The value obtained on the board with the internal planes is usually  
appropriate if the board has low power dissipation and the components are well separated. Test cases have  
demonstrated that errors of a factor of two (in the quantity T T ) are possible.  
J
A
24.2.2 Estimation of Junction Temperature with Junction-to-Board  
Thermal Resistance  
NOTE  
The heat sink cannot be mounted on the package.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
114  
Freescale Semiconductor  
The thermal performance of a device cannot be adequately predicted from the junction to ambient thermal  
resistance. The thermal performance of any component is strongly dependent on the power dissipation of  
surrounding components. In addition, the ambient temperature varies widely within the application. For  
many natural convection and especially closed box applications, the board temperature at the perimeter  
(edge) of the package is approximately the same as the local air temperature near the device. Specifying  
the local ambient conditions explicitly as the board temperature provides a more precise description of the  
local ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following equation:  
TJ = TA + (RθJB × PD)  
where:  
TA = ambient temperature for the package (°C)  
RθJB = junction to board thermal resistance (°C/W) per JESD51-8  
PD = power dissipation in the package (W)  
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction  
temperature can be made. The application board should be similar to the thermal test condition: the  
component is soldered to a board with internal planes.  
24.2.3 Experimental Determination of Junction Temperature  
NOTE  
The heat sink cannot be mounted on the package.  
To determine the junction temperature of the device in the application after prototypes are available, use  
the thermal characterization parameter (Ψ ) to determine the junction temperature and a measure of the  
JT  
temperature at the top center of the package case using the following equation:  
TJ = TT + (ΨJT × PD)  
where:  
TJ = junction temperature (°C)  
TT = thermocouple temperature on top of package (°C)  
ΨJT = junction to ambient thermal resistance (°C/W)  
PD = power dissipation in the package (W)  
The thermal characterization parameter is measured per the JESD51-2 specification using a 40 gauge type  
T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
24.2.4 Heat Sinks and Junction-to-Case Thermal Resistance  
For the power values the device is expected to operate at, it is anticipated that a heat sink will be required.  
A preliminary estimate of heat sink performance can be obtained from the following first-cut approach.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
115  
The thermal resistance is expressed as the sum of a junction to case thermal resistance and a  
case-to-ambient thermal resistance:  
RθJA = RθJC + RθCA  
where:  
RθJA = junction to ambient thermal resistance (°C/W)  
RθJC = junction to case thermal resistance (°C/W)  
RθCA = case to ambient thermal resistance (°C/W)  
RθJC is device-related and cannot be influenced by the user. The user controls the thermal environment to  
change the case to ambient thermal resistance, RθCA. For instance, the user can change the size of the heat  
sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit  
board, or change the thermal dissipation on the printed circuit board surrounding the device.  
This first-cut approach overestimates the heat sink size required, since heat flow through the board is not  
accounted for, which can be as much as one-third to one-half of the power generated in the package.  
Accurate thermal design requires thermal modeling of the application environment using computational  
fluid dynamics software which can model both the conduction cooling through the package and board and  
the convection cooling due to the air moving through the application. Simplified thermal models of the  
packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in  
the thermal resistance table. More detailed thermal models can be made available on request.  
The thermal performance of devices with heat sinks has been simulated with a few commercially available  
heat sinks. The heat sink choice is determined by the application environment (temperature, air flow,  
adjacent component power dissipation) and the physical space available. Because of the wide variety of  
application environments, a single standard heat sink applicable to all cannot be specified.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
116  
Freescale Semiconductor  
This table shows the heat sink thermal resistance for TePBGA II package with heat sinks, simulated in a  
standard JEDEC environment, per JESD 51-6.  
Table 82. Thermal Resistance with Heat Sink in Open Flow (TePBGA II)  
Thermal Resistance  
Heat Sink Assuming Thermal Grease  
Air Flow  
(°/W)  
AAVID 30 × 30 × 9.4 mm Pin Fin  
Natural Convection  
0.5 m/s  
13.1  
10.6  
9.3  
8.2  
7.5  
11.1  
8.5  
7.7  
7.2  
6.8  
11.3  
9.0  
7.8  
7.0  
6.5  
9.7  
7.7  
6.8  
6.4  
6.1  
1 m/s  
2 m/s  
4 m/s  
AAVID 31 × 35 × 23 mm Pin Fin  
AAVID 43× 41× 16.5mm Pin Fin  
Wakefield, 53 × 53 × 25 mm Pin Fin  
Natural Convection  
0.5 m/s  
1 m/s  
2 m/s  
4 m/s  
Natural Convection  
0.5 m/s  
1 m/s  
2 m/s  
4 m/s  
Natural Convection  
0.5 m/s  
1 m/s  
2 m/s  
4 m/s  
Heat sink vendors include the following:  
Aavid Thermalloy  
www.aavidthermalloy.com  
Alpha Novatech  
www.alphanovatech.com  
International Electronic Research Corporation (IERC)  
www.ctscorp.com  
Millennium Electronics (MEI)  
www.mei-thermal.com  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
117  
Tyco Electronics  
Chip Coolers™  
www.chipcoolers.com  
Wakefield Engineering  
www.wakefield.com  
Interface material vendors include the following:  
Chomerics, Inc.  
www.chomerics.com  
Dow-Corning Corporation  
Dow-Corning Electronic Materials  
www.dowcorning.com  
Shin-Etsu MicroSi, Inc.  
www.microsi.com  
The Bergquist Company  
www.bergquistcompany.com  
24.3 Heat Sink Attachment  
The device requires the use of heat sinks. When heat sinks are attached, an interface material is required,  
preferably thermal grease and a spring clip. The spring clip should connect to the printed circuit board,  
either to the board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces  
that can lift the edge of the package or peel the package from the board. Such peeling forces reduce the  
solder joint lifetime of the package. The recommended maximum compressive force on the top of the  
package is 10 lb force (4.5 kg force). Any adhesive attachment should attach to painted or plastic surfaces,  
and its performance should be verified under the application requirements.  
24.3.1 Experimental Determination of the Junction Temperature with a  
Heat Sink  
When a heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimize the size of the clearance to minimize the change in thermal  
performance caused by removing part of the thermal interface to the heat sink. Because of the experimental  
difficulties with this technique, many engineers measure the heat sink temperature and then back calculate  
the case temperature using a separate measurement of the thermal resistance of the interface. From this  
case temperature, the junction temperature is determined from the junction to case thermal resistance.  
TJ = TC + (RθJC × PD)  
where:  
TJ = junction temperature (°C)  
TC = case temperature of the package (°C)  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
118  
Freescale Semiconductor  
RθJC = junction to case thermal resistance (°C/W)  
PD = power dissipation (W)  
25 System Design Information  
This section provides electrical and thermal design recommendations for successful application of this  
chip.  
25.1 PLL Power Supply Filtering  
Each of the PLLs listed above is provided with power through independent power supply pins. The AV  
DD  
DD  
level should always be equivalent to V , and preferably these voltages will be derived directly from V  
DD  
through a low frequency filter scheme.  
There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to  
provide five independent filter circuits as illustrated in Figure 65, one to each of the five AV pins. By  
DD  
providing independent filters to each PLL, the opportunity to cause noise injection from one PLL to the  
other is reduced.  
This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MT/s  
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL).  
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook  
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a  
single large value capacitor.  
Each circuit should be placed as close as possible to the specific AV pin being supplied to minimize  
DD  
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV  
pin, which is on the periphery of package, without the inductance of vias.  
DD  
This figure shows the PLL power supply filter circuit.  
10 Ω  
VDD  
AVDD (or L2AVDD)  
2.2 µF  
2.2 µF  
Low ESL Surface Mount Capacitors  
GND  
Figure 65. PLL Power Supply Filter Circuit  
25.2 Decoupling Recommendations  
Due to large address and data buses, and high operating frequencies, the device can generate transient  
power surges and high frequency noise in its power supply, especially while driving large capacitive loads.  
This noise must be prevented from reaching other components in the device system, and the device itself  
requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer  
place at least one decoupling capacitor at each VDD, OVDD, GVDD, and LVDD pins of the device. These  
decoupling capacitors should receive their power from separate VDD, OVDD, GVDD, LVDD, and GND  
power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly  
under the device using a standard escape pattern. Others may surround the part.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
119  
These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology)  
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.  
In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB,  
feeding the VDD, OVDD, GVDD, and LVDD planes, to enable quick recharging of the smaller chip  
capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the  
quick response time necessary. They should also be connected to the power and ground planes through two  
vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo  
OSCON).  
25.3 Connection Recommendations  
To ensure reliable operation, it is highly recommended that unused inputs be connected to an appropriate  
signal level. Unused active low inputs should be tied to OVDD, GVDD, or LVDD as required. Unused  
active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.  
Power and ground connections must be made to all external VDD, GVDD, LVDD, OVDD, and GND pins  
of the device.  
25.4 Output Buffer DC Impedance  
The device drivers are characterized over process, voltage, and temperature. For all buses, the driver is a  
2
push-pull single-ended driver type (open drain for I C).  
To measure Z for the single-ended drivers, an external resistor is connected from the chip pad to OVDD  
0
or GND. Then, the value of each resistor is varied until the pad voltage is OV /2 (see Figure 66). The  
DD  
output impedance is the average of two components, the resistances of the pull-up and pull-down devices.  
When data is held high, SW1 is closed (SW2 is open) and R is trimmed until the voltage at the pad equals  
P
OV /2. R then becomes the resistance of the pull-up devices. R and R are designed to be close to each  
DD  
P
P
N
other in value. Then, Z = (R + R )/2.  
0
P
N
OVDD  
RN  
SW2  
SW1  
Pad  
Data  
RP  
OGND  
Figure 66. Driver Impedance Measurement  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
120  
The value of this resistance and the strength of the driver’s current source can be found by making two  
measurements. First, the output voltage is measured while driving logic 1 without an external differential  
termination resistor. The measured voltage is V = R  
while driving logic 1 with an external precision differential termination resistor of value R . The  
× I  
. Second, the output voltage is measured  
1
source  
source  
term  
measured voltage is V = (1/(1/R + 1/R )) × I  
. Solving for the output impedance gives R  
=
2
1
2
source  
source  
R
× (V /V – 1). The drive current is then I  
= V /R  
.
term  
1
2
source  
1
source  
This table summarizes the signal impedance targets. The driver impedance are targeted at minimum V  
,
DD  
nominal OV , 105°C.  
DD  
Table 83. Impedance Characteristics  
Local Bus, Ethernet,  
PCI Signals  
(not including PCI  
output clocks)  
PCI Output Clocks  
(including  
PCI_SYNC_OUT)  
DUART, Control,  
Configuration, Power  
Management  
Impedance  
DDR DRAM Symbol  
Unit  
R
R
42 Target  
42 Target  
NA  
25 Target  
25 Target  
NA  
42 Target  
42 Target  
NA  
20 Target  
20 Target  
NA  
Z0  
Z0  
W
W
W
N
P
Differential  
ZDIFF  
Note: Nominal supply voltages. See Table 2, Tj = 105°C.  
25.5 Configuration Pin Muxing  
The device provides the user with power-on configuration options which can be set through the use of  
external pull-up or pull-down resistors of 4.7 kΩ on certain output pins (see customer visible configuration  
pins). These pins are generally used as output only pins in normal operation.  
While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins  
while HRESET is asserted, is latched when PORESET deasserts, at which time the input receiver is  
disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections  
to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should  
minimize the disruption of signal quality or speed for output pins thus configured.  
25.6 Pull-Up Resistor Requirements  
The device requires high resistance pull-up resistors (10 kΩ is recommended) on open drain type pins  
2
including I C pins and IPIC interrupt pins.  
For more information on required pull-up resistors and the connections required for the JTAG interface,  
see AN3665, “MPC837xE Design Checklist.”  
26 Ordering Information  
Ordering information for the parts fully covered by this specification document is provided in  
Section 26.1, “Part Numbers Fully Addressed by This Document.”  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
121  
26.1 Part Numbers Fully Addressed by This Document  
Table 84 provides the Freescale part numbering nomenclature for this chip. Note that the individual part  
numbers correspond to a maximum processor core frequency. For available frequencies, contact your local  
Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an  
application modifier which may specify special application conditions. Each part number also contains a  
revision code which refers to the die mask revision number.  
Table 84. Part Numbering Nomenclature  
MPC 8377  
ZQ  
AF  
D
A
E
C
Encryption  
Acceleratio  
n
Product  
Code Identifier  
Part  
Temperature  
Range 1  
e300 core  
DDR  
Data Rate  
Revision  
Level 4  
Package 2  
Frequency 3  
MPC  
8377  
Blank = Not Blank = 0°C (Ta) VR = Pb-free AN = 800 MT/s G = 400 MT/s Blank = Freescale  
included to 125°C (Tj) 689 TePBGA II AL = 667 MT/s F = 333 MT/s ATMC fab  
E = included C = –40°C (Ta)  
AJ = 533 MT/s D = 266 MT/s A =  
to 125°C (Tj)  
AG =  
GlobalFoundries  
fab  
400 MT/s  
Note:  
1
Contact local Freescale office on availability of parts with an extended temperature range.  
2
3
See Section 22, “Package and Pin Listings,for more information on the available package type.  
Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this  
specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support  
other maximum core frequencies.  
4
No design changes occurred between initial parts and the revision “A” parts. Only the fab source has changed in moving  
to revision “A” parts. Initial revision parts and revision “A” parts are form, fit, function, and reliability equivalent.  
This table lists the available core and DDR data rate frequency combinations.  
Table 85. Available Parts (Core/DDR Data Rate)  
MPC8377E  
MPC8378E  
MPC8379E  
800 MT/s/400 MT/s  
667 MT/s/400 MT/s  
533 MT/s/333 MT/s  
400 MT/s/266 MT/s  
800 MT/s/400 MT/s  
667 MT/s/400 MT/s  
533 MT/s/333 MT/s  
400 MT/s/266 MT/s  
800 MT/s/400 MT/s  
667 MT/s/400 MT/s  
533 MT/s/333 MT/s  
400 MT/s/266 MT/s  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
122  
This table shows the SVR and PVR settings by device.  
Table 86. SVR and PVR Settings by Product Revision  
SVR  
PVR  
Device  
Package  
Rev 1.0  
Rev. 2.1  
Rev. 1.0  
Rev. 2.1  
MPC8377  
MPC8377E  
MPC8378  
MPC8378E  
MPC8379  
MPC8379E  
0x80C7_0010  
0x80C6_0010  
0x80C5_0010  
0x80C4_0010  
0x80C3_0010  
0x80C2_0010  
0x80C7_0021  
0x80C6_0021  
0x80C5_0021  
0x80C4_0021  
0x80C3_0021  
0x80C2_0021  
TePBGA II  
0x8086_1010  
0x8086_1011  
26.2 Part Marking  
Parts are marked as in the example as shown in this figure.  
MPCnnnnetppaaar  
core/platform MT/s  
ATWLYYWW  
CCCCC  
*MMMMM  
YWWLAZ  
TePBGA II  
Notes:  
ATWLYYWW is the traceability code.  
CCCCC is the country code.  
MMMMM is the mask number.  
YWWLAZ is the assembly traceability code.  
Figure 67. Freescale Part Marking for TePBGA II Devices  
27 Document Revision History  
This table provides a revision history for this document.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
123  
Table 87. Document Revision History  
Substantive Change(s)  
Revision Date  
10  
07/2014 • In Table 4, “Output Drive Capability,“ updated the output impedance cell for DDR 1 and DDR 2 to “18  
full-strength mode, 36 half-strength mode.Added notes column to table.  
• In Table 21, “DDR1 and DDR2 SDRAM Output AC Timing Specifications,updated the max value for  
MCKn cycle time, MCKn/MCKn crossing, added note 7 to rows MCSn output setup with respect to MCK  
and MCSn output hold with respect to MCK, and updated note 3 to ADDR/CMD includes all DDR  
SDRAM output signals except MCK/MCK, MCS, MODT, and MDQ/MDM/MDQS.  
• In Table 35, “USB General Timing Parameters (ULPI Mode Only),updated note 3 as follows: “All signals  
are measured from OVDD/2 of the rising edge of the USB clock to 0.5 × OVDD of the signal in question  
for 3.3-V signaling levels.”  
• In Table 39, “Local Bus General Timing Parameters—PLL Enable Mode,updated note 2 as follows: “All  
timings are in reference to rising edge of LSYNC_IN at LBVDD/2 and the 0.5 × LBVDD of the signal in  
question.”  
• In Table 40, “Local Bus General Timing Parameters—PLL Bypass Mode,updated note 3 as follows: “All  
signals are measured from LBVDD/2 of the rising/falling edge of LCLK0 to 0.5 × LBVDD of the signal in  
question for 3.3-V signaling levels.”  
• In Table 74, “Operating Frequencies for TePBGA II,updated the min and max values for DDR1 and  
DDR2 memory bus frequency (MCK) parameters.  
• Throughout document, updated MHz data rate to MT/s data rate.  
9
8
03/2014 In Table 4, added Note 2.  
05/2012 In Table 15, “DDR SDRAM DC Electrical Characteristics for GVDD (typ) = 2.5 V,updated Output leakage  
current (IOZ) min and max values.  
7
10/2011 • In Table 84, “Part Numbering Nomenclature,updated “Revision Level description”and added footnote  
4.In Section 21.2.4, “AC Requirements for SerDes Reference Clocks,modified the introductory  
sentence for Table 71, “SerDes Reference Clock Common AC Parameters.”  
6
5
07/2011 In Section 2.2, “Power Sequencing,updated power down sequencing information.  
07/2011 • In Table 2, “Absolute Maximum Ratings1,removed footnote 5 from LBIN to OVIN. Also, corrected  
footnote 5.  
• In Table 3, “Recommended Operating Conditions,added footnote 2 to AVDD  
.
• In Figure 2, “Overshoot/Undershoot Voltage for GVDD/LVDD/OVDD/LBVDD,added LBVDD  
.
• In Table 13, “DDR2 SDRAM DC Electrical Characteristics for GVDD(typ) = 1.8 V,updated IOZ min/max  
to –50/50.  
• In Figure 11, “RGMII and RTBI AC Timing and Multiplexing Diagrams,added distinction between  
tSKRGT_RX and tSKRGT_TX signals.  
• In Table 33, “MII Management AC Timing Specifications,updated MDC frequency—removed Min and  
Max values, added Typical value. Also, updated footnote 2 and removed footnote 3.  
• In Table 48, “PCI DC Electrical Characteristics,updated VIH min value to 2.0.  
• In Table 72, “TePBGA II Pinout Listing,added Note to LGPL4/LFRB_B/LGTA_B/LUPWAIT/LPBSE (to  
be consistent with AN3665, “MPC837xE Design Checklist.”  
• In Table 74, “Operating Frequencies for TePBGA II,added Minimum Operating Frequency for eTSEC,  
and corrected DDR2 Minimum and Maximum Operating Frequency values.  
4
11/2010 • In Table 25, “RGMII and RTBI DC Electrical Characteristics,updated VIH min value to 1.7.  
• In Table 40, “Local Bus General Timing Parameters—PLL Bypass Mode,added row for tLBKHLR  
.
• In Section 10.2, “Local Bus AC Electrical Specifications,and in Section 23, “Clocking,updated LCCR  
to LCRR.  
• In Table 72, “TePBGA II Pinout Listing,added SD_WP to pin C9. Also clarified TEST_SEL0 and  
TEST_SEL1 pins—no change in functionality.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
124  
Freescale Semiconductor  
Table 87. Document Revision History (continued)  
Substantive Change(s)  
Revision Date  
3
03/2010 • Added Section 4.3, “eTSEC Gigabit Reference Clock Timing.”  
• In Table 34, “USB DC Electrical Characteristics,and Table 35, “USB General Timing Parameters (ULPI  
Mode Only),added table footnotes .  
• In Table 39, “Local Bus General Timing Parameters—PLL Enable Mode,and Table 40, “Local Bus  
General Timing Parameters—PLL Bypass Mode,corrected footnotes for tLBOTOT1, tLBOTOT2, tLBOTOT3  
• In Figure 22, “Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2 (PLL Enable Mode),and  
Figure 24, “Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (PLL Enable Mode),shifted  
“Input Signals: LAD[0:31]/LDP[0:3]” from the falling edge to the rising edge of LSYNC_IN.  
• In Figure 63, “Mechanical Dimensions and Bottom Surface Nomenclature of the TEPBGA II,added  
heat spreader.  
.
• In Section 25.6, “Pull-Up Resistor Requirements,removed “Ethernet Management MDIO pin” from list  
of open drain type pins.  
• In Table 72, “TePBGA II Pinout Listing,updated the Pin Type column for AVDD_C, AVDD_L, and  
AVDD_P pins.  
• in Table 72, “TePBGA II Pinout Listing,added Note 16 to eTSEC pins.  
• In Table 77, “CSB Frequency Options for Host Mode,and Table 78, “CSB Frequency Options for Agent  
Mode,updated csb_clk frequencies available.  
• In Table 84, “Part Numbering Nomenclature,removed footnote to “e300 core Frequency.”  
2
10/2009 • In Table 3, “Recommended Operating Conditions,added “Operating temperature range” values.  
• In Table 5, “Power Dissipation 1,corrected maximal application for 800/400 MHz to 4.3 W.  
• In Table 5, “Power Dissipation 1,added a column for “Typical Application at Tj = 65°C (W)”.  
• In Table 5, “Power Dissipation 1,added a column for “Sleep Power at Tj = 65°C (W)”.  
• In Table 11, removed overbar from CFG_CLKIN_DIV.  
• In Table 17, “Current Draw Characteristics for MVREF,updated IMVREF maximum value for both DDR1  
and DDR2 to 600 and 400 μA, respectively. Also, updated Note 1 and added Note 2.  
• In Table 20, “DDR1 and DDR2 SDRAM Input AC Timing Specifications,column headings renamed to  
“Min” and “Max”. Footnote 2 updated to state “T is the MCK clock period”.  
• In Table 20, “DDR1 and DDR2 SDRAM Input AC Timing Specifications,and Table 21, “DDR1 and  
DDR2 SDRAM Output AC Timing Specifications,clarified that the frequency parameters are data rates.  
• In Table 29, “RMII Transmit AC Timing Specifications,updated tRMTDXI to 2.0 ns.  
• In Table 60, Gen 1i/1.5G Transmitter AC Specifications,and Table 62, Gen 2i/3G Transmitter AC  
Specifications,corrected titles from “Transmitter” to “Receiver”.  
• In Table 72, “TePBGA II Pinout Listing,removed pin THERM0; it is now Reserved. Also added 1.05 V  
to VDD pin.  
• In Table 74, “Operating Frequencies for TePBGA II,corrected “DDR2 memory bus frequency (MCK)”  
range to 125–200.  
• In Table 79, “e300 Core PLL Configuration,added 3.5:1 and 4:1 core_clk: csb_clk ratio options.  
• In Table 80, “Example Clock Frequency Combinations,updated column heading to “DDR data rate” .  
• In Section 20.2, “SPI AC Timing Specifications,corrected tNIKHOX and tNEKHOX to tNIKHOV and tNEKHOV  
,
respectively.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
Freescale Semiconductor  
125  
Table 87. Document Revision History (continued)  
Substantive Change(s)  
Revision Date  
1
02/2009 • In Table 3, “Recommended Operating Conditions,added two new rows for 800 MHz, and created two  
rows for SerDes. In addition, changed 666 to 667 MHz.  
• In Table 5, “Power Dissipation 1,added Notes 4 and 5. In addition, changed 666 to 667 MHz.  
• In Table 13, “DDR2 SDRAM DC Electrical Characteristics for GVDD(typ) = 1.8 V,Table 21, “DDR1 and  
DDR2 SDRAM Output AC Timing Specifications,and Table 72, “TePBGA II Pinout Listing,added  
footnote to references to MVREF, MDQ, and MDQS, referencing AN3665, MPC837xE Design Checklist.  
• In Table 21, updated tDDKHCX minimum value for 333 MHz to 2.40.  
• In Table 72, “TePBGA II Pinout Listing,added footnote to USBDR_STP_SUSPEND and modified  
footnote 10 and added footnote 14.  
• In Table 74, “Operating Frequencies for TePBGA II,changed 667 to 800 MHz for core_clk.  
• In Table 80, “Example Clock Frequency Combinations,added 800 MHz cells for e300 core.  
• Updated part numbering information in AF column in Table 84, “Part Numbering Nomenclature.In  
addition, modified extended temperature information in notes 1 and 4.  
• In Table 85, “Available Parts (Core/DDR Data Rate),added new row for 800/400 MHz.  
0
12/2008 Initial public release.  
MPC8377E PowerQUICC II Pro Processor Hardware Specifications, Rev. 10  
126  
Freescale Semiconductor  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may vary  
over time. All operating parameters, including “typicals,must be validated for each  
customer application by customer’s technical experts. Freescale does not convey any  
license under its patent rights nor the rights of others. Freescale sells products pursuant  
to standard terms and conditions of sale, which can be found at the following address:  
freescale.com/SalesTermsandConditions.  
Freescale, the Freescale logo, and PowerQUICC are trademarks of Freescale  
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the  
property of their respective owners. The Power Architecture and Power.org word marks  
and the Power and Power.org logos and related marks are trademarks and service marks  
licensed by Power.org.  
© 2008-2012, 2014 Freescale Semiconductor, Inc.  
Document Number: MPC8377EEC  
Rev. 10  
07/2014  

相关型号:

MPC8377EVRALGA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377EVRALGA

PowerQUICC, 32 Bit Power Arch SoC, 667MHz, DDR1/2, PCI/PCIe, 1GbE, USB, SATA, SEC, 0 to 105C, Rev 1
NXP

MPC8377EVRANDA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377EVRANFA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377EVRANGA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377EVRANGA

PowerQUICC, 32 Bit Power Arch SoC, 800MHz, DDR1/2, PCI/PCIe, 1GbE, USB, SATA, SEC, 0 to 105C, Rev 1
NXP

MPC8377EZQAFDA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377EZQAFFA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377EZQAFGA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377EZQAGDA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377EZQAGFA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377EZQAGGA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE